Add files that I missed when importing NaCl changes earlier
[gcc/nacl-gcc.git] / gcc / explow.c
blob75b99ad32d7de5d94419d8d7badb4a9a2bb6763e
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "output.h"
43 static rtx break_out_memory_refs (rtx);
44 static void emit_stack_probe (rtx);
47 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49 HOST_WIDE_INT
50 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 int width = GET_MODE_BITSIZE (mode);
54 /* You want to truncate to a _what_? */
55 gcc_assert (SCALAR_INT_MODE_P (mode));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 if (mode == BImode)
59 return c & 1 ? STORE_FLAG_VALUE : 0;
61 /* Sign-extend for the requested mode. */
63 if (width < HOST_BITS_PER_WIDE_INT)
65 HOST_WIDE_INT sign = 1;
66 sign <<= width - 1;
67 c &= (sign << 1) - 1;
68 c ^= sign;
69 c -= sign;
72 return c;
75 /* Return an rtx for the sum of X and the integer C. */
77 rtx
78 plus_constant (rtx x, HOST_WIDE_INT c)
80 RTX_CODE code;
81 rtx y;
82 enum machine_mode mode;
83 rtx tem;
84 int all_constant = 0;
86 if (c == 0)
87 return x;
89 restart:
91 code = GET_CODE (x);
92 mode = GET_MODE (x);
93 y = x;
95 switch (code)
97 case CONST_INT:
98 return GEN_INT (INTVAL (x) + c);
100 case CONST_DOUBLE:
102 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
103 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
104 unsigned HOST_WIDE_INT l2 = c;
105 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
106 unsigned HOST_WIDE_INT lv;
107 HOST_WIDE_INT hv;
109 add_double (l1, h1, l2, h2, &lv, &hv);
111 return immed_double_const (lv, hv, VOIDmode);
114 case MEM:
115 /* If this is a reference to the constant pool, try replacing it with
116 a reference to a new constant. If the resulting address isn't
117 valid, don't return it because we have no way to validize it. */
118 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
119 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 = force_const_mem (GET_MODE (x),
123 plus_constant (get_pool_constant (XEXP (x, 0)),
124 c));
125 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
126 return tem;
128 break;
130 case CONST:
131 /* If adding to something entirely constant, set a flag
132 so that we can add a CONST around the result. */
133 x = XEXP (x, 0);
134 all_constant = 1;
135 goto restart;
137 case SYMBOL_REF:
138 case LABEL_REF:
139 all_constant = 1;
140 break;
142 case PLUS:
143 /* The interesting case is adding the integer to a sum.
144 Look for constant term in the sum and combine
145 with C. For an integer constant term, we make a combined
146 integer. For a constant term that is not an explicit integer,
147 we cannot really combine, but group them together anyway.
149 Restart or use a recursive call in case the remaining operand is
150 something that we handle specially, such as a SYMBOL_REF.
152 We may not immediately return from the recursive call here, lest
153 all_constant gets lost. */
155 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 c += INTVAL (XEXP (x, 1));
159 if (GET_MODE (x) != VOIDmode)
160 c = trunc_int_for_mode (c, GET_MODE (x));
162 x = XEXP (x, 0);
163 goto restart;
165 else if (CONSTANT_P (XEXP (x, 1)))
167 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
168 c = 0;
170 else if (find_constant_term_loc (&y))
172 /* We need to be careful since X may be shared and we can't
173 modify it in place. */
174 rtx copy = copy_rtx (x);
175 rtx *const_loc = find_constant_term_loc (&copy);
177 *const_loc = plus_constant (*const_loc, c);
178 x = copy;
179 c = 0;
181 break;
183 default:
184 break;
187 if (c != 0)
188 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
191 return x;
192 else if (all_constant)
193 return gen_rtx_CONST (mode, x);
194 else
195 return x;
198 /* If X is a sum, return a new sum like X but lacking any constant terms.
199 Add all the removed constant terms into *CONSTPTR.
200 X itself is not altered. The result != X if and only if
201 it is not isomorphic to X. */
204 eliminate_constant_term (rtx x, rtx *constptr)
206 rtx x0, x1;
207 rtx tem;
209 if (GET_CODE (x) != PLUS)
210 return x;
212 /* First handle constants appearing at this level explicitly. */
213 if (GET_CODE (XEXP (x, 1)) == CONST_INT
214 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
215 XEXP (x, 1)))
216 && GET_CODE (tem) == CONST_INT)
218 *constptr = tem;
219 return eliminate_constant_term (XEXP (x, 0), constptr);
222 tem = const0_rtx;
223 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
224 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
225 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
226 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
227 *constptr, tem))
228 && GET_CODE (tem) == CONST_INT)
230 *constptr = tem;
231 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 return x;
237 /* Return an rtx for the size in bytes of the value of EXP. */
240 expr_size (tree exp)
242 tree size;
244 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
245 size = TREE_OPERAND (exp, 1);
246 else
247 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
249 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
252 /* Return a wide integer for the size in bytes of the value of EXP, or -1
253 if the size can vary or is larger than an integer. */
255 HOST_WIDE_INT
256 int_expr_size (tree exp)
258 tree size;
260 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
261 size = TREE_OPERAND (exp, 1);
262 else
263 size = lang_hooks.expr_size (exp);
265 if (size == 0 || !host_integerp (size, 0))
266 return -1;
268 return tree_low_cst (size, 0);
271 /* Return a copy of X in which all memory references
272 and all constants that involve symbol refs
273 have been replaced with new temporary registers.
274 Also emit code to load the memory locations and constants
275 into those registers.
277 If X contains no such constants or memory references,
278 X itself (not a copy) is returned.
280 If a constant is found in the address that is not a legitimate constant
281 in an insn, it is left alone in the hope that it might be valid in the
282 address.
284 X may contain no arithmetic except addition, subtraction and multiplication.
285 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
287 static rtx
288 break_out_memory_refs (rtx x)
290 if (MEM_P (x)
291 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
292 && GET_MODE (x) != VOIDmode))
293 x = force_reg (GET_MODE (x), x);
294 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
295 || GET_CODE (x) == MULT)
297 rtx op0 = break_out_memory_refs (XEXP (x, 0));
298 rtx op1 = break_out_memory_refs (XEXP (x, 1));
300 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
301 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
304 return x;
307 /* Given X, a memory address in ptr_mode, convert it to an address
308 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
309 the fact that pointers are not allowed to overflow by commuting arithmetic
310 operations over conversions so that address arithmetic insns can be
311 used. */
314 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
315 rtx x)
317 #ifndef POINTERS_EXTEND_UNSIGNED
318 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
319 return x;
320 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
321 enum machine_mode from_mode;
322 rtx temp;
323 enum rtx_code code;
325 /* If X already has the right mode, just return it. */
326 if (GET_MODE (x) == to_mode)
327 return x;
329 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
331 /* Here we handle some special cases. If none of them apply, fall through
332 to the default case. */
333 switch (GET_CODE (x))
335 case CONST_INT:
336 case CONST_DOUBLE:
337 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
338 code = TRUNCATE;
339 else if (POINTERS_EXTEND_UNSIGNED < 0)
340 break;
341 else if (POINTERS_EXTEND_UNSIGNED > 0)
342 code = ZERO_EXTEND;
343 else
344 code = SIGN_EXTEND;
345 temp = simplify_unary_operation (code, to_mode, x, from_mode);
346 if (temp)
347 return temp;
348 break;
350 case SUBREG:
351 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
352 && GET_MODE (SUBREG_REG (x)) == to_mode)
353 return SUBREG_REG (x);
354 break;
356 case LABEL_REF:
357 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
358 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
359 return temp;
360 break;
362 case SYMBOL_REF:
363 temp = shallow_copy_rtx (x);
364 PUT_MODE (temp, to_mode);
365 return temp;
366 break;
368 case CONST:
369 return gen_rtx_CONST (to_mode,
370 convert_memory_address (to_mode, XEXP (x, 0)));
371 break;
373 case PLUS:
374 case MULT:
375 /* For addition we can safely permute the conversion and addition
376 operation if one operand is a constant and converting the constant
377 does not change it. We can always safely permute them if we are
378 making the address narrower. */
379 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
380 || (GET_CODE (x) == PLUS
381 && GET_CODE (XEXP (x, 1)) == CONST_INT
382 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
383 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
384 convert_memory_address (to_mode, XEXP (x, 0)),
385 XEXP (x, 1));
386 break;
388 default:
389 break;
392 return convert_modes (to_mode, from_mode,
393 x, POINTERS_EXTEND_UNSIGNED);
394 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
397 /* Return something equivalent to X but valid as a memory address
398 for something of mode MODE. When X is not itself valid, this
399 works by copying X or subexpressions of it into registers. */
402 memory_address (enum machine_mode mode, rtx x)
404 rtx oldx = x;
406 x = convert_memory_address (Pmode, x);
408 /* By passing constant addresses through registers
409 we get a chance to cse them. */
410 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
411 x = force_reg (Pmode, x);
413 /* We get better cse by rejecting indirect addressing at this stage.
414 Let the combiner create indirect addresses where appropriate.
415 For now, generate the code so that the subexpressions useful to share
416 are visible. But not if cse won't be done! */
417 else
419 if (! cse_not_expected && !REG_P (x))
420 x = break_out_memory_refs (x);
422 /* At this point, any valid address is accepted. */
423 if (memory_address_p (mode, x))
424 goto win;
426 /* If it was valid before but breaking out memory refs invalidated it,
427 use it the old way. */
428 if (memory_address_p (mode, oldx))
429 goto win2;
431 /* Perform machine-dependent transformations on X
432 in certain cases. This is not necessary since the code
433 below can handle all possible cases, but machine-dependent
434 transformations can make better code. */
435 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
437 /* PLUS and MULT can appear in special ways
438 as the result of attempts to make an address usable for indexing.
439 Usually they are dealt with by calling force_operand, below.
440 But a sum containing constant terms is special
441 if removing them makes the sum a valid address:
442 then we generate that address in a register
443 and index off of it. We do this because it often makes
444 shorter code, and because the addresses thus generated
445 in registers often become common subexpressions. */
446 if (GET_CODE (x) == PLUS)
448 rtx constant_term = const0_rtx;
449 rtx y = eliminate_constant_term (x, &constant_term);
450 if (constant_term == const0_rtx
451 || ! memory_address_p (mode, y))
452 x = force_operand (x, NULL_RTX);
453 else
455 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
456 if (! memory_address_p (mode, y))
457 x = force_operand (x, NULL_RTX);
458 else
459 x = y;
463 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
464 x = force_operand (x, NULL_RTX);
466 /* If we have a register that's an invalid address,
467 it must be a hard reg of the wrong class. Copy it to a pseudo. */
468 else if (REG_P (x))
469 x = copy_to_reg (x);
471 /* Last resort: copy the value to a register, since
472 the register is a valid address. */
473 else
474 x = force_reg (Pmode, x);
476 goto done;
478 win2:
479 x = oldx;
480 win:
481 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
483 x = force_operand (x, NULL_RTX);
484 x = force_reg (Pmode, x);
488 done:
490 /* If we didn't change the address, we are done. Otherwise, mark
491 a reg as a pointer if we have REG or REG + CONST_INT. */
492 if (oldx == x)
493 return x;
494 else if (REG_P (x))
495 mark_reg_pointer (x, BITS_PER_UNIT);
496 else if (GET_CODE (x) == PLUS
497 && REG_P (XEXP (x, 0))
498 && GET_CODE (XEXP (x, 1)) == CONST_INT)
499 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
501 /* OLDX may have been the address on a temporary. Update the address
502 to indicate that X is now used. */
503 update_temp_slot_address (oldx, x);
505 return x;
508 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
511 memory_address_noforce (enum machine_mode mode, rtx x)
513 int ambient_force_addr = flag_force_addr;
514 rtx val;
516 flag_force_addr = 0;
517 val = memory_address (mode, x);
518 flag_force_addr = ambient_force_addr;
519 return val;
522 /* Convert a mem ref into one with a valid memory address.
523 Pass through anything else unchanged. */
526 validize_mem (rtx ref)
528 if (!MEM_P (ref))
529 return ref;
530 ref = use_anchored_address (ref);
531 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
532 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
533 return ref;
535 /* Don't alter REF itself, since that is probably a stack slot. */
536 return replace_equiv_address (ref, XEXP (ref, 0));
539 /* If X is a memory reference to a member of an object block, try rewriting
540 it to use an anchor instead. Return the new memory reference on success
541 and the old one on failure. */
544 use_anchored_address (rtx x)
546 rtx base;
547 HOST_WIDE_INT offset;
549 if (!flag_section_anchors)
550 return x;
552 if (!MEM_P (x))
553 return x;
555 /* Split the address into a base and offset. */
556 base = XEXP (x, 0);
557 offset = 0;
558 if (GET_CODE (base) == CONST
559 && GET_CODE (XEXP (base, 0)) == PLUS
560 && GET_CODE (XEXP (XEXP (base, 0), 1)) == CONST_INT)
562 offset += INTVAL (XEXP (XEXP (base, 0), 1));
563 base = XEXP (XEXP (base, 0), 0);
566 /* Check whether BASE is suitable for anchors. */
567 if (GET_CODE (base) != SYMBOL_REF
568 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
569 || SYMBOL_REF_ANCHOR_P (base)
570 || SYMBOL_REF_BLOCK (base) == NULL
571 || !targetm.use_anchors_for_symbol_p (base))
572 return x;
574 /* Decide where BASE is going to be. */
575 place_block_symbol (base);
577 /* Get the anchor we need to use. */
578 offset += SYMBOL_REF_BLOCK_OFFSET (base);
579 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
580 SYMBOL_REF_TLS_MODEL (base));
582 /* Work out the offset from the anchor. */
583 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
585 /* If we're going to run a CSE pass, force the anchor into a register.
586 We will then be able to reuse registers for several accesses, if the
587 target costs say that that's worthwhile. */
588 if (!cse_not_expected)
589 base = force_reg (GET_MODE (base), base);
591 return replace_equiv_address (x, plus_constant (base, offset));
594 /* Copy the value or contents of X to a new temp reg and return that reg. */
597 copy_to_reg (rtx x)
599 rtx temp = gen_reg_rtx (GET_MODE (x));
601 /* If not an operand, must be an address with PLUS and MULT so
602 do the computation. */
603 if (! general_operand (x, VOIDmode))
604 x = force_operand (x, temp);
606 if (x != temp)
607 emit_move_insn (temp, x);
609 return temp;
612 /* Like copy_to_reg but always give the new register mode Pmode
613 in case X is a constant. */
616 copy_addr_to_reg (rtx x)
618 return copy_to_mode_reg (Pmode, x);
621 /* Like copy_to_reg but always give the new register mode MODE
622 in case X is a constant. */
625 copy_to_mode_reg (enum machine_mode mode, rtx x)
627 rtx temp = gen_reg_rtx (mode);
629 /* If not an operand, must be an address with PLUS and MULT so
630 do the computation. */
631 if (! general_operand (x, VOIDmode))
632 x = force_operand (x, temp);
634 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
635 if (x != temp)
636 emit_move_insn (temp, x);
637 return temp;
640 /* Load X into a register if it is not already one.
641 Use mode MODE for the register.
642 X should be valid for mode MODE, but it may be a constant which
643 is valid for all integer modes; that's why caller must specify MODE.
645 The caller must not alter the value in the register we return,
646 since we mark it as a "constant" register. */
649 force_reg (enum machine_mode mode, rtx x)
651 rtx temp, insn, set;
653 if (REG_P (x))
654 return x;
656 if (general_operand (x, mode))
658 temp = gen_reg_rtx (mode);
659 insn = emit_move_insn (temp, x);
661 else
663 temp = force_operand (x, NULL_RTX);
664 if (REG_P (temp))
665 insn = get_last_insn ();
666 else
668 rtx temp2 = gen_reg_rtx (mode);
669 insn = emit_move_insn (temp2, temp);
670 temp = temp2;
674 /* Let optimizers know that TEMP's value never changes
675 and that X can be substituted for it. Don't get confused
676 if INSN set something else (such as a SUBREG of TEMP). */
677 if (CONSTANT_P (x)
678 && (set = single_set (insn)) != 0
679 && SET_DEST (set) == temp
680 && ! rtx_equal_p (x, SET_SRC (set)))
681 set_unique_reg_note (insn, REG_EQUAL, x);
683 /* Let optimizers know that TEMP is a pointer, and if so, the
684 known alignment of that pointer. */
686 unsigned align = 0;
687 if (GET_CODE (x) == SYMBOL_REF)
689 align = BITS_PER_UNIT;
690 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
691 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
693 else if (GET_CODE (x) == LABEL_REF)
694 align = BITS_PER_UNIT;
695 else if (GET_CODE (x) == CONST
696 && GET_CODE (XEXP (x, 0)) == PLUS
697 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
698 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
700 rtx s = XEXP (XEXP (x, 0), 0);
701 rtx c = XEXP (XEXP (x, 0), 1);
702 unsigned sa, ca;
704 sa = BITS_PER_UNIT;
705 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
706 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
708 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
710 align = MIN (sa, ca);
712 else if (MEM_P (x) && MEM_POINTER (x))
713 align = MEM_ALIGN (x);
715 if (align)
716 mark_reg_pointer (temp, align);
719 return temp;
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
726 force_not_mem (rtx x)
728 rtx temp;
730 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
731 return x;
733 temp = gen_reg_rtx (GET_MODE (x));
735 if (MEM_POINTER (x))
736 REG_POINTER (temp) = 1;
738 emit_move_insn (temp, x);
739 return temp;
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
747 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
749 rtx temp;
751 if (target && REG_P (target))
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
756 emit_move_insn (temp, x);
757 return temp;
760 /* Return the mode to use to store a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
764 FOR_CALL is nonzero if this call is promoting args for a call. */
766 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
767 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
768 #endif
770 enum machine_mode
771 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
772 int for_call ATTRIBUTE_UNUSED)
774 enum tree_code code = TREE_CODE (type);
775 int unsignedp = *punsignedp;
777 #ifndef PROMOTE_MODE
778 if (! for_call)
779 return mode;
780 #endif
782 switch (code)
784 #ifdef PROMOTE_FUNCTION_MODE
785 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
786 case REAL_TYPE: case OFFSET_TYPE:
787 #ifdef PROMOTE_MODE
788 if (for_call)
790 #endif
791 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
792 #ifdef PROMOTE_MODE
794 else
796 PROMOTE_MODE (mode, unsignedp, type);
798 #endif
799 break;
800 #endif
802 #ifdef POINTERS_EXTEND_UNSIGNED
803 case REFERENCE_TYPE:
804 case POINTER_TYPE:
805 mode = Pmode;
806 unsignedp = POINTERS_EXTEND_UNSIGNED;
807 break;
808 #endif
810 default:
811 break;
814 *punsignedp = unsignedp;
815 return mode;
818 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
819 This pops when ADJUST is positive. ADJUST need not be constant. */
821 void
822 adjust_stack (rtx adjust)
824 rtx temp;
826 if (adjust == const0_rtx)
827 return;
829 /* We expect all variable sized adjustments to be multiple of
830 PREFERRED_STACK_BOUNDARY. */
831 if (GET_CODE (adjust) == CONST_INT)
832 stack_pointer_delta -= INTVAL (adjust);
834 temp = expand_binop (Pmode,
835 #ifdef STACK_GROWS_DOWNWARD
836 add_optab,
837 #else
838 sub_optab,
839 #endif
840 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
841 OPTAB_LIB_WIDEN);
843 if (temp != stack_pointer_rtx)
844 emit_move_insn (stack_pointer_rtx, temp);
847 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
848 This pushes when ADJUST is positive. ADJUST need not be constant. */
850 void
851 anti_adjust_stack (rtx adjust)
853 rtx temp;
855 if (adjust == const0_rtx)
856 return;
858 /* We expect all variable sized adjustments to be multiple of
859 PREFERRED_STACK_BOUNDARY. */
860 if (GET_CODE (adjust) == CONST_INT)
861 stack_pointer_delta += INTVAL (adjust);
863 temp = expand_binop (Pmode,
864 #ifdef STACK_GROWS_DOWNWARD
865 sub_optab,
866 #else
867 add_optab,
868 #endif
869 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
870 OPTAB_LIB_WIDEN);
872 if (temp != stack_pointer_rtx)
873 emit_move_insn (stack_pointer_rtx, temp);
876 /* Round the size of a block to be pushed up to the boundary required
877 by this machine. SIZE is the desired size, which need not be constant. */
879 static rtx
880 round_push (rtx size)
882 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
884 if (align == 1)
885 return size;
887 if (GET_CODE (size) == CONST_INT)
889 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
891 if (INTVAL (size) != new)
892 size = GEN_INT (new);
894 else
896 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
897 but we know it can't. So add ourselves and then do
898 TRUNC_DIV_EXPR. */
899 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
900 NULL_RTX, 1, OPTAB_LIB_WIDEN);
901 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
902 NULL_RTX, 1);
903 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
906 return size;
909 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
910 to a previously-created save area. If no save area has been allocated,
911 this function will allocate one. If a save area is specified, it
912 must be of the proper mode.
914 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
915 are emitted at the current position. */
917 void
918 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
920 rtx sa = *psave;
921 /* The default is that we use a move insn and save in a Pmode object. */
922 rtx (*fcn) (rtx, rtx) = gen_move_insn;
923 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
925 /* See if this machine has anything special to do for this kind of save. */
926 switch (save_level)
928 #ifdef HAVE_save_stack_block
929 case SAVE_BLOCK:
930 if (HAVE_save_stack_block)
931 fcn = gen_save_stack_block;
932 break;
933 #endif
934 #ifdef HAVE_save_stack_function
935 case SAVE_FUNCTION:
936 if (HAVE_save_stack_function)
937 fcn = gen_save_stack_function;
938 break;
939 #endif
940 #ifdef HAVE_save_stack_nonlocal
941 case SAVE_NONLOCAL:
942 if (HAVE_save_stack_nonlocal)
943 fcn = gen_save_stack_nonlocal;
944 break;
945 #endif
946 default:
947 break;
950 /* If there is no save area and we have to allocate one, do so. Otherwise
951 verify the save area is the proper mode. */
953 if (sa == 0)
955 if (mode != VOIDmode)
957 if (save_level == SAVE_NONLOCAL)
958 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
959 else
960 *psave = sa = gen_reg_rtx (mode);
964 if (after)
966 rtx seq;
968 start_sequence ();
969 do_pending_stack_adjust ();
970 /* We must validize inside the sequence, to ensure that any instructions
971 created by the validize call also get moved to the right place. */
972 if (sa != 0)
973 sa = validize_mem (sa);
974 emit_insn (fcn (sa, stack_pointer_rtx));
975 seq = get_insns ();
976 end_sequence ();
977 emit_insn_after (seq, after);
979 else
981 do_pending_stack_adjust ();
982 if (sa != 0)
983 sa = validize_mem (sa);
984 emit_insn (fcn (sa, stack_pointer_rtx));
988 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
989 area made by emit_stack_save. If it is zero, we have nothing to do.
991 Put any emitted insns after insn AFTER, if nonzero, otherwise at
992 current position. */
994 void
995 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
997 /* The default is that we use a move insn. */
998 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1000 /* See if this machine has anything special to do for this kind of save. */
1001 switch (save_level)
1003 #ifdef HAVE_restore_stack_block
1004 case SAVE_BLOCK:
1005 if (HAVE_restore_stack_block)
1006 fcn = gen_restore_stack_block;
1007 break;
1008 #endif
1009 #ifdef HAVE_restore_stack_function
1010 case SAVE_FUNCTION:
1011 if (HAVE_restore_stack_function)
1012 fcn = gen_restore_stack_function;
1013 break;
1014 #endif
1015 #ifdef HAVE_restore_stack_nonlocal
1016 case SAVE_NONLOCAL:
1017 if (HAVE_restore_stack_nonlocal)
1018 fcn = gen_restore_stack_nonlocal;
1019 break;
1020 #endif
1021 default:
1022 break;
1025 if (sa != 0)
1027 sa = validize_mem (sa);
1028 /* These clobbers prevent the scheduler from moving
1029 references to variable arrays below the code
1030 that deletes (pops) the arrays. */
1031 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1032 gen_rtx_MEM (BLKmode,
1033 gen_rtx_SCRATCH (VOIDmode))));
1034 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1035 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1038 discard_pending_stack_adjust ();
1040 if (after)
1042 rtx seq;
1044 start_sequence ();
1045 emit_insn (fcn (stack_pointer_rtx, sa));
1046 seq = get_insns ();
1047 end_sequence ();
1048 emit_insn_after (seq, after);
1050 else
1051 emit_insn (fcn (stack_pointer_rtx, sa));
1054 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1055 function. This function should be called whenever we allocate or
1056 deallocate dynamic stack space. */
1058 void
1059 update_nonlocal_goto_save_area (void)
1061 tree t_save;
1062 rtx r_save;
1064 /* The nonlocal_goto_save_area object is an array of N pointers. The
1065 first one is used for the frame pointer save; the rest are sized by
1066 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1067 of the stack save area slots. */
1068 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1069 integer_one_node, NULL_TREE, NULL_TREE);
1070 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1072 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1075 /* Return an rtx representing the address of an area of memory dynamically
1076 pushed on the stack. This region of memory is always aligned to
1077 a multiple of BIGGEST_ALIGNMENT.
1079 Any required stack pointer alignment is preserved.
1081 SIZE is an rtx representing the size of the area.
1082 TARGET is a place in which the address can be placed.
1084 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1087 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1089 /* If we're asking for zero bytes, it doesn't matter what we point
1090 to since we can't dereference it. But return a reasonable
1091 address anyway. */
1092 if (size == const0_rtx)
1093 return virtual_stack_dynamic_rtx;
1095 /* Otherwise, show we're calling alloca or equivalent. */
1096 current_function_calls_alloca = 1;
1098 /* Ensure the size is in the proper mode. */
1099 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1100 size = convert_to_mode (Pmode, size, 1);
1102 /* We can't attempt to minimize alignment necessary, because we don't
1103 know the final value of preferred_stack_boundary yet while executing
1104 this code. */
1105 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1107 /* We will need to ensure that the address we return is aligned to
1108 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1109 always know its final value at this point in the compilation (it
1110 might depend on the size of the outgoing parameter lists, for
1111 example), so we must align the value to be returned in that case.
1112 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1113 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1114 We must also do an alignment operation on the returned value if
1115 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1117 If we have to align, we must leave space in SIZE for the hole
1118 that might result from the alignment operation. */
1120 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1121 #define MUST_ALIGN 1
1122 #else
1123 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1124 #endif
1126 if (MUST_ALIGN)
1127 size
1128 = force_operand (plus_constant (size,
1129 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1130 NULL_RTX);
1132 #ifdef SETJMP_VIA_SAVE_AREA
1133 /* If setjmp restores regs from a save area in the stack frame,
1134 avoid clobbering the reg save area. Note that the offset of
1135 virtual_incoming_args_rtx includes the preallocated stack args space.
1136 It would be no problem to clobber that, but it's on the wrong side
1137 of the old save area.
1139 What used to happen is that, since we did not know for sure
1140 whether setjmp() was invoked until after RTL generation, we
1141 would use reg notes to store the "optimized" size and fix things
1142 up later. These days we know this information before we ever
1143 start building RTL so the reg notes are unnecessary. */
1144 if (!current_function_calls_setjmp)
1146 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1148 /* ??? Code below assumes that the save area needs maximal
1149 alignment. This constraint may be too strong. */
1150 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1152 if (GET_CODE (size) == CONST_INT)
1154 HOST_WIDE_INT new = INTVAL (size) / align * align;
1156 if (INTVAL (size) != new)
1157 size = GEN_INT (new);
1159 else
1161 /* Since we know overflow is not possible, we avoid using
1162 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1163 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1164 GEN_INT (align), NULL_RTX, 1);
1165 size = expand_mult (Pmode, size,
1166 GEN_INT (align), NULL_RTX, 1);
1169 else
1171 rtx dynamic_offset
1172 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1173 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1175 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1176 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1178 #endif /* SETJMP_VIA_SAVE_AREA */
1180 /* Round the size to a multiple of the required stack alignment.
1181 Since the stack if presumed to be rounded before this allocation,
1182 this will maintain the required alignment.
1184 If the stack grows downward, we could save an insn by subtracting
1185 SIZE from the stack pointer and then aligning the stack pointer.
1186 The problem with this is that the stack pointer may be unaligned
1187 between the execution of the subtraction and alignment insns and
1188 some machines do not allow this. Even on those that do, some
1189 signal handlers malfunction if a signal should occur between those
1190 insns. Since this is an extremely rare event, we have no reliable
1191 way of knowing which systems have this problem. So we avoid even
1192 momentarily mis-aligning the stack. */
1194 /* If we added a variable amount to SIZE,
1195 we can no longer assume it is aligned. */
1196 #if !defined (SETJMP_VIA_SAVE_AREA)
1197 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1198 #endif
1199 size = round_push (size);
1201 do_pending_stack_adjust ();
1203 /* We ought to be called always on the toplevel and stack ought to be aligned
1204 properly. */
1205 gcc_assert (!(stack_pointer_delta
1206 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1208 /* If needed, check that we have the required amount of stack. Take into
1209 account what has already been checked. */
1210 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1211 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1213 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1214 if (target == 0 || !REG_P (target)
1215 || REGNO (target) < FIRST_PSEUDO_REGISTER
1216 || GET_MODE (target) != Pmode)
1217 target = gen_reg_rtx (Pmode);
1219 mark_reg_pointer (target, known_align);
1221 /* Perform the required allocation from the stack. Some systems do
1222 this differently than simply incrementing/decrementing from the
1223 stack pointer, such as acquiring the space by calling malloc(). */
1224 #ifdef HAVE_allocate_stack
1225 if (HAVE_allocate_stack)
1227 enum machine_mode mode = STACK_SIZE_MODE;
1228 insn_operand_predicate_fn pred;
1230 /* We don't have to check against the predicate for operand 0 since
1231 TARGET is known to be a pseudo of the proper mode, which must
1232 be valid for the operand. For operand 1, convert to the
1233 proper mode and validate. */
1234 if (mode == VOIDmode)
1235 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1237 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1238 if (pred && ! ((*pred) (size, mode)))
1239 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1241 emit_insn (gen_allocate_stack (target, size));
1243 else
1244 #endif
1246 #ifndef STACK_GROWS_DOWNWARD
1247 emit_move_insn (target, virtual_stack_dynamic_rtx);
1248 #endif
1250 /* Check stack bounds if necessary. */
1251 if (current_function_limit_stack)
1253 rtx available;
1254 rtx space_available = gen_label_rtx ();
1255 #ifdef STACK_GROWS_DOWNWARD
1256 available = expand_binop (Pmode, sub_optab,
1257 stack_pointer_rtx, stack_limit_rtx,
1258 NULL_RTX, 1, OPTAB_WIDEN);
1259 #else
1260 available = expand_binop (Pmode, sub_optab,
1261 stack_limit_rtx, stack_pointer_rtx,
1262 NULL_RTX, 1, OPTAB_WIDEN);
1263 #endif
1264 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1265 space_available);
1266 #ifdef HAVE_trap
1267 if (HAVE_trap)
1268 emit_insn (gen_trap ());
1269 else
1270 #endif
1271 error ("stack limits not supported on this target");
1272 emit_barrier ();
1273 emit_label (space_available);
1276 anti_adjust_stack (size);
1278 #ifdef STACK_GROWS_DOWNWARD
1279 emit_move_insn (target, virtual_stack_dynamic_rtx);
1280 #endif
1283 if (MUST_ALIGN)
1285 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1286 but we know it can't. So add ourselves and then do
1287 TRUNC_DIV_EXPR. */
1288 target = expand_binop (Pmode, add_optab, target,
1289 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1290 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1291 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1292 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1293 NULL_RTX, 1);
1294 target = expand_mult (Pmode, target,
1295 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1296 NULL_RTX, 1);
1299 /* Record the new stack level for nonlocal gotos. */
1300 if (cfun->nonlocal_goto_save_area != 0)
1301 update_nonlocal_goto_save_area ();
1303 return target;
1306 /* A front end may want to override GCC's stack checking by providing a
1307 run-time routine to call to check the stack, so provide a mechanism for
1308 calling that routine. */
1310 static GTY(()) rtx stack_check_libfunc;
1312 void
1313 set_stack_check_libfunc (rtx libfunc)
1315 stack_check_libfunc = libfunc;
1318 /* Emit one stack probe at ADDRESS, an address within the stack. */
1320 static void
1321 emit_stack_probe (rtx address)
1323 rtx memref = gen_rtx_MEM (word_mode, address);
1325 MEM_VOLATILE_P (memref) = 1;
1327 if (STACK_CHECK_PROBE_LOAD)
1328 emit_move_insn (gen_reg_rtx (word_mode), memref);
1329 else
1330 emit_move_insn (memref, const0_rtx);
1333 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1334 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1335 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1336 subtract from the stack. If SIZE is constant, this is done
1337 with a fixed number of probes. Otherwise, we must make a loop. */
1339 #ifdef STACK_GROWS_DOWNWARD
1340 #define STACK_GROW_OP MINUS
1341 #else
1342 #define STACK_GROW_OP PLUS
1343 #endif
1345 void
1346 probe_stack_range (HOST_WIDE_INT first, rtx size)
1348 /* First ensure SIZE is Pmode. */
1349 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1350 size = convert_to_mode (Pmode, size, 1);
1352 /* Next see if the front end has set up a function for us to call to
1353 check the stack. */
1354 if (stack_check_libfunc != 0)
1356 rtx addr = memory_address (QImode,
1357 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1358 stack_pointer_rtx,
1359 plus_constant (size, first)));
1361 addr = convert_memory_address (ptr_mode, addr);
1362 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1363 ptr_mode);
1366 /* Next see if we have an insn to check the stack. Use it if so. */
1367 #ifdef HAVE_check_stack
1368 else if (HAVE_check_stack)
1370 insn_operand_predicate_fn pred;
1371 rtx last_addr
1372 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1373 stack_pointer_rtx,
1374 plus_constant (size, first)),
1375 NULL_RTX);
1377 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1378 if (pred && ! ((*pred) (last_addr, Pmode)))
1379 last_addr = copy_to_mode_reg (Pmode, last_addr);
1381 emit_insn (gen_check_stack (last_addr));
1383 #endif
1385 /* If we have to generate explicit probes, see if we have a constant
1386 small number of them to generate. If so, that's the easy case. */
1387 else if (GET_CODE (size) == CONST_INT
1388 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1390 HOST_WIDE_INT offset;
1392 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1393 for values of N from 1 until it exceeds LAST. If only one
1394 probe is needed, this will not generate any code. Then probe
1395 at LAST. */
1396 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1397 offset < INTVAL (size);
1398 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1399 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1400 stack_pointer_rtx,
1401 GEN_INT (offset)));
1403 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1404 stack_pointer_rtx,
1405 plus_constant (size, first)));
1408 /* In the variable case, do the same as above, but in a loop. We emit loop
1409 notes so that loop optimization can be done. */
1410 else
1412 rtx test_addr
1413 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1414 stack_pointer_rtx,
1415 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1416 NULL_RTX);
1417 rtx last_addr
1418 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1419 stack_pointer_rtx,
1420 plus_constant (size, first)),
1421 NULL_RTX);
1422 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1423 rtx loop_lab = gen_label_rtx ();
1424 rtx test_lab = gen_label_rtx ();
1425 rtx end_lab = gen_label_rtx ();
1426 rtx temp;
1428 if (!REG_P (test_addr)
1429 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1430 test_addr = force_reg (Pmode, test_addr);
1432 emit_jump (test_lab);
1434 emit_label (loop_lab);
1435 emit_stack_probe (test_addr);
1437 #ifdef STACK_GROWS_DOWNWARD
1438 #define CMP_OPCODE GTU
1439 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1440 1, OPTAB_WIDEN);
1441 #else
1442 #define CMP_OPCODE LTU
1443 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1444 1, OPTAB_WIDEN);
1445 #endif
1447 gcc_assert (temp == test_addr);
1449 emit_label (test_lab);
1450 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1451 NULL_RTX, Pmode, 1, loop_lab);
1452 emit_jump (end_lab);
1453 emit_label (end_lab);
1455 emit_stack_probe (last_addr);
1459 /* Return an rtx representing the register or memory location
1460 in which a scalar value of data type VALTYPE
1461 was returned by a function call to function FUNC.
1462 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1463 function is known, otherwise 0.
1464 OUTGOING is 1 if on a machine with register windows this function
1465 should return the register in which the function will put its result
1466 and 0 otherwise. */
1469 hard_function_value (tree valtype, tree func, tree fntype,
1470 int outgoing ATTRIBUTE_UNUSED)
1472 rtx val;
1474 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1476 if (REG_P (val)
1477 && GET_MODE (val) == BLKmode)
1479 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1480 enum machine_mode tmpmode;
1482 /* int_size_in_bytes can return -1. We don't need a check here
1483 since the value of bytes will then be large enough that no
1484 mode will match anyway. */
1486 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1487 tmpmode != VOIDmode;
1488 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1490 /* Have we found a large enough mode? */
1491 if (GET_MODE_SIZE (tmpmode) >= bytes)
1492 break;
1495 /* No suitable mode found. */
1496 gcc_assert (tmpmode != VOIDmode);
1498 PUT_MODE (val, tmpmode);
1500 return val;
1503 /* Return an rtx representing the register or memory location
1504 in which a scalar value of mode MODE was returned by a library call. */
1507 hard_libcall_value (enum machine_mode mode)
1509 return LIBCALL_VALUE (mode);
1512 /* Look up the tree code for a given rtx code
1513 to provide the arithmetic operation for REAL_ARITHMETIC.
1514 The function returns an int because the caller may not know
1515 what `enum tree_code' means. */
1518 rtx_to_tree_code (enum rtx_code code)
1520 enum tree_code tcode;
1522 switch (code)
1524 case PLUS:
1525 tcode = PLUS_EXPR;
1526 break;
1527 case MINUS:
1528 tcode = MINUS_EXPR;
1529 break;
1530 case MULT:
1531 tcode = MULT_EXPR;
1532 break;
1533 case DIV:
1534 tcode = RDIV_EXPR;
1535 break;
1536 case SMIN:
1537 tcode = MIN_EXPR;
1538 break;
1539 case SMAX:
1540 tcode = MAX_EXPR;
1541 break;
1542 default:
1543 tcode = LAST_AND_UNUSED_TREE_CODE;
1544 break;
1546 return ((int) tcode);
1549 #include "gt-explow.h"