Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / vfs_bio.c
blob1570bd7edc9546932cf6f4f75aed00eb37d6094b
1 /*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme. Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
34 * Author: John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
38 * see man buf(9) for more info.
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/limits.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/proc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/sysctl.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
63 #include <geom/geom.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include "opt_directio.h"
73 #include "opt_swap.h"
75 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
77 struct bio_ops bioops; /* I/O operation notification */
79 struct buf_ops buf_ops_bio = {
80 .bop_name = "buf_ops_bio",
81 .bop_write = bufwrite,
82 .bop_strategy = bufstrategy,
83 .bop_sync = bufsync,
84 .bop_bdflush = bufbdflush,
88 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
89 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c.
91 struct buf *buf; /* buffer header pool */
93 static struct proc *bufdaemonproc;
95 static int inmem(struct vnode *vp, daddr_t blkno);
96 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
97 vm_offset_t to);
98 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
99 vm_offset_t to);
100 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
101 vm_page_t m);
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_setdirty(struct buf *bp);
104 static void vfs_setdirty_locked_object(struct buf *bp);
105 static void vfs_vmio_release(struct buf *bp);
106 static int vfs_bio_clcheck(struct vnode *vp, int size,
107 daddr_t lblkno, daddr_t blkno);
108 static int flushbufqueues(int, int);
109 static void buf_daemon(void);
110 static void bremfreel(struct buf *bp);
112 int vmiodirenable = TRUE;
113 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
114 "Use the VM system for directory writes");
115 int runningbufspace;
116 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
117 "Amount of presently outstanding async buffer io");
118 static int bufspace;
119 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
120 "KVA memory used for bufs");
121 static int maxbufspace;
122 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
123 "Maximum allowed value of bufspace (including buf_daemon)");
124 static int bufmallocspace;
125 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
126 "Amount of malloced memory for buffers");
127 static int maxbufmallocspace;
128 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
129 "Maximum amount of malloced memory for buffers");
130 static int lobufspace;
131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
132 "Minimum amount of buffers we want to have");
133 int hibufspace;
134 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
135 "Maximum allowed value of bufspace (excluding buf_daemon)");
136 static int bufreusecnt;
137 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
138 "Number of times we have reused a buffer");
139 static int buffreekvacnt;
140 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
141 "Number of times we have freed the KVA space from some buffer");
142 static int bufdefragcnt;
143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
144 "Number of times we have had to repeat buffer allocation to defragment");
145 static int lorunningspace;
146 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147 "Minimum preferred space used for in-progress I/O");
148 static int hirunningspace;
149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150 "Maximum amount of space to use for in-progress I/O");
151 int dirtybufferflushes;
152 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
153 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
154 int bdwriteskip;
155 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
156 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
157 int altbufferflushes;
158 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
159 0, "Number of fsync flushes to limit dirty buffers");
160 static int recursiveflushes;
161 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
162 0, "Number of flushes skipped due to being recursive");
163 static int numdirtybuffers;
164 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
165 "Number of buffers that are dirty (has unwritten changes) at the moment");
166 static int lodirtybuffers;
167 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
168 "How many buffers we want to have free before bufdaemon can sleep");
169 static int hidirtybuffers;
170 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
171 "When the number of dirty buffers is considered severe");
172 int dirtybufthresh;
173 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
174 0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
175 static int numfreebuffers;
176 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
177 "Number of free buffers");
178 static int lofreebuffers;
179 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
180 "XXX Unused");
181 static int hifreebuffers;
182 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
183 "XXX Complicatedly unused");
184 static int getnewbufcalls;
185 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
186 "Number of calls to getnewbuf");
187 static int getnewbufrestarts;
188 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
189 "Number of times getnewbuf has had to restart a buffer aquisition");
192 * Wakeup point for bufdaemon, as well as indicator of whether it is already
193 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
194 * is idling.
196 static int bd_request;
199 * This lock synchronizes access to bd_request.
201 static struct mtx bdlock;
204 * bogus page -- for I/O to/from partially complete buffers
205 * this is a temporary solution to the problem, but it is not
206 * really that bad. it would be better to split the buffer
207 * for input in the case of buffers partially already in memory,
208 * but the code is intricate enough already.
210 vm_page_t bogus_page;
213 * Synchronization (sleep/wakeup) variable for active buffer space requests.
214 * Set when wait starts, cleared prior to wakeup().
215 * Used in runningbufwakeup() and waitrunningbufspace().
217 static int runningbufreq;
220 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
221 * waitrunningbufspace().
223 static struct mtx rbreqlock;
226 * Synchronization (sleep/wakeup) variable for buffer requests.
227 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
228 * by and/or.
229 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
230 * getnewbuf(), and getblk().
232 static int needsbuffer;
235 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
237 static struct mtx nblock;
240 * Definitions for the buffer free lists.
242 #define BUFFER_QUEUES 6 /* number of free buffer queues */
244 #define QUEUE_NONE 0 /* on no queue */
245 #define QUEUE_CLEAN 1 /* non-B_DELWRI buffers */
246 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */
247 #define QUEUE_DIRTY_GIANT 3 /* B_DELWRI buffers that need giant */
248 #define QUEUE_EMPTYKVA 4 /* empty buffer headers w/KVA assignment */
249 #define QUEUE_EMPTY 5 /* empty buffer headers */
251 /* Queues for free buffers with various properties */
252 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
254 /* Lock for the bufqueues */
255 static struct mtx bqlock;
258 * Single global constant for BUF_WMESG, to avoid getting multiple references.
259 * buf_wmesg is referred from macros.
261 const char *buf_wmesg = BUF_WMESG;
263 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
264 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
265 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
266 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
268 #ifdef DIRECTIO
269 extern void ffs_rawread_setup(void);
270 #endif /* DIRECTIO */
272 * numdirtywakeup:
274 * If someone is blocked due to there being too many dirty buffers,
275 * and numdirtybuffers is now reasonable, wake them up.
278 static __inline void
279 numdirtywakeup(int level)
282 if (numdirtybuffers <= level) {
283 mtx_lock(&nblock);
284 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
285 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
286 wakeup(&needsbuffer);
288 mtx_unlock(&nblock);
293 * bufspacewakeup:
295 * Called when buffer space is potentially available for recovery.
296 * getnewbuf() will block on this flag when it is unable to free
297 * sufficient buffer space. Buffer space becomes recoverable when
298 * bp's get placed back in the queues.
301 static __inline void
302 bufspacewakeup(void)
306 * If someone is waiting for BUF space, wake them up. Even
307 * though we haven't freed the kva space yet, the waiting
308 * process will be able to now.
310 mtx_lock(&nblock);
311 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
312 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
313 wakeup(&needsbuffer);
315 mtx_unlock(&nblock);
319 * runningbufwakeup() - in-progress I/O accounting.
322 void
323 runningbufwakeup(struct buf *bp)
326 if (bp->b_runningbufspace) {
327 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
328 bp->b_runningbufspace = 0;
329 mtx_lock(&rbreqlock);
330 if (runningbufreq && runningbufspace <= lorunningspace) {
331 runningbufreq = 0;
332 wakeup(&runningbufreq);
334 mtx_unlock(&rbreqlock);
339 * bufcountwakeup:
341 * Called when a buffer has been added to one of the free queues to
342 * account for the buffer and to wakeup anyone waiting for free buffers.
343 * This typically occurs when large amounts of metadata are being handled
344 * by the buffer cache ( else buffer space runs out first, usually ).
347 static __inline void
348 bufcountwakeup(void)
351 atomic_add_int(&numfreebuffers, 1);
352 mtx_lock(&nblock);
353 if (needsbuffer) {
354 needsbuffer &= ~VFS_BIO_NEED_ANY;
355 if (numfreebuffers >= hifreebuffers)
356 needsbuffer &= ~VFS_BIO_NEED_FREE;
357 wakeup(&needsbuffer);
359 mtx_unlock(&nblock);
363 * waitrunningbufspace()
365 * runningbufspace is a measure of the amount of I/O currently
366 * running. This routine is used in async-write situations to
367 * prevent creating huge backups of pending writes to a device.
368 * Only asynchronous writes are governed by this function.
370 * Reads will adjust runningbufspace, but will not block based on it.
371 * The read load has a side effect of reducing the allowed write load.
373 * This does NOT turn an async write into a sync write. It waits
374 * for earlier writes to complete and generally returns before the
375 * caller's write has reached the device.
377 void
378 waitrunningbufspace(void)
381 mtx_lock(&rbreqlock);
382 while (runningbufspace > hirunningspace) {
383 ++runningbufreq;
384 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
386 mtx_unlock(&rbreqlock);
391 * vfs_buf_test_cache:
393 * Called when a buffer is extended. This function clears the B_CACHE
394 * bit if the newly extended portion of the buffer does not contain
395 * valid data.
397 static __inline
398 void
399 vfs_buf_test_cache(struct buf *bp,
400 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
401 vm_page_t m)
404 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
405 if (bp->b_flags & B_CACHE) {
406 int base = (foff + off) & PAGE_MASK;
407 if (vm_page_is_valid(m, base, size) == 0)
408 bp->b_flags &= ~B_CACHE;
412 /* Wake up the buffer daemon if necessary */
413 static __inline
414 void
415 bd_wakeup(int dirtybuflevel)
418 mtx_lock(&bdlock);
419 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
420 bd_request = 1;
421 wakeup(&bd_request);
423 mtx_unlock(&bdlock);
427 * bd_speedup - speedup the buffer cache flushing code
430 static __inline
431 void
432 bd_speedup(void)
435 bd_wakeup(1);
439 * Calculating buffer cache scaling values and reserve space for buffer
440 * headers. This is called during low level kernel initialization and
441 * may be called more then once. We CANNOT write to the memory area
442 * being reserved at this time.
444 caddr_t
445 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
447 int maxbuf;
450 * physmem_est is in pages. Convert it to kilobytes (assumes
451 * PAGE_SIZE is >= 1K)
453 physmem_est = physmem_est * (PAGE_SIZE / 1024);
456 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
457 * For the first 64MB of ram nominally allocate sufficient buffers to
458 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
459 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
460 * the buffer cache we limit the eventual kva reservation to
461 * maxbcache bytes.
463 * factor represents the 1/4 x ram conversion.
465 if (nbuf == 0) {
466 int factor = 4 * BKVASIZE / 1024;
468 nbuf = 50;
469 if (physmem_est > 4096)
470 nbuf += min((physmem_est - 4096) / factor,
471 65536 / factor);
472 if (physmem_est > 65536)
473 nbuf += (physmem_est - 65536) * 2 / (factor * 5);
475 if (maxbcache && nbuf > maxbcache / BKVASIZE)
476 nbuf = maxbcache / BKVASIZE;
478 /* XXX Avoid integer overflows later on with maxbufspace. */
479 maxbuf = (INT_MAX / 3) / BKVASIZE;
480 if (nbuf > maxbuf)
481 nbuf = maxbuf;
485 * swbufs are used as temporary holders for I/O, such as paging I/O.
486 * We have no less then 16 and no more then 256.
488 nswbuf = max(min(nbuf/4, 256), 16);
489 #ifdef NSWBUF_MIN
490 if (nswbuf < NSWBUF_MIN)
491 nswbuf = NSWBUF_MIN;
492 #endif
493 #ifdef DIRECTIO
494 ffs_rawread_setup();
495 #endif
498 * Reserve space for the buffer cache buffers
500 swbuf = (void *)v;
501 v = (caddr_t)(swbuf + nswbuf);
502 buf = (void *)v;
503 v = (caddr_t)(buf + nbuf);
505 return(v);
508 /* Initialize the buffer subsystem. Called before use of any buffers. */
509 void
510 bufinit(void)
512 struct buf *bp;
513 int i;
515 mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
516 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
517 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
518 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
520 /* next, make a null set of free lists */
521 for (i = 0; i < BUFFER_QUEUES; i++)
522 TAILQ_INIT(&bufqueues[i]);
524 /* finally, initialize each buffer header and stick on empty q */
525 for (i = 0; i < nbuf; i++) {
526 bp = &buf[i];
527 bzero(bp, sizeof *bp);
528 bp->b_flags = B_INVAL; /* we're just an empty header */
529 bp->b_rcred = NOCRED;
530 bp->b_wcred = NOCRED;
531 bp->b_qindex = QUEUE_EMPTY;
532 bp->b_vflags = 0;
533 bp->b_xflags = 0;
534 LIST_INIT(&bp->b_dep);
535 BUF_LOCKINIT(bp);
536 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
540 * maxbufspace is the absolute maximum amount of buffer space we are
541 * allowed to reserve in KVM and in real terms. The absolute maximum
542 * is nominally used by buf_daemon. hibufspace is the nominal maximum
543 * used by most other processes. The differential is required to
544 * ensure that buf_daemon is able to run when other processes might
545 * be blocked waiting for buffer space.
547 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
548 * this may result in KVM fragmentation which is not handled optimally
549 * by the system.
551 maxbufspace = nbuf * BKVASIZE;
552 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
553 lobufspace = hibufspace - MAXBSIZE;
555 lorunningspace = 512 * 1024;
556 hirunningspace = 1024 * 1024;
559 * Limit the amount of malloc memory since it is wired permanently into
560 * the kernel space. Even though this is accounted for in the buffer
561 * allocation, we don't want the malloced region to grow uncontrolled.
562 * The malloc scheme improves memory utilization significantly on average
563 * (small) directories.
565 maxbufmallocspace = hibufspace / 20;
568 * Reduce the chance of a deadlock occuring by limiting the number
569 * of delayed-write dirty buffers we allow to stack up.
571 hidirtybuffers = nbuf / 4 + 20;
572 dirtybufthresh = hidirtybuffers * 9 / 10;
573 numdirtybuffers = 0;
575 * To support extreme low-memory systems, make sure hidirtybuffers cannot
576 * eat up all available buffer space. This occurs when our minimum cannot
577 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
578 * BKVASIZE'd (8K) buffers.
580 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
581 hidirtybuffers >>= 1;
583 lodirtybuffers = hidirtybuffers / 2;
586 * Try to keep the number of free buffers in the specified range,
587 * and give special processes (e.g. like buf_daemon) access to an
588 * emergency reserve.
590 lofreebuffers = nbuf / 18 + 5;
591 hifreebuffers = 2 * lofreebuffers;
592 numfreebuffers = nbuf;
595 * Maximum number of async ops initiated per buf_daemon loop. This is
596 * somewhat of a hack at the moment, we really need to limit ourselves
597 * based on the number of bytes of I/O in-transit that were initiated
598 * from buf_daemon.
601 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
602 VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
606 * bfreekva() - free the kva allocation for a buffer.
608 * Since this call frees up buffer space, we call bufspacewakeup().
610 static void
611 bfreekva(struct buf *bp)
614 if (bp->b_kvasize) {
615 atomic_add_int(&buffreekvacnt, 1);
616 atomic_subtract_int(&bufspace, bp->b_kvasize);
617 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
618 (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
619 bp->b_kvasize = 0;
620 bufspacewakeup();
625 * bremfree:
627 * Mark the buffer for removal from the appropriate free list in brelse.
630 void
631 bremfree(struct buf *bp)
634 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
635 KASSERT((bp->b_flags & B_REMFREE) == 0,
636 ("bremfree: buffer %p already marked for delayed removal.", bp));
637 KASSERT(bp->b_qindex != QUEUE_NONE,
638 ("bremfree: buffer %p not on a queue.", bp));
639 BUF_ASSERT_HELD(bp);
641 bp->b_flags |= B_REMFREE;
642 /* Fixup numfreebuffers count. */
643 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
644 atomic_subtract_int(&numfreebuffers, 1);
648 * bremfreef:
650 * Force an immediate removal from a free list. Used only in nfs when
651 * it abuses the b_freelist pointer.
653 void
654 bremfreef(struct buf *bp)
656 mtx_lock(&bqlock);
657 bremfreel(bp);
658 mtx_unlock(&bqlock);
662 * bremfreel:
664 * Removes a buffer from the free list, must be called with the
665 * bqlock held.
667 static void
668 bremfreel(struct buf *bp)
670 CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
671 bp, bp->b_vp, bp->b_flags);
672 KASSERT(bp->b_qindex != QUEUE_NONE,
673 ("bremfreel: buffer %p not on a queue.", bp));
674 BUF_ASSERT_HELD(bp);
675 mtx_assert(&bqlock, MA_OWNED);
677 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
678 bp->b_qindex = QUEUE_NONE;
680 * If this was a delayed bremfree() we only need to remove the buffer
681 * from the queue and return the stats are already done.
683 if (bp->b_flags & B_REMFREE) {
684 bp->b_flags &= ~B_REMFREE;
685 return;
688 * Fixup numfreebuffers count. If the buffer is invalid or not
689 * delayed-write, the buffer was free and we must decrement
690 * numfreebuffers.
692 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
693 atomic_subtract_int(&numfreebuffers, 1);
698 * Get a buffer with the specified data. Look in the cache first. We
699 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
700 * is set, the buffer is valid and we do not have to do anything ( see
701 * getblk() ). This is really just a special case of breadn().
704 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
705 struct buf **bpp)
708 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
712 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
713 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
714 * the buffer is valid and we do not have to do anything.
716 void
717 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
718 int cnt, struct ucred * cred)
720 struct buf *rabp;
721 int i;
723 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
724 if (inmem(vp, *rablkno))
725 continue;
726 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
728 if ((rabp->b_flags & B_CACHE) == 0) {
729 if (!TD_IS_IDLETHREAD(curthread))
730 curthread->td_ru.ru_inblock++;
731 rabp->b_flags |= B_ASYNC;
732 rabp->b_flags &= ~B_INVAL;
733 rabp->b_ioflags &= ~BIO_ERROR;
734 rabp->b_iocmd = BIO_READ;
735 if (rabp->b_rcred == NOCRED && cred != NOCRED)
736 rabp->b_rcred = crhold(cred);
737 vfs_busy_pages(rabp, 0);
738 BUF_KERNPROC(rabp);
739 rabp->b_iooffset = dbtob(rabp->b_blkno);
740 bstrategy(rabp);
741 } else {
742 brelse(rabp);
748 * Operates like bread, but also starts asynchronous I/O on
749 * read-ahead blocks.
752 breadn(struct vnode * vp, daddr_t blkno, int size,
753 daddr_t * rablkno, int *rabsize,
754 int cnt, struct ucred * cred, struct buf **bpp)
756 struct buf *bp;
757 int rv = 0, readwait = 0;
759 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
760 *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
762 /* if not found in cache, do some I/O */
763 if ((bp->b_flags & B_CACHE) == 0) {
764 if (!TD_IS_IDLETHREAD(curthread))
765 curthread->td_ru.ru_inblock++;
766 bp->b_iocmd = BIO_READ;
767 bp->b_flags &= ~B_INVAL;
768 bp->b_ioflags &= ~BIO_ERROR;
769 if (bp->b_rcred == NOCRED && cred != NOCRED)
770 bp->b_rcred = crhold(cred);
771 vfs_busy_pages(bp, 0);
772 bp->b_iooffset = dbtob(bp->b_blkno);
773 bstrategy(bp);
774 ++readwait;
777 breada(vp, rablkno, rabsize, cnt, cred);
779 if (readwait) {
780 rv = bufwait(bp);
782 return (rv);
786 * Write, release buffer on completion. (Done by iodone
787 * if async). Do not bother writing anything if the buffer
788 * is invalid.
790 * Note that we set B_CACHE here, indicating that buffer is
791 * fully valid and thus cacheable. This is true even of NFS
792 * now so we set it generally. This could be set either here
793 * or in biodone() since the I/O is synchronous. We put it
794 * here.
797 bufwrite(struct buf *bp)
799 int oldflags;
800 struct vnode *vp;
801 int vp_md;
803 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
804 if (bp->b_flags & B_INVAL) {
805 brelse(bp);
806 return (0);
809 oldflags = bp->b_flags;
811 BUF_ASSERT_HELD(bp);
813 if (bp->b_pin_count > 0)
814 bunpin_wait(bp);
816 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
817 ("FFS background buffer should not get here %p", bp));
819 vp = bp->b_vp;
820 if (vp)
821 vp_md = vp->v_vflag & VV_MD;
822 else
823 vp_md = 0;
825 /* Mark the buffer clean */
826 bundirty(bp);
828 bp->b_flags &= ~B_DONE;
829 bp->b_ioflags &= ~BIO_ERROR;
830 bp->b_flags |= B_CACHE;
831 bp->b_iocmd = BIO_WRITE;
833 bufobj_wref(bp->b_bufobj);
834 vfs_busy_pages(bp, 1);
837 * Normal bwrites pipeline writes
839 bp->b_runningbufspace = bp->b_bufsize;
840 atomic_add_int(&runningbufspace, bp->b_runningbufspace);
842 if (!TD_IS_IDLETHREAD(curthread))
843 curthread->td_ru.ru_oublock++;
844 if (oldflags & B_ASYNC)
845 BUF_KERNPROC(bp);
846 bp->b_iooffset = dbtob(bp->b_blkno);
847 bstrategy(bp);
849 if ((oldflags & B_ASYNC) == 0) {
850 int rtval = bufwait(bp);
851 brelse(bp);
852 return (rtval);
853 } else {
855 * don't allow the async write to saturate the I/O
856 * system. We will not deadlock here because
857 * we are blocking waiting for I/O that is already in-progress
858 * to complete. We do not block here if it is the update
859 * or syncer daemon trying to clean up as that can lead
860 * to deadlock.
862 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
863 waitrunningbufspace();
866 return (0);
869 void
870 bufbdflush(struct bufobj *bo, struct buf *bp)
872 struct buf *nbp;
874 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
875 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
876 altbufferflushes++;
877 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
878 BO_LOCK(bo);
880 * Try to find a buffer to flush.
882 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
883 if ((nbp->b_vflags & BV_BKGRDINPROG) ||
884 BUF_LOCK(nbp,
885 LK_EXCLUSIVE | LK_NOWAIT, NULL))
886 continue;
887 if (bp == nbp)
888 panic("bdwrite: found ourselves");
889 BO_UNLOCK(bo);
890 /* Don't countdeps with the bo lock held. */
891 if (buf_countdeps(nbp, 0)) {
892 BO_LOCK(bo);
893 BUF_UNLOCK(nbp);
894 continue;
896 if (nbp->b_flags & B_CLUSTEROK) {
897 vfs_bio_awrite(nbp);
898 } else {
899 bremfree(nbp);
900 bawrite(nbp);
902 dirtybufferflushes++;
903 break;
905 if (nbp == NULL)
906 BO_UNLOCK(bo);
911 * Delayed write. (Buffer is marked dirty). Do not bother writing
912 * anything if the buffer is marked invalid.
914 * Note that since the buffer must be completely valid, we can safely
915 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
916 * biodone() in order to prevent getblk from writing the buffer
917 * out synchronously.
919 void
920 bdwrite(struct buf *bp)
922 struct thread *td = curthread;
923 struct vnode *vp;
924 struct bufobj *bo;
926 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
927 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
928 BUF_ASSERT_HELD(bp);
930 if (bp->b_flags & B_INVAL) {
931 brelse(bp);
932 return;
936 * If we have too many dirty buffers, don't create any more.
937 * If we are wildly over our limit, then force a complete
938 * cleanup. Otherwise, just keep the situation from getting
939 * out of control. Note that we have to avoid a recursive
940 * disaster and not try to clean up after our own cleanup!
942 vp = bp->b_vp;
943 bo = bp->b_bufobj;
944 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
945 td->td_pflags |= TDP_INBDFLUSH;
946 BO_BDFLUSH(bo, bp);
947 td->td_pflags &= ~TDP_INBDFLUSH;
948 } else
949 recursiveflushes++;
951 bdirty(bp);
953 * Set B_CACHE, indicating that the buffer is fully valid. This is
954 * true even of NFS now.
956 bp->b_flags |= B_CACHE;
959 * This bmap keeps the system from needing to do the bmap later,
960 * perhaps when the system is attempting to do a sync. Since it
961 * is likely that the indirect block -- or whatever other datastructure
962 * that the filesystem needs is still in memory now, it is a good
963 * thing to do this. Note also, that if the pageout daemon is
964 * requesting a sync -- there might not be enough memory to do
965 * the bmap then... So, this is important to do.
967 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
968 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
972 * Set the *dirty* buffer range based upon the VM system dirty pages.
974 vfs_setdirty(bp);
977 * We need to do this here to satisfy the vnode_pager and the
978 * pageout daemon, so that it thinks that the pages have been
979 * "cleaned". Note that since the pages are in a delayed write
980 * buffer -- the VFS layer "will" see that the pages get written
981 * out on the next sync, or perhaps the cluster will be completed.
983 vfs_clean_pages(bp);
984 bqrelse(bp);
987 * Wakeup the buffer flushing daemon if we have a lot of dirty
988 * buffers (midpoint between our recovery point and our stall
989 * point).
991 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
994 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
995 * due to the softdep code.
1000 * bdirty:
1002 * Turn buffer into delayed write request. We must clear BIO_READ and
1003 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
1004 * itself to properly update it in the dirty/clean lists. We mark it
1005 * B_DONE to ensure that any asynchronization of the buffer properly
1006 * clears B_DONE ( else a panic will occur later ).
1008 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1009 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
1010 * should only be called if the buffer is known-good.
1012 * Since the buffer is not on a queue, we do not update the numfreebuffers
1013 * count.
1015 * The buffer must be on QUEUE_NONE.
1017 void
1018 bdirty(struct buf *bp)
1021 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1022 bp, bp->b_vp, bp->b_flags);
1023 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1024 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1025 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1026 BUF_ASSERT_HELD(bp);
1027 bp->b_flags &= ~(B_RELBUF);
1028 bp->b_iocmd = BIO_WRITE;
1030 if ((bp->b_flags & B_DELWRI) == 0) {
1031 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1032 reassignbuf(bp);
1033 atomic_add_int(&numdirtybuffers, 1);
1034 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1039 * bundirty:
1041 * Clear B_DELWRI for buffer.
1043 * Since the buffer is not on a queue, we do not update the numfreebuffers
1044 * count.
1046 * The buffer must be on QUEUE_NONE.
1049 void
1050 bundirty(struct buf *bp)
1053 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1054 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1055 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1056 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1057 BUF_ASSERT_HELD(bp);
1059 if (bp->b_flags & B_DELWRI) {
1060 bp->b_flags &= ~B_DELWRI;
1061 reassignbuf(bp);
1062 atomic_subtract_int(&numdirtybuffers, 1);
1063 numdirtywakeup(lodirtybuffers);
1066 * Since it is now being written, we can clear its deferred write flag.
1068 bp->b_flags &= ~B_DEFERRED;
1072 * bawrite:
1074 * Asynchronous write. Start output on a buffer, but do not wait for
1075 * it to complete. The buffer is released when the output completes.
1077 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1078 * B_INVAL buffers. Not us.
1080 void
1081 bawrite(struct buf *bp)
1084 bp->b_flags |= B_ASYNC;
1085 (void) bwrite(bp);
1089 * bwillwrite:
1091 * Called prior to the locking of any vnodes when we are expecting to
1092 * write. We do not want to starve the buffer cache with too many
1093 * dirty buffers so we block here. By blocking prior to the locking
1094 * of any vnodes we attempt to avoid the situation where a locked vnode
1095 * prevents the various system daemons from flushing related buffers.
1098 void
1099 bwillwrite(void)
1102 if (numdirtybuffers >= hidirtybuffers) {
1103 mtx_lock(&nblock);
1104 while (numdirtybuffers >= hidirtybuffers) {
1105 bd_wakeup(1);
1106 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1107 msleep(&needsbuffer, &nblock,
1108 (PRIBIO + 4), "flswai", 0);
1110 mtx_unlock(&nblock);
1115 * Return true if we have too many dirty buffers.
1118 buf_dirty_count_severe(void)
1121 return(numdirtybuffers >= hidirtybuffers);
1125 * brelse:
1127 * Release a busy buffer and, if requested, free its resources. The
1128 * buffer will be stashed in the appropriate bufqueue[] allowing it
1129 * to be accessed later as a cache entity or reused for other purposes.
1131 void
1132 brelse(struct buf *bp)
1134 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1135 bp, bp->b_vp, bp->b_flags);
1136 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1137 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1139 if (bp->b_flags & B_MANAGED) {
1140 bqrelse(bp);
1141 return;
1144 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1145 bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1147 * Failed write, redirty. Must clear BIO_ERROR to prevent
1148 * pages from being scrapped. If the error is anything
1149 * other than an I/O error (EIO), assume that retryingi
1150 * is futile.
1152 bp->b_ioflags &= ~BIO_ERROR;
1153 bdirty(bp);
1154 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1155 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1157 * Either a failed I/O or we were asked to free or not
1158 * cache the buffer.
1160 bp->b_flags |= B_INVAL;
1161 if (!LIST_EMPTY(&bp->b_dep))
1162 buf_deallocate(bp);
1163 if (bp->b_flags & B_DELWRI) {
1164 atomic_subtract_int(&numdirtybuffers, 1);
1165 numdirtywakeup(lodirtybuffers);
1167 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1168 if ((bp->b_flags & B_VMIO) == 0) {
1169 if (bp->b_bufsize)
1170 allocbuf(bp, 0);
1171 if (bp->b_vp)
1172 brelvp(bp);
1177 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1178 * is called with B_DELWRI set, the underlying pages may wind up
1179 * getting freed causing a previous write (bdwrite()) to get 'lost'
1180 * because pages associated with a B_DELWRI bp are marked clean.
1182 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1183 * if B_DELWRI is set.
1185 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1186 * on pages to return pages to the VM page queues.
1188 if (bp->b_flags & B_DELWRI)
1189 bp->b_flags &= ~B_RELBUF;
1190 else if (vm_page_count_severe()) {
1192 * The locking of the BO_LOCK is not necessary since
1193 * BKGRDINPROG cannot be set while we hold the buf
1194 * lock, it can only be cleared if it is already
1195 * pending.
1197 if (bp->b_vp) {
1198 if (!(bp->b_vflags & BV_BKGRDINPROG))
1199 bp->b_flags |= B_RELBUF;
1200 } else
1201 bp->b_flags |= B_RELBUF;
1205 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
1206 * constituted, not even NFS buffers now. Two flags effect this. If
1207 * B_INVAL, the struct buf is invalidated but the VM object is kept
1208 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1210 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1211 * invalidated. BIO_ERROR cannot be set for a failed write unless the
1212 * buffer is also B_INVAL because it hits the re-dirtying code above.
1214 * Normally we can do this whether a buffer is B_DELWRI or not. If
1215 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1216 * the commit state and we cannot afford to lose the buffer. If the
1217 * buffer has a background write in progress, we need to keep it
1218 * around to prevent it from being reconstituted and starting a second
1219 * background write.
1221 if ((bp->b_flags & B_VMIO)
1222 && !(bp->b_vp->v_mount != NULL &&
1223 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1224 !vn_isdisk(bp->b_vp, NULL) &&
1225 (bp->b_flags & B_DELWRI))
1228 int i, j, resid;
1229 vm_page_t m;
1230 off_t foff;
1231 vm_pindex_t poff;
1232 vm_object_t obj;
1234 obj = bp->b_bufobj->bo_object;
1237 * Get the base offset and length of the buffer. Note that
1238 * in the VMIO case if the buffer block size is not
1239 * page-aligned then b_data pointer may not be page-aligned.
1240 * But our b_pages[] array *IS* page aligned.
1242 * block sizes less then DEV_BSIZE (usually 512) are not
1243 * supported due to the page granularity bits (m->valid,
1244 * m->dirty, etc...).
1246 * See man buf(9) for more information
1248 resid = bp->b_bufsize;
1249 foff = bp->b_offset;
1250 VM_OBJECT_LOCK(obj);
1251 for (i = 0; i < bp->b_npages; i++) {
1252 int had_bogus = 0;
1254 m = bp->b_pages[i];
1257 * If we hit a bogus page, fixup *all* the bogus pages
1258 * now.
1260 if (m == bogus_page) {
1261 poff = OFF_TO_IDX(bp->b_offset);
1262 had_bogus = 1;
1264 for (j = i; j < bp->b_npages; j++) {
1265 vm_page_t mtmp;
1266 mtmp = bp->b_pages[j];
1267 if (mtmp == bogus_page) {
1268 mtmp = vm_page_lookup(obj, poff + j);
1269 if (!mtmp) {
1270 panic("brelse: page missing\n");
1272 bp->b_pages[j] = mtmp;
1276 if ((bp->b_flags & B_INVAL) == 0) {
1277 pmap_qenter(
1278 trunc_page((vm_offset_t)bp->b_data),
1279 bp->b_pages, bp->b_npages);
1281 m = bp->b_pages[i];
1283 if ((bp->b_flags & B_NOCACHE) ||
1284 (bp->b_ioflags & BIO_ERROR)) {
1285 int poffset = foff & PAGE_MASK;
1286 int presid = resid > (PAGE_SIZE - poffset) ?
1287 (PAGE_SIZE - poffset) : resid;
1289 KASSERT(presid >= 0, ("brelse: extra page"));
1290 vm_page_lock_queues();
1291 vm_page_set_invalid(m, poffset, presid);
1292 vm_page_unlock_queues();
1293 if (had_bogus)
1294 printf("avoided corruption bug in bogus_page/brelse code\n");
1296 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1297 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1299 VM_OBJECT_UNLOCK(obj);
1300 if (bp->b_flags & (B_INVAL | B_RELBUF))
1301 vfs_vmio_release(bp);
1303 } else if (bp->b_flags & B_VMIO) {
1305 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1306 vfs_vmio_release(bp);
1309 } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1310 if (bp->b_bufsize != 0)
1311 allocbuf(bp, 0);
1312 if (bp->b_vp != NULL)
1313 brelvp(bp);
1316 if (BUF_LOCKRECURSED(bp)) {
1317 /* do not release to free list */
1318 BUF_UNLOCK(bp);
1319 return;
1322 /* enqueue */
1323 mtx_lock(&bqlock);
1324 /* Handle delayed bremfree() processing. */
1325 if (bp->b_flags & B_REMFREE)
1326 bremfreel(bp);
1327 if (bp->b_qindex != QUEUE_NONE)
1328 panic("brelse: free buffer onto another queue???");
1330 /* buffers with no memory */
1331 if (bp->b_bufsize == 0) {
1332 bp->b_flags |= B_INVAL;
1333 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1334 if (bp->b_vflags & BV_BKGRDINPROG)
1335 panic("losing buffer 1");
1336 if (bp->b_kvasize) {
1337 bp->b_qindex = QUEUE_EMPTYKVA;
1338 } else {
1339 bp->b_qindex = QUEUE_EMPTY;
1341 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1342 /* buffers with junk contents */
1343 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1344 (bp->b_ioflags & BIO_ERROR)) {
1345 bp->b_flags |= B_INVAL;
1346 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1347 if (bp->b_vflags & BV_BKGRDINPROG)
1348 panic("losing buffer 2");
1349 bp->b_qindex = QUEUE_CLEAN;
1350 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1351 /* remaining buffers */
1352 } else {
1353 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1354 (B_DELWRI|B_NEEDSGIANT))
1355 bp->b_qindex = QUEUE_DIRTY_GIANT;
1356 else if (bp->b_flags & B_DELWRI)
1357 bp->b_qindex = QUEUE_DIRTY;
1358 else
1359 bp->b_qindex = QUEUE_CLEAN;
1360 if (bp->b_flags & B_AGE)
1361 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1362 else
1363 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1365 mtx_unlock(&bqlock);
1368 * If B_INVAL and B_DELWRI is set, clear B_DELWRI. We have already
1369 * placed the buffer on the correct queue. We must also disassociate
1370 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1371 * find it.
1373 if (bp->b_flags & B_INVAL) {
1374 if (bp->b_flags & B_DELWRI)
1375 bundirty(bp);
1376 if (bp->b_vp)
1377 brelvp(bp);
1381 * Fixup numfreebuffers count. The bp is on an appropriate queue
1382 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1383 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1384 * if B_INVAL is set ).
1387 if (!(bp->b_flags & B_DELWRI))
1388 bufcountwakeup();
1391 * Something we can maybe free or reuse
1393 if (bp->b_bufsize || bp->b_kvasize)
1394 bufspacewakeup();
1396 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1397 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1398 panic("brelse: not dirty");
1399 /* unlock */
1400 BUF_UNLOCK(bp);
1404 * Release a buffer back to the appropriate queue but do not try to free
1405 * it. The buffer is expected to be used again soon.
1407 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1408 * biodone() to requeue an async I/O on completion. It is also used when
1409 * known good buffers need to be requeued but we think we may need the data
1410 * again soon.
1412 * XXX we should be able to leave the B_RELBUF hint set on completion.
1414 void
1415 bqrelse(struct buf *bp)
1417 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1418 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1419 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1421 if (BUF_LOCKRECURSED(bp)) {
1422 /* do not release to free list */
1423 BUF_UNLOCK(bp);
1424 return;
1427 if (bp->b_flags & B_MANAGED) {
1428 if (bp->b_flags & B_REMFREE) {
1429 mtx_lock(&bqlock);
1430 bremfreel(bp);
1431 mtx_unlock(&bqlock);
1433 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1434 BUF_UNLOCK(bp);
1435 return;
1438 mtx_lock(&bqlock);
1439 /* Handle delayed bremfree() processing. */
1440 if (bp->b_flags & B_REMFREE)
1441 bremfreel(bp);
1442 if (bp->b_qindex != QUEUE_NONE)
1443 panic("bqrelse: free buffer onto another queue???");
1444 /* buffers with stale but valid contents */
1445 if (bp->b_flags & B_DELWRI) {
1446 if (bp->b_flags & B_NEEDSGIANT)
1447 bp->b_qindex = QUEUE_DIRTY_GIANT;
1448 else
1449 bp->b_qindex = QUEUE_DIRTY;
1450 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1451 } else {
1453 * The locking of the BO_LOCK for checking of the
1454 * BV_BKGRDINPROG is not necessary since the
1455 * BV_BKGRDINPROG cannot be set while we hold the buf
1456 * lock, it can only be cleared if it is already
1457 * pending.
1459 if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1460 bp->b_qindex = QUEUE_CLEAN;
1461 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1462 b_freelist);
1463 } else {
1465 * We are too low on memory, we have to try to free
1466 * the buffer (most importantly: the wired pages
1467 * making up its backing store) *now*.
1469 mtx_unlock(&bqlock);
1470 brelse(bp);
1471 return;
1474 mtx_unlock(&bqlock);
1476 if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1477 bufcountwakeup();
1480 * Something we can maybe free or reuse.
1482 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1483 bufspacewakeup();
1485 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1486 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1487 panic("bqrelse: not dirty");
1488 /* unlock */
1489 BUF_UNLOCK(bp);
1492 /* Give pages used by the bp back to the VM system (where possible) */
1493 static void
1494 vfs_vmio_release(struct buf *bp)
1496 int i;
1497 vm_page_t m;
1499 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1500 vm_page_lock_queues();
1501 for (i = 0; i < bp->b_npages; i++) {
1502 m = bp->b_pages[i];
1503 bp->b_pages[i] = NULL;
1505 * In order to keep page LRU ordering consistent, put
1506 * everything on the inactive queue.
1508 vm_page_unwire(m, 0);
1510 * We don't mess with busy pages, it is
1511 * the responsibility of the process that
1512 * busied the pages to deal with them.
1514 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1515 continue;
1517 if (m->wire_count == 0) {
1519 * Might as well free the page if we can and it has
1520 * no valid data. We also free the page if the
1521 * buffer was used for direct I/O
1523 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1524 m->hold_count == 0) {
1525 vm_page_free(m);
1526 } else if (bp->b_flags & B_DIRECT) {
1527 vm_page_try_to_free(m);
1528 } else if (vm_page_count_severe()) {
1529 vm_page_try_to_cache(m);
1533 vm_page_unlock_queues();
1534 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1535 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1537 if (bp->b_bufsize) {
1538 bufspacewakeup();
1539 bp->b_bufsize = 0;
1541 bp->b_npages = 0;
1542 bp->b_flags &= ~B_VMIO;
1543 if (bp->b_vp)
1544 brelvp(bp);
1548 * Check to see if a block at a particular lbn is available for a clustered
1549 * write.
1551 static int
1552 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1554 struct buf *bpa;
1555 int match;
1557 match = 0;
1559 /* If the buf isn't in core skip it */
1560 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1561 return (0);
1563 /* If the buf is busy we don't want to wait for it */
1564 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1565 return (0);
1567 /* Only cluster with valid clusterable delayed write buffers */
1568 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1569 (B_DELWRI | B_CLUSTEROK))
1570 goto done;
1572 if (bpa->b_bufsize != size)
1573 goto done;
1576 * Check to see if it is in the expected place on disk and that the
1577 * block has been mapped.
1579 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1580 match = 1;
1581 done:
1582 BUF_UNLOCK(bpa);
1583 return (match);
1587 * vfs_bio_awrite:
1589 * Implement clustered async writes for clearing out B_DELWRI buffers.
1590 * This is much better then the old way of writing only one buffer at
1591 * a time. Note that we may not be presented with the buffers in the
1592 * correct order, so we search for the cluster in both directions.
1595 vfs_bio_awrite(struct buf *bp)
1597 struct bufobj *bo;
1598 int i;
1599 int j;
1600 daddr_t lblkno = bp->b_lblkno;
1601 struct vnode *vp = bp->b_vp;
1602 int ncl;
1603 int nwritten;
1604 int size;
1605 int maxcl;
1607 bo = &vp->v_bufobj;
1609 * right now we support clustered writing only to regular files. If
1610 * we find a clusterable block we could be in the middle of a cluster
1611 * rather then at the beginning.
1613 if ((vp->v_type == VREG) &&
1614 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1615 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1617 size = vp->v_mount->mnt_stat.f_iosize;
1618 maxcl = MAXPHYS / size;
1620 BO_LOCK(bo);
1621 for (i = 1; i < maxcl; i++)
1622 if (vfs_bio_clcheck(vp, size, lblkno + i,
1623 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1624 break;
1626 for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1627 if (vfs_bio_clcheck(vp, size, lblkno - j,
1628 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1629 break;
1630 BO_UNLOCK(bo);
1631 --j;
1632 ncl = i + j;
1634 * this is a possible cluster write
1636 if (ncl != 1) {
1637 BUF_UNLOCK(bp);
1638 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1639 return nwritten;
1642 bremfree(bp);
1643 bp->b_flags |= B_ASYNC;
1645 * default (old) behavior, writing out only one block
1647 * XXX returns b_bufsize instead of b_bcount for nwritten?
1649 nwritten = bp->b_bufsize;
1650 (void) bwrite(bp);
1652 return nwritten;
1656 * getnewbuf:
1658 * Find and initialize a new buffer header, freeing up existing buffers
1659 * in the bufqueues as necessary. The new buffer is returned locked.
1661 * Important: B_INVAL is not set. If the caller wishes to throw the
1662 * buffer away, the caller must set B_INVAL prior to calling brelse().
1664 * We block if:
1665 * We have insufficient buffer headers
1666 * We have insufficient buffer space
1667 * buffer_map is too fragmented ( space reservation fails )
1668 * If we have to flush dirty buffers ( but we try to avoid this )
1670 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1671 * Instead we ask the buf daemon to do it for us. We attempt to
1672 * avoid piecemeal wakeups of the pageout daemon.
1675 static struct buf *
1676 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1678 struct buf *bp;
1679 struct buf *nbp;
1680 int defrag = 0;
1681 int nqindex;
1682 static int flushingbufs;
1685 * We can't afford to block since we might be holding a vnode lock,
1686 * which may prevent system daemons from running. We deal with
1687 * low-memory situations by proactively returning memory and running
1688 * async I/O rather then sync I/O.
1691 atomic_add_int(&getnewbufcalls, 1);
1692 atomic_subtract_int(&getnewbufrestarts, 1);
1693 restart:
1694 atomic_add_int(&getnewbufrestarts, 1);
1697 * Setup for scan. If we do not have enough free buffers,
1698 * we setup a degenerate case that immediately fails. Note
1699 * that if we are specially marked process, we are allowed to
1700 * dip into our reserves.
1702 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1704 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1705 * However, there are a number of cases (defragging, reusing, ...)
1706 * where we cannot backup.
1708 mtx_lock(&bqlock);
1709 nqindex = QUEUE_EMPTYKVA;
1710 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1712 if (nbp == NULL) {
1714 * If no EMPTYKVA buffers and we are either
1715 * defragging or reusing, locate a CLEAN buffer
1716 * to free or reuse. If bufspace useage is low
1717 * skip this step so we can allocate a new buffer.
1719 if (defrag || bufspace >= lobufspace) {
1720 nqindex = QUEUE_CLEAN;
1721 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1725 * If we could not find or were not allowed to reuse a
1726 * CLEAN buffer, check to see if it is ok to use an EMPTY
1727 * buffer. We can only use an EMPTY buffer if allocating
1728 * its KVA would not otherwise run us out of buffer space.
1730 if (nbp == NULL && defrag == 0 &&
1731 bufspace + maxsize < hibufspace) {
1732 nqindex = QUEUE_EMPTY;
1733 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1738 * Run scan, possibly freeing data and/or kva mappings on the fly
1739 * depending.
1742 while ((bp = nbp) != NULL) {
1743 int qindex = nqindex;
1746 * Calculate next bp ( we can only use it if we do not block
1747 * or do other fancy things ).
1749 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1750 switch(qindex) {
1751 case QUEUE_EMPTY:
1752 nqindex = QUEUE_EMPTYKVA;
1753 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1754 break;
1755 /* FALLTHROUGH */
1756 case QUEUE_EMPTYKVA:
1757 nqindex = QUEUE_CLEAN;
1758 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1759 break;
1760 /* FALLTHROUGH */
1761 case QUEUE_CLEAN:
1763 * nbp is NULL.
1765 break;
1769 * If we are defragging then we need a buffer with
1770 * b_kvasize != 0. XXX this situation should no longer
1771 * occur, if defrag is non-zero the buffer's b_kvasize
1772 * should also be non-zero at this point. XXX
1774 if (defrag && bp->b_kvasize == 0) {
1775 printf("Warning: defrag empty buffer %p\n", bp);
1776 continue;
1780 * Start freeing the bp. This is somewhat involved. nbp
1781 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1783 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1784 continue;
1785 if (bp->b_vp) {
1786 BO_LOCK(bp->b_bufobj);
1787 if (bp->b_vflags & BV_BKGRDINPROG) {
1788 BO_UNLOCK(bp->b_bufobj);
1789 BUF_UNLOCK(bp);
1790 continue;
1792 BO_UNLOCK(bp->b_bufobj);
1794 CTR6(KTR_BUF,
1795 "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1796 "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1797 bp->b_kvasize, bp->b_bufsize, qindex);
1800 * Sanity Checks
1802 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1805 * Note: we no longer distinguish between VMIO and non-VMIO
1806 * buffers.
1809 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1811 bremfreel(bp);
1812 mtx_unlock(&bqlock);
1814 if (qindex == QUEUE_CLEAN) {
1815 if (bp->b_flags & B_VMIO) {
1816 bp->b_flags &= ~B_ASYNC;
1817 vfs_vmio_release(bp);
1819 if (bp->b_vp)
1820 brelvp(bp);
1824 * NOTE: nbp is now entirely invalid. We can only restart
1825 * the scan from this point on.
1827 * Get the rest of the buffer freed up. b_kva* is still
1828 * valid after this operation.
1831 if (bp->b_rcred != NOCRED) {
1832 crfree(bp->b_rcred);
1833 bp->b_rcred = NOCRED;
1835 if (bp->b_wcred != NOCRED) {
1836 crfree(bp->b_wcred);
1837 bp->b_wcred = NOCRED;
1839 if (!LIST_EMPTY(&bp->b_dep))
1840 buf_deallocate(bp);
1841 if (bp->b_vflags & BV_BKGRDINPROG)
1842 panic("losing buffer 3");
1843 KASSERT(bp->b_vp == NULL,
1844 ("bp: %p still has vnode %p. qindex: %d",
1845 bp, bp->b_vp, qindex));
1846 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1847 ("bp: %p still on a buffer list. xflags %X",
1848 bp, bp->b_xflags));
1850 if (bp->b_bufsize)
1851 allocbuf(bp, 0);
1853 bp->b_flags = 0;
1854 bp->b_ioflags = 0;
1855 bp->b_xflags = 0;
1856 bp->b_vflags = 0;
1857 bp->b_vp = NULL;
1858 bp->b_blkno = bp->b_lblkno = 0;
1859 bp->b_offset = NOOFFSET;
1860 bp->b_iodone = 0;
1861 bp->b_error = 0;
1862 bp->b_resid = 0;
1863 bp->b_bcount = 0;
1864 bp->b_npages = 0;
1865 bp->b_dirtyoff = bp->b_dirtyend = 0;
1866 bp->b_bufobj = NULL;
1867 bp->b_pin_count = 0;
1868 bp->b_fsprivate1 = NULL;
1869 bp->b_fsprivate2 = NULL;
1870 bp->b_fsprivate3 = NULL;
1872 LIST_INIT(&bp->b_dep);
1875 * If we are defragging then free the buffer.
1877 if (defrag) {
1878 bp->b_flags |= B_INVAL;
1879 bfreekva(bp);
1880 brelse(bp);
1881 defrag = 0;
1882 goto restart;
1886 * Notify any waiters for the buffer lock about
1887 * identity change by freeing the buffer.
1889 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1890 bp->b_flags |= B_INVAL;
1891 bfreekva(bp);
1892 brelse(bp);
1893 goto restart;
1897 * If we are overcomitted then recover the buffer and its
1898 * KVM space. This occurs in rare situations when multiple
1899 * processes are blocked in getnewbuf() or allocbuf().
1901 if (bufspace >= hibufspace)
1902 flushingbufs = 1;
1903 if (flushingbufs && bp->b_kvasize != 0) {
1904 bp->b_flags |= B_INVAL;
1905 bfreekva(bp);
1906 brelse(bp);
1907 goto restart;
1909 if (bufspace < lobufspace)
1910 flushingbufs = 0;
1911 break;
1915 * If we exhausted our list, sleep as appropriate. We may have to
1916 * wakeup various daemons and write out some dirty buffers.
1918 * Generally we are sleeping due to insufficient buffer space.
1921 if (bp == NULL) {
1922 int flags;
1923 char *waitmsg;
1925 if (defrag) {
1926 flags = VFS_BIO_NEED_BUFSPACE;
1927 waitmsg = "nbufkv";
1928 } else if (bufspace >= hibufspace) {
1929 waitmsg = "nbufbs";
1930 flags = VFS_BIO_NEED_BUFSPACE;
1931 } else {
1932 waitmsg = "newbuf";
1933 flags = VFS_BIO_NEED_ANY;
1935 mtx_lock(&nblock);
1936 needsbuffer |= flags;
1937 mtx_unlock(&nblock);
1938 mtx_unlock(&bqlock);
1940 bd_speedup(); /* heeeelp */
1942 mtx_lock(&nblock);
1943 while (needsbuffer & flags) {
1944 if (msleep(&needsbuffer, &nblock,
1945 (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1946 mtx_unlock(&nblock);
1947 return (NULL);
1950 mtx_unlock(&nblock);
1951 } else {
1953 * We finally have a valid bp. We aren't quite out of the
1954 * woods, we still have to reserve kva space. In order
1955 * to keep fragmentation sane we only allocate kva in
1956 * BKVASIZE chunks.
1958 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1960 if (maxsize != bp->b_kvasize) {
1961 vm_offset_t addr = 0;
1963 bfreekva(bp);
1965 vm_map_lock(buffer_map);
1966 if (vm_map_findspace(buffer_map,
1967 vm_map_min(buffer_map), maxsize, &addr)) {
1969 * Uh oh. Buffer map is to fragmented. We
1970 * must defragment the map.
1972 atomic_add_int(&bufdefragcnt, 1);
1973 vm_map_unlock(buffer_map);
1974 defrag = 1;
1975 bp->b_flags |= B_INVAL;
1976 brelse(bp);
1977 goto restart;
1979 if (addr) {
1980 vm_map_insert(buffer_map, NULL, 0,
1981 addr, addr + maxsize,
1982 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1984 bp->b_kvabase = (caddr_t) addr;
1985 bp->b_kvasize = maxsize;
1986 atomic_add_int(&bufspace, bp->b_kvasize);
1987 atomic_add_int(&bufreusecnt, 1);
1989 vm_map_unlock(buffer_map);
1991 bp->b_saveaddr = bp->b_kvabase;
1992 bp->b_data = bp->b_saveaddr;
1994 return(bp);
1998 * buf_daemon:
2000 * buffer flushing daemon. Buffers are normally flushed by the
2001 * update daemon but if it cannot keep up this process starts to
2002 * take the load in an attempt to prevent getnewbuf() from blocking.
2005 static struct kproc_desc buf_kp = {
2006 "bufdaemon",
2007 buf_daemon,
2008 &bufdaemonproc
2010 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2012 static void
2013 buf_daemon()
2017 * This process needs to be suspended prior to shutdown sync.
2019 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2020 SHUTDOWN_PRI_LAST);
2023 * This process is allowed to take the buffer cache to the limit
2025 curthread->td_pflags |= TDP_NORUNNINGBUF;
2026 mtx_lock(&bdlock);
2027 for (;;) {
2028 bd_request = 0;
2029 mtx_unlock(&bdlock);
2031 kproc_suspend_check(bufdaemonproc);
2034 * Do the flush. Limit the amount of in-transit I/O we
2035 * allow to build up, otherwise we would completely saturate
2036 * the I/O system. Wakeup any waiting processes before we
2037 * normally would so they can run in parallel with our drain.
2039 while (numdirtybuffers > lodirtybuffers) {
2040 int flushed;
2042 flushed = flushbufqueues(QUEUE_DIRTY, 0);
2043 /* The list empty check here is slightly racy */
2044 if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2045 mtx_lock(&Giant);
2046 flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2047 mtx_unlock(&Giant);
2049 if (flushed == 0) {
2051 * Could not find any buffers without rollback
2052 * dependencies, so just write the first one
2053 * in the hopes of eventually making progress.
2055 flushbufqueues(QUEUE_DIRTY, 1);
2056 if (!TAILQ_EMPTY(
2057 &bufqueues[QUEUE_DIRTY_GIANT])) {
2058 mtx_lock(&Giant);
2059 flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2060 mtx_unlock(&Giant);
2062 break;
2064 uio_yield();
2068 * Only clear bd_request if we have reached our low water
2069 * mark. The buf_daemon normally waits 1 second and
2070 * then incrementally flushes any dirty buffers that have
2071 * built up, within reason.
2073 * If we were unable to hit our low water mark and couldn't
2074 * find any flushable buffers, we sleep half a second.
2075 * Otherwise we loop immediately.
2077 mtx_lock(&bdlock);
2078 if (numdirtybuffers <= lodirtybuffers) {
2080 * We reached our low water mark, reset the
2081 * request and sleep until we are needed again.
2082 * The sleep is just so the suspend code works.
2084 bd_request = 0;
2085 msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2086 } else {
2088 * We couldn't find any flushable dirty buffers but
2089 * still have too many dirty buffers, we
2090 * have to sleep and try again. (rare)
2092 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2098 * flushbufqueues:
2100 * Try to flush a buffer in the dirty queue. We must be careful to
2101 * free up B_INVAL buffers instead of write them, which NFS is
2102 * particularly sensitive to.
2104 static int flushwithdeps = 0;
2105 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2106 0, "Number of buffers flushed with dependecies that require rollbacks");
2108 static int
2109 flushbufqueues(int queue, int flushdeps)
2111 struct buf sentinel;
2112 struct vnode *vp;
2113 struct mount *mp;
2114 struct buf *bp;
2115 int hasdeps;
2116 int flushed;
2117 int target;
2119 target = numdirtybuffers - lodirtybuffers;
2120 if (flushdeps && target > 2)
2121 target /= 2;
2122 flushed = 0;
2123 bp = NULL;
2124 mtx_lock(&bqlock);
2125 TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2126 while (flushed != target) {
2127 bp = TAILQ_FIRST(&bufqueues[queue]);
2128 if (bp == &sentinel)
2129 break;
2130 TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2131 TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2133 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2134 continue;
2135 if (bp->b_pin_count > 0) {
2136 BUF_UNLOCK(bp);
2137 continue;
2139 BO_LOCK(bp->b_bufobj);
2140 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2141 (bp->b_flags & B_DELWRI) == 0) {
2142 BO_UNLOCK(bp->b_bufobj);
2143 BUF_UNLOCK(bp);
2144 continue;
2146 BO_UNLOCK(bp->b_bufobj);
2147 if (bp->b_flags & B_INVAL) {
2148 bremfreel(bp);
2149 mtx_unlock(&bqlock);
2150 brelse(bp);
2151 flushed++;
2152 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2153 mtx_lock(&bqlock);
2154 continue;
2157 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2158 if (flushdeps == 0) {
2159 BUF_UNLOCK(bp);
2160 continue;
2162 hasdeps = 1;
2163 } else
2164 hasdeps = 0;
2166 * We must hold the lock on a vnode before writing
2167 * one of its buffers. Otherwise we may confuse, or
2168 * in the case of a snapshot vnode, deadlock the
2169 * system.
2171 * The lock order here is the reverse of the normal
2172 * of vnode followed by buf lock. This is ok because
2173 * the NOWAIT will prevent deadlock.
2175 vp = bp->b_vp;
2176 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2177 BUF_UNLOCK(bp);
2178 continue;
2180 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2181 mtx_unlock(&bqlock);
2182 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2183 bp, bp->b_vp, bp->b_flags);
2184 vfs_bio_awrite(bp);
2185 vn_finished_write(mp);
2186 VOP_UNLOCK(vp, 0);
2187 flushwithdeps += hasdeps;
2188 flushed++;
2189 waitrunningbufspace();
2190 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2191 mtx_lock(&bqlock);
2192 continue;
2194 vn_finished_write(mp);
2195 BUF_UNLOCK(bp);
2197 TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2198 mtx_unlock(&bqlock);
2199 return (flushed);
2203 * Check to see if a block is currently memory resident.
2205 struct buf *
2206 incore(struct bufobj *bo, daddr_t blkno)
2208 struct buf *bp;
2210 BO_LOCK(bo);
2211 bp = gbincore(bo, blkno);
2212 BO_UNLOCK(bo);
2213 return (bp);
2217 * Returns true if no I/O is needed to access the
2218 * associated VM object. This is like incore except
2219 * it also hunts around in the VM system for the data.
2222 static int
2223 inmem(struct vnode * vp, daddr_t blkno)
2225 vm_object_t obj;
2226 vm_offset_t toff, tinc, size;
2227 vm_page_t m;
2228 vm_ooffset_t off;
2230 ASSERT_VOP_LOCKED(vp, "inmem");
2232 if (incore(&vp->v_bufobj, blkno))
2233 return 1;
2234 if (vp->v_mount == NULL)
2235 return 0;
2236 obj = vp->v_object;
2237 if (obj == NULL)
2238 return (0);
2240 size = PAGE_SIZE;
2241 if (size > vp->v_mount->mnt_stat.f_iosize)
2242 size = vp->v_mount->mnt_stat.f_iosize;
2243 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2245 VM_OBJECT_LOCK(obj);
2246 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2247 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2248 if (!m)
2249 goto notinmem;
2250 tinc = size;
2251 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2252 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2253 if (vm_page_is_valid(m,
2254 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2255 goto notinmem;
2257 VM_OBJECT_UNLOCK(obj);
2258 return 1;
2260 notinmem:
2261 VM_OBJECT_UNLOCK(obj);
2262 return (0);
2266 * vfs_setdirty:
2268 * Sets the dirty range for a buffer based on the status of the dirty
2269 * bits in the pages comprising the buffer.
2271 * The range is limited to the size of the buffer.
2273 * This routine is primarily used by NFS, but is generalized for the
2274 * B_VMIO case.
2276 static void
2277 vfs_setdirty(struct buf *bp)
2281 * Degenerate case - empty buffer
2284 if (bp->b_bufsize == 0)
2285 return;
2288 * We qualify the scan for modified pages on whether the
2289 * object has been flushed yet.
2292 if ((bp->b_flags & B_VMIO) == 0)
2293 return;
2295 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2296 vfs_setdirty_locked_object(bp);
2297 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2300 static void
2301 vfs_setdirty_locked_object(struct buf *bp)
2303 vm_object_t object;
2304 int i;
2306 object = bp->b_bufobj->bo_object;
2307 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2308 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2309 vm_offset_t boffset;
2310 vm_offset_t eoffset;
2312 vm_page_lock_queues();
2314 * test the pages to see if they have been modified directly
2315 * by users through the VM system.
2317 for (i = 0; i < bp->b_npages; i++)
2318 vm_page_test_dirty(bp->b_pages[i]);
2321 * Calculate the encompassing dirty range, boffset and eoffset,
2322 * (eoffset - boffset) bytes.
2325 for (i = 0; i < bp->b_npages; i++) {
2326 if (bp->b_pages[i]->dirty)
2327 break;
2329 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2331 for (i = bp->b_npages - 1; i >= 0; --i) {
2332 if (bp->b_pages[i]->dirty) {
2333 break;
2336 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2338 vm_page_unlock_queues();
2340 * Fit it to the buffer.
2343 if (eoffset > bp->b_bcount)
2344 eoffset = bp->b_bcount;
2347 * If we have a good dirty range, merge with the existing
2348 * dirty range.
2351 if (boffset < eoffset) {
2352 if (bp->b_dirtyoff > boffset)
2353 bp->b_dirtyoff = boffset;
2354 if (bp->b_dirtyend < eoffset)
2355 bp->b_dirtyend = eoffset;
2361 * getblk:
2363 * Get a block given a specified block and offset into a file/device.
2364 * The buffers B_DONE bit will be cleared on return, making it almost
2365 * ready for an I/O initiation. B_INVAL may or may not be set on
2366 * return. The caller should clear B_INVAL prior to initiating a
2367 * READ.
2369 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2370 * an existing buffer.
2372 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2373 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2374 * and then cleared based on the backing VM. If the previous buffer is
2375 * non-0-sized but invalid, B_CACHE will be cleared.
2377 * If getblk() must create a new buffer, the new buffer is returned with
2378 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2379 * case it is returned with B_INVAL clear and B_CACHE set based on the
2380 * backing VM.
2382 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2383 * B_CACHE bit is clear.
2385 * What this means, basically, is that the caller should use B_CACHE to
2386 * determine whether the buffer is fully valid or not and should clear
2387 * B_INVAL prior to issuing a read. If the caller intends to validate
2388 * the buffer by loading its data area with something, the caller needs
2389 * to clear B_INVAL. If the caller does this without issuing an I/O,
2390 * the caller should set B_CACHE ( as an optimization ), else the caller
2391 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2392 * a write attempt or if it was a successfull read. If the caller
2393 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2394 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2396 struct buf *
2397 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2398 int flags)
2400 struct buf *bp;
2401 struct bufobj *bo;
2402 int error;
2404 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2405 ASSERT_VOP_LOCKED(vp, "getblk");
2406 if (size > MAXBSIZE)
2407 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2409 bo = &vp->v_bufobj;
2410 loop:
2412 * Block if we are low on buffers. Certain processes are allowed
2413 * to completely exhaust the buffer cache.
2415 * If this check ever becomes a bottleneck it may be better to
2416 * move it into the else, when gbincore() fails. At the moment
2417 * it isn't a problem.
2419 * XXX remove if 0 sections (clean this up after its proven)
2421 if (numfreebuffers == 0) {
2422 if (TD_IS_IDLETHREAD(curthread))
2423 return NULL;
2424 mtx_lock(&nblock);
2425 needsbuffer |= VFS_BIO_NEED_ANY;
2426 mtx_unlock(&nblock);
2429 BO_LOCK(bo);
2430 bp = gbincore(bo, blkno);
2431 if (bp != NULL) {
2432 int lockflags;
2434 * Buffer is in-core. If the buffer is not busy, it must
2435 * be on a queue.
2437 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2439 if (flags & GB_LOCK_NOWAIT)
2440 lockflags |= LK_NOWAIT;
2442 error = BUF_TIMELOCK(bp, lockflags,
2443 BO_MTX(bo), "getblk", slpflag, slptimeo);
2446 * If we slept and got the lock we have to restart in case
2447 * the buffer changed identities.
2449 if (error == ENOLCK)
2450 goto loop;
2451 /* We timed out or were interrupted. */
2452 else if (error)
2453 return (NULL);
2456 * The buffer is locked. B_CACHE is cleared if the buffer is
2457 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
2458 * and for a VMIO buffer B_CACHE is adjusted according to the
2459 * backing VM cache.
2461 if (bp->b_flags & B_INVAL)
2462 bp->b_flags &= ~B_CACHE;
2463 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2464 bp->b_flags |= B_CACHE;
2465 bremfree(bp);
2468 * check for size inconsistancies for non-VMIO case.
2471 if (bp->b_bcount != size) {
2472 if ((bp->b_flags & B_VMIO) == 0 ||
2473 (size > bp->b_kvasize)) {
2474 if (bp->b_flags & B_DELWRI) {
2476 * If buffer is pinned and caller does
2477 * not want sleep waiting for it to be
2478 * unpinned, bail out
2479 * */
2480 if (bp->b_pin_count > 0) {
2481 if (flags & GB_LOCK_NOWAIT) {
2482 bqrelse(bp);
2483 return (NULL);
2484 } else {
2485 bunpin_wait(bp);
2488 bp->b_flags |= B_NOCACHE;
2489 bwrite(bp);
2490 } else {
2491 if (LIST_EMPTY(&bp->b_dep)) {
2492 bp->b_flags |= B_RELBUF;
2493 brelse(bp);
2494 } else {
2495 bp->b_flags |= B_NOCACHE;
2496 bwrite(bp);
2499 goto loop;
2504 * If the size is inconsistant in the VMIO case, we can resize
2505 * the buffer. This might lead to B_CACHE getting set or
2506 * cleared. If the size has not changed, B_CACHE remains
2507 * unchanged from its previous state.
2510 if (bp->b_bcount != size)
2511 allocbuf(bp, size);
2513 KASSERT(bp->b_offset != NOOFFSET,
2514 ("getblk: no buffer offset"));
2517 * A buffer with B_DELWRI set and B_CACHE clear must
2518 * be committed before we can return the buffer in
2519 * order to prevent the caller from issuing a read
2520 * ( due to B_CACHE not being set ) and overwriting
2521 * it.
2523 * Most callers, including NFS and FFS, need this to
2524 * operate properly either because they assume they
2525 * can issue a read if B_CACHE is not set, or because
2526 * ( for example ) an uncached B_DELWRI might loop due
2527 * to softupdates re-dirtying the buffer. In the latter
2528 * case, B_CACHE is set after the first write completes,
2529 * preventing further loops.
2530 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2531 * above while extending the buffer, we cannot allow the
2532 * buffer to remain with B_CACHE set after the write
2533 * completes or it will represent a corrupt state. To
2534 * deal with this we set B_NOCACHE to scrap the buffer
2535 * after the write.
2537 * We might be able to do something fancy, like setting
2538 * B_CACHE in bwrite() except if B_DELWRI is already set,
2539 * so the below call doesn't set B_CACHE, but that gets real
2540 * confusing. This is much easier.
2543 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2544 bp->b_flags |= B_NOCACHE;
2545 bwrite(bp);
2546 goto loop;
2548 bp->b_flags &= ~B_DONE;
2549 } else {
2550 int bsize, maxsize, vmio;
2551 off_t offset;
2554 * Buffer is not in-core, create new buffer. The buffer
2555 * returned by getnewbuf() is locked. Note that the returned
2556 * buffer is also considered valid (not marked B_INVAL).
2558 BO_UNLOCK(bo);
2560 * If the user does not want us to create the buffer, bail out
2561 * here.
2563 if (flags & GB_NOCREAT)
2564 return NULL;
2565 bsize = bo->bo_bsize;
2566 offset = blkno * bsize;
2567 vmio = vp->v_object != NULL;
2568 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2569 maxsize = imax(maxsize, bsize);
2571 bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2572 if (bp == NULL) {
2573 if (slpflag || slptimeo)
2574 return NULL;
2575 goto loop;
2579 * This code is used to make sure that a buffer is not
2580 * created while the getnewbuf routine is blocked.
2581 * This can be a problem whether the vnode is locked or not.
2582 * If the buffer is created out from under us, we have to
2583 * throw away the one we just created.
2585 * Note: this must occur before we associate the buffer
2586 * with the vp especially considering limitations in
2587 * the splay tree implementation when dealing with duplicate
2588 * lblkno's.
2590 BO_LOCK(bo);
2591 if (gbincore(bo, blkno)) {
2592 BO_UNLOCK(bo);
2593 bp->b_flags |= B_INVAL;
2594 brelse(bp);
2595 goto loop;
2599 * Insert the buffer into the hash, so that it can
2600 * be found by incore.
2602 bp->b_blkno = bp->b_lblkno = blkno;
2603 bp->b_offset = offset;
2604 bgetvp(vp, bp);
2605 BO_UNLOCK(bo);
2608 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
2609 * buffer size starts out as 0, B_CACHE will be set by
2610 * allocbuf() for the VMIO case prior to it testing the
2611 * backing store for validity.
2614 if (vmio) {
2615 bp->b_flags |= B_VMIO;
2616 #if defined(VFS_BIO_DEBUG)
2617 if (vn_canvmio(vp) != TRUE)
2618 printf("getblk: VMIO on vnode type %d\n",
2619 vp->v_type);
2620 #endif
2621 KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2622 ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2623 bp, vp->v_object, bp->b_bufobj->bo_object));
2624 } else {
2625 bp->b_flags &= ~B_VMIO;
2626 KASSERT(bp->b_bufobj->bo_object == NULL,
2627 ("ARGH! has b_bufobj->bo_object %p %p\n",
2628 bp, bp->b_bufobj->bo_object));
2631 allocbuf(bp, size);
2632 bp->b_flags &= ~B_DONE;
2634 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2635 BUF_ASSERT_HELD(bp);
2636 KASSERT(bp->b_bufobj == bo,
2637 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2638 return (bp);
2642 * Get an empty, disassociated buffer of given size. The buffer is initially
2643 * set to B_INVAL.
2645 struct buf *
2646 geteblk(int size)
2648 struct buf *bp;
2649 int maxsize;
2651 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2652 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2653 continue;
2654 allocbuf(bp, size);
2655 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2656 BUF_ASSERT_HELD(bp);
2657 return (bp);
2662 * This code constitutes the buffer memory from either anonymous system
2663 * memory (in the case of non-VMIO operations) or from an associated
2664 * VM object (in the case of VMIO operations). This code is able to
2665 * resize a buffer up or down.
2667 * Note that this code is tricky, and has many complications to resolve
2668 * deadlock or inconsistant data situations. Tread lightly!!!
2669 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2670 * the caller. Calling this code willy nilly can result in the loss of data.
2672 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2673 * B_CACHE for the non-VMIO case.
2677 allocbuf(struct buf *bp, int size)
2679 int newbsize, mbsize;
2680 int i;
2682 BUF_ASSERT_HELD(bp);
2684 if (bp->b_kvasize < size)
2685 panic("allocbuf: buffer too small");
2687 if ((bp->b_flags & B_VMIO) == 0) {
2688 caddr_t origbuf;
2689 int origbufsize;
2691 * Just get anonymous memory from the kernel. Don't
2692 * mess with B_CACHE.
2694 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2695 if (bp->b_flags & B_MALLOC)
2696 newbsize = mbsize;
2697 else
2698 newbsize = round_page(size);
2700 if (newbsize < bp->b_bufsize) {
2702 * malloced buffers are not shrunk
2704 if (bp->b_flags & B_MALLOC) {
2705 if (newbsize) {
2706 bp->b_bcount = size;
2707 } else {
2708 free(bp->b_data, M_BIOBUF);
2709 if (bp->b_bufsize) {
2710 atomic_subtract_int(
2711 &bufmallocspace,
2712 bp->b_bufsize);
2713 bufspacewakeup();
2714 bp->b_bufsize = 0;
2716 bp->b_saveaddr = bp->b_kvabase;
2717 bp->b_data = bp->b_saveaddr;
2718 bp->b_bcount = 0;
2719 bp->b_flags &= ~B_MALLOC;
2721 return 1;
2723 vm_hold_free_pages(
2725 (vm_offset_t) bp->b_data + newbsize,
2726 (vm_offset_t) bp->b_data + bp->b_bufsize);
2727 } else if (newbsize > bp->b_bufsize) {
2729 * We only use malloced memory on the first allocation.
2730 * and revert to page-allocated memory when the buffer
2731 * grows.
2734 * There is a potential smp race here that could lead
2735 * to bufmallocspace slightly passing the max. It
2736 * is probably extremely rare and not worth worrying
2737 * over.
2739 if ( (bufmallocspace < maxbufmallocspace) &&
2740 (bp->b_bufsize == 0) &&
2741 (mbsize <= PAGE_SIZE/2)) {
2743 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2744 bp->b_bufsize = mbsize;
2745 bp->b_bcount = size;
2746 bp->b_flags |= B_MALLOC;
2747 atomic_add_int(&bufmallocspace, mbsize);
2748 return 1;
2750 origbuf = NULL;
2751 origbufsize = 0;
2753 * If the buffer is growing on its other-than-first allocation,
2754 * then we revert to the page-allocation scheme.
2756 if (bp->b_flags & B_MALLOC) {
2757 origbuf = bp->b_data;
2758 origbufsize = bp->b_bufsize;
2759 bp->b_data = bp->b_kvabase;
2760 if (bp->b_bufsize) {
2761 atomic_subtract_int(&bufmallocspace,
2762 bp->b_bufsize);
2763 bufspacewakeup();
2764 bp->b_bufsize = 0;
2766 bp->b_flags &= ~B_MALLOC;
2767 newbsize = round_page(newbsize);
2769 vm_hold_load_pages(
2771 (vm_offset_t) bp->b_data + bp->b_bufsize,
2772 (vm_offset_t) bp->b_data + newbsize);
2773 if (origbuf) {
2774 bcopy(origbuf, bp->b_data, origbufsize);
2775 free(origbuf, M_BIOBUF);
2778 } else {
2779 int desiredpages;
2781 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2782 desiredpages = (size == 0) ? 0 :
2783 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2785 if (bp->b_flags & B_MALLOC)
2786 panic("allocbuf: VMIO buffer can't be malloced");
2788 * Set B_CACHE initially if buffer is 0 length or will become
2789 * 0-length.
2791 if (size == 0 || bp->b_bufsize == 0)
2792 bp->b_flags |= B_CACHE;
2794 if (newbsize < bp->b_bufsize) {
2796 * DEV_BSIZE aligned new buffer size is less then the
2797 * DEV_BSIZE aligned existing buffer size. Figure out
2798 * if we have to remove any pages.
2800 if (desiredpages < bp->b_npages) {
2801 vm_page_t m;
2803 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2804 vm_page_lock_queues();
2805 for (i = desiredpages; i < bp->b_npages; i++) {
2807 * the page is not freed here -- it
2808 * is the responsibility of
2809 * vnode_pager_setsize
2811 m = bp->b_pages[i];
2812 KASSERT(m != bogus_page,
2813 ("allocbuf: bogus page found"));
2814 while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2815 vm_page_lock_queues();
2817 bp->b_pages[i] = NULL;
2818 vm_page_unwire(m, 0);
2820 vm_page_unlock_queues();
2821 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2822 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2823 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2824 bp->b_npages = desiredpages;
2826 } else if (size > bp->b_bcount) {
2828 * We are growing the buffer, possibly in a
2829 * byte-granular fashion.
2831 struct vnode *vp;
2832 vm_object_t obj;
2833 vm_offset_t toff;
2834 vm_offset_t tinc;
2837 * Step 1, bring in the VM pages from the object,
2838 * allocating them if necessary. We must clear
2839 * B_CACHE if these pages are not valid for the
2840 * range covered by the buffer.
2843 vp = bp->b_vp;
2844 obj = bp->b_bufobj->bo_object;
2846 VM_OBJECT_LOCK(obj);
2847 while (bp->b_npages < desiredpages) {
2848 vm_page_t m;
2849 vm_pindex_t pi;
2851 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2852 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2854 * note: must allocate system pages
2855 * since blocking here could intefere
2856 * with paging I/O, no matter which
2857 * process we are.
2859 m = vm_page_alloc(obj, pi,
2860 VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2861 VM_ALLOC_WIRED);
2862 if (m == NULL) {
2863 atomic_add_int(&vm_pageout_deficit,
2864 desiredpages - bp->b_npages);
2865 VM_OBJECT_UNLOCK(obj);
2866 VM_WAIT;
2867 VM_OBJECT_LOCK(obj);
2868 } else {
2869 if (m->valid == 0)
2870 bp->b_flags &= ~B_CACHE;
2871 bp->b_pages[bp->b_npages] = m;
2872 ++bp->b_npages;
2874 continue;
2878 * We found a page. If we have to sleep on it,
2879 * retry because it might have gotten freed out
2880 * from under us.
2882 * We can only test VPO_BUSY here. Blocking on
2883 * m->busy might lead to a deadlock:
2885 * vm_fault->getpages->cluster_read->allocbuf
2888 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2889 continue;
2892 * We have a good page.
2894 vm_page_lock_queues();
2895 vm_page_wire(m);
2896 vm_page_unlock_queues();
2897 bp->b_pages[bp->b_npages] = m;
2898 ++bp->b_npages;
2902 * Step 2. We've loaded the pages into the buffer,
2903 * we have to figure out if we can still have B_CACHE
2904 * set. Note that B_CACHE is set according to the
2905 * byte-granular range ( bcount and size ), new the
2906 * aligned range ( newbsize ).
2908 * The VM test is against m->valid, which is DEV_BSIZE
2909 * aligned. Needless to say, the validity of the data
2910 * needs to also be DEV_BSIZE aligned. Note that this
2911 * fails with NFS if the server or some other client
2912 * extends the file's EOF. If our buffer is resized,
2913 * B_CACHE may remain set! XXX
2916 toff = bp->b_bcount;
2917 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2919 while ((bp->b_flags & B_CACHE) && toff < size) {
2920 vm_pindex_t pi;
2922 if (tinc > (size - toff))
2923 tinc = size - toff;
2925 pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2926 PAGE_SHIFT;
2928 vfs_buf_test_cache(
2929 bp,
2930 bp->b_offset,
2931 toff,
2932 tinc,
2933 bp->b_pages[pi]
2935 toff += tinc;
2936 tinc = PAGE_SIZE;
2938 VM_OBJECT_UNLOCK(obj);
2941 * Step 3, fixup the KVM pmap. Remember that
2942 * bp->b_data is relative to bp->b_offset, but
2943 * bp->b_offset may be offset into the first page.
2946 bp->b_data = (caddr_t)
2947 trunc_page((vm_offset_t)bp->b_data);
2948 pmap_qenter(
2949 (vm_offset_t)bp->b_data,
2950 bp->b_pages,
2951 bp->b_npages
2954 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2955 (vm_offset_t)(bp->b_offset & PAGE_MASK));
2958 if (newbsize < bp->b_bufsize)
2959 bufspacewakeup();
2960 bp->b_bufsize = newbsize; /* actual buffer allocation */
2961 bp->b_bcount = size; /* requested buffer size */
2962 return 1;
2965 void
2966 biodone(struct bio *bp)
2968 struct mtx *mtxp;
2969 void (*done)(struct bio *);
2971 mtxp = mtx_pool_find(mtxpool_sleep, bp);
2972 mtx_lock(mtxp);
2973 bp->bio_flags |= BIO_DONE;
2974 done = bp->bio_done;
2975 if (done == NULL)
2976 wakeup(bp);
2977 mtx_unlock(mtxp);
2978 if (done != NULL)
2979 done(bp);
2983 * Wait for a BIO to finish.
2985 * XXX: resort to a timeout for now. The optimal locking (if any) for this
2986 * case is not yet clear.
2989 biowait(struct bio *bp, const char *wchan)
2991 struct mtx *mtxp;
2993 mtxp = mtx_pool_find(mtxpool_sleep, bp);
2994 mtx_lock(mtxp);
2995 while ((bp->bio_flags & BIO_DONE) == 0)
2996 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
2997 mtx_unlock(mtxp);
2998 if (bp->bio_error != 0)
2999 return (bp->bio_error);
3000 if (!(bp->bio_flags & BIO_ERROR))
3001 return (0);
3002 return (EIO);
3005 void
3006 biofinish(struct bio *bp, struct devstat *stat, int error)
3009 if (error) {
3010 bp->bio_error = error;
3011 bp->bio_flags |= BIO_ERROR;
3013 if (stat != NULL)
3014 devstat_end_transaction_bio(stat, bp);
3015 biodone(bp);
3019 * bufwait:
3021 * Wait for buffer I/O completion, returning error status. The buffer
3022 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
3023 * error and cleared.
3026 bufwait(struct buf *bp)
3028 if (bp->b_iocmd == BIO_READ)
3029 bwait(bp, PRIBIO, "biord");
3030 else
3031 bwait(bp, PRIBIO, "biowr");
3032 if (bp->b_flags & B_EINTR) {
3033 bp->b_flags &= ~B_EINTR;
3034 return (EINTR);
3036 if (bp->b_ioflags & BIO_ERROR) {
3037 return (bp->b_error ? bp->b_error : EIO);
3038 } else {
3039 return (0);
3044 * Call back function from struct bio back up to struct buf.
3046 static void
3047 bufdonebio(struct bio *bip)
3049 struct buf *bp;
3051 bp = bip->bio_caller2;
3052 bp->b_resid = bp->b_bcount - bip->bio_completed;
3053 bp->b_resid = bip->bio_resid; /* XXX: remove */
3054 bp->b_ioflags = bip->bio_flags;
3055 bp->b_error = bip->bio_error;
3056 if (bp->b_error)
3057 bp->b_ioflags |= BIO_ERROR;
3058 bufdone(bp);
3059 g_destroy_bio(bip);
3062 void
3063 dev_strategy(struct cdev *dev, struct buf *bp)
3065 struct cdevsw *csw;
3066 struct bio *bip;
3068 if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3069 panic("b_iocmd botch");
3070 for (;;) {
3071 bip = g_new_bio();
3072 if (bip != NULL)
3073 break;
3074 /* Try again later */
3075 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3077 bip->bio_cmd = bp->b_iocmd;
3078 bip->bio_offset = bp->b_iooffset;
3079 bip->bio_length = bp->b_bcount;
3080 bip->bio_bcount = bp->b_bcount; /* XXX: remove */
3081 bip->bio_data = bp->b_data;
3082 bip->bio_done = bufdonebio;
3083 bip->bio_caller2 = bp;
3084 bip->bio_dev = dev;
3085 KASSERT(dev->si_refcount > 0,
3086 ("dev_strategy on un-referenced struct cdev *(%s)",
3087 devtoname(dev)));
3088 csw = dev_refthread(dev);
3089 if (csw == NULL) {
3090 g_destroy_bio(bip);
3091 bp->b_error = ENXIO;
3092 bp->b_ioflags = BIO_ERROR;
3093 bufdone(bp);
3094 return;
3096 (*csw->d_strategy)(bip);
3097 dev_relthread(dev);
3101 * bufdone:
3103 * Finish I/O on a buffer, optionally calling a completion function.
3104 * This is usually called from an interrupt so process blocking is
3105 * not allowed.
3107 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3108 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3109 * assuming B_INVAL is clear.
3111 * For the VMIO case, we set B_CACHE if the op was a read and no
3112 * read error occured, or if the op was a write. B_CACHE is never
3113 * set if the buffer is invalid or otherwise uncacheable.
3115 * biodone does not mess with B_INVAL, allowing the I/O routine or the
3116 * initiator to leave B_INVAL set to brelse the buffer out of existance
3117 * in the biodone routine.
3119 void
3120 bufdone(struct buf *bp)
3122 struct bufobj *dropobj;
3123 void (*biodone)(struct buf *);
3125 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3126 dropobj = NULL;
3128 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3129 BUF_ASSERT_HELD(bp);
3131 runningbufwakeup(bp);
3132 if (bp->b_iocmd == BIO_WRITE)
3133 dropobj = bp->b_bufobj;
3134 /* call optional completion function if requested */
3135 if (bp->b_iodone != NULL) {
3136 biodone = bp->b_iodone;
3137 bp->b_iodone = NULL;
3138 (*biodone) (bp);
3139 if (dropobj)
3140 bufobj_wdrop(dropobj);
3141 return;
3144 bufdone_finish(bp);
3146 if (dropobj)
3147 bufobj_wdrop(dropobj);
3150 void
3151 bufdone_finish(struct buf *bp)
3153 BUF_ASSERT_HELD(bp);
3155 if (!LIST_EMPTY(&bp->b_dep))
3156 buf_complete(bp);
3158 if (bp->b_flags & B_VMIO) {
3159 int i;
3160 vm_ooffset_t foff;
3161 vm_page_t m;
3162 vm_object_t obj;
3163 int iosize;
3164 struct vnode *vp = bp->b_vp;
3165 boolean_t are_queues_locked;
3167 obj = bp->b_bufobj->bo_object;
3169 #if defined(VFS_BIO_DEBUG)
3170 mp_fixme("usecount and vflag accessed without locks.");
3171 if (vp->v_usecount == 0) {
3172 panic("biodone: zero vnode ref count");
3175 KASSERT(vp->v_object != NULL,
3176 ("biodone: vnode %p has no vm_object", vp));
3177 #endif
3179 foff = bp->b_offset;
3180 KASSERT(bp->b_offset != NOOFFSET,
3181 ("biodone: no buffer offset"));
3183 VM_OBJECT_LOCK(obj);
3184 #if defined(VFS_BIO_DEBUG)
3185 if (obj->paging_in_progress < bp->b_npages) {
3186 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3187 obj->paging_in_progress, bp->b_npages);
3189 #endif
3192 * Set B_CACHE if the op was a normal read and no error
3193 * occured. B_CACHE is set for writes in the b*write()
3194 * routines.
3196 iosize = bp->b_bcount - bp->b_resid;
3197 if (bp->b_iocmd == BIO_READ &&
3198 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3199 !(bp->b_ioflags & BIO_ERROR)) {
3200 bp->b_flags |= B_CACHE;
3202 if (bp->b_iocmd == BIO_READ) {
3203 vm_page_lock_queues();
3204 are_queues_locked = TRUE;
3205 } else
3206 are_queues_locked = FALSE;
3207 for (i = 0; i < bp->b_npages; i++) {
3208 int bogusflag = 0;
3209 int resid;
3211 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3212 if (resid > iosize)
3213 resid = iosize;
3216 * cleanup bogus pages, restoring the originals
3218 m = bp->b_pages[i];
3219 if (m == bogus_page) {
3220 bogusflag = 1;
3221 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3222 if (m == NULL)
3223 panic("biodone: page disappeared!");
3224 bp->b_pages[i] = m;
3225 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3226 bp->b_pages, bp->b_npages);
3228 #if defined(VFS_BIO_DEBUG)
3229 if (OFF_TO_IDX(foff) != m->pindex) {
3230 printf(
3231 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3232 (intmax_t)foff, (uintmax_t)m->pindex);
3234 #endif
3237 * In the write case, the valid and clean bits are
3238 * already changed correctly ( see bdwrite() ), so we
3239 * only need to do this here in the read case.
3241 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3242 vfs_page_set_valid(bp, foff, m);
3246 * when debugging new filesystems or buffer I/O methods, this
3247 * is the most common error that pops up. if you see this, you
3248 * have not set the page busy flag correctly!!!
3250 if (m->busy == 0) {
3251 printf("biodone: page busy < 0, "
3252 "pindex: %d, foff: 0x(%x,%x), "
3253 "resid: %d, index: %d\n",
3254 (int) m->pindex, (int)(foff >> 32),
3255 (int) foff & 0xffffffff, resid, i);
3256 if (!vn_isdisk(vp, NULL))
3257 printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3258 (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3259 (intmax_t) bp->b_lblkno,
3260 bp->b_flags, bp->b_npages);
3261 else
3262 printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3263 (intmax_t) bp->b_lblkno,
3264 bp->b_flags, bp->b_npages);
3265 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3266 (u_long)m->valid, (u_long)m->dirty,
3267 m->wire_count);
3268 panic("biodone: page busy < 0\n");
3270 vm_page_io_finish(m);
3271 vm_object_pip_subtract(obj, 1);
3272 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3273 iosize -= resid;
3275 if (are_queues_locked)
3276 vm_page_unlock_queues();
3277 vm_object_pip_wakeupn(obj, 0);
3278 VM_OBJECT_UNLOCK(obj);
3282 * For asynchronous completions, release the buffer now. The brelse
3283 * will do a wakeup there if necessary - so no need to do a wakeup
3284 * here in the async case. The sync case always needs to do a wakeup.
3287 if (bp->b_flags & B_ASYNC) {
3288 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3289 brelse(bp);
3290 else
3291 bqrelse(bp);
3292 } else
3293 bdone(bp);
3297 * This routine is called in lieu of iodone in the case of
3298 * incomplete I/O. This keeps the busy status for pages
3299 * consistant.
3301 void
3302 vfs_unbusy_pages(struct buf *bp)
3304 int i;
3305 vm_object_t obj;
3306 vm_page_t m;
3308 runningbufwakeup(bp);
3309 if (!(bp->b_flags & B_VMIO))
3310 return;
3312 obj = bp->b_bufobj->bo_object;
3313 VM_OBJECT_LOCK(obj);
3314 for (i = 0; i < bp->b_npages; i++) {
3315 m = bp->b_pages[i];
3316 if (m == bogus_page) {
3317 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3318 if (!m)
3319 panic("vfs_unbusy_pages: page missing\n");
3320 bp->b_pages[i] = m;
3321 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3322 bp->b_pages, bp->b_npages);
3324 vm_object_pip_subtract(obj, 1);
3325 vm_page_io_finish(m);
3327 vm_object_pip_wakeupn(obj, 0);
3328 VM_OBJECT_UNLOCK(obj);
3332 * vfs_page_set_valid:
3334 * Set the valid bits in a page based on the supplied offset. The
3335 * range is restricted to the buffer's size.
3337 * This routine is typically called after a read completes.
3339 static void
3340 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3342 vm_ooffset_t soff, eoff;
3344 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3346 * Start and end offsets in buffer. eoff - soff may not cross a
3347 * page boundry or cross the end of the buffer. The end of the
3348 * buffer, in this case, is our file EOF, not the allocation size
3349 * of the buffer.
3351 soff = off;
3352 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3353 if (eoff > bp->b_offset + bp->b_bcount)
3354 eoff = bp->b_offset + bp->b_bcount;
3357 * Set valid range. This is typically the entire buffer and thus the
3358 * entire page.
3360 if (eoff > soff) {
3361 vm_page_set_validclean(
3363 (vm_offset_t) (soff & PAGE_MASK),
3364 (vm_offset_t) (eoff - soff)
3370 * This routine is called before a device strategy routine.
3371 * It is used to tell the VM system that paging I/O is in
3372 * progress, and treat the pages associated with the buffer
3373 * almost as being VPO_BUSY. Also the object paging_in_progress
3374 * flag is handled to make sure that the object doesn't become
3375 * inconsistant.
3377 * Since I/O has not been initiated yet, certain buffer flags
3378 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3379 * and should be ignored.
3381 void
3382 vfs_busy_pages(struct buf *bp, int clear_modify)
3384 int i, bogus;
3385 vm_object_t obj;
3386 vm_ooffset_t foff;
3387 vm_page_t m;
3389 if (!(bp->b_flags & B_VMIO))
3390 return;
3392 obj = bp->b_bufobj->bo_object;
3393 foff = bp->b_offset;
3394 KASSERT(bp->b_offset != NOOFFSET,
3395 ("vfs_busy_pages: no buffer offset"));
3396 VM_OBJECT_LOCK(obj);
3397 if (bp->b_bufsize != 0)
3398 vfs_setdirty_locked_object(bp);
3399 retry:
3400 for (i = 0; i < bp->b_npages; i++) {
3401 m = bp->b_pages[i];
3403 if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3404 goto retry;
3406 bogus = 0;
3407 vm_page_lock_queues();
3408 for (i = 0; i < bp->b_npages; i++) {
3409 m = bp->b_pages[i];
3411 if ((bp->b_flags & B_CLUSTER) == 0) {
3412 vm_object_pip_add(obj, 1);
3413 vm_page_io_start(m);
3416 * When readying a buffer for a read ( i.e
3417 * clear_modify == 0 ), it is important to do
3418 * bogus_page replacement for valid pages in
3419 * partially instantiated buffers. Partially
3420 * instantiated buffers can, in turn, occur when
3421 * reconstituting a buffer from its VM backing store
3422 * base. We only have to do this if B_CACHE is
3423 * clear ( which causes the I/O to occur in the
3424 * first place ). The replacement prevents the read
3425 * I/O from overwriting potentially dirty VM-backed
3426 * pages. XXX bogus page replacement is, uh, bogus.
3427 * It may not work properly with small-block devices.
3428 * We need to find a better way.
3430 pmap_remove_all(m);
3431 if (clear_modify)
3432 vfs_page_set_valid(bp, foff, m);
3433 else if (m->valid == VM_PAGE_BITS_ALL &&
3434 (bp->b_flags & B_CACHE) == 0) {
3435 bp->b_pages[i] = bogus_page;
3436 bogus++;
3438 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3440 vm_page_unlock_queues();
3441 VM_OBJECT_UNLOCK(obj);
3442 if (bogus)
3443 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3444 bp->b_pages, bp->b_npages);
3448 * Tell the VM system that the pages associated with this buffer
3449 * are clean. This is used for delayed writes where the data is
3450 * going to go to disk eventually without additional VM intevention.
3452 * Note that while we only really need to clean through to b_bcount, we
3453 * just go ahead and clean through to b_bufsize.
3455 static void
3456 vfs_clean_pages(struct buf *bp)
3458 int i;
3459 vm_ooffset_t foff, noff, eoff;
3460 vm_page_t m;
3462 if (!(bp->b_flags & B_VMIO))
3463 return;
3465 foff = bp->b_offset;
3466 KASSERT(bp->b_offset != NOOFFSET,
3467 ("vfs_clean_pages: no buffer offset"));
3468 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3469 vm_page_lock_queues();
3470 for (i = 0; i < bp->b_npages; i++) {
3471 m = bp->b_pages[i];
3472 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3473 eoff = noff;
3475 if (eoff > bp->b_offset + bp->b_bufsize)
3476 eoff = bp->b_offset + bp->b_bufsize;
3477 vfs_page_set_valid(bp, foff, m);
3478 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3479 foff = noff;
3481 vm_page_unlock_queues();
3482 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3486 * vfs_bio_set_validclean:
3488 * Set the range within the buffer to valid and clean. The range is
3489 * relative to the beginning of the buffer, b_offset. Note that b_offset
3490 * itself may be offset from the beginning of the first page.
3494 void
3495 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3497 int i, n;
3498 vm_page_t m;
3500 if (!(bp->b_flags & B_VMIO))
3501 return;
3503 * Fixup base to be relative to beginning of first page.
3504 * Set initial n to be the maximum number of bytes in the
3505 * first page that can be validated.
3508 base += (bp->b_offset & PAGE_MASK);
3509 n = PAGE_SIZE - (base & PAGE_MASK);
3511 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3512 vm_page_lock_queues();
3513 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3514 m = bp->b_pages[i];
3515 if (n > size)
3516 n = size;
3517 vm_page_set_validclean(m, base & PAGE_MASK, n);
3518 base += n;
3519 size -= n;
3520 n = PAGE_SIZE;
3522 vm_page_unlock_queues();
3523 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3527 * vfs_bio_clrbuf:
3529 * clear a buffer. This routine essentially fakes an I/O, so we need
3530 * to clear BIO_ERROR and B_INVAL.
3532 * Note that while we only theoretically need to clear through b_bcount,
3533 * we go ahead and clear through b_bufsize.
3536 void
3537 vfs_bio_clrbuf(struct buf *bp)
3539 int i, j, mask = 0;
3540 caddr_t sa, ea;
3542 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3543 clrbuf(bp);
3544 return;
3547 bp->b_flags &= ~B_INVAL;
3548 bp->b_ioflags &= ~BIO_ERROR;
3549 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3550 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3551 (bp->b_offset & PAGE_MASK) == 0) {
3552 if (bp->b_pages[0] == bogus_page)
3553 goto unlock;
3554 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3555 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3556 if ((bp->b_pages[0]->valid & mask) == mask)
3557 goto unlock;
3558 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3559 ((bp->b_pages[0]->valid & mask) == 0)) {
3560 bzero(bp->b_data, bp->b_bufsize);
3561 bp->b_pages[0]->valid |= mask;
3562 goto unlock;
3565 ea = sa = bp->b_data;
3566 for(i = 0; i < bp->b_npages; i++, sa = ea) {
3567 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3568 ea = (caddr_t)(vm_offset_t)ulmin(
3569 (u_long)(vm_offset_t)ea,
3570 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3571 if (bp->b_pages[i] == bogus_page)
3572 continue;
3573 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3574 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3575 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3576 if ((bp->b_pages[i]->valid & mask) == mask)
3577 continue;
3578 if ((bp->b_pages[i]->valid & mask) == 0) {
3579 if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3580 bzero(sa, ea - sa);
3581 } else {
3582 for (; sa < ea; sa += DEV_BSIZE, j++) {
3583 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3584 (bp->b_pages[i]->valid & (1 << j)) == 0)
3585 bzero(sa, DEV_BSIZE);
3588 bp->b_pages[i]->valid |= mask;
3590 unlock:
3591 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3592 bp->b_resid = 0;
3596 * vm_hold_load_pages and vm_hold_free_pages get pages into
3597 * a buffers address space. The pages are anonymous and are
3598 * not associated with a file object.
3600 static void
3601 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3603 vm_offset_t pg;
3604 vm_page_t p;
3605 int index;
3607 to = round_page(to);
3608 from = round_page(from);
3609 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3611 VM_OBJECT_LOCK(kernel_object);
3612 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3613 tryagain:
3615 * note: must allocate system pages since blocking here
3616 * could intefere with paging I/O, no matter which
3617 * process we are.
3619 p = vm_page_alloc(kernel_object,
3620 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3621 VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3622 if (!p) {
3623 atomic_add_int(&vm_pageout_deficit,
3624 (to - pg) >> PAGE_SHIFT);
3625 VM_OBJECT_UNLOCK(kernel_object);
3626 VM_WAIT;
3627 VM_OBJECT_LOCK(kernel_object);
3628 goto tryagain;
3630 p->valid = VM_PAGE_BITS_ALL;
3631 pmap_qenter(pg, &p, 1);
3632 bp->b_pages[index] = p;
3634 VM_OBJECT_UNLOCK(kernel_object);
3635 bp->b_npages = index;
3638 /* Return pages associated with this buf to the vm system */
3639 static void
3640 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3642 vm_offset_t pg;
3643 vm_page_t p;
3644 int index, newnpages;
3646 from = round_page(from);
3647 to = round_page(to);
3648 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3650 VM_OBJECT_LOCK(kernel_object);
3651 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3652 p = bp->b_pages[index];
3653 if (p && (index < bp->b_npages)) {
3654 if (p->busy) {
3655 printf(
3656 "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3657 (intmax_t)bp->b_blkno,
3658 (intmax_t)bp->b_lblkno);
3660 bp->b_pages[index] = NULL;
3661 pmap_qremove(pg, 1);
3662 vm_page_lock_queues();
3663 vm_page_unwire(p, 0);
3664 vm_page_free(p);
3665 vm_page_unlock_queues();
3668 VM_OBJECT_UNLOCK(kernel_object);
3669 bp->b_npages = newnpages;
3673 * Map an IO request into kernel virtual address space.
3675 * All requests are (re)mapped into kernel VA space.
3676 * Notice that we use b_bufsize for the size of the buffer
3677 * to be mapped. b_bcount might be modified by the driver.
3679 * Note that even if the caller determines that the address space should
3680 * be valid, a race or a smaller-file mapped into a larger space may
3681 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3682 * check the return value.
3685 vmapbuf(struct buf *bp)
3687 caddr_t addr, kva;
3688 vm_prot_t prot;
3689 int pidx, i;
3690 struct vm_page *m;
3691 struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3693 if (bp->b_bufsize < 0)
3694 return (-1);
3695 prot = VM_PROT_READ;
3696 if (bp->b_iocmd == BIO_READ)
3697 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
3698 for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3699 addr < bp->b_data + bp->b_bufsize;
3700 addr += PAGE_SIZE, pidx++) {
3702 * Do the vm_fault if needed; do the copy-on-write thing
3703 * when reading stuff off device into memory.
3705 * NOTE! Must use pmap_extract() because addr may be in
3706 * the userland address space, and kextract is only guarenteed
3707 * to work for the kernland address space (see: sparc64 port).
3709 retry:
3710 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3711 prot) < 0) {
3712 vm_page_lock_queues();
3713 for (i = 0; i < pidx; ++i) {
3714 vm_page_unhold(bp->b_pages[i]);
3715 bp->b_pages[i] = NULL;
3717 vm_page_unlock_queues();
3718 return(-1);
3720 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3721 if (m == NULL)
3722 goto retry;
3723 bp->b_pages[pidx] = m;
3725 if (pidx > btoc(MAXPHYS))
3726 panic("vmapbuf: mapped more than MAXPHYS");
3727 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3729 kva = bp->b_saveaddr;
3730 bp->b_npages = pidx;
3731 bp->b_saveaddr = bp->b_data;
3732 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3733 return(0);
3737 * Free the io map PTEs associated with this IO operation.
3738 * We also invalidate the TLB entries and restore the original b_addr.
3740 void
3741 vunmapbuf(struct buf *bp)
3743 int pidx;
3744 int npages;
3746 npages = bp->b_npages;
3747 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3748 vm_page_lock_queues();
3749 for (pidx = 0; pidx < npages; pidx++)
3750 vm_page_unhold(bp->b_pages[pidx]);
3751 vm_page_unlock_queues();
3753 bp->b_data = bp->b_saveaddr;
3756 void
3757 bdone(struct buf *bp)
3759 struct mtx *mtxp;
3761 mtxp = mtx_pool_find(mtxpool_sleep, bp);
3762 mtx_lock(mtxp);
3763 bp->b_flags |= B_DONE;
3764 wakeup(bp);
3765 mtx_unlock(mtxp);
3768 void
3769 bwait(struct buf *bp, u_char pri, const char *wchan)
3771 struct mtx *mtxp;
3773 mtxp = mtx_pool_find(mtxpool_sleep, bp);
3774 mtx_lock(mtxp);
3775 while ((bp->b_flags & B_DONE) == 0)
3776 msleep(bp, mtxp, pri, wchan, 0);
3777 mtx_unlock(mtxp);
3781 bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3784 return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3787 void
3788 bufstrategy(struct bufobj *bo, struct buf *bp)
3790 int i = 0;
3791 struct vnode *vp;
3793 vp = bp->b_vp;
3794 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3795 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3796 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3797 i = VOP_STRATEGY(vp, bp);
3798 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3801 void
3802 bufobj_wrefl(struct bufobj *bo)
3805 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3806 ASSERT_BO_LOCKED(bo);
3807 bo->bo_numoutput++;
3810 void
3811 bufobj_wref(struct bufobj *bo)
3814 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3815 BO_LOCK(bo);
3816 bo->bo_numoutput++;
3817 BO_UNLOCK(bo);
3820 void
3821 bufobj_wdrop(struct bufobj *bo)
3824 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3825 BO_LOCK(bo);
3826 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3827 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3828 bo->bo_flag &= ~BO_WWAIT;
3829 wakeup(&bo->bo_numoutput);
3831 BO_UNLOCK(bo);
3835 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3837 int error;
3839 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3840 ASSERT_BO_LOCKED(bo);
3841 error = 0;
3842 while (bo->bo_numoutput) {
3843 bo->bo_flag |= BO_WWAIT;
3844 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3845 slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3846 if (error)
3847 break;
3849 return (error);
3852 void
3853 bpin(struct buf *bp)
3855 struct mtx *mtxp;
3857 mtxp = mtx_pool_find(mtxpool_sleep, bp);
3858 mtx_lock(mtxp);
3859 bp->b_pin_count++;
3860 mtx_unlock(mtxp);
3863 void
3864 bunpin(struct buf *bp)
3866 struct mtx *mtxp;
3868 mtxp = mtx_pool_find(mtxpool_sleep, bp);
3869 mtx_lock(mtxp);
3870 if (--bp->b_pin_count == 0)
3871 wakeup(bp);
3872 mtx_unlock(mtxp);
3875 void
3876 bunpin_wait(struct buf *bp)
3878 struct mtx *mtxp;
3880 mtxp = mtx_pool_find(mtxpool_sleep, bp);
3881 mtx_lock(mtxp);
3882 while (bp->b_pin_count > 0)
3883 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3884 mtx_unlock(mtxp);
3887 #include "opt_ddb.h"
3888 #ifdef DDB
3889 #include <ddb/ddb.h>
3891 /* DDB command to show buffer data */
3892 DB_SHOW_COMMAND(buffer, db_show_buffer)
3894 /* get args */
3895 struct buf *bp = (struct buf *)addr;
3897 if (!have_addr) {
3898 db_printf("usage: show buffer <addr>\n");
3899 return;
3902 db_printf("buf at %p\n", bp);
3903 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3904 db_printf(
3905 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3906 "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3907 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3908 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3909 if (bp->b_npages) {
3910 int i;
3911 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3912 for (i = 0; i < bp->b_npages; i++) {
3913 vm_page_t m;
3914 m = bp->b_pages[i];
3915 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3916 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3917 if ((i + 1) < bp->b_npages)
3918 db_printf(",");
3920 db_printf("\n");
3922 lockmgr_printinfo(&bp->b_lock);
3925 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3927 struct buf *bp;
3928 int i;
3930 for (i = 0; i < nbuf; i++) {
3931 bp = &buf[i];
3932 if (BUF_ISLOCKED(bp)) {
3933 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3934 db_printf("\n");
3938 #endif /* DDB */