2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
36 * Comments on the socket life cycle:
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called. If pru_attach() returned an error,
51 * pru_detach() will not be called. Socket layer private.
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
100 #include "opt_inet.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h> /* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <net/route.h>
126 #include <sys/signalvar.h>
127 #include <sys/stat.h>
129 #include <sys/sysctl.h>
131 #include <sys/jail.h>
133 #include <security/mac/mac_framework.h>
138 #include <sys/mount.h>
139 #include <compat/freebsd32/freebsd32.h>
141 extern struct sysentvec ia32_freebsd_sysvec
;
144 static int soreceive_rcvoob(struct socket
*so
, struct uio
*uio
,
147 static void filt_sordetach(struct knote
*kn
);
148 static int filt_soread(struct knote
*kn
, long hint
);
149 static void filt_sowdetach(struct knote
*kn
);
150 static int filt_sowrite(struct knote
*kn
, long hint
);
151 static int filt_solisten(struct knote
*kn
, long hint
);
153 static struct filterops solisten_filtops
=
154 { 1, NULL
, filt_sordetach
, filt_solisten
};
155 static struct filterops soread_filtops
=
156 { 1, NULL
, filt_sordetach
, filt_soread
};
157 static struct filterops sowrite_filtops
=
158 { 1, NULL
, filt_sowdetach
, filt_sowrite
};
160 uma_zone_t socket_zone
;
161 so_gen_t so_gencnt
; /* generation count for sockets */
165 MALLOC_DEFINE(M_SONAME
, "soname", "socket name");
166 MALLOC_DEFINE(M_PCB
, "pcb", "protocol control block");
168 static int somaxconn
= SOMAXCONN
;
169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS
);
170 /* XXX: we dont have SYSCTL_USHORT */
171 SYSCTL_PROC(_kern_ipc
, KIPC_SOMAXCONN
, somaxconn
, CTLTYPE_UINT
| CTLFLAG_RW
,
172 0, sizeof(int), sysctl_somaxconn
, "I", "Maximum pending socket connection "
174 static int numopensockets
;
175 SYSCTL_INT(_kern_ipc
, OID_AUTO
, numopensockets
, CTLFLAG_RD
,
176 &numopensockets
, 0, "Number of open sockets");
177 #ifdef ZERO_COPY_SOCKETS
178 /* These aren't static because they're used in other files. */
179 int so_zero_copy_send
= 1;
180 int so_zero_copy_receive
= 1;
181 SYSCTL_NODE(_kern_ipc
, OID_AUTO
, zero_copy
, CTLFLAG_RD
, 0,
182 "Zero copy controls");
183 SYSCTL_INT(_kern_ipc_zero_copy
, OID_AUTO
, receive
, CTLFLAG_RW
,
184 &so_zero_copy_receive
, 0, "Enable zero copy receive");
185 SYSCTL_INT(_kern_ipc_zero_copy
, OID_AUTO
, send
, CTLFLAG_RW
,
186 &so_zero_copy_send
, 0, "Enable zero copy send");
187 #endif /* ZERO_COPY_SOCKETS */
190 * accept_mtx locks down per-socket fields relating to accept queues. See
191 * socketvar.h for an annotation of the protected fields of struct socket.
193 struct mtx accept_mtx
;
194 MTX_SYSINIT(accept_mtx
, &accept_mtx
, "accept", MTX_DEF
);
197 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
200 static struct mtx so_global_mtx
;
201 MTX_SYSINIT(so_global_mtx
, &so_global_mtx
, "so_glabel", MTX_DEF
);
204 * General IPC sysctl name space, used by sockets and a variety of other IPC
207 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
, CTLFLAG_RW
, 0, "IPC");
210 * Sysctl to get and set the maximum global sockets limit. Notify protocols
211 * of the change so that they can update their dependent limits as required.
214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS
)
216 int error
, newmaxsockets
;
218 newmaxsockets
= maxsockets
;
219 error
= sysctl_handle_int(oidp
, &newmaxsockets
, 0, req
);
220 if (error
== 0 && req
->newptr
) {
221 if (newmaxsockets
> maxsockets
) {
222 maxsockets
= newmaxsockets
;
223 if (maxsockets
> ((maxfiles
/ 4) * 3)) {
224 maxfiles
= (maxsockets
* 5) / 4;
225 maxfilesperproc
= (maxfiles
* 9) / 10;
227 EVENTHANDLER_INVOKE(maxsockets_change
);
234 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, maxsockets
, CTLTYPE_INT
|CTLFLAG_RW
,
235 &maxsockets
, 0, sysctl_maxsockets
, "IU",
236 "Maximum number of sockets avaliable");
239 * Initialise maxsockets.
241 static void init_maxsockets(void *ignored
)
243 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets
);
244 maxsockets
= imax(maxsockets
, imax(maxfiles
, nmbclusters
));
246 SYSINIT(param
, SI_SUB_TUNABLES
, SI_ORDER_ANY
, init_maxsockets
, NULL
);
249 * Socket operation routines. These routines are called by the routines in
250 * sys_socket.c or from a system process, and implement the semantics of
251 * socket operations by switching out to the protocol specific routines.
255 * Get a socket structure from our zone, and initialize it. Note that it
256 * would probably be better to allocate socket and PCB at the same time, but
257 * I'm not convinced that all the protocols can be easily modified to do
260 * soalloc() returns a socket with a ref count of 0.
262 static struct socket
*
267 so
= uma_zalloc(socket_zone
, M_NOWAIT
| M_ZERO
);
271 if (mac_socket_init(so
, M_NOWAIT
) != 0) {
272 uma_zfree(socket_zone
, so
);
276 SOCKBUF_LOCK_INIT(&so
->so_snd
, "so_snd");
277 SOCKBUF_LOCK_INIT(&so
->so_rcv
, "so_rcv");
278 sx_init(&so
->so_snd
.sb_sx
, "so_snd_sx");
279 sx_init(&so
->so_rcv
.sb_sx
, "so_rcv_sx");
280 TAILQ_INIT(&so
->so_aiojobq
);
281 mtx_lock(&so_global_mtx
);
282 so
->so_gencnt
= ++so_gencnt
;
284 mtx_unlock(&so_global_mtx
);
289 * Free the storage associated with a socket at the socket layer, tear down
290 * locks, labels, etc. All protocol state is assumed already to have been
291 * torn down (and possibly never set up) by the caller.
294 sodealloc(struct socket
*so
)
297 KASSERT(so
->so_count
== 0, ("sodealloc(): so_count %d", so
->so_count
));
298 KASSERT(so
->so_pcb
== NULL
, ("sodealloc(): so_pcb != NULL"));
300 mtx_lock(&so_global_mtx
);
301 so
->so_gencnt
= ++so_gencnt
;
302 --numopensockets
; /* Could be below, but faster here. */
303 mtx_unlock(&so_global_mtx
);
304 if (so
->so_rcv
.sb_hiwat
)
305 (void)chgsbsize(so
->so_cred
->cr_uidinfo
,
306 &so
->so_rcv
.sb_hiwat
, 0, RLIM_INFINITY
);
307 if (so
->so_snd
.sb_hiwat
)
308 (void)chgsbsize(so
->so_cred
->cr_uidinfo
,
309 &so
->so_snd
.sb_hiwat
, 0, RLIM_INFINITY
);
311 /* remove acccept filter if one is present. */
312 if (so
->so_accf
!= NULL
)
313 do_setopt_accept_filter(so
, NULL
);
316 mac_socket_destroy(so
);
319 sx_destroy(&so
->so_snd
.sb_sx
);
320 sx_destroy(&so
->so_rcv
.sb_sx
);
321 SOCKBUF_LOCK_DESTROY(&so
->so_snd
);
322 SOCKBUF_LOCK_DESTROY(&so
->so_rcv
);
323 uma_zfree(socket_zone
, so
);
327 * socreate returns a socket with a ref count of 1. The socket should be
328 * closed with soclose().
331 socreate(int dom
, struct socket
**aso
, int type
, int proto
,
332 struct ucred
*cred
, struct thread
*td
)
339 prp
= pffindproto(dom
, proto
, type
);
341 prp
= pffindtype(dom
, type
);
343 if (prp
== NULL
|| prp
->pr_usrreqs
->pru_attach
== NULL
||
344 prp
->pr_usrreqs
->pru_attach
== pru_attach_notsupp
)
345 return (EPROTONOSUPPORT
);
347 if (jailed(cred
) && jail_socket_unixiproute_only
&&
348 prp
->pr_domain
->dom_family
!= PF_LOCAL
&&
349 prp
->pr_domain
->dom_family
!= PF_INET
&&
350 prp
->pr_domain
->dom_family
!= PF_ROUTE
) {
351 return (EPROTONOSUPPORT
);
354 if (prp
->pr_type
!= type
)
360 TAILQ_INIT(&so
->so_incomp
);
361 TAILQ_INIT(&so
->so_comp
);
363 so
->so_cred
= crhold(cred
);
364 if ((prp
->pr_domain
->dom_family
== PF_INET
) ||
365 (prp
->pr_domain
->dom_family
== PF_ROUTE
))
366 so
->so_fibnum
= td
->td_proc
->p_fibnum
;
371 mac_socket_create(cred
, so
);
373 knlist_init(&so
->so_rcv
.sb_sel
.si_note
, SOCKBUF_MTX(&so
->so_rcv
),
375 knlist_init(&so
->so_snd
.sb_sel
.si_note
, SOCKBUF_MTX(&so
->so_snd
),
379 * Auto-sizing of socket buffers is managed by the protocols and
380 * the appropriate flags must be set in the pru_attach function.
382 error
= (*prp
->pr_usrreqs
->pru_attach
)(so
, proto
, td
);
384 KASSERT(so
->so_count
== 1, ("socreate: so_count %d",
395 static int regression_sonewconn_earlytest
= 1;
396 SYSCTL_INT(_regression
, OID_AUTO
, sonewconn_earlytest
, CTLFLAG_RW
,
397 ®ression_sonewconn_earlytest
, 0, "Perform early sonewconn limit test");
401 * When an attempt at a new connection is noted on a socket which accepts
402 * connections, sonewconn is called. If the connection is possible (subject
403 * to space constraints, etc.) then we allocate a new structure, propoerly
404 * linked into the data structure of the original socket, and return this.
405 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
407 * Note: the ref count on the socket is 0 on return.
410 sonewconn(struct socket
*head
, int connstatus
)
416 over
= (head
->so_qlen
> 3 * head
->so_qlimit
/ 2);
419 if (regression_sonewconn_earlytest
&& over
)
427 if ((head
->so_options
& SO_ACCEPTFILTER
) != 0)
430 so
->so_type
= head
->so_type
;
431 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
432 so
->so_linger
= head
->so_linger
;
433 so
->so_state
= head
->so_state
| SS_NOFDREF
;
434 so
->so_proto
= head
->so_proto
;
435 so
->so_cred
= crhold(head
->so_cred
);
438 mac_socket_newconn(head
, so
);
441 knlist_init(&so
->so_rcv
.sb_sel
.si_note
, SOCKBUF_MTX(&so
->so_rcv
),
443 knlist_init(&so
->so_snd
.sb_sel
.si_note
, SOCKBUF_MTX(&so
->so_snd
),
445 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
) ||
446 (*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
)) {
450 so
->so_rcv
.sb_lowat
= head
->so_rcv
.sb_lowat
;
451 so
->so_snd
.sb_lowat
= head
->so_snd
.sb_lowat
;
452 so
->so_rcv
.sb_timeo
= head
->so_rcv
.sb_timeo
;
453 so
->so_snd
.sb_timeo
= head
->so_snd
.sb_timeo
;
454 so
->so_rcv
.sb_flags
|= head
->so_rcv
.sb_flags
& SB_AUTOSIZE
;
455 so
->so_snd
.sb_flags
|= head
->so_snd
.sb_flags
& SB_AUTOSIZE
;
456 so
->so_state
|= connstatus
;
459 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
460 so
->so_qstate
|= SQ_COMP
;
464 * Keep removing sockets from the head until there's room for
465 * us to insert on the tail. In pre-locking revisions, this
466 * was a simple if(), but as we could be racing with other
467 * threads and soabort() requires dropping locks, we must
468 * loop waiting for the condition to be true.
470 while (head
->so_incqlen
> head
->so_qlimit
) {
472 sp
= TAILQ_FIRST(&head
->so_incomp
);
473 TAILQ_REMOVE(&head
->so_incomp
, sp
, so_list
);
475 sp
->so_qstate
&= ~SQ_INCOMP
;
481 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
482 so
->so_qstate
|= SQ_INCOMP
;
488 wakeup_one(&head
->so_timeo
);
494 sobind(struct socket
*so
, struct sockaddr
*nam
, struct thread
*td
)
497 return ((*so
->so_proto
->pr_usrreqs
->pru_bind
)(so
, nam
, td
));
501 * solisten() transitions a socket from a non-listening state to a listening
502 * state, but can also be used to update the listen queue depth on an
503 * existing listen socket. The protocol will call back into the sockets
504 * layer using solisten_proto_check() and solisten_proto() to check and set
505 * socket-layer listen state. Call backs are used so that the protocol can
506 * acquire both protocol and socket layer locks in whatever order is required
509 * Protocol implementors are advised to hold the socket lock across the
510 * socket-layer test and set to avoid races at the socket layer.
513 solisten(struct socket
*so
, int backlog
, struct thread
*td
)
516 return ((*so
->so_proto
->pr_usrreqs
->pru_listen
)(so
, backlog
, td
));
520 solisten_proto_check(struct socket
*so
)
523 SOCK_LOCK_ASSERT(so
);
525 if (so
->so_state
& (SS_ISCONNECTED
| SS_ISCONNECTING
|
532 solisten_proto(struct socket
*so
, int backlog
)
535 SOCK_LOCK_ASSERT(so
);
537 if (backlog
< 0 || backlog
> somaxconn
)
539 so
->so_qlimit
= backlog
;
540 so
->so_options
|= SO_ACCEPTCONN
;
544 * Attempt to free a socket. This should really be sotryfree().
546 * sofree() will succeed if:
548 * - There are no outstanding file descriptor references or related consumers
551 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
553 * - The protocol does not have an outstanding strong reference on the socket
556 * - The socket is not in a completed connection queue, so a process has been
557 * notified that it is present. If it is removed, the user process may
558 * block in accept() despite select() saying the socket was ready.
560 * Otherwise, it will quietly abort so that a future call to sofree(), when
561 * conditions are right, can succeed.
564 sofree(struct socket
*so
)
566 struct protosw
*pr
= so
->so_proto
;
569 ACCEPT_LOCK_ASSERT();
570 SOCK_LOCK_ASSERT(so
);
572 if ((so
->so_state
& SS_NOFDREF
) == 0 || so
->so_count
!= 0 ||
573 (so
->so_state
& SS_PROTOREF
) || (so
->so_qstate
& SQ_COMP
)) {
581 KASSERT((so
->so_qstate
& SQ_COMP
) != 0 ||
582 (so
->so_qstate
& SQ_INCOMP
) != 0,
583 ("sofree: so_head != NULL, but neither SQ_COMP nor "
585 KASSERT((so
->so_qstate
& SQ_COMP
) == 0 ||
586 (so
->so_qstate
& SQ_INCOMP
) == 0,
587 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
588 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
590 so
->so_qstate
&= ~SQ_INCOMP
;
593 KASSERT((so
->so_qstate
& SQ_COMP
) == 0 &&
594 (so
->so_qstate
& SQ_INCOMP
) == 0,
595 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
596 so
->so_qstate
& SQ_COMP
, so
->so_qstate
& SQ_INCOMP
));
597 if (so
->so_options
& SO_ACCEPTCONN
) {
598 KASSERT((TAILQ_EMPTY(&so
->so_comp
)), ("sofree: so_comp populated"));
599 KASSERT((TAILQ_EMPTY(&so
->so_incomp
)), ("sofree: so_comp populated"));
604 if (pr
->pr_flags
& PR_RIGHTS
&& pr
->pr_domain
->dom_dispose
!= NULL
)
605 (*pr
->pr_domain
->dom_dispose
)(so
->so_rcv
.sb_mb
);
606 if (pr
->pr_usrreqs
->pru_detach
!= NULL
)
607 (*pr
->pr_usrreqs
->pru_detach
)(so
);
610 * From this point on, we assume that no other references to this
611 * socket exist anywhere else in the stack. Therefore, no locks need
612 * to be acquired or held.
614 * We used to do a lot of socket buffer and socket locking here, as
615 * well as invoke sorflush() and perform wakeups. The direct call to
616 * dom_dispose() and sbrelease_internal() are an inlining of what was
617 * necessary from sorflush().
619 * Notice that the socket buffer and kqueue state are torn down
620 * before calling pru_detach. This means that protocols shold not
621 * assume they can perform socket wakeups, etc, in their detach code.
623 sbdestroy(&so
->so_snd
, so
);
624 sbdestroy(&so
->so_rcv
, so
);
625 knlist_destroy(&so
->so_rcv
.sb_sel
.si_note
);
626 knlist_destroy(&so
->so_snd
.sb_sel
.si_note
);
631 * Close a socket on last file table reference removal. Initiate disconnect
632 * if connected. Free socket when disconnect complete.
634 * This function will sorele() the socket. Note that soclose() may be called
635 * prior to the ref count reaching zero. The actual socket structure will
636 * not be freed until the ref count reaches zero.
639 soclose(struct socket
*so
)
643 KASSERT(!(so
->so_state
& SS_NOFDREF
), ("soclose: SS_NOFDREF on enter"));
645 funsetown(&so
->so_sigio
);
646 if (so
->so_state
& SS_ISCONNECTED
) {
647 if ((so
->so_state
& SS_ISDISCONNECTING
) == 0) {
648 error
= sodisconnect(so
);
652 if (so
->so_options
& SO_LINGER
) {
653 if ((so
->so_state
& SS_ISDISCONNECTING
) &&
654 (so
->so_state
& SS_NBIO
))
656 while (so
->so_state
& SS_ISCONNECTED
) {
657 error
= tsleep(&so
->so_timeo
,
658 PSOCK
| PCATCH
, "soclos", so
->so_linger
* hz
);
666 if (so
->so_proto
->pr_usrreqs
->pru_close
!= NULL
)
667 (*so
->so_proto
->pr_usrreqs
->pru_close
)(so
);
668 if (so
->so_options
& SO_ACCEPTCONN
) {
671 while ((sp
= TAILQ_FIRST(&so
->so_incomp
)) != NULL
) {
672 TAILQ_REMOVE(&so
->so_incomp
, sp
, so_list
);
674 sp
->so_qstate
&= ~SQ_INCOMP
;
680 while ((sp
= TAILQ_FIRST(&so
->so_comp
)) != NULL
) {
681 TAILQ_REMOVE(&so
->so_comp
, sp
, so_list
);
683 sp
->so_qstate
&= ~SQ_COMP
;
693 KASSERT((so
->so_state
& SS_NOFDREF
) == 0, ("soclose: NOFDREF"));
694 so
->so_state
|= SS_NOFDREF
;
700 * soabort() is used to abruptly tear down a connection, such as when a
701 * resource limit is reached (listen queue depth exceeded), or if a listen
702 * socket is closed while there are sockets waiting to be accepted.
704 * This interface is tricky, because it is called on an unreferenced socket,
705 * and must be called only by a thread that has actually removed the socket
706 * from the listen queue it was on, or races with other threads are risked.
708 * This interface will call into the protocol code, so must not be called
709 * with any socket locks held. Protocols do call it while holding their own
710 * recursible protocol mutexes, but this is something that should be subject
711 * to review in the future.
714 soabort(struct socket
*so
)
718 * In as much as is possible, assert that no references to this
719 * socket are held. This is not quite the same as asserting that the
720 * current thread is responsible for arranging for no references, but
721 * is as close as we can get for now.
723 KASSERT(so
->so_count
== 0, ("soabort: so_count"));
724 KASSERT((so
->so_state
& SS_PROTOREF
) == 0, ("soabort: SS_PROTOREF"));
725 KASSERT(so
->so_state
& SS_NOFDREF
, ("soabort: !SS_NOFDREF"));
726 KASSERT((so
->so_state
& SQ_COMP
) == 0, ("soabort: SQ_COMP"));
727 KASSERT((so
->so_state
& SQ_INCOMP
) == 0, ("soabort: SQ_INCOMP"));
729 if (so
->so_proto
->pr_usrreqs
->pru_abort
!= NULL
)
730 (*so
->so_proto
->pr_usrreqs
->pru_abort
)(so
);
737 soaccept(struct socket
*so
, struct sockaddr
**nam
)
742 KASSERT((so
->so_state
& SS_NOFDREF
) != 0, ("soaccept: !NOFDREF"));
743 so
->so_state
&= ~SS_NOFDREF
;
745 error
= (*so
->so_proto
->pr_usrreqs
->pru_accept
)(so
, nam
);
750 soconnect(struct socket
*so
, struct sockaddr
*nam
, struct thread
*td
)
754 if (so
->so_options
& SO_ACCEPTCONN
)
757 * If protocol is connection-based, can only connect once.
758 * Otherwise, if connected, try to disconnect first. This allows
759 * user to disconnect by connecting to, e.g., a null address.
761 if (so
->so_state
& (SS_ISCONNECTED
|SS_ISCONNECTING
) &&
762 ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
763 (error
= sodisconnect(so
)))) {
767 * Prevent accumulated error from previous connection from
771 error
= (*so
->so_proto
->pr_usrreqs
->pru_connect
)(so
, nam
, td
);
778 soconnect2(struct socket
*so1
, struct socket
*so2
)
781 return ((*so1
->so_proto
->pr_usrreqs
->pru_connect2
)(so1
, so2
));
785 sodisconnect(struct socket
*so
)
789 if ((so
->so_state
& SS_ISCONNECTED
) == 0)
791 if (so
->so_state
& SS_ISDISCONNECTING
)
793 error
= (*so
->so_proto
->pr_usrreqs
->pru_disconnect
)(so
);
797 #ifdef ZERO_COPY_SOCKETS
798 struct so_zerocopy_stats
{
803 struct so_zerocopy_stats so_zerocp_stats
= {0,0,0};
804 #include <netinet/in.h>
805 #include <net/route.h>
806 #include <netinet/in_pcb.h>
808 #include <vm/vm_page.h>
809 #include <vm/vm_object.h>
812 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise
813 * sosend_dgram() and sosend_generic() use m_uiotombuf().
815 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
816 * all of the data referenced by the uio. If desired, it uses zero-copy.
817 * *space will be updated to reflect data copied in.
819 * NB: If atomic I/O is requested, the caller must already have checked that
820 * space can hold resid bytes.
822 * NB: In the event of an error, the caller may need to free the partial
823 * chain pointed to by *mpp. The contents of both *uio and *space may be
824 * modified even in the case of an error.
827 sosend_copyin(struct uio
*uio
, struct mbuf
**retmp
, int atomic
, long *space
,
830 struct mbuf
*m
, **mp
, *top
;
833 #ifdef ZERO_COPY_SOCKETS
840 resid
= uio
->uio_resid
;
843 #ifdef ZERO_COPY_SOCKETS
845 #endif /* ZERO_COPY_SOCKETS */
846 if (resid
>= MINCLSIZE
) {
847 #ifdef ZERO_COPY_SOCKETS
849 m
= m_gethdr(M_WAITOK
, MT_DATA
);
851 m
->m_pkthdr
.rcvif
= NULL
;
853 m
= m_get(M_WAITOK
, MT_DATA
);
854 if (so_zero_copy_send
&&
857 uio
->uio_iov
->iov_len
>=PAGE_SIZE
) {
858 so_zerocp_stats
.size_ok
++;
859 so_zerocp_stats
.align_ok
++;
860 cow_send
= socow_setup(m
, uio
);
864 m_clget(m
, M_WAITOK
);
865 len
= min(min(MCLBYTES
, resid
), *space
);
867 #else /* ZERO_COPY_SOCKETS */
869 m
= m_getcl(M_WAIT
, MT_DATA
, M_PKTHDR
);
871 m
->m_pkthdr
.rcvif
= NULL
;
873 m
= m_getcl(M_WAIT
, MT_DATA
, 0);
874 len
= min(min(MCLBYTES
, resid
), *space
);
875 #endif /* ZERO_COPY_SOCKETS */
878 m
= m_gethdr(M_WAIT
, MT_DATA
);
880 m
->m_pkthdr
.rcvif
= NULL
;
882 len
= min(min(MHLEN
, resid
), *space
);
884 * For datagram protocols, leave room
885 * for protocol headers in first mbuf.
887 if (atomic
&& m
&& len
< MHLEN
)
890 m
= m_get(M_WAIT
, MT_DATA
);
891 len
= min(min(MLEN
, resid
), *space
);
900 #ifdef ZERO_COPY_SOCKETS
904 #endif /* ZERO_COPY_SOCKETS */
905 error
= uiomove(mtod(m
, void *), (int)len
, uio
);
906 resid
= uio
->uio_resid
;
909 top
->m_pkthdr
.len
+= len
;
915 top
->m_flags
|= M_EOR
;
918 } while (*space
> 0 && atomic
);
923 #endif /*ZERO_COPY_SOCKETS*/
925 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
928 sosend_dgram(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
929 struct mbuf
*top
, struct mbuf
*control
, int flags
, struct thread
*td
)
932 int clen
= 0, error
, dontroute
;
933 #ifdef ZERO_COPY_SOCKETS
934 int atomic
= sosendallatonce(so
) || top
;
937 KASSERT(so
->so_type
== SOCK_DGRAM
, ("sodgram_send: !SOCK_DGRAM"));
938 KASSERT(so
->so_proto
->pr_flags
& PR_ATOMIC
,
939 ("sodgram_send: !PR_ATOMIC"));
942 resid
= uio
->uio_resid
;
944 resid
= top
->m_pkthdr
.len
;
946 * In theory resid should be unsigned. However, space must be
947 * signed, as it might be less than 0 if we over-committed, and we
948 * must use a signed comparison of space and resid. On the other
949 * hand, a negative resid causes us to loop sending 0-length
950 * segments to the protocol.
952 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
953 * type sockets since that's an error.
961 (flags
& MSG_DONTROUTE
) && (so
->so_options
& SO_DONTROUTE
) == 0;
963 td
->td_ru
.ru_msgsnd
++;
965 clen
= control
->m_len
;
967 SOCKBUF_LOCK(&so
->so_snd
);
968 if (so
->so_snd
.sb_state
& SBS_CANTSENDMORE
) {
969 SOCKBUF_UNLOCK(&so
->so_snd
);
974 error
= so
->so_error
;
976 SOCKBUF_UNLOCK(&so
->so_snd
);
979 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
981 * `sendto' and `sendmsg' is allowed on a connection-based
982 * socket if it supports implied connect. Return ENOTCONN if
983 * not connected and no address is supplied.
985 if ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) &&
986 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) == 0) {
987 if ((so
->so_state
& SS_ISCONFIRMING
) == 0 &&
988 !(resid
== 0 && clen
!= 0)) {
989 SOCKBUF_UNLOCK(&so
->so_snd
);
993 } else if (addr
== NULL
) {
994 if (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)
997 error
= EDESTADDRREQ
;
998 SOCKBUF_UNLOCK(&so
->so_snd
);
1004 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
1005 * problem and need fixing.
1007 space
= sbspace(&so
->so_snd
);
1008 if (flags
& MSG_OOB
)
1011 SOCKBUF_UNLOCK(&so
->so_snd
);
1012 if (resid
> space
) {
1018 if (flags
& MSG_EOR
)
1019 top
->m_flags
|= M_EOR
;
1021 #ifdef ZERO_COPY_SOCKETS
1022 error
= sosend_copyin(uio
, &top
, atomic
, &space
, flags
);
1027 * Copy the data from userland into a mbuf chain.
1028 * If no data is to be copied in, a single empty mbuf
1031 top
= m_uiotombuf(uio
, M_WAITOK
, space
, max_hdr
,
1032 (M_PKTHDR
| ((flags
& MSG_EOR
) ? M_EOR
: 0)));
1034 error
= EFAULT
; /* only possible error */
1037 space
-= resid
- uio
->uio_resid
;
1039 resid
= uio
->uio_resid
;
1041 KASSERT(resid
== 0, ("sosend_dgram: resid != 0"));
1043 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1048 so
->so_options
|= SO_DONTROUTE
;
1052 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1053 * of date. We could have recieved a reset packet in an interrupt or
1054 * maybe we slept while doing page faults in uiomove() etc. We could
1055 * probably recheck again inside the locking protection here, but
1056 * there are probably other places that this also happens. We must
1059 error
= (*so
->so_proto
->pr_usrreqs
->pru_send
)(so
,
1060 (flags
& MSG_OOB
) ? PRUS_OOB
:
1062 * If the user set MSG_EOF, the protocol understands this flag and
1063 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1065 ((flags
& MSG_EOF
) &&
1066 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) &&
1069 /* If there is more to send set PRUS_MORETOCOME */
1070 (resid
> 0 && space
> 0) ? PRUS_MORETOCOME
: 0,
1071 top
, addr
, control
, td
);
1074 so
->so_options
&= ~SO_DONTROUTE
;
1083 if (control
!= NULL
)
1089 * Send on a socket. If send must go all at once and message is larger than
1090 * send buffering, then hard error. Lock against other senders. If must go
1091 * all at once and not enough room now, then inform user that this would
1092 * block and do nothing. Otherwise, if nonblocking, send as much as
1093 * possible. The data to be sent is described by "uio" if nonzero, otherwise
1094 * by the mbuf chain "top" (which must be null if uio is not). Data provided
1095 * in mbuf chain must be small enough to send all at once.
1097 * Returns nonzero on error, timeout or signal; callers must check for short
1098 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
1102 sosend_generic(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
1103 struct mbuf
*top
, struct mbuf
*control
, int flags
, struct thread
*td
)
1106 int clen
= 0, error
, dontroute
;
1107 int atomic
= sosendallatonce(so
) || top
;
1110 resid
= uio
->uio_resid
;
1112 resid
= top
->m_pkthdr
.len
;
1114 * In theory resid should be unsigned. However, space must be
1115 * signed, as it might be less than 0 if we over-committed, and we
1116 * must use a signed comparison of space and resid. On the other
1117 * hand, a negative resid causes us to loop sending 0-length
1118 * segments to the protocol.
1120 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1121 * type sockets since that's an error.
1123 if (resid
< 0 || (so
->so_type
== SOCK_STREAM
&& (flags
& MSG_EOR
))) {
1129 (flags
& MSG_DONTROUTE
) && (so
->so_options
& SO_DONTROUTE
) == 0 &&
1130 (so
->so_proto
->pr_flags
& PR_ATOMIC
);
1132 td
->td_ru
.ru_msgsnd
++;
1133 if (control
!= NULL
)
1134 clen
= control
->m_len
;
1136 error
= sblock(&so
->so_snd
, SBLOCKWAIT(flags
));
1142 SOCKBUF_LOCK(&so
->so_snd
);
1143 if (so
->so_snd
.sb_state
& SBS_CANTSENDMORE
) {
1144 SOCKBUF_UNLOCK(&so
->so_snd
);
1149 error
= so
->so_error
;
1151 SOCKBUF_UNLOCK(&so
->so_snd
);
1154 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
1156 * `sendto' and `sendmsg' is allowed on a connection-
1157 * based socket if it supports implied connect.
1158 * Return ENOTCONN if not connected and no address is
1161 if ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) &&
1162 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) == 0) {
1163 if ((so
->so_state
& SS_ISCONFIRMING
) == 0 &&
1164 !(resid
== 0 && clen
!= 0)) {
1165 SOCKBUF_UNLOCK(&so
->so_snd
);
1169 } else if (addr
== NULL
) {
1170 SOCKBUF_UNLOCK(&so
->so_snd
);
1171 if (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)
1174 error
= EDESTADDRREQ
;
1178 space
= sbspace(&so
->so_snd
);
1179 if (flags
& MSG_OOB
)
1181 if ((atomic
&& resid
> so
->so_snd
.sb_hiwat
) ||
1182 clen
> so
->so_snd
.sb_hiwat
) {
1183 SOCKBUF_UNLOCK(&so
->so_snd
);
1187 if (space
< resid
+ clen
&&
1188 (atomic
|| space
< so
->so_snd
.sb_lowat
|| space
< clen
)) {
1189 if ((so
->so_state
& SS_NBIO
) || (flags
& MSG_NBIO
)) {
1190 SOCKBUF_UNLOCK(&so
->so_snd
);
1191 error
= EWOULDBLOCK
;
1194 error
= sbwait(&so
->so_snd
);
1195 SOCKBUF_UNLOCK(&so
->so_snd
);
1200 SOCKBUF_UNLOCK(&so
->so_snd
);
1205 if (flags
& MSG_EOR
)
1206 top
->m_flags
|= M_EOR
;
1208 #ifdef ZERO_COPY_SOCKETS
1209 error
= sosend_copyin(uio
, &top
, atomic
,
1215 * Copy the data from userland into a mbuf
1216 * chain. If no data is to be copied in,
1217 * a single empty mbuf is returned.
1219 top
= m_uiotombuf(uio
, M_WAITOK
, space
,
1220 (atomic
? max_hdr
: 0),
1221 (atomic
? M_PKTHDR
: 0) |
1222 ((flags
& MSG_EOR
) ? M_EOR
: 0));
1224 error
= EFAULT
; /* only possible error */
1227 space
-= resid
- uio
->uio_resid
;
1229 resid
= uio
->uio_resid
;
1233 so
->so_options
|= SO_DONTROUTE
;
1237 * XXX all the SBS_CANTSENDMORE checks previously
1238 * done could be out of date. We could have recieved
1239 * a reset packet in an interrupt or maybe we slept
1240 * while doing page faults in uiomove() etc. We
1241 * could probably recheck again inside the locking
1242 * protection here, but there are probably other
1243 * places that this also happens. We must rethink
1246 error
= (*so
->so_proto
->pr_usrreqs
->pru_send
)(so
,
1247 (flags
& MSG_OOB
) ? PRUS_OOB
:
1249 * If the user set MSG_EOF, the protocol understands
1250 * this flag and nothing left to send then use
1251 * PRU_SEND_EOF instead of PRU_SEND.
1253 ((flags
& MSG_EOF
) &&
1254 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) &&
1257 /* If there is more to send set PRUS_MORETOCOME. */
1258 (resid
> 0 && space
> 0) ? PRUS_MORETOCOME
: 0,
1259 top
, addr
, control
, td
);
1262 so
->so_options
&= ~SO_DONTROUTE
;
1270 } while (resid
&& space
> 0);
1274 sbunlock(&so
->so_snd
);
1278 if (control
!= NULL
)
1284 sosend(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
1285 struct mbuf
*top
, struct mbuf
*control
, int flags
, struct thread
*td
)
1288 /* XXXRW: Temporary debugging. */
1289 KASSERT(so
->so_proto
->pr_usrreqs
->pru_sosend
!= sosend
,
1290 ("sosend: protocol calls sosend"));
1292 return (so
->so_proto
->pr_usrreqs
->pru_sosend(so
, addr
, uio
, top
,
1293 control
, flags
, td
));
1297 * The part of soreceive() that implements reading non-inline out-of-band
1298 * data from a socket. For more complete comments, see soreceive(), from
1299 * which this code originated.
1301 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1302 * unable to return an mbuf chain to the caller.
1305 soreceive_rcvoob(struct socket
*so
, struct uio
*uio
, int flags
)
1307 struct protosw
*pr
= so
->so_proto
;
1311 KASSERT(flags
& MSG_OOB
, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1313 m
= m_get(M_WAIT
, MT_DATA
);
1314 error
= (*pr
->pr_usrreqs
->pru_rcvoob
)(so
, m
, flags
& MSG_PEEK
);
1318 #ifdef ZERO_COPY_SOCKETS
1319 if (so_zero_copy_receive
) {
1322 if ((m
->m_flags
& M_EXT
)
1323 && (m
->m_ext
.ext_type
== EXT_DISPOSABLE
))
1328 error
= uiomoveco(mtod(m
, void *),
1329 min(uio
->uio_resid
, m
->m_len
),
1332 #endif /* ZERO_COPY_SOCKETS */
1333 error
= uiomove(mtod(m
, void *),
1334 (int) min(uio
->uio_resid
, m
->m_len
), uio
);
1336 } while (uio
->uio_resid
&& error
== 0 && m
);
1344 * Following replacement or removal of the first mbuf on the first mbuf chain
1345 * of a socket buffer, push necessary state changes back into the socket
1346 * buffer so that other consumers see the values consistently. 'nextrecord'
1347 * is the callers locally stored value of the original value of
1348 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1349 * NOTE: 'nextrecord' may be NULL.
1351 static __inline
void
1352 sockbuf_pushsync(struct sockbuf
*sb
, struct mbuf
*nextrecord
)
1355 SOCKBUF_LOCK_ASSERT(sb
);
1357 * First, update for the new value of nextrecord. If necessary, make
1358 * it the first record.
1360 if (sb
->sb_mb
!= NULL
)
1361 sb
->sb_mb
->m_nextpkt
= nextrecord
;
1363 sb
->sb_mb
= nextrecord
;
1366 * Now update any dependent socket buffer fields to reflect the new
1367 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
1368 * addition of a second clause that takes care of the case where
1369 * sb_mb has been updated, but remains the last record.
1371 if (sb
->sb_mb
== NULL
) {
1372 sb
->sb_mbtail
= NULL
;
1373 sb
->sb_lastrecord
= NULL
;
1374 } else if (sb
->sb_mb
->m_nextpkt
== NULL
)
1375 sb
->sb_lastrecord
= sb
->sb_mb
;
1380 * Implement receive operations on a socket. We depend on the way that
1381 * records are added to the sockbuf by sbappend. In particular, each record
1382 * (mbufs linked through m_next) must begin with an address if the protocol
1383 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1384 * data, and then zero or more mbufs of data. In order to allow parallelism
1385 * between network receive and copying to user space, as well as avoid
1386 * sleeping with a mutex held, we release the socket buffer mutex during the
1387 * user space copy. Although the sockbuf is locked, new data may still be
1388 * appended, and thus we must maintain consistency of the sockbuf during that
1391 * The caller may receive the data as a single mbuf chain by supplying an
1392 * mbuf **mp0 for use in returning the chain. The uio is then used only for
1393 * the count in uio_resid.
1396 soreceive_generic(struct socket
*so
, struct sockaddr
**psa
, struct uio
*uio
,
1397 struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
1399 struct mbuf
*m
, **mp
;
1400 int flags
, len
, error
, offset
;
1401 struct protosw
*pr
= so
->so_proto
;
1402 struct mbuf
*nextrecord
;
1404 int orig_resid
= uio
->uio_resid
;
1409 if (controlp
!= NULL
)
1412 flags
= *flagsp
&~ MSG_EOR
;
1415 if (flags
& MSG_OOB
)
1416 return (soreceive_rcvoob(so
, uio
, flags
));
1419 if ((pr
->pr_flags
& PR_WANTRCVD
) && (so
->so_state
& SS_ISCONFIRMING
)
1421 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, 0);
1423 error
= sblock(&so
->so_rcv
, SBLOCKWAIT(flags
));
1428 SOCKBUF_LOCK(&so
->so_rcv
);
1429 m
= so
->so_rcv
.sb_mb
;
1431 * If we have less data than requested, block awaiting more (subject
1432 * to any timeout) if:
1433 * 1. the current count is less than the low water mark, or
1434 * 2. MSG_WAITALL is set, and it is possible to do the entire
1435 * receive operation at once if we block (resid <= hiwat).
1436 * 3. MSG_DONTWAIT is not set
1437 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1438 * we have to do the receive in sections, and thus risk returning a
1439 * short count if a timeout or signal occurs after we start.
1441 if (m
== NULL
|| (((flags
& MSG_DONTWAIT
) == 0 &&
1442 so
->so_rcv
.sb_cc
< uio
->uio_resid
) &&
1443 (so
->so_rcv
.sb_cc
< so
->so_rcv
.sb_lowat
||
1444 ((flags
& MSG_WAITALL
) && uio
->uio_resid
<= so
->so_rcv
.sb_hiwat
)) &&
1445 m
->m_nextpkt
== NULL
&& (pr
->pr_flags
& PR_ATOMIC
) == 0)) {
1446 KASSERT(m
!= NULL
|| !so
->so_rcv
.sb_cc
,
1447 ("receive: m == %p so->so_rcv.sb_cc == %u",
1448 m
, so
->so_rcv
.sb_cc
));
1452 error
= so
->so_error
;
1453 if ((flags
& MSG_PEEK
) == 0)
1455 SOCKBUF_UNLOCK(&so
->so_rcv
);
1458 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1459 if (so
->so_rcv
.sb_state
& SBS_CANTRCVMORE
) {
1461 SOCKBUF_UNLOCK(&so
->so_rcv
);
1466 for (; m
!= NULL
; m
= m
->m_next
)
1467 if (m
->m_type
== MT_OOBDATA
|| (m
->m_flags
& M_EOR
)) {
1468 m
= so
->so_rcv
.sb_mb
;
1471 if ((so
->so_state
& (SS_ISCONNECTED
|SS_ISCONNECTING
)) == 0 &&
1472 (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)) {
1473 SOCKBUF_UNLOCK(&so
->so_rcv
);
1477 if (uio
->uio_resid
== 0) {
1478 SOCKBUF_UNLOCK(&so
->so_rcv
);
1481 if ((so
->so_state
& SS_NBIO
) ||
1482 (flags
& (MSG_DONTWAIT
|MSG_NBIO
))) {
1483 SOCKBUF_UNLOCK(&so
->so_rcv
);
1484 error
= EWOULDBLOCK
;
1487 SBLASTRECORDCHK(&so
->so_rcv
);
1488 SBLASTMBUFCHK(&so
->so_rcv
);
1489 error
= sbwait(&so
->so_rcv
);
1490 SOCKBUF_UNLOCK(&so
->so_rcv
);
1497 * From this point onward, we maintain 'nextrecord' as a cache of the
1498 * pointer to the next record in the socket buffer. We must keep the
1499 * various socket buffer pointers and local stack versions of the
1500 * pointers in sync, pushing out modifications before dropping the
1501 * socket buffer mutex, and re-reading them when picking it up.
1503 * Otherwise, we will race with the network stack appending new data
1504 * or records onto the socket buffer by using inconsistent/stale
1505 * versions of the field, possibly resulting in socket buffer
1508 * By holding the high-level sblock(), we prevent simultaneous
1509 * readers from pulling off the front of the socket buffer.
1511 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1513 uio
->uio_td
->td_ru
.ru_msgrcv
++;
1514 KASSERT(m
== so
->so_rcv
.sb_mb
, ("soreceive: m != so->so_rcv.sb_mb"));
1515 SBLASTRECORDCHK(&so
->so_rcv
);
1516 SBLASTMBUFCHK(&so
->so_rcv
);
1517 nextrecord
= m
->m_nextpkt
;
1518 if (pr
->pr_flags
& PR_ADDR
) {
1519 KASSERT(m
->m_type
== MT_SONAME
,
1520 ("m->m_type == %d", m
->m_type
));
1523 *psa
= sodupsockaddr(mtod(m
, struct sockaddr
*),
1525 if (flags
& MSG_PEEK
) {
1528 sbfree(&so
->so_rcv
, m
);
1529 so
->so_rcv
.sb_mb
= m_free(m
);
1530 m
= so
->so_rcv
.sb_mb
;
1531 sockbuf_pushsync(&so
->so_rcv
, nextrecord
);
1536 * Process one or more MT_CONTROL mbufs present before any data mbufs
1537 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1538 * just copy the data; if !MSG_PEEK, we call into the protocol to
1539 * perform externalization (or freeing if controlp == NULL).
1541 if (m
!= NULL
&& m
->m_type
== MT_CONTROL
) {
1542 struct mbuf
*cm
= NULL
, *cmn
;
1543 struct mbuf
**cme
= &cm
;
1546 if (flags
& MSG_PEEK
) {
1547 if (controlp
!= NULL
) {
1548 *controlp
= m_copy(m
, 0, m
->m_len
);
1549 controlp
= &(*controlp
)->m_next
;
1553 sbfree(&so
->so_rcv
, m
);
1554 so
->so_rcv
.sb_mb
= m
->m_next
;
1557 cme
= &(*cme
)->m_next
;
1558 m
= so
->so_rcv
.sb_mb
;
1560 } while (m
!= NULL
&& m
->m_type
== MT_CONTROL
);
1561 if ((flags
& MSG_PEEK
) == 0)
1562 sockbuf_pushsync(&so
->so_rcv
, nextrecord
);
1563 while (cm
!= NULL
) {
1566 if (pr
->pr_domain
->dom_externalize
!= NULL
) {
1567 SOCKBUF_UNLOCK(&so
->so_rcv
);
1568 error
= (*pr
->pr_domain
->dom_externalize
)
1570 SOCKBUF_LOCK(&so
->so_rcv
);
1571 } else if (controlp
!= NULL
)
1575 if (controlp
!= NULL
) {
1577 while (*controlp
!= NULL
)
1578 controlp
= &(*controlp
)->m_next
;
1583 nextrecord
= so
->so_rcv
.sb_mb
->m_nextpkt
;
1585 nextrecord
= so
->so_rcv
.sb_mb
;
1589 if ((flags
& MSG_PEEK
) == 0) {
1590 KASSERT(m
->m_nextpkt
== nextrecord
,
1591 ("soreceive: post-control, nextrecord !sync"));
1592 if (nextrecord
== NULL
) {
1593 KASSERT(so
->so_rcv
.sb_mb
== m
,
1594 ("soreceive: post-control, sb_mb!=m"));
1595 KASSERT(so
->so_rcv
.sb_lastrecord
== m
,
1596 ("soreceive: post-control, lastrecord!=m"));
1600 if (type
== MT_OOBDATA
)
1603 if ((flags
& MSG_PEEK
) == 0) {
1604 KASSERT(so
->so_rcv
.sb_mb
== nextrecord
,
1605 ("soreceive: sb_mb != nextrecord"));
1606 if (so
->so_rcv
.sb_mb
== NULL
) {
1607 KASSERT(so
->so_rcv
.sb_lastrecord
== NULL
,
1608 ("soreceive: sb_lastercord != NULL"));
1612 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1613 SBLASTRECORDCHK(&so
->so_rcv
);
1614 SBLASTMBUFCHK(&so
->so_rcv
);
1617 * Now continue to read any data mbufs off of the head of the socket
1618 * buffer until the read request is satisfied. Note that 'type' is
1619 * used to store the type of any mbuf reads that have happened so far
1620 * such that soreceive() can stop reading if the type changes, which
1621 * causes soreceive() to return only one of regular data and inline
1622 * out-of-band data in a single socket receive operation.
1626 while (m
!= NULL
&& uio
->uio_resid
> 0 && error
== 0) {
1628 * If the type of mbuf has changed since the last mbuf
1629 * examined ('type'), end the receive operation.
1631 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1632 if (m
->m_type
== MT_OOBDATA
) {
1633 if (type
!= MT_OOBDATA
)
1635 } else if (type
== MT_OOBDATA
)
1638 KASSERT(m
->m_type
== MT_DATA
,
1639 ("m->m_type == %d", m
->m_type
));
1640 so
->so_rcv
.sb_state
&= ~SBS_RCVATMARK
;
1641 len
= uio
->uio_resid
;
1642 if (so
->so_oobmark
&& len
> so
->so_oobmark
- offset
)
1643 len
= so
->so_oobmark
- offset
;
1644 if (len
> m
->m_len
- moff
)
1645 len
= m
->m_len
- moff
;
1647 * If mp is set, just pass back the mbufs. Otherwise copy
1648 * them out via the uio, then free. Sockbuf must be
1649 * consistent here (points to current mbuf, it points to next
1650 * record) when we drop priority; we must note any additions
1651 * to the sockbuf when we block interrupts again.
1654 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1655 SBLASTRECORDCHK(&so
->so_rcv
);
1656 SBLASTMBUFCHK(&so
->so_rcv
);
1657 SOCKBUF_UNLOCK(&so
->so_rcv
);
1658 #ifdef ZERO_COPY_SOCKETS
1659 if (so_zero_copy_receive
) {
1662 if ((m
->m_flags
& M_EXT
)
1663 && (m
->m_ext
.ext_type
== EXT_DISPOSABLE
))
1668 error
= uiomoveco(mtod(m
, char *) + moff
,
1672 #endif /* ZERO_COPY_SOCKETS */
1673 error
= uiomove(mtod(m
, char *) + moff
, (int)len
, uio
);
1674 SOCKBUF_LOCK(&so
->so_rcv
);
1677 * The MT_SONAME mbuf has already been removed
1678 * from the record, so it is necessary to
1679 * remove the data mbufs, if any, to preserve
1680 * the invariant in the case of PR_ADDR that
1681 * requires MT_SONAME mbufs at the head of
1684 if (m
&& pr
->pr_flags
& PR_ATOMIC
&&
1685 ((flags
& MSG_PEEK
) == 0))
1686 (void)sbdroprecord_locked(&so
->so_rcv
);
1687 SOCKBUF_UNLOCK(&so
->so_rcv
);
1691 uio
->uio_resid
-= len
;
1692 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1693 if (len
== m
->m_len
- moff
) {
1694 if (m
->m_flags
& M_EOR
)
1696 if (flags
& MSG_PEEK
) {
1700 nextrecord
= m
->m_nextpkt
;
1701 sbfree(&so
->so_rcv
, m
);
1705 so
->so_rcv
.sb_mb
= m
= m
->m_next
;
1708 so
->so_rcv
.sb_mb
= m_free(m
);
1709 m
= so
->so_rcv
.sb_mb
;
1711 sockbuf_pushsync(&so
->so_rcv
, nextrecord
);
1712 SBLASTRECORDCHK(&so
->so_rcv
);
1713 SBLASTMBUFCHK(&so
->so_rcv
);
1716 if (flags
& MSG_PEEK
)
1722 if (flags
& MSG_DONTWAIT
)
1723 copy_flag
= M_DONTWAIT
;
1726 if (copy_flag
== M_WAIT
)
1727 SOCKBUF_UNLOCK(&so
->so_rcv
);
1728 *mp
= m_copym(m
, 0, len
, copy_flag
);
1729 if (copy_flag
== M_WAIT
)
1730 SOCKBUF_LOCK(&so
->so_rcv
);
1733 * m_copym() couldn't
1734 * allocate an mbuf. Adjust
1735 * uio_resid back (it was
1736 * adjusted down by len
1737 * bytes, which we didn't end
1738 * up "copying" over).
1740 uio
->uio_resid
+= len
;
1746 so
->so_rcv
.sb_cc
-= len
;
1749 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1750 if (so
->so_oobmark
) {
1751 if ((flags
& MSG_PEEK
) == 0) {
1752 so
->so_oobmark
-= len
;
1753 if (so
->so_oobmark
== 0) {
1754 so
->so_rcv
.sb_state
|= SBS_RCVATMARK
;
1759 if (offset
== so
->so_oobmark
)
1763 if (flags
& MSG_EOR
)
1766 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1767 * must not quit until "uio->uio_resid == 0" or an error
1768 * termination. If a signal/timeout occurs, return with a
1769 * short count but without error. Keep sockbuf locked
1770 * against other readers.
1772 while (flags
& MSG_WAITALL
&& m
== NULL
&& uio
->uio_resid
> 0 &&
1773 !sosendallatonce(so
) && nextrecord
== NULL
) {
1774 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1775 if (so
->so_error
|| so
->so_rcv
.sb_state
& SBS_CANTRCVMORE
)
1778 * Notify the protocol that some data has been
1779 * drained before blocking.
1781 if (pr
->pr_flags
& PR_WANTRCVD
) {
1782 SOCKBUF_UNLOCK(&so
->so_rcv
);
1783 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
1784 SOCKBUF_LOCK(&so
->so_rcv
);
1786 SBLASTRECORDCHK(&so
->so_rcv
);
1787 SBLASTMBUFCHK(&so
->so_rcv
);
1788 error
= sbwait(&so
->so_rcv
);
1790 SOCKBUF_UNLOCK(&so
->so_rcv
);
1793 m
= so
->so_rcv
.sb_mb
;
1795 nextrecord
= m
->m_nextpkt
;
1799 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1800 if (m
!= NULL
&& pr
->pr_flags
& PR_ATOMIC
) {
1802 if ((flags
& MSG_PEEK
) == 0)
1803 (void) sbdroprecord_locked(&so
->so_rcv
);
1805 if ((flags
& MSG_PEEK
) == 0) {
1808 * First part is an inline SB_EMPTY_FIXUP(). Second
1809 * part makes sure sb_lastrecord is up-to-date if
1810 * there is still data in the socket buffer.
1812 so
->so_rcv
.sb_mb
= nextrecord
;
1813 if (so
->so_rcv
.sb_mb
== NULL
) {
1814 so
->so_rcv
.sb_mbtail
= NULL
;
1815 so
->so_rcv
.sb_lastrecord
= NULL
;
1816 } else if (nextrecord
->m_nextpkt
== NULL
)
1817 so
->so_rcv
.sb_lastrecord
= nextrecord
;
1819 SBLASTRECORDCHK(&so
->so_rcv
);
1820 SBLASTMBUFCHK(&so
->so_rcv
);
1822 * If soreceive() is being done from the socket callback,
1823 * then don't need to generate ACK to peer to update window,
1824 * since ACK will be generated on return to TCP.
1826 if (!(flags
& MSG_SOCALLBCK
) &&
1827 (pr
->pr_flags
& PR_WANTRCVD
)) {
1828 SOCKBUF_UNLOCK(&so
->so_rcv
);
1829 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
1830 SOCKBUF_LOCK(&so
->so_rcv
);
1833 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1834 if (orig_resid
== uio
->uio_resid
&& orig_resid
&&
1835 (flags
& MSG_EOR
) == 0 && (so
->so_rcv
.sb_state
& SBS_CANTRCVMORE
) == 0) {
1836 SOCKBUF_UNLOCK(&so
->so_rcv
);
1839 SOCKBUF_UNLOCK(&so
->so_rcv
);
1844 sbunlock(&so
->so_rcv
);
1849 * Optimized version of soreceive() for simple datagram cases from userspace;
1850 * this is experimental, and while heavily tested, may contain errors.
1853 soreceive_dgram(struct socket
*so
, struct sockaddr
**psa
, struct uio
*uio
,
1854 struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
1856 struct mbuf
*m
, *m2
;
1857 int flags
, len
, error
, offset
;
1858 struct protosw
*pr
= so
->so_proto
;
1859 struct mbuf
*nextrecord
;
1863 if (controlp
!= NULL
)
1866 flags
= *flagsp
&~ MSG_EOR
;
1871 * For any complicated cases, fall back to the full
1872 * soreceive_generic().
1874 if (mp0
!= NULL
|| (flags
& MSG_PEEK
) || (flags
& MSG_OOB
))
1875 return (soreceive_generic(so
, psa
, uio
, mp0
, controlp
,
1879 * Enforce restrictions on use.
1881 KASSERT((pr
->pr_flags
& PR_WANTRCVD
) == 0,
1882 ("soreceive_dgram: wantrcvd"));
1883 KASSERT(pr
->pr_flags
& PR_ATOMIC
, ("soreceive_dgram: !atomic"));
1884 KASSERT((so
->so_rcv
.sb_state
& SBS_RCVATMARK
) == 0,
1885 ("soreceive_dgram: SBS_RCVATMARK"));
1886 KASSERT((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) == 0,
1887 ("soreceive_dgram: P_CONNREQUIRED"));
1890 SOCKBUF_LOCK(&so
->so_rcv
);
1891 m
= so
->so_rcv
.sb_mb
;
1894 * If we have less data than requested, block awaiting more (subject
1895 * to any timeout) if:
1896 * 1. the current count is less than the low water mark, or
1897 * 2. MSG_WAITALL is set, and it is possible to do the entire
1898 * receive operation at once if we block (resid <= hiwat).
1899 * 3. MSG_DONTWAIT is not set
1900 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1901 * we have to do the receive in sections, and thus risk returning a
1902 * short count if a timeout or signal occurs after we start.
1905 KASSERT(m
!= NULL
|| !so
->so_rcv
.sb_cc
,
1906 ("receive: m == %p so->so_rcv.sb_cc == %u",
1907 m
, so
->so_rcv
.sb_cc
));
1911 error
= so
->so_error
;
1913 SOCKBUF_UNLOCK(&so
->so_rcv
);
1916 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1917 if (so
->so_rcv
.sb_state
& SBS_CANTRCVMORE
) {
1919 SOCKBUF_UNLOCK(&so
->so_rcv
);
1924 if (uio
->uio_resid
== 0) {
1925 SOCKBUF_UNLOCK(&so
->so_rcv
);
1928 if ((so
->so_state
& SS_NBIO
) ||
1929 (flags
& (MSG_DONTWAIT
|MSG_NBIO
))) {
1930 SOCKBUF_UNLOCK(&so
->so_rcv
);
1931 error
= EWOULDBLOCK
;
1934 SBLASTRECORDCHK(&so
->so_rcv
);
1935 SBLASTMBUFCHK(&so
->so_rcv
);
1937 error
= sbwait(&so
->so_rcv
);
1938 SOCKBUF_UNLOCK(&so
->so_rcv
);
1945 * From this point onward, we maintain 'nextrecord' as a cache of the
1946 * pointer to the next record in the socket buffer. We must keep the
1947 * various socket buffer pointers and local stack versions of the
1948 * pointers in sync, pushing out modifications before dropping the
1949 * socket buffer mutex, and re-reading them when picking it up.
1951 * Otherwise, we will race with the network stack appending new data
1952 * or records onto the socket buffer by using inconsistent/stale
1953 * versions of the field, possibly resulting in socket buffer
1956 * By holding the high-level sblock(), we prevent simultaneous
1957 * readers from pulling off the front of the socket buffer.
1959 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1961 uio
->uio_td
->td_ru
.ru_msgrcv
++;
1962 KASSERT(m
== so
->so_rcv
.sb_mb
, ("soreceive: m != so->so_rcv.sb_mb"));
1963 SBLASTRECORDCHK(&so
->so_rcv
);
1964 SBLASTMBUFCHK(&so
->so_rcv
);
1965 nextrecord
= m
->m_nextpkt
;
1966 if (pr
->pr_flags
& PR_ADDR
) {
1967 KASSERT(m
->m_type
== MT_SONAME
,
1968 ("m->m_type == %d", m
->m_type
));
1970 *psa
= sodupsockaddr(mtod(m
, struct sockaddr
*),
1972 sbfree(&so
->so_rcv
, m
);
1973 so
->so_rcv
.sb_mb
= m_free(m
);
1974 m
= so
->so_rcv
.sb_mb
;
1975 sockbuf_pushsync(&so
->so_rcv
, nextrecord
);
1978 /* XXXRW: Can this happen? */
1979 SOCKBUF_UNLOCK(&so
->so_rcv
);
1982 KASSERT(m
->m_nextpkt
== nextrecord
,
1983 ("soreceive: post-control, nextrecord !sync"));
1984 if (nextrecord
== NULL
) {
1985 KASSERT(so
->so_rcv
.sb_mb
== m
,
1986 ("soreceive: post-control, sb_mb!=m"));
1987 KASSERT(so
->so_rcv
.sb_lastrecord
== m
,
1988 ("soreceive: post-control, lastrecord!=m"));
1991 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
1992 SBLASTRECORDCHK(&so
->so_rcv
);
1993 SBLASTMBUFCHK(&so
->so_rcv
);
1994 KASSERT(m
== so
->so_rcv
.sb_mb
, ("soreceive_dgram: m not sb_mb"));
1995 KASSERT(so
->so_rcv
.sb_mb
->m_nextpkt
== nextrecord
,
1996 ("soreceive_dgram: m_nextpkt != nextrecord"));
1999 * Pull 'm' and its chain off the front of the packet queue.
2001 so
->so_rcv
.sb_mb
= NULL
;
2002 sockbuf_pushsync(&so
->so_rcv
, nextrecord
);
2005 * Walk 'm's chain and free that many bytes from the socket buffer.
2007 for (m2
= m
; m2
!= NULL
; m2
= m2
->m_next
)
2008 sbfree(&so
->so_rcv
, m2
);
2011 * Do a few last checks before we let go of the lock.
2013 SBLASTRECORDCHK(&so
->so_rcv
);
2014 SBLASTMBUFCHK(&so
->so_rcv
);
2015 SOCKBUF_UNLOCK(&so
->so_rcv
);
2018 * Packet to copyout() is now in 'm' and it is disconnected from the
2021 * Process one or more MT_CONTROL mbufs present before any data mbufs
2022 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2023 * just copy the data; if !MSG_PEEK, we call into the protocol to
2024 * perform externalization (or freeing if controlp == NULL).
2026 if (m
->m_type
== MT_CONTROL
) {
2027 struct mbuf
*cm
= NULL
, *cmn
;
2028 struct mbuf
**cme
= &cm
;
2034 cme
= &(*cme
)->m_next
;
2036 } while (m
!= NULL
&& m
->m_type
== MT_CONTROL
);
2037 while (cm
!= NULL
) {
2040 if (pr
->pr_domain
->dom_externalize
!= NULL
) {
2041 error
= (*pr
->pr_domain
->dom_externalize
)
2043 } else if (controlp
!= NULL
)
2047 if (controlp
!= NULL
) {
2048 while (*controlp
!= NULL
)
2049 controlp
= &(*controlp
)->m_next
;
2055 KASSERT(m
->m_type
== MT_DATA
, ("soreceive_dgram: !data"));
2058 while (m
!= NULL
&& uio
->uio_resid
> 0) {
2059 len
= uio
->uio_resid
;
2062 error
= uiomove(mtod(m
, char *), (int)len
, uio
);
2069 if (m
!= NULL
&& pr
->pr_flags
& PR_ATOMIC
)
2078 soreceive(struct socket
*so
, struct sockaddr
**psa
, struct uio
*uio
,
2079 struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
2082 /* XXXRW: Temporary debugging. */
2083 KASSERT(so
->so_proto
->pr_usrreqs
->pru_soreceive
!= soreceive
,
2084 ("soreceive: protocol calls soreceive"));
2086 return (so
->so_proto
->pr_usrreqs
->pru_soreceive(so
, psa
, uio
, mp0
,
2091 soshutdown(struct socket
*so
, int how
)
2093 struct protosw
*pr
= so
->so_proto
;
2095 if (!(how
== SHUT_RD
|| how
== SHUT_WR
|| how
== SHUT_RDWR
))
2097 if (pr
->pr_usrreqs
->pru_flush
!= NULL
) {
2098 (*pr
->pr_usrreqs
->pru_flush
)(so
, how
);
2103 return ((*pr
->pr_usrreqs
->pru_shutdown
)(so
));
2108 sorflush(struct socket
*so
)
2110 struct sockbuf
*sb
= &so
->so_rcv
;
2111 struct protosw
*pr
= so
->so_proto
;
2115 * In order to avoid calling dom_dispose with the socket buffer mutex
2116 * held, and in order to generally avoid holding the lock for a long
2117 * time, we make a copy of the socket buffer and clear the original
2118 * (except locks, state). The new socket buffer copy won't have
2119 * initialized locks so we can only call routines that won't use or
2120 * assert those locks.
2122 * Dislodge threads currently blocked in receive and wait to acquire
2123 * a lock against other simultaneous readers before clearing the
2124 * socket buffer. Don't let our acquire be interrupted by a signal
2125 * despite any existing socket disposition on interruptable waiting.
2128 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
);
2131 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2132 * and mutex data unchanged.
2135 bzero(&asb
, offsetof(struct sockbuf
, sb_startzero
));
2136 bcopy(&sb
->sb_startzero
, &asb
.sb_startzero
,
2137 sizeof(*sb
) - offsetof(struct sockbuf
, sb_startzero
));
2138 bzero(&sb
->sb_startzero
,
2139 sizeof(*sb
) - offsetof(struct sockbuf
, sb_startzero
));
2144 * Dispose of special rights and flush the socket buffer. Don't call
2145 * any unsafe routines (that rely on locks being initialized) on asb.
2147 if (pr
->pr_flags
& PR_RIGHTS
&& pr
->pr_domain
->dom_dispose
!= NULL
)
2148 (*pr
->pr_domain
->dom_dispose
)(asb
.sb_mb
);
2149 sbrelease_internal(&asb
, so
);
2153 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2154 * additional variant to handle the case where the option value needs to be
2155 * some kind of integer, but not a specific size. In addition to their use
2156 * here, these functions are also called by the protocol-level pr_ctloutput()
2160 sooptcopyin(struct sockopt
*sopt
, void *buf
, size_t len
, size_t minlen
)
2165 * If the user gives us more than we wanted, we ignore it, but if we
2166 * don't get the minimum length the caller wants, we return EINVAL.
2167 * On success, sopt->sopt_valsize is set to however much we actually
2170 if ((valsize
= sopt
->sopt_valsize
) < minlen
)
2173 sopt
->sopt_valsize
= valsize
= len
;
2175 if (sopt
->sopt_td
!= NULL
)
2176 return (copyin(sopt
->sopt_val
, buf
, valsize
));
2178 bcopy(sopt
->sopt_val
, buf
, valsize
);
2183 * Kernel version of setsockopt(2).
2185 * XXX: optlen is size_t, not socklen_t
2188 so_setsockopt(struct socket
*so
, int level
, int optname
, void *optval
,
2191 struct sockopt sopt
;
2193 sopt
.sopt_level
= level
;
2194 sopt
.sopt_name
= optname
;
2195 sopt
.sopt_dir
= SOPT_SET
;
2196 sopt
.sopt_val
= optval
;
2197 sopt
.sopt_valsize
= optlen
;
2198 sopt
.sopt_td
= NULL
;
2199 return (sosetopt(so
, &sopt
));
2203 sosetopt(struct socket
*so
, struct sockopt
*sopt
)
2214 if (sopt
->sopt_level
!= SOL_SOCKET
) {
2215 if (so
->so_proto
&& so
->so_proto
->pr_ctloutput
)
2216 return ((*so
->so_proto
->pr_ctloutput
)
2218 error
= ENOPROTOOPT
;
2220 switch (sopt
->sopt_name
) {
2222 case SO_ACCEPTFILTER
:
2223 error
= do_setopt_accept_filter(so
, sopt
);
2229 error
= sooptcopyin(sopt
, &l
, sizeof l
, sizeof l
);
2234 so
->so_linger
= l
.l_linger
;
2236 so
->so_options
|= SO_LINGER
;
2238 so
->so_options
&= ~SO_LINGER
;
2245 case SO_USELOOPBACK
:
2253 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
2259 so
->so_options
|= sopt
->sopt_name
;
2261 so
->so_options
&= ~sopt
->sopt_name
;
2266 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
2268 if (optval
< 1 || optval
> rt_numfibs
) {
2272 if ((so
->so_proto
->pr_domain
->dom_family
== PF_INET
) ||
2273 (so
->so_proto
->pr_domain
->dom_family
== PF_ROUTE
)) {
2274 so
->so_fibnum
= optval
;
2283 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
2289 * Values < 1 make no sense for any of these options,
2297 switch (sopt
->sopt_name
) {
2300 if (sbreserve(sopt
->sopt_name
== SO_SNDBUF
?
2301 &so
->so_snd
: &so
->so_rcv
, (u_long
)optval
,
2302 so
, curthread
) == 0) {
2306 (sopt
->sopt_name
== SO_SNDBUF
? &so
->so_snd
:
2307 &so
->so_rcv
)->sb_flags
&= ~SB_AUTOSIZE
;
2311 * Make sure the low-water is never greater than the
2315 SOCKBUF_LOCK(&so
->so_snd
);
2316 so
->so_snd
.sb_lowat
=
2317 (optval
> so
->so_snd
.sb_hiwat
) ?
2318 so
->so_snd
.sb_hiwat
: optval
;
2319 SOCKBUF_UNLOCK(&so
->so_snd
);
2322 SOCKBUF_LOCK(&so
->so_rcv
);
2323 so
->so_rcv
.sb_lowat
=
2324 (optval
> so
->so_rcv
.sb_hiwat
) ?
2325 so
->so_rcv
.sb_hiwat
: optval
;
2326 SOCKBUF_UNLOCK(&so
->so_rcv
);
2334 if (curthread
->td_proc
->p_sysent
== &ia32_freebsd_sysvec
) {
2335 struct timeval32 tv32
;
2337 error
= sooptcopyin(sopt
, &tv32
, sizeof tv32
,
2339 CP(tv32
, tv
, tv_sec
);
2340 CP(tv32
, tv
, tv_usec
);
2343 error
= sooptcopyin(sopt
, &tv
, sizeof tv
,
2348 /* assert(hz > 0); */
2349 if (tv
.tv_sec
< 0 || tv
.tv_sec
> INT_MAX
/ hz
||
2350 tv
.tv_usec
< 0 || tv
.tv_usec
>= 1000000) {
2354 /* assert(tick > 0); */
2355 /* assert(ULONG_MAX - INT_MAX >= 1000000); */
2356 val
= (u_long
)(tv
.tv_sec
* hz
) + tv
.tv_usec
/ tick
;
2357 if (val
> INT_MAX
) {
2361 if (val
== 0 && tv
.tv_usec
!= 0)
2364 switch (sopt
->sopt_name
) {
2366 so
->so_snd
.sb_timeo
= val
;
2369 so
->so_rcv
.sb_timeo
= val
;
2376 error
= sooptcopyin(sopt
, &extmac
, sizeof extmac
,
2380 error
= mac_setsockopt_label(sopt
->sopt_td
->td_ucred
,
2388 error
= ENOPROTOOPT
;
2391 if (error
== 0 && so
->so_proto
!= NULL
&&
2392 so
->so_proto
->pr_ctloutput
!= NULL
) {
2393 (void) ((*so
->so_proto
->pr_ctloutput
)
2402 * Helper routine for getsockopt.
2405 sooptcopyout(struct sockopt
*sopt
, const void *buf
, size_t len
)
2413 * Documented get behavior is that we always return a value, possibly
2414 * truncated to fit in the user's buffer. Traditional behavior is
2415 * that we always tell the user precisely how much we copied, rather
2416 * than something useful like the total amount we had available for
2417 * her. Note that this interface is not idempotent; the entire
2418 * answer must generated ahead of time.
2420 valsize
= min(len
, sopt
->sopt_valsize
);
2421 sopt
->sopt_valsize
= valsize
;
2422 if (sopt
->sopt_val
!= NULL
) {
2423 if (sopt
->sopt_td
!= NULL
)
2424 error
= copyout(buf
, sopt
->sopt_val
, valsize
);
2426 bcopy(buf
, sopt
->sopt_val
, valsize
);
2432 sogetopt(struct socket
*so
, struct sockopt
*sopt
)
2442 if (sopt
->sopt_level
!= SOL_SOCKET
) {
2443 if (so
->so_proto
&& so
->so_proto
->pr_ctloutput
) {
2444 return ((*so
->so_proto
->pr_ctloutput
)
2447 return (ENOPROTOOPT
);
2449 switch (sopt
->sopt_name
) {
2451 case SO_ACCEPTFILTER
:
2452 error
= do_getopt_accept_filter(so
, sopt
);
2457 l
.l_onoff
= so
->so_options
& SO_LINGER
;
2458 l
.l_linger
= so
->so_linger
;
2460 error
= sooptcopyout(sopt
, &l
, sizeof l
);
2463 case SO_USELOOPBACK
:
2475 optval
= so
->so_options
& sopt
->sopt_name
;
2477 error
= sooptcopyout(sopt
, &optval
, sizeof optval
);
2481 optval
= so
->so_type
;
2486 optval
= so
->so_error
;
2492 optval
= so
->so_snd
.sb_hiwat
;
2496 optval
= so
->so_rcv
.sb_hiwat
;
2500 optval
= so
->so_snd
.sb_lowat
;
2504 optval
= so
->so_rcv
.sb_lowat
;
2509 optval
= (sopt
->sopt_name
== SO_SNDTIMEO
?
2510 so
->so_snd
.sb_timeo
: so
->so_rcv
.sb_timeo
);
2512 tv
.tv_sec
= optval
/ hz
;
2513 tv
.tv_usec
= (optval
% hz
) * tick
;
2515 if (curthread
->td_proc
->p_sysent
== &ia32_freebsd_sysvec
) {
2516 struct timeval32 tv32
;
2518 CP(tv
, tv32
, tv_sec
);
2519 CP(tv
, tv32
, tv_usec
);
2520 error
= sooptcopyout(sopt
, &tv32
, sizeof tv32
);
2523 error
= sooptcopyout(sopt
, &tv
, sizeof tv
);
2528 error
= sooptcopyin(sopt
, &extmac
, sizeof(extmac
),
2532 error
= mac_getsockopt_label(sopt
->sopt_td
->td_ucred
,
2536 error
= sooptcopyout(sopt
, &extmac
, sizeof extmac
);
2544 error
= sooptcopyin(sopt
, &extmac
, sizeof(extmac
),
2548 error
= mac_getsockopt_peerlabel(
2549 sopt
->sopt_td
->td_ucred
, so
, &extmac
);
2552 error
= sooptcopyout(sopt
, &extmac
, sizeof extmac
);
2558 case SO_LISTENQLIMIT
:
2559 optval
= so
->so_qlimit
;
2563 optval
= so
->so_qlen
;
2566 case SO_LISTENINCQLEN
:
2567 optval
= so
->so_incqlen
;
2571 error
= ENOPROTOOPT
;
2578 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2580 soopt_getm(struct sockopt
*sopt
, struct mbuf
**mp
)
2582 struct mbuf
*m
, *m_prev
;
2583 int sopt_size
= sopt
->sopt_valsize
;
2585 MGET(m
, sopt
->sopt_td
? M_WAIT
: M_DONTWAIT
, MT_DATA
);
2588 if (sopt_size
> MLEN
) {
2589 MCLGET(m
, sopt
->sopt_td
? M_WAIT
: M_DONTWAIT
);
2590 if ((m
->m_flags
& M_EXT
) == 0) {
2594 m
->m_len
= min(MCLBYTES
, sopt_size
);
2596 m
->m_len
= min(MLEN
, sopt_size
);
2598 sopt_size
-= m
->m_len
;
2603 MGET(m
, sopt
->sopt_td
? M_WAIT
: M_DONTWAIT
, MT_DATA
);
2608 if (sopt_size
> MLEN
) {
2609 MCLGET(m
, sopt
->sopt_td
!= NULL
? M_WAIT
:
2611 if ((m
->m_flags
& M_EXT
) == 0) {
2616 m
->m_len
= min(MCLBYTES
, sopt_size
);
2618 m
->m_len
= min(MLEN
, sopt_size
);
2620 sopt_size
-= m
->m_len
;
2627 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2629 soopt_mcopyin(struct sockopt
*sopt
, struct mbuf
*m
)
2631 struct mbuf
*m0
= m
;
2633 if (sopt
->sopt_val
== NULL
)
2635 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
2636 if (sopt
->sopt_td
!= NULL
) {
2639 error
= copyin(sopt
->sopt_val
, mtod(m
, char *),
2646 bcopy(sopt
->sopt_val
, mtod(m
, char *), m
->m_len
);
2647 sopt
->sopt_valsize
-= m
->m_len
;
2648 sopt
->sopt_val
= (char *)sopt
->sopt_val
+ m
->m_len
;
2651 if (m
!= NULL
) /* should be allocated enoughly at ip6_sooptmcopyin() */
2652 panic("ip6_sooptmcopyin");
2656 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2658 soopt_mcopyout(struct sockopt
*sopt
, struct mbuf
*m
)
2660 struct mbuf
*m0
= m
;
2663 if (sopt
->sopt_val
== NULL
)
2665 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
2666 if (sopt
->sopt_td
!= NULL
) {
2669 error
= copyout(mtod(m
, char *), sopt
->sopt_val
,
2676 bcopy(mtod(m
, char *), sopt
->sopt_val
, m
->m_len
);
2677 sopt
->sopt_valsize
-= m
->m_len
;
2678 sopt
->sopt_val
= (char *)sopt
->sopt_val
+ m
->m_len
;
2679 valsize
+= m
->m_len
;
2683 /* enough soopt buffer should be given from user-land */
2687 sopt
->sopt_valsize
= valsize
;
2692 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2693 * out-of-band data, which will then notify socket consumers.
2696 sohasoutofband(struct socket
*so
)
2699 if (so
->so_sigio
!= NULL
)
2700 pgsigio(&so
->so_sigio
, SIGURG
, 0);
2701 selwakeuppri(&so
->so_rcv
.sb_sel
, PSOCK
);
2705 sopoll(struct socket
*so
, int events
, struct ucred
*active_cred
,
2709 /* XXXRW: Temporary debugging. */
2710 KASSERT(so
->so_proto
->pr_usrreqs
->pru_sopoll
!= sopoll
,
2711 ("sopoll: protocol calls sopoll"));
2713 return (so
->so_proto
->pr_usrreqs
->pru_sopoll(so
, events
, active_cred
,
2718 sopoll_generic(struct socket
*so
, int events
, struct ucred
*active_cred
,
2723 SOCKBUF_LOCK(&so
->so_snd
);
2724 SOCKBUF_LOCK(&so
->so_rcv
);
2725 if (events
& (POLLIN
| POLLRDNORM
))
2727 revents
|= events
& (POLLIN
| POLLRDNORM
);
2729 if (events
& POLLINIGNEOF
)
2730 if (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
2731 !TAILQ_EMPTY(&so
->so_comp
) || so
->so_error
)
2732 revents
|= POLLINIGNEOF
;
2734 if (events
& (POLLOUT
| POLLWRNORM
))
2735 if (sowriteable(so
))
2736 revents
|= events
& (POLLOUT
| POLLWRNORM
);
2738 if (events
& (POLLPRI
| POLLRDBAND
))
2739 if (so
->so_oobmark
|| (so
->so_rcv
.sb_state
& SBS_RCVATMARK
))
2740 revents
|= events
& (POLLPRI
| POLLRDBAND
);
2744 (POLLIN
| POLLINIGNEOF
| POLLPRI
| POLLRDNORM
|
2746 selrecord(td
, &so
->so_rcv
.sb_sel
);
2747 so
->so_rcv
.sb_flags
|= SB_SEL
;
2750 if (events
& (POLLOUT
| POLLWRNORM
)) {
2751 selrecord(td
, &so
->so_snd
.sb_sel
);
2752 so
->so_snd
.sb_flags
|= SB_SEL
;
2756 SOCKBUF_UNLOCK(&so
->so_rcv
);
2757 SOCKBUF_UNLOCK(&so
->so_snd
);
2762 soo_kqfilter(struct file
*fp
, struct knote
*kn
)
2764 struct socket
*so
= kn
->kn_fp
->f_data
;
2767 switch (kn
->kn_filter
) {
2769 if (so
->so_options
& SO_ACCEPTCONN
)
2770 kn
->kn_fop
= &solisten_filtops
;
2772 kn
->kn_fop
= &soread_filtops
;
2776 kn
->kn_fop
= &sowrite_filtops
;
2784 knlist_add(&sb
->sb_sel
.si_note
, kn
, 1);
2785 sb
->sb_flags
|= SB_KNOTE
;
2791 * Some routines that return EOPNOTSUPP for entry points that are not
2792 * supported by a protocol. Fill in as needed.
2795 pru_accept_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2802 pru_attach_notsupp(struct socket
*so
, int proto
, struct thread
*td
)
2809 pru_bind_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct thread
*td
)
2816 pru_connect_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct thread
*td
)
2823 pru_connect2_notsupp(struct socket
*so1
, struct socket
*so2
)
2830 pru_control_notsupp(struct socket
*so
, u_long cmd
, caddr_t data
,
2831 struct ifnet
*ifp
, struct thread
*td
)
2838 pru_disconnect_notsupp(struct socket
*so
)
2845 pru_listen_notsupp(struct socket
*so
, int backlog
, struct thread
*td
)
2852 pru_peeraddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2859 pru_rcvd_notsupp(struct socket
*so
, int flags
)
2866 pru_rcvoob_notsupp(struct socket
*so
, struct mbuf
*m
, int flags
)
2873 pru_send_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2874 struct sockaddr
*addr
, struct mbuf
*control
, struct thread
*td
)
2881 * This isn't really a ``null'' operation, but it's the default one and
2882 * doesn't do anything destructive.
2885 pru_sense_null(struct socket
*so
, struct stat
*sb
)
2888 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
2893 pru_shutdown_notsupp(struct socket
*so
)
2900 pru_sockaddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2907 pru_sosend_notsupp(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
2908 struct mbuf
*top
, struct mbuf
*control
, int flags
, struct thread
*td
)
2915 pru_soreceive_notsupp(struct socket
*so
, struct sockaddr
**paddr
,
2916 struct uio
*uio
, struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
2923 pru_sopoll_notsupp(struct socket
*so
, int events
, struct ucred
*cred
,
2931 filt_sordetach(struct knote
*kn
)
2933 struct socket
*so
= kn
->kn_fp
->f_data
;
2935 SOCKBUF_LOCK(&so
->so_rcv
);
2936 knlist_remove(&so
->so_rcv
.sb_sel
.si_note
, kn
, 1);
2937 if (knlist_empty(&so
->so_rcv
.sb_sel
.si_note
))
2938 so
->so_rcv
.sb_flags
&= ~SB_KNOTE
;
2939 SOCKBUF_UNLOCK(&so
->so_rcv
);
2944 filt_soread(struct knote
*kn
, long hint
)
2948 so
= kn
->kn_fp
->f_data
;
2949 SOCKBUF_LOCK_ASSERT(&so
->so_rcv
);
2951 kn
->kn_data
= so
->so_rcv
.sb_cc
- so
->so_rcv
.sb_ctl
;
2952 if (so
->so_rcv
.sb_state
& SBS_CANTRCVMORE
) {
2953 kn
->kn_flags
|= EV_EOF
;
2954 kn
->kn_fflags
= so
->so_error
;
2956 } else if (so
->so_error
) /* temporary udp error */
2958 else if (kn
->kn_sfflags
& NOTE_LOWAT
)
2959 return (kn
->kn_data
>= kn
->kn_sdata
);
2961 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
);
2965 filt_sowdetach(struct knote
*kn
)
2967 struct socket
*so
= kn
->kn_fp
->f_data
;
2969 SOCKBUF_LOCK(&so
->so_snd
);
2970 knlist_remove(&so
->so_snd
.sb_sel
.si_note
, kn
, 1);
2971 if (knlist_empty(&so
->so_snd
.sb_sel
.si_note
))
2972 so
->so_snd
.sb_flags
&= ~SB_KNOTE
;
2973 SOCKBUF_UNLOCK(&so
->so_snd
);
2978 filt_sowrite(struct knote
*kn
, long hint
)
2982 so
= kn
->kn_fp
->f_data
;
2983 SOCKBUF_LOCK_ASSERT(&so
->so_snd
);
2984 kn
->kn_data
= sbspace(&so
->so_snd
);
2985 if (so
->so_snd
.sb_state
& SBS_CANTSENDMORE
) {
2986 kn
->kn_flags
|= EV_EOF
;
2987 kn
->kn_fflags
= so
->so_error
;
2989 } else if (so
->so_error
) /* temporary udp error */
2991 else if (((so
->so_state
& SS_ISCONNECTED
) == 0) &&
2992 (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
))
2994 else if (kn
->kn_sfflags
& NOTE_LOWAT
)
2995 return (kn
->kn_data
>= kn
->kn_sdata
);
2997 return (kn
->kn_data
>= so
->so_snd
.sb_lowat
);
3002 filt_solisten(struct knote
*kn
, long hint
)
3004 struct socket
*so
= kn
->kn_fp
->f_data
;
3006 kn
->kn_data
= so
->so_qlen
;
3007 return (! TAILQ_EMPTY(&so
->so_comp
));
3011 socheckuid(struct socket
*so
, uid_t uid
)
3016 if (so
->so_cred
->cr_uid
!= uid
)
3022 sysctl_somaxconn(SYSCTL_HANDLER_ARGS
)
3028 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
3029 if (error
|| !req
->newptr
)
3032 if (val
< 1 || val
> USHRT_MAX
)
3040 * These functions are used by protocols to notify the socket layer (and its
3041 * consumers) of state changes in the sockets driven by protocol-side events.
3045 * Procedures to manipulate state flags of socket and do appropriate wakeups.
3047 * Normal sequence from the active (originating) side is that
3048 * soisconnecting() is called during processing of connect() call, resulting
3049 * in an eventual call to soisconnected() if/when the connection is
3050 * established. When the connection is torn down soisdisconnecting() is
3051 * called during processing of disconnect() call, and soisdisconnected() is
3052 * called when the connection to the peer is totally severed. The semantics
3053 * of these routines are such that connectionless protocols can call
3054 * soisconnected() and soisdisconnected() only, bypassing the in-progress
3055 * calls when setting up a ``connection'' takes no time.
3057 * From the passive side, a socket is created with two queues of sockets:
3058 * so_incomp for connections in progress and so_comp for connections already
3059 * made and awaiting user acceptance. As a protocol is preparing incoming
3060 * connections, it creates a socket structure queued on so_incomp by calling
3061 * sonewconn(). When the connection is established, soisconnected() is
3062 * called, and transfers the socket structure to so_comp, making it available
3065 * If a socket is closed with sockets on either so_incomp or so_comp, these
3066 * sockets are dropped.
3068 * If higher-level protocols are implemented in the kernel, the wakeups done
3069 * here will sometimes cause software-interrupt process scheduling.
3072 soisconnecting(struct socket
*so
)
3076 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
3077 so
->so_state
|= SS_ISCONNECTING
;
3082 soisconnected(struct socket
*so
)
3084 struct socket
*head
;
3088 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
3089 so
->so_state
|= SS_ISCONNECTED
;
3091 if (head
!= NULL
&& (so
->so_qstate
& SQ_INCOMP
)) {
3092 if ((so
->so_options
& SO_ACCEPTFILTER
) == 0) {
3094 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
3096 so
->so_qstate
&= ~SQ_INCOMP
;
3097 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
3099 so
->so_qstate
|= SQ_COMP
;
3102 wakeup_one(&head
->so_timeo
);
3106 head
->so_accf
->so_accept_filter
->accf_callback
;
3107 so
->so_upcallarg
= head
->so_accf
->so_accept_filter_arg
;
3108 so
->so_rcv
.sb_flags
|= SB_UPCALL
;
3109 so
->so_options
&= ~SO_ACCEPTFILTER
;
3111 so
->so_upcall(so
, so
->so_upcallarg
, M_DONTWAIT
);
3117 wakeup(&so
->so_timeo
);
3123 soisdisconnecting(struct socket
*so
)
3127 * Note: This code assumes that SOCK_LOCK(so) and
3128 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3130 SOCKBUF_LOCK(&so
->so_rcv
);
3131 so
->so_state
&= ~SS_ISCONNECTING
;
3132 so
->so_state
|= SS_ISDISCONNECTING
;
3133 so
->so_rcv
.sb_state
|= SBS_CANTRCVMORE
;
3134 sorwakeup_locked(so
);
3135 SOCKBUF_LOCK(&so
->so_snd
);
3136 so
->so_snd
.sb_state
|= SBS_CANTSENDMORE
;
3137 sowwakeup_locked(so
);
3138 wakeup(&so
->so_timeo
);
3142 soisdisconnected(struct socket
*so
)
3146 * Note: This code assumes that SOCK_LOCK(so) and
3147 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3149 SOCKBUF_LOCK(&so
->so_rcv
);
3150 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
3151 so
->so_state
|= SS_ISDISCONNECTED
;
3152 so
->so_rcv
.sb_state
|= SBS_CANTRCVMORE
;
3153 sorwakeup_locked(so
);
3154 SOCKBUF_LOCK(&so
->so_snd
);
3155 so
->so_snd
.sb_state
|= SBS_CANTSENDMORE
;
3156 sbdrop_locked(&so
->so_snd
, so
->so_snd
.sb_cc
);
3157 sowwakeup_locked(so
);
3158 wakeup(&so
->so_timeo
);
3162 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3165 sodupsockaddr(const struct sockaddr
*sa
, int mflags
)
3167 struct sockaddr
*sa2
;
3169 sa2
= malloc(sa
->sa_len
, M_SONAME
, mflags
);
3171 bcopy(sa
, sa2
, sa
->sa_len
);
3176 * Create an external-format (``xsocket'') structure using the information in
3177 * the kernel-format socket structure pointed to by so. This is done to
3178 * reduce the spew of irrelevant information over this interface, to isolate
3179 * user code from changes in the kernel structure, and potentially to provide
3180 * information-hiding if we decide that some of this information should be
3181 * hidden from users.
3184 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
3187 xso
->xso_len
= sizeof *xso
;
3189 xso
->so_type
= so
->so_type
;
3190 xso
->so_options
= so
->so_options
;
3191 xso
->so_linger
= so
->so_linger
;
3192 xso
->so_state
= so
->so_state
;
3193 xso
->so_pcb
= so
->so_pcb
;
3194 xso
->xso_protocol
= so
->so_proto
->pr_protocol
;
3195 xso
->xso_family
= so
->so_proto
->pr_domain
->dom_family
;
3196 xso
->so_qlen
= so
->so_qlen
;
3197 xso
->so_incqlen
= so
->so_incqlen
;
3198 xso
->so_qlimit
= so
->so_qlimit
;
3199 xso
->so_timeo
= so
->so_timeo
;
3200 xso
->so_error
= so
->so_error
;
3201 xso
->so_pgid
= so
->so_sigio
? so
->so_sigio
->sio_pgid
: 0;
3202 xso
->so_oobmark
= so
->so_oobmark
;
3203 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
3204 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
3205 xso
->so_uid
= so
->so_cred
->cr_uid
;
3210 * Socket accessor functions to provide external consumers with
3211 * a safe interface to socket state
3216 so_listeners_apply_all(struct socket
*so
, void (*func
)(struct socket
*, void *), void *arg
)
3219 TAILQ_FOREACH(so
, &so
->so_comp
, so_list
)
3224 so_sockbuf_rcv(struct socket
*so
)
3227 return (&so
->so_rcv
);
3231 so_sockbuf_snd(struct socket
*so
)
3234 return (&so
->so_snd
);
3238 so_state_get(const struct socket
*so
)
3241 return (so
->so_state
);
3245 so_state_set(struct socket
*so
, int val
)
3252 so_options_get(const struct socket
*so
)
3255 return (so
->so_options
);
3259 so_options_set(struct socket
*so
, int val
)
3262 so
->so_options
= val
;
3266 so_error_get(const struct socket
*so
)
3269 return (so
->so_error
);
3273 so_error_set(struct socket
*so
, int val
)
3280 so_linger_get(const struct socket
*so
)
3283 return (so
->so_linger
);
3287 so_linger_set(struct socket
*so
, int val
)
3290 so
->so_linger
= val
;
3294 so_protosw_get(const struct socket
*so
)
3297 return (so
->so_proto
);
3301 so_protosw_set(struct socket
*so
, struct protosw
*val
)
3308 so_sorwakeup(struct socket
*so
)
3315 so_sowwakeup(struct socket
*so
)
3322 so_sorwakeup_locked(struct socket
*so
)
3325 sorwakeup_locked(so
);
3329 so_sowwakeup_locked(struct socket
*so
)
3332 sowwakeup_locked(so
);
3336 so_lock(struct socket
*so
)
3342 so_unlock(struct socket
*so
)