Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / uipc_mbuf.c
blobf5743258de3f217ca5440548ac0a0309b553e512
1 /*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
35 #include "opt_mac.h"
36 #include "opt_param.h"
37 #include "opt_mbuf_stress_test.h"
38 #include "opt_mbuf_profiling.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/limits.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/sysctl.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/uio.h>
52 #include <security/mac/mac_framework.h>
54 int max_linkhdr;
55 int max_protohdr;
56 int max_hdr;
57 int max_datalen;
58 #ifdef MBUF_STRESS_TEST
59 int m_defragpackets;
60 int m_defragbytes;
61 int m_defraguseless;
62 int m_defragfailure;
63 int m_defragrandomfailures;
64 #endif
67 * sysctl(8) exported objects
69 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
70 &max_linkhdr, 0, "Size of largest link layer header");
71 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
72 &max_protohdr, 0, "Size of largest protocol layer header");
73 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
74 &max_hdr, 0, "Size of largest link plus protocol header");
75 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
76 &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
77 #ifdef MBUF_STRESS_TEST
78 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
79 &m_defragpackets, 0, "");
80 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
81 &m_defragbytes, 0, "");
82 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
83 &m_defraguseless, 0, "");
84 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
85 &m_defragfailure, 0, "");
86 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
87 &m_defragrandomfailures, 0, "");
88 #endif
91 * Allocate a given length worth of mbufs and/or clusters (whatever fits
92 * best) and return a pointer to the top of the allocated chain. If an
93 * existing mbuf chain is provided, then we will append the new chain
94 * to the existing one but still return the top of the newly allocated
95 * chain.
97 struct mbuf *
98 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
100 struct mbuf *mb, *nm = NULL, *mtail = NULL;
102 KASSERT(len >= 0, ("%s: len is < 0", __func__));
104 /* Validate flags. */
105 flags &= (M_PKTHDR | M_EOR);
107 /* Packet header mbuf must be first in chain. */
108 if ((flags & M_PKTHDR) && m != NULL)
109 flags &= ~M_PKTHDR;
111 /* Loop and append maximum sized mbufs to the chain tail. */
112 while (len > 0) {
113 if (len > MCLBYTES)
114 mb = m_getjcl(how, type, (flags & M_PKTHDR),
115 MJUMPAGESIZE);
116 else if (len >= MINCLSIZE)
117 mb = m_getcl(how, type, (flags & M_PKTHDR));
118 else if (flags & M_PKTHDR)
119 mb = m_gethdr(how, type);
120 else
121 mb = m_get(how, type);
123 /* Fail the whole operation if one mbuf can't be allocated. */
124 if (mb == NULL) {
125 if (nm != NULL)
126 m_freem(nm);
127 return (NULL);
130 /* Book keeping. */
131 len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
132 ((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
133 if (mtail != NULL)
134 mtail->m_next = mb;
135 else
136 nm = mb;
137 mtail = mb;
138 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */
140 if (flags & M_EOR)
141 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */
143 /* If mbuf was supplied, append new chain to the end of it. */
144 if (m != NULL) {
145 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
147 mtail->m_next = nm;
148 mtail->m_flags &= ~M_EOR;
149 } else
150 m = nm;
152 return (m);
156 * Free an entire chain of mbufs and associated external buffers, if
157 * applicable.
159 void
160 m_freem(struct mbuf *mb)
163 while (mb != NULL)
164 mb = m_free(mb);
168 * Configure a provided mbuf to refer to the provided external storage
169 * buffer and setup a reference count for said buffer. If the setting
170 * up of the reference count fails, the M_EXT bit will not be set. If
171 * successfull, the M_EXT bit is set in the mbuf's flags.
173 * Arguments:
174 * mb The existing mbuf to which to attach the provided buffer.
175 * buf The address of the provided external storage buffer.
176 * size The size of the provided buffer.
177 * freef A pointer to a routine that is responsible for freeing the
178 * provided external storage buffer.
179 * args A pointer to an argument structure (of any type) to be passed
180 * to the provided freef routine (may be NULL).
181 * flags Any other flags to be passed to the provided mbuf.
182 * type The type that the external storage buffer should be
183 * labeled with.
185 * Returns:
186 * Nothing.
188 void
189 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
190 void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
192 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
194 if (type != EXT_EXTREF)
195 mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
196 if (mb->m_ext.ref_cnt != NULL) {
197 *(mb->m_ext.ref_cnt) = 1;
198 mb->m_flags |= (M_EXT | flags);
199 mb->m_ext.ext_buf = buf;
200 mb->m_data = mb->m_ext.ext_buf;
201 mb->m_ext.ext_size = size;
202 mb->m_ext.ext_free = freef;
203 mb->m_ext.ext_arg1 = arg1;
204 mb->m_ext.ext_arg2 = arg2;
205 mb->m_ext.ext_type = type;
210 * Non-directly-exported function to clean up after mbufs with M_EXT
211 * storage attached to them if the reference count hits 1.
213 void
214 mb_free_ext(struct mbuf *m)
216 int skipmbuf;
218 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
219 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
223 * check if the header is embedded in the cluster
225 skipmbuf = (m->m_flags & M_NOFREE);
227 /* Free attached storage if this mbuf is the only reference to it. */
228 if (*(m->m_ext.ref_cnt) == 1 ||
229 atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
230 switch (m->m_ext.ext_type) {
231 case EXT_PACKET: /* The packet zone is special. */
232 if (*(m->m_ext.ref_cnt) == 0)
233 *(m->m_ext.ref_cnt) = 1;
234 uma_zfree(zone_pack, m);
235 return; /* Job done. */
236 case EXT_CLUSTER:
237 uma_zfree(zone_clust, m->m_ext.ext_buf);
238 break;
239 case EXT_JUMBOP:
240 uma_zfree(zone_jumbop, m->m_ext.ext_buf);
241 break;
242 case EXT_JUMBO9:
243 uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
244 break;
245 case EXT_JUMBO16:
246 uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
247 break;
248 case EXT_SFBUF:
249 case EXT_NET_DRV:
250 case EXT_MOD_TYPE:
251 case EXT_DISPOSABLE:
252 *(m->m_ext.ref_cnt) = 0;
253 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
254 m->m_ext.ref_cnt));
255 /* FALLTHROUGH */
256 case EXT_EXTREF:
257 KASSERT(m->m_ext.ext_free != NULL,
258 ("%s: ext_free not set", __func__));
259 (*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
260 m->m_ext.ext_arg2);
261 break;
262 default:
263 KASSERT(m->m_ext.ext_type == 0,
264 ("%s: unknown ext_type", __func__));
267 if (skipmbuf)
268 return;
271 * Free this mbuf back to the mbuf zone with all m_ext
272 * information purged.
274 m->m_ext.ext_buf = NULL;
275 m->m_ext.ext_free = NULL;
276 m->m_ext.ext_arg1 = NULL;
277 m->m_ext.ext_arg2 = NULL;
278 m->m_ext.ref_cnt = NULL;
279 m->m_ext.ext_size = 0;
280 m->m_ext.ext_type = 0;
281 m->m_flags &= ~M_EXT;
282 uma_zfree(zone_mbuf, m);
286 * Attach the the cluster from *m to *n, set up m_ext in *n
287 * and bump the refcount of the cluster.
289 static void
290 mb_dupcl(struct mbuf *n, struct mbuf *m)
292 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
293 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
294 KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
296 if (*(m->m_ext.ref_cnt) == 1)
297 *(m->m_ext.ref_cnt) += 1;
298 else
299 atomic_add_int(m->m_ext.ref_cnt, 1);
300 n->m_ext.ext_buf = m->m_ext.ext_buf;
301 n->m_ext.ext_free = m->m_ext.ext_free;
302 n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
303 n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
304 n->m_ext.ext_size = m->m_ext.ext_size;
305 n->m_ext.ref_cnt = m->m_ext.ref_cnt;
306 n->m_ext.ext_type = m->m_ext.ext_type;
307 n->m_flags |= M_EXT;
311 * Clean up mbuf (chain) from any tags and packet headers.
312 * If "all" is set then the first mbuf in the chain will be
313 * cleaned too.
315 void
316 m_demote(struct mbuf *m0, int all)
318 struct mbuf *m;
320 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
321 if (m->m_flags & M_PKTHDR) {
322 m_tag_delete_chain(m, NULL);
323 m->m_flags &= ~M_PKTHDR;
324 bzero(&m->m_pkthdr, sizeof(struct pkthdr));
326 if (m->m_type == MT_HEADER)
327 m->m_type = MT_DATA;
328 if (m != m0 && m->m_nextpkt != NULL)
329 m->m_nextpkt = NULL;
330 m->m_flags = m->m_flags & (M_EXT|M_EOR|M_RDONLY|M_FREELIST);
335 * Sanity checks on mbuf (chain) for use in KASSERT() and general
336 * debugging.
337 * Returns 0 or panics when bad and 1 on all tests passed.
338 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
339 * blow up later.
342 m_sanity(struct mbuf *m0, int sanitize)
344 struct mbuf *m;
345 caddr_t a, b;
346 int pktlen = 0;
348 #ifdef INVARIANTS
349 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m)
350 #else
351 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m)
352 #endif
354 for (m = m0; m != NULL; m = m->m_next) {
356 * Basic pointer checks. If any of these fails then some
357 * unrelated kernel memory before or after us is trashed.
358 * No way to recover from that.
360 a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
361 ((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
362 (caddr_t)(&m->m_dat)) );
363 b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
364 ((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
365 if ((caddr_t)m->m_data < a)
366 M_SANITY_ACTION("m_data outside mbuf data range left");
367 if ((caddr_t)m->m_data > b)
368 M_SANITY_ACTION("m_data outside mbuf data range right");
369 if ((caddr_t)m->m_data + m->m_len > b)
370 M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
371 if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
372 if ((caddr_t)m->m_pkthdr.header < a ||
373 (caddr_t)m->m_pkthdr.header > b)
374 M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
377 /* m->m_nextpkt may only be set on first mbuf in chain. */
378 if (m != m0 && m->m_nextpkt != NULL) {
379 if (sanitize) {
380 m_freem(m->m_nextpkt);
381 m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
382 } else
383 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
386 /* packet length (not mbuf length!) calculation */
387 if (m0->m_flags & M_PKTHDR)
388 pktlen += m->m_len;
390 /* m_tags may only be attached to first mbuf in chain. */
391 if (m != m0 && m->m_flags & M_PKTHDR &&
392 !SLIST_EMPTY(&m->m_pkthdr.tags)) {
393 if (sanitize) {
394 m_tag_delete_chain(m, NULL);
395 /* put in 0xDEADC0DE perhaps? */
396 } else
397 M_SANITY_ACTION("m_tags on in-chain mbuf");
400 /* M_PKTHDR may only be set on first mbuf in chain */
401 if (m != m0 && m->m_flags & M_PKTHDR) {
402 if (sanitize) {
403 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
404 m->m_flags &= ~M_PKTHDR;
405 /* put in 0xDEADCODE and leave hdr flag in */
406 } else
407 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
410 m = m0;
411 if (pktlen && pktlen != m->m_pkthdr.len) {
412 if (sanitize)
413 m->m_pkthdr.len = 0;
414 else
415 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
417 return 1;
419 #undef M_SANITY_ACTION
424 * "Move" mbuf pkthdr from "from" to "to".
425 * "from" must have M_PKTHDR set, and "to" must be empty.
427 void
428 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
431 #if 0
432 /* see below for why these are not enabled */
433 M_ASSERTPKTHDR(to);
434 /* Note: with MAC, this may not be a good assertion. */
435 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
436 ("m_move_pkthdr: to has tags"));
437 #endif
438 #ifdef MAC
440 * XXXMAC: It could be this should also occur for non-MAC?
442 if (to->m_flags & M_PKTHDR)
443 m_tag_delete_chain(to, NULL);
444 #endif
445 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
446 if ((to->m_flags & M_EXT) == 0)
447 to->m_data = to->m_pktdat;
448 to->m_pkthdr = from->m_pkthdr; /* especially tags */
449 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */
450 from->m_flags &= ~M_PKTHDR;
454 * Duplicate "from"'s mbuf pkthdr in "to".
455 * "from" must have M_PKTHDR set, and "to" must be empty.
456 * In particular, this does a deep copy of the packet tags.
459 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
462 #if 0
464 * The mbuf allocator only initializes the pkthdr
465 * when the mbuf is allocated with MGETHDR. Many users
466 * (e.g. m_copy*, m_prepend) use MGET and then
467 * smash the pkthdr as needed causing these
468 * assertions to trip. For now just disable them.
470 M_ASSERTPKTHDR(to);
471 /* Note: with MAC, this may not be a good assertion. */
472 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
473 #endif
474 MBUF_CHECKSLEEP(how);
475 #ifdef MAC
476 if (to->m_flags & M_PKTHDR)
477 m_tag_delete_chain(to, NULL);
478 #endif
479 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
480 if ((to->m_flags & M_EXT) == 0)
481 to->m_data = to->m_pktdat;
482 to->m_pkthdr = from->m_pkthdr;
483 SLIST_INIT(&to->m_pkthdr.tags);
484 return (m_tag_copy_chain(to, from, MBTOM(how)));
488 * Lesser-used path for M_PREPEND:
489 * allocate new mbuf to prepend to chain,
490 * copy junk along.
492 struct mbuf *
493 m_prepend(struct mbuf *m, int len, int how)
495 struct mbuf *mn;
497 if (m->m_flags & M_PKTHDR)
498 MGETHDR(mn, how, m->m_type);
499 else
500 MGET(mn, how, m->m_type);
501 if (mn == NULL) {
502 m_freem(m);
503 return (NULL);
505 if (m->m_flags & M_PKTHDR)
506 M_MOVE_PKTHDR(mn, m);
507 mn->m_next = m;
508 m = mn;
509 if(m->m_flags & M_PKTHDR) {
510 if (len < MHLEN)
511 MH_ALIGN(m, len);
512 } else {
513 if (len < MLEN)
514 M_ALIGN(m, len);
516 m->m_len = len;
517 return (m);
521 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
523 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
524 * Note that the copy is read-only, because clusters are not copied,
525 * only their reference counts are incremented.
527 struct mbuf *
528 m_copym(struct mbuf *m, int off0, int len, int wait)
530 struct mbuf *n, **np;
531 int off = off0;
532 struct mbuf *top;
533 int copyhdr = 0;
535 KASSERT(off >= 0, ("m_copym, negative off %d", off));
536 KASSERT(len >= 0, ("m_copym, negative len %d", len));
537 MBUF_CHECKSLEEP(wait);
538 if (off == 0 && m->m_flags & M_PKTHDR)
539 copyhdr = 1;
540 while (off > 0) {
541 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542 if (off < m->m_len)
543 break;
544 off -= m->m_len;
545 m = m->m_next;
547 np = &top;
548 top = 0;
549 while (len > 0) {
550 if (m == NULL) {
551 KASSERT(len == M_COPYALL,
552 ("m_copym, length > size of mbuf chain"));
553 break;
555 if (copyhdr)
556 MGETHDR(n, wait, m->m_type);
557 else
558 MGET(n, wait, m->m_type);
559 *np = n;
560 if (n == NULL)
561 goto nospace;
562 if (copyhdr) {
563 if (!m_dup_pkthdr(n, m, wait))
564 goto nospace;
565 if (len == M_COPYALL)
566 n->m_pkthdr.len -= off0;
567 else
568 n->m_pkthdr.len = len;
569 copyhdr = 0;
571 n->m_len = min(len, m->m_len - off);
572 if (m->m_flags & M_EXT) {
573 n->m_data = m->m_data + off;
574 mb_dupcl(n, m);
575 } else
576 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577 (u_int)n->m_len);
578 if (len != M_COPYALL)
579 len -= n->m_len;
580 off = 0;
581 m = m->m_next;
582 np = &n->m_next;
584 if (top == NULL)
585 mbstat.m_mcfail++; /* XXX: No consistency. */
587 return (top);
588 nospace:
589 m_freem(top);
590 mbstat.m_mcfail++; /* XXX: No consistency. */
591 return (NULL);
595 * Returns mbuf chain with new head for the prepending case.
596 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
597 * either prepending or appending the data.
598 * The resulting mbuf (chain) m is fully writeable.
599 * m is destination (is made writeable)
600 * n is source, off is offset in source, len is len from offset
601 * dir, 0 append, 1 prepend
602 * how, wait or nowait
605 static int
606 m_bcopyxxx(void *s, void *t, u_int len)
608 bcopy(s, t, (size_t)len);
609 return 0;
612 struct mbuf *
613 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
614 int prep, int how)
616 struct mbuf *mm, *x, *z, *prev = NULL;
617 caddr_t p;
618 int i, nlen = 0;
619 caddr_t buf[MLEN];
621 KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
622 KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
623 KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
624 KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
626 mm = m;
627 if (!prep) {
628 while(mm->m_next) {
629 prev = mm;
630 mm = mm->m_next;
633 for (z = n; z != NULL; z = z->m_next)
634 nlen += z->m_len;
635 if (len == M_COPYALL)
636 len = nlen - off;
637 if (off + len > nlen || len < 1)
638 return NULL;
640 if (!M_WRITABLE(mm)) {
641 /* XXX: Use proper m_xxx function instead. */
642 x = m_getcl(how, MT_DATA, mm->m_flags);
643 if (x == NULL)
644 return NULL;
645 bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
646 p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
647 x->m_data = p;
648 mm->m_next = NULL;
649 if (mm != m)
650 prev->m_next = x;
651 m_free(mm);
652 mm = x;
656 * Append/prepend the data. Allocating mbufs as necessary.
658 /* Shortcut if enough free space in first/last mbuf. */
659 if (!prep && M_TRAILINGSPACE(mm) >= len) {
660 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
661 mm->m_len);
662 mm->m_len += len;
663 mm->m_pkthdr.len += len;
664 return m;
666 if (prep && M_LEADINGSPACE(mm) >= len) {
667 mm->m_data = mtod(mm, caddr_t) - len;
668 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
669 mm->m_len += len;
670 mm->m_pkthdr.len += len;
671 return mm;
674 /* Expand first/last mbuf to cluster if possible. */
675 if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
676 bcopy(mm->m_data, &buf, mm->m_len);
677 m_clget(mm, how);
678 if (!(mm->m_flags & M_EXT))
679 return NULL;
680 bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
681 mm->m_data = mm->m_ext.ext_buf;
682 mm->m_pkthdr.header = NULL;
684 if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
685 bcopy(mm->m_data, &buf, mm->m_len);
686 m_clget(mm, how);
687 if (!(mm->m_flags & M_EXT))
688 return NULL;
689 bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
690 mm->m_ext.ext_size - mm->m_len, mm->m_len);
691 mm->m_data = (caddr_t)mm->m_ext.ext_buf +
692 mm->m_ext.ext_size - mm->m_len;
693 mm->m_pkthdr.header = NULL;
696 /* Append/prepend as many mbuf (clusters) as necessary to fit len. */
697 if (!prep && len > M_TRAILINGSPACE(mm)) {
698 if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
699 return NULL;
701 if (prep && len > M_LEADINGSPACE(mm)) {
702 if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
703 return NULL;
704 i = 0;
705 for (x = z; x != NULL; x = x->m_next) {
706 i += x->m_flags & M_EXT ? x->m_ext.ext_size :
707 (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
708 if (!x->m_next)
709 break;
711 z->m_data += i - len;
712 m_move_pkthdr(mm, z);
713 x->m_next = mm;
714 mm = z;
717 /* Seek to start position in source mbuf. Optimization for long chains. */
718 while (off > 0) {
719 if (off < n->m_len)
720 break;
721 off -= n->m_len;
722 n = n->m_next;
725 /* Copy data into target mbuf. */
726 z = mm;
727 while (len > 0) {
728 KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
729 i = M_TRAILINGSPACE(z);
730 m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
731 z->m_len += i;
732 /* fixup pkthdr.len if necessary */
733 if ((prep ? mm : m)->m_flags & M_PKTHDR)
734 (prep ? mm : m)->m_pkthdr.len += i;
735 off += i;
736 len -= i;
737 z = z->m_next;
739 return (prep ? mm : m);
743 * Copy an entire packet, including header (which must be present).
744 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
745 * Note that the copy is read-only, because clusters are not copied,
746 * only their reference counts are incremented.
747 * Preserve alignment of the first mbuf so if the creator has left
748 * some room at the beginning (e.g. for inserting protocol headers)
749 * the copies still have the room available.
751 struct mbuf *
752 m_copypacket(struct mbuf *m, int how)
754 struct mbuf *top, *n, *o;
756 MBUF_CHECKSLEEP(how);
757 MGET(n, how, m->m_type);
758 top = n;
759 if (n == NULL)
760 goto nospace;
762 if (!m_dup_pkthdr(n, m, how))
763 goto nospace;
764 n->m_len = m->m_len;
765 if (m->m_flags & M_EXT) {
766 n->m_data = m->m_data;
767 mb_dupcl(n, m);
768 } else {
769 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
770 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
773 m = m->m_next;
774 while (m) {
775 MGET(o, how, m->m_type);
776 if (o == NULL)
777 goto nospace;
779 n->m_next = o;
780 n = n->m_next;
782 n->m_len = m->m_len;
783 if (m->m_flags & M_EXT) {
784 n->m_data = m->m_data;
785 mb_dupcl(n, m);
786 } else {
787 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
790 m = m->m_next;
792 return top;
793 nospace:
794 m_freem(top);
795 mbstat.m_mcfail++; /* XXX: No consistency. */
796 return (NULL);
800 * Copy data from an mbuf chain starting "off" bytes from the beginning,
801 * continuing for "len" bytes, into the indicated buffer.
803 void
804 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
806 u_int count;
808 KASSERT(off >= 0, ("m_copydata, negative off %d", off));
809 KASSERT(len >= 0, ("m_copydata, negative len %d", len));
810 while (off > 0) {
811 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
812 if (off < m->m_len)
813 break;
814 off -= m->m_len;
815 m = m->m_next;
817 while (len > 0) {
818 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
819 count = min(m->m_len - off, len);
820 bcopy(mtod(m, caddr_t) + off, cp, count);
821 len -= count;
822 cp += count;
823 off = 0;
824 m = m->m_next;
829 * Copy a packet header mbuf chain into a completely new chain, including
830 * copying any mbuf clusters. Use this instead of m_copypacket() when
831 * you need a writable copy of an mbuf chain.
833 struct mbuf *
834 m_dup(struct mbuf *m, int how)
836 struct mbuf **p, *top = NULL;
837 int remain, moff, nsize;
839 MBUF_CHECKSLEEP(how);
840 /* Sanity check */
841 if (m == NULL)
842 return (NULL);
843 M_ASSERTPKTHDR(m);
845 /* While there's more data, get a new mbuf, tack it on, and fill it */
846 remain = m->m_pkthdr.len;
847 moff = 0;
848 p = &top;
849 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
850 struct mbuf *n;
852 /* Get the next new mbuf */
853 if (remain >= MINCLSIZE) {
854 n = m_getcl(how, m->m_type, 0);
855 nsize = MCLBYTES;
856 } else {
857 n = m_get(how, m->m_type);
858 nsize = MLEN;
860 if (n == NULL)
861 goto nospace;
863 if (top == NULL) { /* First one, must be PKTHDR */
864 if (!m_dup_pkthdr(n, m, how)) {
865 m_free(n);
866 goto nospace;
868 if ((n->m_flags & M_EXT) == 0)
869 nsize = MHLEN;
871 n->m_len = 0;
873 /* Link it into the new chain */
874 *p = n;
875 p = &n->m_next;
877 /* Copy data from original mbuf(s) into new mbuf */
878 while (n->m_len < nsize && m != NULL) {
879 int chunk = min(nsize - n->m_len, m->m_len - moff);
881 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
882 moff += chunk;
883 n->m_len += chunk;
884 remain -= chunk;
885 if (moff == m->m_len) {
886 m = m->m_next;
887 moff = 0;
891 /* Check correct total mbuf length */
892 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
893 ("%s: bogus m_pkthdr.len", __func__));
895 return (top);
897 nospace:
898 m_freem(top);
899 mbstat.m_mcfail++; /* XXX: No consistency. */
900 return (NULL);
904 * Concatenate mbuf chain n to m.
905 * Both chains must be of the same type (e.g. MT_DATA).
906 * Any m_pkthdr is not updated.
908 void
909 m_cat(struct mbuf *m, struct mbuf *n)
911 while (m->m_next)
912 m = m->m_next;
913 while (n) {
914 if (m->m_flags & M_EXT ||
915 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
916 /* just join the two chains */
917 m->m_next = n;
918 return;
920 /* splat the data from one into the other */
921 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
922 (u_int)n->m_len);
923 m->m_len += n->m_len;
924 n = m_free(n);
928 void
929 m_adj(struct mbuf *mp, int req_len)
931 int len = req_len;
932 struct mbuf *m;
933 int count;
935 if ((m = mp) == NULL)
936 return;
937 if (len >= 0) {
939 * Trim from head.
941 while (m != NULL && len > 0) {
942 if (m->m_len <= len) {
943 len -= m->m_len;
944 m->m_len = 0;
945 m = m->m_next;
946 } else {
947 m->m_len -= len;
948 m->m_data += len;
949 len = 0;
952 m = mp;
953 if (mp->m_flags & M_PKTHDR)
954 m->m_pkthdr.len -= (req_len - len);
955 } else {
957 * Trim from tail. Scan the mbuf chain,
958 * calculating its length and finding the last mbuf.
959 * If the adjustment only affects this mbuf, then just
960 * adjust and return. Otherwise, rescan and truncate
961 * after the remaining size.
963 len = -len;
964 count = 0;
965 for (;;) {
966 count += m->m_len;
967 if (m->m_next == (struct mbuf *)0)
968 break;
969 m = m->m_next;
971 if (m->m_len >= len) {
972 m->m_len -= len;
973 if (mp->m_flags & M_PKTHDR)
974 mp->m_pkthdr.len -= len;
975 return;
977 count -= len;
978 if (count < 0)
979 count = 0;
981 * Correct length for chain is "count".
982 * Find the mbuf with last data, adjust its length,
983 * and toss data from remaining mbufs on chain.
985 m = mp;
986 if (m->m_flags & M_PKTHDR)
987 m->m_pkthdr.len = count;
988 for (; m; m = m->m_next) {
989 if (m->m_len >= count) {
990 m->m_len = count;
991 if (m->m_next != NULL) {
992 m_freem(m->m_next);
993 m->m_next = NULL;
995 break;
997 count -= m->m_len;
1003 * Rearange an mbuf chain so that len bytes are contiguous
1004 * and in the data area of an mbuf (so that mtod and dtom
1005 * will work for a structure of size len). Returns the resulting
1006 * mbuf chain on success, frees it and returns null on failure.
1007 * If there is room, it will add up to max_protohdr-len extra bytes to the
1008 * contiguous region in an attempt to avoid being called next time.
1010 struct mbuf *
1011 m_pullup(struct mbuf *n, int len)
1013 struct mbuf *m;
1014 int count;
1015 int space;
1018 * If first mbuf has no cluster, and has room for len bytes
1019 * without shifting current data, pullup into it,
1020 * otherwise allocate a new mbuf to prepend to the chain.
1022 if ((n->m_flags & M_EXT) == 0 &&
1023 n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1024 if (n->m_len >= len)
1025 return (n);
1026 m = n;
1027 n = n->m_next;
1028 len -= m->m_len;
1029 } else {
1030 if (len > MHLEN)
1031 goto bad;
1032 MGET(m, M_DONTWAIT, n->m_type);
1033 if (m == NULL)
1034 goto bad;
1035 m->m_len = 0;
1036 if (n->m_flags & M_PKTHDR)
1037 M_MOVE_PKTHDR(m, n);
1039 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1040 do {
1041 count = min(min(max(len, max_protohdr), space), n->m_len);
1042 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1043 (u_int)count);
1044 len -= count;
1045 m->m_len += count;
1046 n->m_len -= count;
1047 space -= count;
1048 if (n->m_len)
1049 n->m_data += count;
1050 else
1051 n = m_free(n);
1052 } while (len > 0 && n);
1053 if (len > 0) {
1054 (void) m_free(m);
1055 goto bad;
1057 m->m_next = n;
1058 return (m);
1059 bad:
1060 m_freem(n);
1061 mbstat.m_mpfail++; /* XXX: No consistency. */
1062 return (NULL);
1066 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1067 * the amount of empty space before the data in the new mbuf to be specified
1068 * (in the event that the caller expects to prepend later).
1070 int MSFail;
1072 struct mbuf *
1073 m_copyup(struct mbuf *n, int len, int dstoff)
1075 struct mbuf *m;
1076 int count, space;
1078 if (len > (MHLEN - dstoff))
1079 goto bad;
1080 MGET(m, M_DONTWAIT, n->m_type);
1081 if (m == NULL)
1082 goto bad;
1083 m->m_len = 0;
1084 if (n->m_flags & M_PKTHDR)
1085 M_MOVE_PKTHDR(m, n);
1086 m->m_data += dstoff;
1087 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1088 do {
1089 count = min(min(max(len, max_protohdr), space), n->m_len);
1090 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1091 (unsigned)count);
1092 len -= count;
1093 m->m_len += count;
1094 n->m_len -= count;
1095 space -= count;
1096 if (n->m_len)
1097 n->m_data += count;
1098 else
1099 n = m_free(n);
1100 } while (len > 0 && n);
1101 if (len > 0) {
1102 (void) m_free(m);
1103 goto bad;
1105 m->m_next = n;
1106 return (m);
1107 bad:
1108 m_freem(n);
1109 MSFail++;
1110 return (NULL);
1114 * Partition an mbuf chain in two pieces, returning the tail --
1115 * all but the first len0 bytes. In case of failure, it returns NULL and
1116 * attempts to restore the chain to its original state.
1118 * Note that the resulting mbufs might be read-only, because the new
1119 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1120 * the "breaking point" happens to lie within a cluster mbuf. Use the
1121 * M_WRITABLE() macro to check for this case.
1123 struct mbuf *
1124 m_split(struct mbuf *m0, int len0, int wait)
1126 struct mbuf *m, *n;
1127 u_int len = len0, remain;
1129 MBUF_CHECKSLEEP(wait);
1130 for (m = m0; m && len > m->m_len; m = m->m_next)
1131 len -= m->m_len;
1132 if (m == NULL)
1133 return (NULL);
1134 remain = m->m_len - len;
1135 if (m0->m_flags & M_PKTHDR) {
1136 MGETHDR(n, wait, m0->m_type);
1137 if (n == NULL)
1138 return (NULL);
1139 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1140 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1141 m0->m_pkthdr.len = len0;
1142 if (m->m_flags & M_EXT)
1143 goto extpacket;
1144 if (remain > MHLEN) {
1145 /* m can't be the lead packet */
1146 MH_ALIGN(n, 0);
1147 n->m_next = m_split(m, len, wait);
1148 if (n->m_next == NULL) {
1149 (void) m_free(n);
1150 return (NULL);
1151 } else {
1152 n->m_len = 0;
1153 return (n);
1155 } else
1156 MH_ALIGN(n, remain);
1157 } else if (remain == 0) {
1158 n = m->m_next;
1159 m->m_next = NULL;
1160 return (n);
1161 } else {
1162 MGET(n, wait, m->m_type);
1163 if (n == NULL)
1164 return (NULL);
1165 M_ALIGN(n, remain);
1167 extpacket:
1168 if (m->m_flags & M_EXT) {
1169 n->m_data = m->m_data + len;
1170 mb_dupcl(n, m);
1171 } else {
1172 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1174 n->m_len = remain;
1175 m->m_len = len;
1176 n->m_next = m->m_next;
1177 m->m_next = NULL;
1178 return (n);
1181 * Routine to copy from device local memory into mbufs.
1182 * Note that `off' argument is offset into first mbuf of target chain from
1183 * which to begin copying the data to.
1185 struct mbuf *
1186 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1187 void (*copy)(char *from, caddr_t to, u_int len))
1189 struct mbuf *m;
1190 struct mbuf *top = NULL, **mp = &top;
1191 int len;
1193 if (off < 0 || off > MHLEN)
1194 return (NULL);
1196 while (totlen > 0) {
1197 if (top == NULL) { /* First one, must be PKTHDR */
1198 if (totlen + off >= MINCLSIZE) {
1199 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1200 len = MCLBYTES;
1201 } else {
1202 m = m_gethdr(M_DONTWAIT, MT_DATA);
1203 len = MHLEN;
1205 /* Place initial small packet/header at end of mbuf */
1206 if (m && totlen + off + max_linkhdr <= MLEN) {
1207 m->m_data += max_linkhdr;
1208 len -= max_linkhdr;
1211 if (m == NULL)
1212 return NULL;
1213 m->m_pkthdr.rcvif = ifp;
1214 m->m_pkthdr.len = totlen;
1215 } else {
1216 if (totlen + off >= MINCLSIZE) {
1217 m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1218 len = MCLBYTES;
1219 } else {
1220 m = m_get(M_DONTWAIT, MT_DATA);
1221 len = MLEN;
1223 if (m == NULL) {
1224 m_freem(top);
1225 return NULL;
1228 if (off) {
1229 m->m_data += off;
1230 len -= off;
1231 off = 0;
1233 m->m_len = len = min(totlen, len);
1234 if (copy)
1235 copy(buf, mtod(m, caddr_t), (u_int)len);
1236 else
1237 bcopy(buf, mtod(m, caddr_t), (u_int)len);
1238 buf += len;
1239 *mp = m;
1240 mp = &m->m_next;
1241 totlen -= len;
1243 return (top);
1247 * Copy data from a buffer back into the indicated mbuf chain,
1248 * starting "off" bytes from the beginning, extending the mbuf
1249 * chain if necessary.
1251 void
1252 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1254 int mlen;
1255 struct mbuf *m = m0, *n;
1256 int totlen = 0;
1258 if (m0 == NULL)
1259 return;
1260 while (off > (mlen = m->m_len)) {
1261 off -= mlen;
1262 totlen += mlen;
1263 if (m->m_next == NULL) {
1264 n = m_get(M_DONTWAIT, m->m_type);
1265 if (n == NULL)
1266 goto out;
1267 bzero(mtod(n, caddr_t), MLEN);
1268 n->m_len = min(MLEN, len + off);
1269 m->m_next = n;
1271 m = m->m_next;
1273 while (len > 0) {
1274 mlen = min (m->m_len - off, len);
1275 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1276 cp += mlen;
1277 len -= mlen;
1278 mlen += off;
1279 off = 0;
1280 totlen += mlen;
1281 if (len == 0)
1282 break;
1283 if (m->m_next == NULL) {
1284 n = m_get(M_DONTWAIT, m->m_type);
1285 if (n == NULL)
1286 break;
1287 n->m_len = min(MLEN, len);
1288 m->m_next = n;
1290 m = m->m_next;
1292 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1293 m->m_pkthdr.len = totlen;
1297 * Append the specified data to the indicated mbuf chain,
1298 * Extend the mbuf chain if the new data does not fit in
1299 * existing space.
1301 * Return 1 if able to complete the job; otherwise 0.
1304 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1306 struct mbuf *m, *n;
1307 int remainder, space;
1309 for (m = m0; m->m_next != NULL; m = m->m_next)
1311 remainder = len;
1312 space = M_TRAILINGSPACE(m);
1313 if (space > 0) {
1315 * Copy into available space.
1317 if (space > remainder)
1318 space = remainder;
1319 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1320 m->m_len += space;
1321 cp += space, remainder -= space;
1323 while (remainder > 0) {
1325 * Allocate a new mbuf; could check space
1326 * and allocate a cluster instead.
1328 n = m_get(M_DONTWAIT, m->m_type);
1329 if (n == NULL)
1330 break;
1331 n->m_len = min(MLEN, remainder);
1332 bcopy(cp, mtod(n, caddr_t), n->m_len);
1333 cp += n->m_len, remainder -= n->m_len;
1334 m->m_next = n;
1335 m = n;
1337 if (m0->m_flags & M_PKTHDR)
1338 m0->m_pkthdr.len += len - remainder;
1339 return (remainder == 0);
1343 * Apply function f to the data in an mbuf chain starting "off" bytes from
1344 * the beginning, continuing for "len" bytes.
1347 m_apply(struct mbuf *m, int off, int len,
1348 int (*f)(void *, void *, u_int), void *arg)
1350 u_int count;
1351 int rval;
1353 KASSERT(off >= 0, ("m_apply, negative off %d", off));
1354 KASSERT(len >= 0, ("m_apply, negative len %d", len));
1355 while (off > 0) {
1356 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1357 if (off < m->m_len)
1358 break;
1359 off -= m->m_len;
1360 m = m->m_next;
1362 while (len > 0) {
1363 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1364 count = min(m->m_len - off, len);
1365 rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1366 if (rval)
1367 return (rval);
1368 len -= count;
1369 off = 0;
1370 m = m->m_next;
1372 return (0);
1376 * Return a pointer to mbuf/offset of location in mbuf chain.
1378 struct mbuf *
1379 m_getptr(struct mbuf *m, int loc, int *off)
1382 while (loc >= 0) {
1383 /* Normal end of search. */
1384 if (m->m_len > loc) {
1385 *off = loc;
1386 return (m);
1387 } else {
1388 loc -= m->m_len;
1389 if (m->m_next == NULL) {
1390 if (loc == 0) {
1391 /* Point at the end of valid data. */
1392 *off = m->m_len;
1393 return (m);
1395 return (NULL);
1397 m = m->m_next;
1400 return (NULL);
1403 void
1404 m_print(const struct mbuf *m, int maxlen)
1406 int len;
1407 int pdata;
1408 const struct mbuf *m2;
1410 if (m->m_flags & M_PKTHDR)
1411 len = m->m_pkthdr.len;
1412 else
1413 len = -1;
1414 m2 = m;
1415 while (m2 != NULL && (len == -1 || len)) {
1416 pdata = m2->m_len;
1417 if (maxlen != -1 && pdata > maxlen)
1418 pdata = maxlen;
1419 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1420 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1421 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1422 "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1423 if (pdata)
1424 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1425 if (len != -1)
1426 len -= m2->m_len;
1427 m2 = m2->m_next;
1429 if (len > 0)
1430 printf("%d bytes unaccounted for.\n", len);
1431 return;
1434 u_int
1435 m_fixhdr(struct mbuf *m0)
1437 u_int len;
1439 len = m_length(m0, NULL);
1440 m0->m_pkthdr.len = len;
1441 return (len);
1444 u_int
1445 m_length(struct mbuf *m0, struct mbuf **last)
1447 struct mbuf *m;
1448 u_int len;
1450 len = 0;
1451 for (m = m0; m != NULL; m = m->m_next) {
1452 len += m->m_len;
1453 if (m->m_next == NULL)
1454 break;
1456 if (last != NULL)
1457 *last = m;
1458 return (len);
1462 * Defragment a mbuf chain, returning the shortest possible
1463 * chain of mbufs and clusters. If allocation fails and
1464 * this cannot be completed, NULL will be returned, but
1465 * the passed in chain will be unchanged. Upon success,
1466 * the original chain will be freed, and the new chain
1467 * will be returned.
1469 * If a non-packet header is passed in, the original
1470 * mbuf (chain?) will be returned unharmed.
1472 struct mbuf *
1473 m_defrag(struct mbuf *m0, int how)
1475 struct mbuf *m_new = NULL, *m_final = NULL;
1476 int progress = 0, length;
1478 MBUF_CHECKSLEEP(how);
1479 if (!(m0->m_flags & M_PKTHDR))
1480 return (m0);
1482 m_fixhdr(m0); /* Needed sanity check */
1484 #ifdef MBUF_STRESS_TEST
1485 if (m_defragrandomfailures) {
1486 int temp = arc4random() & 0xff;
1487 if (temp == 0xba)
1488 goto nospace;
1490 #endif
1492 if (m0->m_pkthdr.len > MHLEN)
1493 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1494 else
1495 m_final = m_gethdr(how, MT_DATA);
1497 if (m_final == NULL)
1498 goto nospace;
1500 if (m_dup_pkthdr(m_final, m0, how) == 0)
1501 goto nospace;
1503 m_new = m_final;
1505 while (progress < m0->m_pkthdr.len) {
1506 length = m0->m_pkthdr.len - progress;
1507 if (length > MCLBYTES)
1508 length = MCLBYTES;
1510 if (m_new == NULL) {
1511 if (length > MLEN)
1512 m_new = m_getcl(how, MT_DATA, 0);
1513 else
1514 m_new = m_get(how, MT_DATA);
1515 if (m_new == NULL)
1516 goto nospace;
1519 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1520 progress += length;
1521 m_new->m_len = length;
1522 if (m_new != m_final)
1523 m_cat(m_final, m_new);
1524 m_new = NULL;
1526 #ifdef MBUF_STRESS_TEST
1527 if (m0->m_next == NULL)
1528 m_defraguseless++;
1529 #endif
1530 m_freem(m0);
1531 m0 = m_final;
1532 #ifdef MBUF_STRESS_TEST
1533 m_defragpackets++;
1534 m_defragbytes += m0->m_pkthdr.len;
1535 #endif
1536 return (m0);
1537 nospace:
1538 #ifdef MBUF_STRESS_TEST
1539 m_defragfailure++;
1540 #endif
1541 if (m_final)
1542 m_freem(m_final);
1543 return (NULL);
1547 * Defragment an mbuf chain, returning at most maxfrags separate
1548 * mbufs+clusters. If this is not possible NULL is returned and
1549 * the original mbuf chain is left in it's present (potentially
1550 * modified) state. We use two techniques: collapsing consecutive
1551 * mbufs and replacing consecutive mbufs by a cluster.
1553 * NB: this should really be named m_defrag but that name is taken
1555 struct mbuf *
1556 m_collapse(struct mbuf *m0, int how, int maxfrags)
1558 struct mbuf *m, *n, *n2, **prev;
1559 u_int curfrags;
1562 * Calculate the current number of frags.
1564 curfrags = 0;
1565 for (m = m0; m != NULL; m = m->m_next)
1566 curfrags++;
1568 * First, try to collapse mbufs. Note that we always collapse
1569 * towards the front so we don't need to deal with moving the
1570 * pkthdr. This may be suboptimal if the first mbuf has much
1571 * less data than the following.
1573 m = m0;
1574 again:
1575 for (;;) {
1576 n = m->m_next;
1577 if (n == NULL)
1578 break;
1579 if ((m->m_flags & M_RDONLY) == 0 &&
1580 n->m_len < M_TRAILINGSPACE(m)) {
1581 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1582 n->m_len);
1583 m->m_len += n->m_len;
1584 m->m_next = n->m_next;
1585 m_free(n);
1586 if (--curfrags <= maxfrags)
1587 return m0;
1588 } else
1589 m = n;
1591 KASSERT(maxfrags > 1,
1592 ("maxfrags %u, but normal collapse failed", maxfrags));
1594 * Collapse consecutive mbufs to a cluster.
1596 prev = &m0->m_next; /* NB: not the first mbuf */
1597 while ((n = *prev) != NULL) {
1598 if ((n2 = n->m_next) != NULL &&
1599 n->m_len + n2->m_len < MCLBYTES) {
1600 m = m_getcl(how, MT_DATA, 0);
1601 if (m == NULL)
1602 goto bad;
1603 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1604 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1605 n2->m_len);
1606 m->m_len = n->m_len + n2->m_len;
1607 m->m_next = n2->m_next;
1608 *prev = m;
1609 m_free(n);
1610 m_free(n2);
1611 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
1612 return m0;
1614 * Still not there, try the normal collapse
1615 * again before we allocate another cluster.
1617 goto again;
1619 prev = &n->m_next;
1622 * No place where we can collapse to a cluster; punt.
1623 * This can occur if, for example, you request 2 frags
1624 * but the packet requires that both be clusters (we
1625 * never reallocate the first mbuf to avoid moving the
1626 * packet header).
1628 bad:
1629 return NULL;
1632 #ifdef MBUF_STRESS_TEST
1635 * Fragment an mbuf chain. There's no reason you'd ever want to do
1636 * this in normal usage, but it's great for stress testing various
1637 * mbuf consumers.
1639 * If fragmentation is not possible, the original chain will be
1640 * returned.
1642 * Possible length values:
1643 * 0 no fragmentation will occur
1644 * > 0 each fragment will be of the specified length
1645 * -1 each fragment will be the same random value in length
1646 * -2 each fragment's length will be entirely random
1647 * (Random values range from 1 to 256)
1649 struct mbuf *
1650 m_fragment(struct mbuf *m0, int how, int length)
1652 struct mbuf *m_new = NULL, *m_final = NULL;
1653 int progress = 0;
1655 if (!(m0->m_flags & M_PKTHDR))
1656 return (m0);
1658 if ((length == 0) || (length < -2))
1659 return (m0);
1661 m_fixhdr(m0); /* Needed sanity check */
1663 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1665 if (m_final == NULL)
1666 goto nospace;
1668 if (m_dup_pkthdr(m_final, m0, how) == 0)
1669 goto nospace;
1671 m_new = m_final;
1673 if (length == -1)
1674 length = 1 + (arc4random() & 255);
1676 while (progress < m0->m_pkthdr.len) {
1677 int fraglen;
1679 if (length > 0)
1680 fraglen = length;
1681 else
1682 fraglen = 1 + (arc4random() & 255);
1683 if (fraglen > m0->m_pkthdr.len - progress)
1684 fraglen = m0->m_pkthdr.len - progress;
1686 if (fraglen > MCLBYTES)
1687 fraglen = MCLBYTES;
1689 if (m_new == NULL) {
1690 m_new = m_getcl(how, MT_DATA, 0);
1691 if (m_new == NULL)
1692 goto nospace;
1695 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1696 progress += fraglen;
1697 m_new->m_len = fraglen;
1698 if (m_new != m_final)
1699 m_cat(m_final, m_new);
1700 m_new = NULL;
1702 m_freem(m0);
1703 m0 = m_final;
1704 return (m0);
1705 nospace:
1706 if (m_final)
1707 m_freem(m_final);
1708 /* Return the original chain on failure */
1709 return (m0);
1712 #endif
1715 * Copy the contents of uio into a properly sized mbuf chain.
1717 struct mbuf *
1718 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1720 struct mbuf *m, *mb;
1721 int error, length, total;
1722 int progress = 0;
1725 * len can be zero or an arbitrary large value bound by
1726 * the total data supplied by the uio.
1728 if (len > 0)
1729 total = min(uio->uio_resid, len);
1730 else
1731 total = uio->uio_resid;
1734 * The smallest unit returned by m_getm2() is a single mbuf
1735 * with pkthdr. We can't align past it.
1737 if (align >= MHLEN)
1738 return (NULL);
1741 * Give us the full allocation or nothing.
1742 * If len is zero return the smallest empty mbuf.
1744 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1745 if (m == NULL)
1746 return (NULL);
1747 m->m_data += align;
1749 /* Fill all mbufs with uio data and update header information. */
1750 for (mb = m; mb != NULL; mb = mb->m_next) {
1751 length = min(M_TRAILINGSPACE(mb), total - progress);
1753 error = uiomove(mtod(mb, void *), length, uio);
1754 if (error) {
1755 m_freem(m);
1756 return (NULL);
1759 mb->m_len = length;
1760 progress += length;
1761 if (flags & M_PKTHDR)
1762 m->m_pkthdr.len += length;
1764 KASSERT(progress == total, ("%s: progress != total", __func__));
1766 return (m);
1770 * Set the m_data pointer of a newly-allocated mbuf
1771 * to place an object of the specified size at the
1772 * end of the mbuf, longword aligned.
1774 void
1775 m_align(struct mbuf *m, int len)
1777 int adjust;
1779 if (m->m_flags & M_EXT)
1780 adjust = m->m_ext.ext_size - len;
1781 else if (m->m_flags & M_PKTHDR)
1782 adjust = MHLEN - len;
1783 else
1784 adjust = MLEN - len;
1785 m->m_data += adjust &~ (sizeof(long)-1);
1789 * Create a writable copy of the mbuf chain. While doing this
1790 * we compact the chain with a goal of producing a chain with
1791 * at most two mbufs. The second mbuf in this chain is likely
1792 * to be a cluster. The primary purpose of this work is to create
1793 * a writable packet for encryption, compression, etc. The
1794 * secondary goal is to linearize the data so the data can be
1795 * passed to crypto hardware in the most efficient manner possible.
1797 struct mbuf *
1798 m_unshare(struct mbuf *m0, int how)
1800 struct mbuf *m, *mprev;
1801 struct mbuf *n, *mfirst, *mlast;
1802 int len, off;
1804 mprev = NULL;
1805 for (m = m0; m != NULL; m = mprev->m_next) {
1807 * Regular mbufs are ignored unless there's a cluster
1808 * in front of it that we can use to coalesce. We do
1809 * the latter mainly so later clusters can be coalesced
1810 * also w/o having to handle them specially (i.e. convert
1811 * mbuf+cluster -> cluster). This optimization is heavily
1812 * influenced by the assumption that we're running over
1813 * Ethernet where MCLBYTES is large enough that the max
1814 * packet size will permit lots of coalescing into a
1815 * single cluster. This in turn permits efficient
1816 * crypto operations, especially when using hardware.
1818 if ((m->m_flags & M_EXT) == 0) {
1819 if (mprev && (mprev->m_flags & M_EXT) &&
1820 m->m_len <= M_TRAILINGSPACE(mprev)) {
1821 /* XXX: this ignores mbuf types */
1822 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1823 mtod(m, caddr_t), m->m_len);
1824 mprev->m_len += m->m_len;
1825 mprev->m_next = m->m_next; /* unlink from chain */
1826 m_free(m); /* reclaim mbuf */
1827 #if 0
1828 newipsecstat.ips_mbcoalesced++;
1829 #endif
1830 } else {
1831 mprev = m;
1833 continue;
1836 * Writable mbufs are left alone (for now).
1838 if (M_WRITABLE(m)) {
1839 mprev = m;
1840 continue;
1844 * Not writable, replace with a copy or coalesce with
1845 * the previous mbuf if possible (since we have to copy
1846 * it anyway, we try to reduce the number of mbufs and
1847 * clusters so that future work is easier).
1849 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1850 /* NB: we only coalesce into a cluster or larger */
1851 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1852 m->m_len <= M_TRAILINGSPACE(mprev)) {
1853 /* XXX: this ignores mbuf types */
1854 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1855 mtod(m, caddr_t), m->m_len);
1856 mprev->m_len += m->m_len;
1857 mprev->m_next = m->m_next; /* unlink from chain */
1858 m_free(m); /* reclaim mbuf */
1859 #if 0
1860 newipsecstat.ips_clcoalesced++;
1861 #endif
1862 continue;
1866 * Allocate new space to hold the copy...
1868 /* XXX why can M_PKTHDR be set past the first mbuf? */
1869 if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1871 * NB: if a packet header is present we must
1872 * allocate the mbuf separately from any cluster
1873 * because M_MOVE_PKTHDR will smash the data
1874 * pointer and drop the M_EXT marker.
1876 MGETHDR(n, how, m->m_type);
1877 if (n == NULL) {
1878 m_freem(m0);
1879 return (NULL);
1881 M_MOVE_PKTHDR(n, m);
1882 MCLGET(n, how);
1883 if ((n->m_flags & M_EXT) == 0) {
1884 m_free(n);
1885 m_freem(m0);
1886 return (NULL);
1888 } else {
1889 n = m_getcl(how, m->m_type, m->m_flags);
1890 if (n == NULL) {
1891 m_freem(m0);
1892 return (NULL);
1896 * ... and copy the data. We deal with jumbo mbufs
1897 * (i.e. m_len > MCLBYTES) by splitting them into
1898 * clusters. We could just malloc a buffer and make
1899 * it external but too many device drivers don't know
1900 * how to break up the non-contiguous memory when
1901 * doing DMA.
1903 len = m->m_len;
1904 off = 0;
1905 mfirst = n;
1906 mlast = NULL;
1907 for (;;) {
1908 int cc = min(len, MCLBYTES);
1909 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1910 n->m_len = cc;
1911 if (mlast != NULL)
1912 mlast->m_next = n;
1913 mlast = n;
1914 #if 0
1915 newipsecstat.ips_clcopied++;
1916 #endif
1918 len -= cc;
1919 if (len <= 0)
1920 break;
1921 off += cc;
1923 n = m_getcl(how, m->m_type, m->m_flags);
1924 if (n == NULL) {
1925 m_freem(mfirst);
1926 m_freem(m0);
1927 return (NULL);
1930 n->m_next = m->m_next;
1931 if (mprev == NULL)
1932 m0 = mfirst; /* new head of chain */
1933 else
1934 mprev->m_next = mfirst; /* replace old mbuf */
1935 m_free(m); /* release old mbuf */
1936 mprev = mfirst;
1938 return (m0);
1941 #ifdef MBUF_PROFILING
1943 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1944 struct mbufprofile {
1945 uintmax_t wasted[MP_BUCKETS];
1946 uintmax_t used[MP_BUCKETS];
1947 uintmax_t segments[MP_BUCKETS];
1948 } mbprof;
1950 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */
1951 #define MP_NUMLINES 6
1952 #define MP_NUMSPERLINE 16
1953 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */
1954 /* work out max space needed and add a bit of spare space too */
1955 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1956 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1958 char mbprofbuf[MP_BUFSIZE];
1960 void
1961 m_profile(struct mbuf *m)
1963 int segments = 0;
1964 int used = 0;
1965 int wasted = 0;
1967 while (m) {
1968 segments++;
1969 used += m->m_len;
1970 if (m->m_flags & M_EXT) {
1971 wasted += MHLEN - sizeof(m->m_ext) +
1972 m->m_ext.ext_size - m->m_len;
1973 } else {
1974 if (m->m_flags & M_PKTHDR)
1975 wasted += MHLEN - m->m_len;
1976 else
1977 wasted += MLEN - m->m_len;
1979 m = m->m_next;
1981 /* be paranoid.. it helps */
1982 if (segments > MP_BUCKETS - 1)
1983 segments = MP_BUCKETS - 1;
1984 if (used > 100000)
1985 used = 100000;
1986 if (wasted > 100000)
1987 wasted = 100000;
1988 /* store in the appropriate bucket */
1989 /* don't bother locking. if it's slightly off, so what? */
1990 mbprof.segments[segments]++;
1991 mbprof.used[fls(used)]++;
1992 mbprof.wasted[fls(wasted)]++;
1995 static void
1996 mbprof_textify(void)
1998 int offset;
1999 char *c;
2000 u_int64_t *p;
2003 p = &mbprof.wasted[0];
2004 c = mbprofbuf;
2005 offset = snprintf(c, MP_MAXLINE + 10,
2006 "wasted:\n"
2007 "%ju %ju %ju %ju %ju %ju %ju %ju "
2008 "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2009 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2010 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2011 #ifdef BIG_ARRAY
2012 p = &mbprof.wasted[16];
2013 c += offset;
2014 offset = snprintf(c, MP_MAXLINE,
2015 "%ju %ju %ju %ju %ju %ju %ju %ju "
2016 "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2017 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2018 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2019 #endif
2020 p = &mbprof.used[0];
2021 c += offset;
2022 offset = snprintf(c, MP_MAXLINE + 10,
2023 "used:\n"
2024 "%ju %ju %ju %ju %ju %ju %ju %ju "
2025 "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2026 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2027 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2028 #ifdef BIG_ARRAY
2029 p = &mbprof.used[16];
2030 c += offset;
2031 offset = snprintf(c, MP_MAXLINE,
2032 "%ju %ju %ju %ju %ju %ju %ju %ju "
2033 "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2034 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2035 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2036 #endif
2037 p = &mbprof.segments[0];
2038 c += offset;
2039 offset = snprintf(c, MP_MAXLINE + 10,
2040 "segments:\n"
2041 "%ju %ju %ju %ju %ju %ju %ju %ju "
2042 "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2043 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2044 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2045 #ifdef BIG_ARRAY
2046 p = &mbprof.segments[16];
2047 c += offset;
2048 offset = snprintf(c, MP_MAXLINE,
2049 "%ju %ju %ju %ju %ju %ju %ju %ju "
2050 "%ju %ju %ju %ju %ju %ju %ju %jju",
2051 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2052 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2053 #endif
2056 static int
2057 mbprof_handler(SYSCTL_HANDLER_ARGS)
2059 int error;
2061 mbprof_textify();
2062 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2063 return (error);
2066 static int
2067 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2069 int clear, error;
2071 clear = 0;
2072 error = sysctl_handle_int(oidp, &clear, 0, req);
2073 if (error || !req->newptr)
2074 return (error);
2076 if (clear) {
2077 bzero(&mbprof, sizeof(mbprof));
2080 return (error);
2084 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2085 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2087 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2088 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2089 #endif