Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / subr_devstat.c
blob8a7eff58e5a1d3074746908aa4bb4650209f79b0
1 /*-
2 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
32 #include <sys/param.h>
33 #include <sys/kernel.h>
34 #include <sys/systm.h>
35 #include <sys/bio.h>
36 #include <sys/devicestat.h>
37 #include <sys/sysctl.h>
38 #include <sys/malloc.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/conf.h>
42 #include <vm/vm.h>
43 #include <vm/pmap.h>
45 #include <machine/atomic.h>
47 static int devstat_num_devs;
48 static long devstat_generation = 1;
49 static int devstat_version = DEVSTAT_VERSION;
50 static int devstat_current_devnumber;
51 static struct mtx devstat_mutex;
53 static struct devstatlist device_statq;
54 static struct devstat *devstat_alloc(void);
55 static void devstat_free(struct devstat *);
56 static void devstat_add_entry(struct devstat *ds, const void *dev_name,
57 int unit_number, u_int32_t block_size,
58 devstat_support_flags flags,
59 devstat_type_flags device_type,
60 devstat_priority priority);
63 * Allocate a devstat and initialize it
65 struct devstat *
66 devstat_new_entry(const void *dev_name,
67 int unit_number, u_int32_t block_size,
68 devstat_support_flags flags,
69 devstat_type_flags device_type,
70 devstat_priority priority)
72 struct devstat *ds;
73 static int once;
75 if (!once) {
76 STAILQ_INIT(&device_statq);
77 mtx_init(&devstat_mutex, "devstat", NULL, MTX_DEF);
78 once = 1;
80 mtx_assert(&devstat_mutex, MA_NOTOWNED);
82 ds = devstat_alloc();
83 mtx_lock(&devstat_mutex);
84 if (unit_number == -1) {
85 ds->id = dev_name;
86 binuptime(&ds->creation_time);
87 devstat_generation++;
88 } else {
89 devstat_add_entry(ds, dev_name, unit_number, block_size,
90 flags, device_type, priority);
92 mtx_unlock(&devstat_mutex);
93 return (ds);
97 * Take a malloced and zeroed devstat structure given to us, fill it in
98 * and add it to the queue of devices.
100 static void
101 devstat_add_entry(struct devstat *ds, const void *dev_name,
102 int unit_number, u_int32_t block_size,
103 devstat_support_flags flags,
104 devstat_type_flags device_type,
105 devstat_priority priority)
107 struct devstatlist *devstat_head;
108 struct devstat *ds_tmp;
110 mtx_assert(&devstat_mutex, MA_OWNED);
111 devstat_num_devs++;
113 devstat_head = &device_statq;
116 * Priority sort. Each driver passes in its priority when it adds
117 * its devstat entry. Drivers are sorted first by priority, and
118 * then by probe order.
120 * For the first device, we just insert it, since the priority
121 * doesn't really matter yet. Subsequent devices are inserted into
122 * the list using the order outlined above.
124 if (devstat_num_devs == 1)
125 STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
126 else {
127 STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
128 struct devstat *ds_next;
130 ds_next = STAILQ_NEXT(ds_tmp, dev_links);
133 * If we find a break between higher and lower
134 * priority items, and if this item fits in the
135 * break, insert it. This also applies if the
136 * "lower priority item" is the end of the list.
138 if ((priority <= ds_tmp->priority)
139 && ((ds_next == NULL)
140 || (priority > ds_next->priority))) {
141 STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
142 dev_links);
143 break;
144 } else if (priority > ds_tmp->priority) {
146 * If this is the case, we should be able
147 * to insert ourselves at the head of the
148 * list. If we can't, something is wrong.
150 if (ds_tmp == STAILQ_FIRST(devstat_head)) {
151 STAILQ_INSERT_HEAD(devstat_head,
152 ds, dev_links);
153 break;
154 } else {
155 STAILQ_INSERT_TAIL(devstat_head,
156 ds, dev_links);
157 printf("devstat_add_entry: HELP! "
158 "sorting problem detected "
159 "for name %p unit %d\n",
160 dev_name, unit_number);
161 break;
167 ds->device_number = devstat_current_devnumber++;
168 ds->unit_number = unit_number;
169 strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
170 ds->block_size = block_size;
171 ds->flags = flags;
172 ds->device_type = device_type;
173 ds->priority = priority;
174 binuptime(&ds->creation_time);
175 devstat_generation++;
179 * Remove a devstat structure from the list of devices.
181 void
182 devstat_remove_entry(struct devstat *ds)
184 struct devstatlist *devstat_head;
186 mtx_assert(&devstat_mutex, MA_NOTOWNED);
187 if (ds == NULL)
188 return;
190 mtx_lock(&devstat_mutex);
192 devstat_head = &device_statq;
194 /* Remove this entry from the devstat queue */
195 atomic_add_acq_int(&ds->sequence1, 1);
196 if (ds->id == NULL) {
197 devstat_num_devs--;
198 STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
200 devstat_free(ds);
201 devstat_generation++;
202 mtx_unlock(&devstat_mutex);
206 * Record a transaction start.
208 * See comments for devstat_end_transaction(). Ordering is very important
209 * here.
211 void
212 devstat_start_transaction(struct devstat *ds, struct bintime *now)
215 mtx_assert(&devstat_mutex, MA_NOTOWNED);
217 /* sanity check */
218 if (ds == NULL)
219 return;
221 atomic_add_acq_int(&ds->sequence1, 1);
223 * We only want to set the start time when we are going from idle
224 * to busy. The start time is really the start of the latest busy
225 * period.
227 if (ds->start_count == ds->end_count) {
228 if (now != NULL)
229 ds->busy_from = *now;
230 else
231 binuptime(&ds->busy_from);
233 ds->start_count++;
234 atomic_add_rel_int(&ds->sequence0, 1);
237 void
238 devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
241 mtx_assert(&devstat_mutex, MA_NOTOWNED);
243 /* sanity check */
244 if (ds == NULL)
245 return;
247 binuptime(&bp->bio_t0);
248 devstat_start_transaction(ds, &bp->bio_t0);
252 * Record the ending of a transaction, and incrment the various counters.
254 * Ordering in this function, and in devstat_start_transaction() is VERY
255 * important. The idea here is to run without locks, so we are very
256 * careful to only modify some fields on the way "down" (i.e. at
257 * transaction start) and some fields on the way "up" (i.e. at transaction
258 * completion). One exception is busy_from, which we only modify in
259 * devstat_start_transaction() when there are no outstanding transactions,
260 * and thus it can't be modified in devstat_end_transaction()
261 * simultaneously.
263 * The sequence0 and sequence1 fields are provided to enable an application
264 * spying on the structures with mmap(2) to tell when a structure is in a
265 * consistent state or not.
267 * For this to work 100% reliably, it is important that the two fields
268 * are at opposite ends of the structure and that they are incremented
269 * in the opposite order of how a memcpy(3) in userland would copy them.
270 * We assume that the copying happens front to back, but there is actually
271 * no way short of writing your own memcpy(3) replacement to guarantee
272 * this will be the case.
274 * In addition to this, being a kind of locks, they must be updated with
275 * atomic instructions using appropriate memory barriers.
277 void
278 devstat_end_transaction(struct devstat *ds, u_int32_t bytes,
279 devstat_tag_type tag_type, devstat_trans_flags flags,
280 struct bintime *now, struct bintime *then)
282 struct bintime dt, lnow;
284 /* sanity check */
285 if (ds == NULL)
286 return;
288 if (now == NULL) {
289 now = &lnow;
290 binuptime(now);
293 atomic_add_acq_int(&ds->sequence1, 1);
294 /* Update byte and operations counts */
295 ds->bytes[flags] += bytes;
296 ds->operations[flags]++;
299 * Keep a count of the various tag types sent.
301 if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
302 tag_type != DEVSTAT_TAG_NONE)
303 ds->tag_types[tag_type]++;
305 if (then != NULL) {
306 /* Update duration of operations */
307 dt = *now;
308 bintime_sub(&dt, then);
309 bintime_add(&ds->duration[flags], &dt);
312 /* Accumulate busy time */
313 dt = *now;
314 bintime_sub(&dt, &ds->busy_from);
315 bintime_add(&ds->busy_time, &dt);
316 ds->busy_from = *now;
318 ds->end_count++;
319 atomic_add_rel_int(&ds->sequence0, 1);
322 void
323 devstat_end_transaction_bio(struct devstat *ds, struct bio *bp)
325 devstat_trans_flags flg;
327 /* sanity check */
328 if (ds == NULL)
329 return;
331 if (bp->bio_cmd == BIO_DELETE)
332 flg = DEVSTAT_FREE;
333 else if (bp->bio_cmd == BIO_READ)
334 flg = DEVSTAT_READ;
335 else if (bp->bio_cmd == BIO_WRITE)
336 flg = DEVSTAT_WRITE;
337 else
338 flg = DEVSTAT_NO_DATA;
340 devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
341 DEVSTAT_TAG_SIMPLE, flg, NULL, &bp->bio_t0);
345 * This is the sysctl handler for the devstat package. The data pushed out
346 * on the kern.devstat.all sysctl variable consists of the current devstat
347 * generation number, and then an array of devstat structures, one for each
348 * device in the system.
350 * This is more cryptic that obvious, but basically we neither can nor
351 * want to hold the devstat_mutex for any amount of time, so we grab it
352 * only when we need to and keep an eye on devstat_generation all the time.
354 static int
355 sysctl_devstat(SYSCTL_HANDLER_ARGS)
357 int error;
358 long mygen;
359 struct devstat *nds;
361 mtx_assert(&devstat_mutex, MA_NOTOWNED);
364 * XXX devstat_generation should really be "volatile" but that
365 * XXX freaks out the sysctl macro below. The places where we
366 * XXX change it and inspect it are bracketed in the mutex which
367 * XXX guarantees us proper write barriers. I don't belive the
368 * XXX compiler is allowed to optimize mygen away across calls
369 * XXX to other functions, so the following is belived to be safe.
371 mygen = devstat_generation;
373 error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
375 if (devstat_num_devs == 0)
376 return(0);
378 if (error != 0)
379 return (error);
381 mtx_lock(&devstat_mutex);
382 nds = STAILQ_FIRST(&device_statq);
383 if (mygen != devstat_generation)
384 error = EBUSY;
385 mtx_unlock(&devstat_mutex);
387 if (error != 0)
388 return (error);
390 for (;nds != NULL;) {
391 error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
392 if (error != 0)
393 return (error);
394 mtx_lock(&devstat_mutex);
395 if (mygen != devstat_generation)
396 error = EBUSY;
397 else
398 nds = STAILQ_NEXT(nds, dev_links);
399 mtx_unlock(&devstat_mutex);
400 if (error != 0)
401 return (error);
403 return(error);
407 * Sysctl entries for devstat. The first one is a node that all the rest
408 * hang off of.
410 SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD, 0, "Device Statistics");
412 SYSCTL_PROC(_kern_devstat, OID_AUTO, all, CTLFLAG_RD|CTLTYPE_OPAQUE,
413 0, 0, sysctl_devstat, "S,devstat", "All devices in the devstat list");
415 * Export the number of devices in the system so that userland utilities
416 * can determine how much memory to allocate to hold all the devices.
418 SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
419 &devstat_num_devs, 0, "Number of devices in the devstat list");
420 SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
421 &devstat_generation, 0, "Devstat list generation");
422 SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
423 &devstat_version, 0, "Devstat list version number");
426 * Allocator for struct devstat structures. We sub-allocate these from pages
427 * which we get from malloc. These pages are exported for mmap(2)'ing through
428 * a miniature device driver
431 #define statsperpage (PAGE_SIZE / sizeof(struct devstat))
433 static d_mmap_t devstat_mmap;
435 static struct cdevsw devstat_cdevsw = {
436 .d_version = D_VERSION,
437 .d_flags = D_NEEDGIANT,
438 .d_mmap = devstat_mmap,
439 .d_name = "devstat",
442 struct statspage {
443 TAILQ_ENTRY(statspage) list;
444 struct devstat *stat;
445 u_int nfree;
448 static TAILQ_HEAD(, statspage) pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
449 static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
451 static int
452 devstat_mmap(struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, int nprot)
454 struct statspage *spp;
456 if (nprot != VM_PROT_READ)
457 return (-1);
458 TAILQ_FOREACH(spp, &pagelist, list) {
459 if (offset == 0) {
460 *paddr = vtophys(spp->stat);
461 return (0);
463 offset -= PAGE_SIZE;
465 return (-1);
468 static struct devstat *
469 devstat_alloc(void)
471 struct devstat *dsp;
472 struct statspage *spp;
473 u_int u;
474 static int once;
476 mtx_assert(&devstat_mutex, MA_NOTOWNED);
477 if (!once) {
478 make_dev(&devstat_cdevsw, 0,
479 UID_ROOT, GID_WHEEL, 0400, DEVSTAT_DEVICE_NAME);
480 once = 1;
482 mtx_lock(&devstat_mutex);
483 for (;;) {
484 TAILQ_FOREACH(spp, &pagelist, list) {
485 if (spp->nfree > 0)
486 break;
488 if (spp != NULL)
489 break;
491 * We had no free slot in any of our pages, drop the mutex
492 * and get another page. In theory we could have more than
493 * one process doing this at the same time and consequently
494 * we may allocate more pages than we will need. That is
495 * Just Too Bad[tm], we can live with that.
497 mtx_unlock(&devstat_mutex);
498 spp = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
499 spp->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
500 spp->nfree = statsperpage;
501 mtx_lock(&devstat_mutex);
503 * It would make more sense to add the new page at the head
504 * but the order on the list determine the sequence of the
505 * mapping so we can't do that.
507 TAILQ_INSERT_TAIL(&pagelist, spp, list);
509 dsp = spp->stat;
510 for (u = 0; u < statsperpage; u++) {
511 if (dsp->allocated == 0)
512 break;
513 dsp++;
515 spp->nfree--;
516 dsp->allocated = 1;
517 mtx_unlock(&devstat_mutex);
518 return (dsp);
521 static void
522 devstat_free(struct devstat *dsp)
524 struct statspage *spp;
526 mtx_assert(&devstat_mutex, MA_OWNED);
527 bzero(dsp, sizeof *dsp);
528 TAILQ_FOREACH(spp, &pagelist, list) {
529 if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
530 spp->nfree++;
531 return;
536 SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
537 0, sizeof(struct devstat), "sizeof(struct devstat)");