Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / subr_blist.c
blob335764680dcb7c6bf3b16c4043e0d93e4c9c0b37
1 /*-
2 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution.
11 * 4. Neither the name of the University nor the names of its contributors
12 * may be used to endorse or promote products derived from this software
13 * without specific prior written permission.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
30 * This module implements a general bitmap allocator/deallocator. The
31 * allocator eats around 2 bits per 'block'. The module does not
32 * try to interpret the meaning of a 'block' other then to return
33 * SWAPBLK_NONE on an allocation failure.
35 * A radix tree is used to maintain the bitmap. Two radix constants are
36 * involved: One for the bitmaps contained in the leaf nodes (typically
37 * 32), and one for the meta nodes (typically 16). Both meta and leaf
38 * nodes have a hint field. This field gives us a hint as to the largest
39 * free contiguous range of blocks under the node. It may contain a
40 * value that is too high, but will never contain a value that is too
41 * low. When the radix tree is searched, allocation failures in subtrees
42 * update the hint.
44 * The radix tree also implements two collapsed states for meta nodes:
45 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
46 * in either of these two states, all information contained underneath
47 * the node is considered stale. These states are used to optimize
48 * allocation and freeing operations.
50 * The hinting greatly increases code efficiency for allocations while
51 * the general radix structure optimizes both allocations and frees. The
52 * radix tree should be able to operate well no matter how much
53 * fragmentation there is and no matter how large a bitmap is used.
55 * Unlike the rlist code, the blist code wires all necessary memory at
56 * creation time. Neither allocations nor frees require interaction with
57 * the memory subsystem. In contrast, the rlist code may allocate memory
58 * on an rlist_free() call. The non-blocking features of the blist code
59 * are used to great advantage in the swap code (vm/nswap_pager.c). The
60 * rlist code uses a little less overall memory then the blist code (but
61 * due to swap interleaving not all that much less), but the blist code
62 * scales much, much better.
64 * LAYOUT: The radix tree is layed out recursively using a
65 * linear array. Each meta node is immediately followed (layed out
66 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
67 * is a recursive structure but one that can be easily scanned through
68 * a very simple 'skip' calculation. In order to support large radixes,
69 * portions of the tree may reside outside our memory allocation. We
70 * handle this with an early-termination optimization (when bighint is
71 * set to -1) on the scan. The memory allocation is only large enough
72 * to cover the number of blocks requested at creation time even if it
73 * must be encompassed in larger root-node radix.
75 * NOTE: the allocator cannot currently allocate more then
76 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
77 * large' if you try. This is an area that could use improvement. The
78 * radix is large enough that this restriction does not effect the swap
79 * system, though. Currently only the allocation code is effected by
80 * this algorithmic unfeature. The freeing code can handle arbitrary
81 * ranges.
83 * This code can be compiled stand-alone for debugging.
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
89 #ifdef _KERNEL
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/kernel.h>
95 #include <sys/blist.h>
96 #include <sys/malloc.h>
97 #include <sys/proc.h>
98 #include <sys/mutex.h>
100 #else
102 #ifndef BLIST_NO_DEBUG
103 #define BLIST_DEBUG
104 #endif
106 #define SWAPBLK_NONE ((daddr_t)-1)
108 #include <sys/types.h>
109 #include <stdio.h>
110 #include <string.h>
111 #include <stdlib.h>
112 #include <stdarg.h>
114 #define malloc(a,b,c) calloc(a, 1)
115 #define free(a,b) free(a)
117 typedef unsigned int u_daddr_t;
119 #include <sys/blist.h>
121 void panic(const char *ctl, ...);
123 #endif
126 * static support functions
129 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
130 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
131 daddr_t count, daddr_t radix, int skip);
132 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
133 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
134 daddr_t radix, int skip, daddr_t blk);
135 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
136 daddr_t skip, blist_t dest, daddr_t count);
137 static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
138 static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
139 daddr_t radix, int skip, daddr_t blk);
140 static daddr_t blst_radix_init(blmeta_t *scan, daddr_t radix,
141 int skip, daddr_t count);
142 #ifndef _KERNEL
143 static void blst_radix_print(blmeta_t *scan, daddr_t blk,
144 daddr_t radix, int skip, int tab);
145 #endif
147 #ifdef _KERNEL
148 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
149 #endif
152 * blist_create() - create a blist capable of handling up to the specified
153 * number of blocks
155 * blocks - must be greater then 0
156 * flags - malloc flags
158 * The smallest blist consists of a single leaf node capable of
159 * managing BLIST_BMAP_RADIX blocks.
162 blist_t
163 blist_create(daddr_t blocks, int flags)
165 blist_t bl;
166 int radix;
167 int skip = 0;
170 * Calculate radix and skip field used for scanning.
172 radix = BLIST_BMAP_RADIX;
174 while (radix < blocks) {
175 radix *= BLIST_META_RADIX;
176 skip = (skip + 1) * BLIST_META_RADIX;
179 bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
181 bl->bl_blocks = blocks;
182 bl->bl_radix = radix;
183 bl->bl_skip = skip;
184 bl->bl_rootblks = 1 +
185 blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
186 bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
188 #if defined(BLIST_DEBUG)
189 printf(
190 "BLIST representing %lld blocks (%lld MB of swap)"
191 ", requiring %lldK of ram\n",
192 (long long)bl->bl_blocks,
193 (long long)bl->bl_blocks * 4 / 1024,
194 (long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
196 printf("BLIST raw radix tree contains %lld records\n",
197 (long long)bl->bl_rootblks);
198 #endif
199 blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
201 return(bl);
204 void
205 blist_destroy(blist_t bl)
207 free(bl->bl_root, M_SWAP);
208 free(bl, M_SWAP);
212 * blist_alloc() - reserve space in the block bitmap. Return the base
213 * of a contiguous region or SWAPBLK_NONE if space could
214 * not be allocated.
217 daddr_t
218 blist_alloc(blist_t bl, daddr_t count)
220 daddr_t blk = SWAPBLK_NONE;
222 if (bl) {
223 if (bl->bl_radix == BLIST_BMAP_RADIX)
224 blk = blst_leaf_alloc(bl->bl_root, 0, count);
225 else
226 blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
227 if (blk != SWAPBLK_NONE)
228 bl->bl_free -= count;
230 return(blk);
234 * blist_free() - free up space in the block bitmap. Return the base
235 * of a contiguous region. Panic if an inconsistancy is
236 * found.
239 void
240 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
242 if (bl) {
243 if (bl->bl_radix == BLIST_BMAP_RADIX)
244 blst_leaf_free(bl->bl_root, blkno, count);
245 else
246 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
247 bl->bl_free += count;
252 * blist_fill() - mark a region in the block bitmap as off-limits
253 * to the allocator (i.e. allocate it), ignoring any
254 * existing allocations. Return the number of blocks
255 * actually filled that were free before the call.
259 blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
261 int filled;
263 if (bl) {
264 if (bl->bl_radix == BLIST_BMAP_RADIX)
265 filled = blst_leaf_fill(bl->bl_root, blkno, count);
266 else
267 filled = blst_meta_fill(bl->bl_root, blkno, count,
268 bl->bl_radix, bl->bl_skip, 0);
269 bl->bl_free -= filled;
270 return filled;
271 } else
272 return 0;
276 * blist_resize() - resize an existing radix tree to handle the
277 * specified number of blocks. This will reallocate
278 * the tree and transfer the previous bitmap to the new
279 * one. When extending the tree you can specify whether
280 * the new blocks are to left allocated or freed.
283 void
284 blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
286 blist_t newbl = blist_create(count, flags);
287 blist_t save = *pbl;
289 *pbl = newbl;
290 if (count > save->bl_blocks)
291 count = save->bl_blocks;
292 blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
295 * If resizing upwards, should we free the new space or not?
297 if (freenew && count < newbl->bl_blocks) {
298 blist_free(newbl, count, newbl->bl_blocks - count);
300 blist_destroy(save);
303 #ifdef BLIST_DEBUG
306 * blist_print() - dump radix tree
309 void
310 blist_print(blist_t bl)
312 printf("BLIST {\n");
313 blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
314 printf("}\n");
317 #endif
319 /************************************************************************
320 * ALLOCATION SUPPORT FUNCTIONS *
321 ************************************************************************
323 * These support functions do all the actual work. They may seem
324 * rather longish, but that's because I've commented them up. The
325 * actual code is straight forward.
330 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
332 * This is the core of the allocator and is optimized for the 1 block
333 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
334 * somewhat slower. The 1 block allocation case is log2 and extremely
335 * quick.
338 static daddr_t
339 blst_leaf_alloc(
340 blmeta_t *scan,
341 daddr_t blk,
342 int count
344 u_daddr_t orig = scan->u.bmu_bitmap;
346 if (orig == 0) {
348 * Optimize bitmap all-allocated case. Also, count = 1
349 * case assumes at least 1 bit is free in the bitmap, so
350 * we have to take care of this case here.
352 scan->bm_bighint = 0;
353 return(SWAPBLK_NONE);
355 if (count == 1) {
357 * Optimized code to allocate one bit out of the bitmap
359 u_daddr_t mask;
360 int j = BLIST_BMAP_RADIX/2;
361 int r = 0;
363 mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
365 while (j) {
366 if ((orig & mask) == 0) {
367 r += j;
368 orig >>= j;
370 j >>= 1;
371 mask >>= j;
373 scan->u.bmu_bitmap &= ~(1 << r);
374 return(blk + r);
376 if (count <= BLIST_BMAP_RADIX) {
378 * non-optimized code to allocate N bits out of the bitmap.
379 * The more bits, the faster the code runs. It will run
380 * the slowest allocating 2 bits, but since there aren't any
381 * memory ops in the core loop (or shouldn't be, anyway),
382 * you probably won't notice the difference.
384 int j;
385 int n = BLIST_BMAP_RADIX - count;
386 u_daddr_t mask;
388 mask = (u_daddr_t)-1 >> n;
390 for (j = 0; j <= n; ++j) {
391 if ((orig & mask) == mask) {
392 scan->u.bmu_bitmap &= ~mask;
393 return(blk + j);
395 mask = (mask << 1);
399 * We couldn't allocate count in this subtree, update bighint.
401 scan->bm_bighint = count - 1;
402 return(SWAPBLK_NONE);
406 * blist_meta_alloc() - allocate at a meta in the radix tree.
408 * Attempt to allocate at a meta node. If we can't, we update
409 * bighint and return a failure. Updating bighint optimize future
410 * calls that hit this node. We have to check for our collapse cases
411 * and we have a few optimizations strewn in as well.
414 static daddr_t
415 blst_meta_alloc(
416 blmeta_t *scan,
417 daddr_t blk,
418 daddr_t count,
419 daddr_t radix,
420 int skip
422 int i;
423 int next_skip = ((u_int)skip / BLIST_META_RADIX);
425 if (scan->u.bmu_avail == 0) {
427 * ALL-ALLOCATED special case
429 scan->bm_bighint = count;
430 return(SWAPBLK_NONE);
433 if (scan->u.bmu_avail == radix) {
434 radix /= BLIST_META_RADIX;
437 * ALL-FREE special case, initialize uninitialize
438 * sublevel.
440 for (i = 1; i <= skip; i += next_skip) {
441 if (scan[i].bm_bighint == (daddr_t)-1)
442 break;
443 if (next_skip == 1) {
444 scan[i].u.bmu_bitmap = (u_daddr_t)-1;
445 scan[i].bm_bighint = BLIST_BMAP_RADIX;
446 } else {
447 scan[i].bm_bighint = radix;
448 scan[i].u.bmu_avail = radix;
451 } else {
452 radix /= BLIST_META_RADIX;
455 for (i = 1; i <= skip; i += next_skip) {
456 if (count <= scan[i].bm_bighint) {
458 * count fits in object
460 daddr_t r;
461 if (next_skip == 1) {
462 r = blst_leaf_alloc(&scan[i], blk, count);
463 } else {
464 r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
466 if (r != SWAPBLK_NONE) {
467 scan->u.bmu_avail -= count;
468 if (scan->bm_bighint > scan->u.bmu_avail)
469 scan->bm_bighint = scan->u.bmu_avail;
470 return(r);
472 } else if (scan[i].bm_bighint == (daddr_t)-1) {
474 * Terminator
476 break;
477 } else if (count > radix) {
479 * count does not fit in object even if it were
480 * complete free.
482 panic("blist_meta_alloc: allocation too large");
484 blk += radix;
488 * We couldn't allocate count in this subtree, update bighint.
490 if (scan->bm_bighint >= count)
491 scan->bm_bighint = count - 1;
492 return(SWAPBLK_NONE);
496 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
500 static void
501 blst_leaf_free(
502 blmeta_t *scan,
503 daddr_t blk,
504 int count
507 * free some data in this bitmap
509 * e.g.
510 * 0000111111111110000
511 * \_________/\__/
512 * v n
514 int n = blk & (BLIST_BMAP_RADIX - 1);
515 u_daddr_t mask;
517 mask = ((u_daddr_t)-1 << n) &
518 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
520 if (scan->u.bmu_bitmap & mask)
521 panic("blst_radix_free: freeing free block");
522 scan->u.bmu_bitmap |= mask;
525 * We could probably do a better job here. We are required to make
526 * bighint at least as large as the biggest contiguous block of
527 * data. If we just shoehorn it, a little extra overhead will
528 * be incured on the next allocation (but only that one typically).
530 scan->bm_bighint = BLIST_BMAP_RADIX;
534 * BLST_META_FREE() - free allocated blocks from radix tree meta info
536 * This support routine frees a range of blocks from the bitmap.
537 * The range must be entirely enclosed by this radix node. If a
538 * meta node, we break the range down recursively to free blocks
539 * in subnodes (which means that this code can free an arbitrary
540 * range whereas the allocation code cannot allocate an arbitrary
541 * range).
544 static void
545 blst_meta_free(
546 blmeta_t *scan,
547 daddr_t freeBlk,
548 daddr_t count,
549 daddr_t radix,
550 int skip,
551 daddr_t blk
553 int i;
554 int next_skip = ((u_int)skip / BLIST_META_RADIX);
556 #if 0
557 printf("FREE (%llx,%lld) FROM (%llx,%lld)\n",
558 (long long)freeBlk, (long long)count,
559 (long long)blk, (long long)radix
561 #endif
563 if (scan->u.bmu_avail == 0) {
565 * ALL-ALLOCATED special case, with possible
566 * shortcut to ALL-FREE special case.
568 scan->u.bmu_avail = count;
569 scan->bm_bighint = count;
571 if (count != radix) {
572 for (i = 1; i <= skip; i += next_skip) {
573 if (scan[i].bm_bighint == (daddr_t)-1)
574 break;
575 scan[i].bm_bighint = 0;
576 if (next_skip == 1) {
577 scan[i].u.bmu_bitmap = 0;
578 } else {
579 scan[i].u.bmu_avail = 0;
582 /* fall through */
584 } else {
585 scan->u.bmu_avail += count;
586 /* scan->bm_bighint = radix; */
590 * ALL-FREE special case.
593 if (scan->u.bmu_avail == radix)
594 return;
595 if (scan->u.bmu_avail > radix)
596 panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
597 (long long)count, (long long)scan->u.bmu_avail,
598 (long long)radix);
601 * Break the free down into its components
604 radix /= BLIST_META_RADIX;
606 i = (freeBlk - blk) / radix;
607 blk += i * radix;
608 i = i * next_skip + 1;
610 while (i <= skip && blk < freeBlk + count) {
611 daddr_t v;
613 v = blk + radix - freeBlk;
614 if (v > count)
615 v = count;
617 if (scan->bm_bighint == (daddr_t)-1)
618 panic("blst_meta_free: freeing unexpected range");
620 if (next_skip == 1) {
621 blst_leaf_free(&scan[i], freeBlk, v);
622 } else {
623 blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
625 if (scan->bm_bighint < scan[i].bm_bighint)
626 scan->bm_bighint = scan[i].bm_bighint;
627 count -= v;
628 freeBlk += v;
629 blk += radix;
630 i += next_skip;
635 * BLIST_RADIX_COPY() - copy one radix tree to another
637 * Locates free space in the source tree and frees it in the destination
638 * tree. The space may not already be free in the destination.
641 static void blst_copy(
642 blmeta_t *scan,
643 daddr_t blk,
644 daddr_t radix,
645 daddr_t skip,
646 blist_t dest,
647 daddr_t count
649 int next_skip;
650 int i;
653 * Leaf node
656 if (radix == BLIST_BMAP_RADIX) {
657 u_daddr_t v = scan->u.bmu_bitmap;
659 if (v == (u_daddr_t)-1) {
660 blist_free(dest, blk, count);
661 } else if (v != 0) {
662 int i;
664 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
665 if (v & (1 << i))
666 blist_free(dest, blk + i, 1);
669 return;
673 * Meta node
676 if (scan->u.bmu_avail == 0) {
678 * Source all allocated, leave dest allocated
680 return;
682 if (scan->u.bmu_avail == radix) {
684 * Source all free, free entire dest
686 if (count < radix)
687 blist_free(dest, blk, count);
688 else
689 blist_free(dest, blk, radix);
690 return;
694 radix /= BLIST_META_RADIX;
695 next_skip = ((u_int)skip / BLIST_META_RADIX);
697 for (i = 1; count && i <= skip; i += next_skip) {
698 if (scan[i].bm_bighint == (daddr_t)-1)
699 break;
701 if (count >= radix) {
702 blst_copy(
703 &scan[i],
704 blk,
705 radix,
706 next_skip - 1,
707 dest,
708 radix
710 count -= radix;
711 } else {
712 if (count) {
713 blst_copy(
714 &scan[i],
715 blk,
716 radix,
717 next_skip - 1,
718 dest,
719 count
722 count = 0;
724 blk += radix;
729 * BLST_LEAF_FILL() - allocate specific blocks in leaf bitmap
731 * This routine allocates all blocks in the specified range
732 * regardless of any existing allocations in that range. Returns
733 * the number of blocks allocated by the call.
736 static int
737 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
739 int n = blk & (BLIST_BMAP_RADIX - 1);
740 int nblks;
741 u_daddr_t mask, bitmap;
743 mask = ((u_daddr_t)-1 << n) &
744 ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
746 /* Count the number of blocks we're about to allocate */
747 bitmap = scan->u.bmu_bitmap & mask;
748 for (nblks = 0; bitmap != 0; nblks++)
749 bitmap &= bitmap - 1;
751 scan->u.bmu_bitmap &= ~mask;
752 return nblks;
756 * BLIST_META_FILL() - allocate specific blocks at a meta node
758 * This routine allocates the specified range of blocks,
759 * regardless of any existing allocations in the range. The
760 * range must be within the extent of this node. Returns the
761 * number of blocks allocated by the call.
763 static int
764 blst_meta_fill(
765 blmeta_t *scan,
766 daddr_t allocBlk,
767 daddr_t count,
768 daddr_t radix,
769 int skip,
770 daddr_t blk
772 int i;
773 int next_skip = ((u_int)skip / BLIST_META_RADIX);
774 int nblks = 0;
776 if (count == radix || scan->u.bmu_avail == 0) {
778 * ALL-ALLOCATED special case
780 nblks = scan->u.bmu_avail;
781 scan->u.bmu_avail = 0;
782 scan->bm_bighint = count;
783 return nblks;
786 if (scan->u.bmu_avail == radix) {
787 radix /= BLIST_META_RADIX;
790 * ALL-FREE special case, initialize sublevel
792 for (i = 1; i <= skip; i += next_skip) {
793 if (scan[i].bm_bighint == (daddr_t)-1)
794 break;
795 if (next_skip == 1) {
796 scan[i].u.bmu_bitmap = (u_daddr_t)-1;
797 scan[i].bm_bighint = BLIST_BMAP_RADIX;
798 } else {
799 scan[i].bm_bighint = radix;
800 scan[i].u.bmu_avail = radix;
803 } else {
804 radix /= BLIST_META_RADIX;
807 if (count > radix)
808 panic("blist_meta_fill: allocation too large");
810 i = (allocBlk - blk) / radix;
811 blk += i * radix;
812 i = i * next_skip + 1;
814 while (i <= skip && blk < allocBlk + count) {
815 daddr_t v;
817 v = blk + radix - allocBlk;
818 if (v > count)
819 v = count;
821 if (scan->bm_bighint == (daddr_t)-1)
822 panic("blst_meta_fill: filling unexpected range");
824 if (next_skip == 1) {
825 nblks += blst_leaf_fill(&scan[i], allocBlk, v);
826 } else {
827 nblks += blst_meta_fill(&scan[i], allocBlk, v,
828 radix, next_skip - 1, blk);
830 count -= v;
831 allocBlk += v;
832 blk += radix;
833 i += next_skip;
835 scan->u.bmu_avail -= nblks;
836 return nblks;
840 * BLST_RADIX_INIT() - initialize radix tree
842 * Initialize our meta structures and bitmaps and calculate the exact
843 * amount of space required to manage 'count' blocks - this space may
844 * be considerably less then the calculated radix due to the large
845 * RADIX values we use.
848 static daddr_t
849 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
851 int i;
852 int next_skip;
853 daddr_t memindex = 0;
856 * Leaf node
859 if (radix == BLIST_BMAP_RADIX) {
860 if (scan) {
861 scan->bm_bighint = 0;
862 scan->u.bmu_bitmap = 0;
864 return(memindex);
868 * Meta node. If allocating the entire object we can special
869 * case it. However, we need to figure out how much memory
870 * is required to manage 'count' blocks, so we continue on anyway.
873 if (scan) {
874 scan->bm_bighint = 0;
875 scan->u.bmu_avail = 0;
878 radix /= BLIST_META_RADIX;
879 next_skip = ((u_int)skip / BLIST_META_RADIX);
881 for (i = 1; i <= skip; i += next_skip) {
882 if (count >= radix) {
884 * Allocate the entire object
886 memindex = i + blst_radix_init(
887 ((scan) ? &scan[i] : NULL),
888 radix,
889 next_skip - 1,
890 radix
892 count -= radix;
893 } else if (count > 0) {
895 * Allocate a partial object
897 memindex = i + blst_radix_init(
898 ((scan) ? &scan[i] : NULL),
899 radix,
900 next_skip - 1,
901 count
903 count = 0;
904 } else {
906 * Add terminator and break out
908 if (scan)
909 scan[i].bm_bighint = (daddr_t)-1;
910 break;
913 if (memindex < i)
914 memindex = i;
915 return(memindex);
918 #ifdef BLIST_DEBUG
920 static void
921 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
923 int i;
924 int next_skip;
925 int lastState = 0;
927 if (radix == BLIST_BMAP_RADIX) {
928 printf(
929 "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
930 tab, tab, "",
931 (long long)blk, (long long)radix,
932 (long long)scan->u.bmu_bitmap,
933 (long long)scan->bm_bighint
935 return;
938 if (scan->u.bmu_avail == 0) {
939 printf(
940 "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
941 tab, tab, "",
942 (long long)blk,
943 (long long)radix
945 return;
947 if (scan->u.bmu_avail == radix) {
948 printf(
949 "%*.*s(%08llx,%lld) ALL FREE\n",
950 tab, tab, "",
951 (long long)blk,
952 (long long)radix
954 return;
957 printf(
958 "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
959 tab, tab, "",
960 (long long)blk, (long long)radix,
961 (long long)scan->u.bmu_avail,
962 (long long)radix,
963 (long long)scan->bm_bighint
966 radix /= BLIST_META_RADIX;
967 next_skip = ((u_int)skip / BLIST_META_RADIX);
968 tab += 4;
970 for (i = 1; i <= skip; i += next_skip) {
971 if (scan[i].bm_bighint == (daddr_t)-1) {
972 printf(
973 "%*.*s(%08llx,%lld): Terminator\n",
974 tab, tab, "",
975 (long long)blk, (long long)radix
977 lastState = 0;
978 break;
980 blst_radix_print(
981 &scan[i],
982 blk,
983 radix,
984 next_skip - 1,
987 blk += radix;
989 tab -= 4;
991 printf(
992 "%*.*s}\n",
993 tab, tab, ""
997 #endif
999 #ifdef BLIST_DEBUG
1002 main(int ac, char **av)
1004 int size = 1024;
1005 int i;
1006 blist_t bl;
1008 for (i = 1; i < ac; ++i) {
1009 const char *ptr = av[i];
1010 if (*ptr != '-') {
1011 size = strtol(ptr, NULL, 0);
1012 continue;
1014 ptr += 2;
1015 fprintf(stderr, "Bad option: %s\n", ptr - 2);
1016 exit(1);
1018 bl = blist_create(size, M_WAITOK);
1019 blist_free(bl, 0, size);
1021 for (;;) {
1022 char buf[1024];
1023 daddr_t da = 0;
1024 daddr_t count = 0;
1027 printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1028 (long long)size, (long long)bl->bl_radix);
1029 fflush(stdout);
1030 if (fgets(buf, sizeof(buf), stdin) == NULL)
1031 break;
1032 switch(buf[0]) {
1033 case 'r':
1034 if (sscanf(buf + 1, "%lld", &count) == 1) {
1035 blist_resize(&bl, count, 1);
1036 } else {
1037 printf("?\n");
1039 case 'p':
1040 blist_print(bl);
1041 break;
1042 case 'a':
1043 if (sscanf(buf + 1, "%lld", &count) == 1) {
1044 daddr_t blk = blist_alloc(bl, count);
1045 printf(" R=%08llx\n", (long long)blk);
1046 } else {
1047 printf("?\n");
1049 break;
1050 case 'f':
1051 if (sscanf(buf + 1, "%llx %lld",
1052 (long long *)&da, (long long *)&count) == 2) {
1053 blist_free(bl, da, count);
1054 } else {
1055 printf("?\n");
1057 break;
1058 case 'l':
1059 if (sscanf(buf + 1, "%llx %lld",
1060 (long long *)&da, (long long *)&count) == 2) {
1061 printf(" n=%d\n",
1062 blist_fill(bl, da, count));
1063 } else {
1064 printf("?\n");
1066 break;
1067 case '?':
1068 case 'h':
1069 puts(
1070 "p -print\n"
1071 "a %d -allocate\n"
1072 "f %x %d -free\n"
1073 "l %x %d -fill\n"
1074 "r %d -resize\n"
1075 "h/? -help"
1077 break;
1078 default:
1079 printf("?\n");
1080 break;
1083 return(0);
1086 void
1087 panic(const char *ctl, ...)
1089 va_list va;
1091 va_start(va, ctl);
1092 vfprintf(stderr, ctl, va);
1093 fprintf(stderr, "\n");
1094 va_end(va);
1095 exit(1);
1098 #endif