Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / sched_4bsd.c
blob88a54943f280e1bcc8ef5c391f59b0a2462aa560
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
38 #include "opt_hwpmc_hooks.h"
39 #include "opt_sched.h"
40 #include "opt_kdtrace.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/cpuset.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/kthread.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/smp.h>
54 #include <sys/sysctl.h>
55 #include <sys/sx.h>
56 #include <sys/turnstile.h>
57 #include <sys/umtx.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
61 #ifdef HWPMC_HOOKS
62 #include <sys/pmckern.h>
63 #endif
65 #ifdef KDTRACE_HOOKS
66 #include <sys/dtrace_bsd.h>
67 int dtrace_vtime_active;
68 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
69 #endif
72 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
73 * the range 100-256 Hz (approximately).
75 #define ESTCPULIM(e) \
76 min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
77 RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
78 #ifdef SMP
79 #define INVERSE_ESTCPU_WEIGHT (8 * smp_cpus)
80 #else
81 #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */
82 #endif
83 #define NICE_WEIGHT 1 /* Priorities per nice level. */
86 * The schedulable entity that runs a context.
87 * This is an extension to the thread structure and is tailored to
88 * the requirements of this scheduler
90 struct td_sched {
91 fixpt_t ts_pctcpu; /* (j) %cpu during p_swtime. */
92 int ts_cpticks; /* (j) Ticks of cpu time. */
93 int ts_slptime; /* (j) Seconds !RUNNING. */
94 int ts_flags;
95 struct runq *ts_runq; /* runq the thread is currently on */
98 /* flags kept in td_flags */
99 #define TDF_DIDRUN TDF_SCHED0 /* thread actually ran. */
100 #define TDF_BOUND TDF_SCHED1 /* Bound to one CPU. */
102 /* flags kept in ts_flags */
103 #define TSF_AFFINITY 0x0001 /* Has a non-"full" CPU set. */
105 #define SKE_RUNQ_PCPU(ts) \
106 ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
108 #define THREAD_CAN_SCHED(td, cpu) \
109 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
111 static struct td_sched td_sched0;
112 struct mtx sched_lock;
114 static int sched_tdcnt; /* Total runnable threads in the system. */
115 static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
116 #define SCHED_QUANTUM (hz / 10) /* Default sched quantum */
118 static void setup_runqs(void);
119 static void schedcpu(void);
120 static void schedcpu_thread(void);
121 static void sched_priority(struct thread *td, u_char prio);
122 static void sched_setup(void *dummy);
123 static void maybe_resched(struct thread *td);
124 static void updatepri(struct thread *td);
125 static void resetpriority(struct thread *td);
126 static void resetpriority_thread(struct thread *td);
127 #ifdef SMP
128 static int sched_pickcpu(struct thread *td);
129 static int forward_wakeup(int cpunum);
130 static void kick_other_cpu(int pri, int cpuid);
131 #endif
133 static struct kproc_desc sched_kp = {
134 "schedcpu",
135 schedcpu_thread,
136 NULL
138 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start,
139 &sched_kp);
140 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
143 * Global run queue.
145 static struct runq runq;
147 #ifdef SMP
149 * Per-CPU run queues
151 static struct runq runq_pcpu[MAXCPU];
152 long runq_length[MAXCPU];
153 #endif
155 static void
156 setup_runqs(void)
158 #ifdef SMP
159 int i;
161 for (i = 0; i < MAXCPU; ++i)
162 runq_init(&runq_pcpu[i]);
163 #endif
165 runq_init(&runq);
168 static int
169 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
171 int error, new_val;
173 new_val = sched_quantum * tick;
174 error = sysctl_handle_int(oidp, &new_val, 0, req);
175 if (error != 0 || req->newptr == NULL)
176 return (error);
177 if (new_val < tick)
178 return (EINVAL);
179 sched_quantum = new_val / tick;
180 hogticks = 2 * sched_quantum;
181 return (0);
184 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
186 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
187 "Scheduler name");
189 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
190 0, sizeof sched_quantum, sysctl_kern_quantum, "I",
191 "Roundrobin scheduling quantum in microseconds");
193 #ifdef SMP
194 /* Enable forwarding of wakeups to all other cpus */
195 SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP");
197 static int runq_fuzz = 1;
198 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
200 static int forward_wakeup_enabled = 1;
201 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
202 &forward_wakeup_enabled, 0,
203 "Forwarding of wakeup to idle CPUs");
205 static int forward_wakeups_requested = 0;
206 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
207 &forward_wakeups_requested, 0,
208 "Requests for Forwarding of wakeup to idle CPUs");
210 static int forward_wakeups_delivered = 0;
211 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
212 &forward_wakeups_delivered, 0,
213 "Completed Forwarding of wakeup to idle CPUs");
215 static int forward_wakeup_use_mask = 1;
216 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
217 &forward_wakeup_use_mask, 0,
218 "Use the mask of idle cpus");
220 static int forward_wakeup_use_loop = 0;
221 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
222 &forward_wakeup_use_loop, 0,
223 "Use a loop to find idle cpus");
225 static int forward_wakeup_use_single = 0;
226 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, onecpu, CTLFLAG_RW,
227 &forward_wakeup_use_single, 0,
228 "Only signal one idle cpu");
230 static int forward_wakeup_use_htt = 0;
231 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW,
232 &forward_wakeup_use_htt, 0,
233 "account for htt");
235 #endif
236 #if 0
237 static int sched_followon = 0;
238 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
239 &sched_followon, 0,
240 "allow threads to share a quantum");
241 #endif
243 static __inline void
244 sched_load_add(void)
246 sched_tdcnt++;
247 CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
250 static __inline void
251 sched_load_rem(void)
253 sched_tdcnt--;
254 CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
257 * Arrange to reschedule if necessary, taking the priorities and
258 * schedulers into account.
260 static void
261 maybe_resched(struct thread *td)
264 THREAD_LOCK_ASSERT(td, MA_OWNED);
265 if (td->td_priority < curthread->td_priority)
266 curthread->td_flags |= TDF_NEEDRESCHED;
270 * This function is called when a thread is about to be put on run queue
271 * because it has been made runnable or its priority has been adjusted. It
272 * determines if the new thread should be immediately preempted to. If so,
273 * it switches to it and eventually returns true. If not, it returns false
274 * so that the caller may place the thread on an appropriate run queue.
277 maybe_preempt(struct thread *td)
279 #ifdef PREEMPTION
280 struct thread *ctd;
281 int cpri, pri;
284 * The new thread should not preempt the current thread if any of the
285 * following conditions are true:
287 * - The kernel is in the throes of crashing (panicstr).
288 * - The current thread has a higher (numerically lower) or
289 * equivalent priority. Note that this prevents curthread from
290 * trying to preempt to itself.
291 * - It is too early in the boot for context switches (cold is set).
292 * - The current thread has an inhibitor set or is in the process of
293 * exiting. In this case, the current thread is about to switch
294 * out anyways, so there's no point in preempting. If we did,
295 * the current thread would not be properly resumed as well, so
296 * just avoid that whole landmine.
297 * - If the new thread's priority is not a realtime priority and
298 * the current thread's priority is not an idle priority and
299 * FULL_PREEMPTION is disabled.
301 * If all of these conditions are false, but the current thread is in
302 * a nested critical section, then we have to defer the preemption
303 * until we exit the critical section. Otherwise, switch immediately
304 * to the new thread.
306 ctd = curthread;
307 THREAD_LOCK_ASSERT(td, MA_OWNED);
308 KASSERT((td->td_inhibitors == 0),
309 ("maybe_preempt: trying to run inhibited thread"));
310 pri = td->td_priority;
311 cpri = ctd->td_priority;
312 if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
313 TD_IS_INHIBITED(ctd))
314 return (0);
315 #ifndef FULL_PREEMPTION
316 if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
317 return (0);
318 #endif
320 if (ctd->td_critnest > 1) {
321 CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
322 ctd->td_critnest);
323 ctd->td_owepreempt = 1;
324 return (0);
327 * Thread is runnable but not yet put on system run queue.
329 MPASS(ctd->td_lock == td->td_lock);
330 MPASS(TD_ON_RUNQ(td));
331 TD_SET_RUNNING(td);
332 CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
333 td->td_proc->p_pid, td->td_name);
334 mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
336 * td's lock pointer may have changed. We have to return with it
337 * locked.
339 spinlock_enter();
340 thread_unlock(ctd);
341 thread_lock(td);
342 spinlock_exit();
343 return (1);
344 #else
345 return (0);
346 #endif
350 * Constants for digital decay and forget:
351 * 90% of (td_estcpu) usage in 5 * loadav time
352 * 95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
353 * Note that, as ps(1) mentions, this can let percentages
354 * total over 100% (I've seen 137.9% for 3 processes).
356 * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
358 * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
359 * That is, the system wants to compute a value of decay such
360 * that the following for loop:
361 * for (i = 0; i < (5 * loadavg); i++)
362 * td_estcpu *= decay;
363 * will compute
364 * td_estcpu *= 0.1;
365 * for all values of loadavg:
367 * Mathematically this loop can be expressed by saying:
368 * decay ** (5 * loadavg) ~= .1
370 * The system computes decay as:
371 * decay = (2 * loadavg) / (2 * loadavg + 1)
373 * We wish to prove that the system's computation of decay
374 * will always fulfill the equation:
375 * decay ** (5 * loadavg) ~= .1
377 * If we compute b as:
378 * b = 2 * loadavg
379 * then
380 * decay = b / (b + 1)
382 * We now need to prove two things:
383 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
384 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
386 * Facts:
387 * For x close to zero, exp(x) =~ 1 + x, since
388 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
389 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
390 * For x close to zero, ln(1+x) =~ x, since
391 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
392 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
393 * ln(.1) =~ -2.30
395 * Proof of (1):
396 * Solve (factor)**(power) =~ .1 given power (5*loadav):
397 * solving for factor,
398 * ln(factor) =~ (-2.30/5*loadav), or
399 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
400 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
402 * Proof of (2):
403 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
404 * solving for power,
405 * power*ln(b/(b+1)) =~ -2.30, or
406 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
408 * Actual power values for the implemented algorithm are as follows:
409 * loadav: 1 2 3 4
410 * power: 5.68 10.32 14.94 19.55
413 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
414 #define loadfactor(loadav) (2 * (loadav))
415 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
417 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
418 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
419 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
422 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
423 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
424 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
426 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
427 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
429 * If you don't want to bother with the faster/more-accurate formula, you
430 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
431 * (more general) method of calculating the %age of CPU used by a process.
433 #define CCPU_SHIFT 11
436 * Recompute process priorities, every hz ticks.
437 * MP-safe, called without the Giant mutex.
439 /* ARGSUSED */
440 static void
441 schedcpu(void)
443 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
444 struct thread *td;
445 struct proc *p;
446 struct td_sched *ts;
447 int awake, realstathz;
449 realstathz = stathz ? stathz : hz;
450 sx_slock(&allproc_lock);
451 FOREACH_PROC_IN_SYSTEM(p) {
452 PROC_LOCK(p);
453 FOREACH_THREAD_IN_PROC(p, td) {
454 awake = 0;
455 thread_lock(td);
456 ts = td->td_sched;
458 * Increment sleep time (if sleeping). We
459 * ignore overflow, as above.
462 * The td_sched slptimes are not touched in wakeup
463 * because the thread may not HAVE everything in
464 * memory? XXX I think this is out of date.
466 if (TD_ON_RUNQ(td)) {
467 awake = 1;
468 td->td_flags &= ~TDF_DIDRUN;
469 } else if (TD_IS_RUNNING(td)) {
470 awake = 1;
471 /* Do not clear TDF_DIDRUN */
472 } else if (td->td_flags & TDF_DIDRUN) {
473 awake = 1;
474 td->td_flags &= ~TDF_DIDRUN;
478 * ts_pctcpu is only for ps and ttyinfo().
480 ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
482 * If the td_sched has been idle the entire second,
483 * stop recalculating its priority until
484 * it wakes up.
486 if (ts->ts_cpticks != 0) {
487 #if (FSHIFT >= CCPU_SHIFT)
488 ts->ts_pctcpu += (realstathz == 100)
489 ? ((fixpt_t) ts->ts_cpticks) <<
490 (FSHIFT - CCPU_SHIFT) :
491 100 * (((fixpt_t) ts->ts_cpticks)
492 << (FSHIFT - CCPU_SHIFT)) / realstathz;
493 #else
494 ts->ts_pctcpu += ((FSCALE - ccpu) *
495 (ts->ts_cpticks *
496 FSCALE / realstathz)) >> FSHIFT;
497 #endif
498 ts->ts_cpticks = 0;
501 * If there are ANY running threads in this process,
502 * then don't count it as sleeping.
503 * XXX: this is broken.
505 if (awake) {
506 if (ts->ts_slptime > 1) {
508 * In an ideal world, this should not
509 * happen, because whoever woke us
510 * up from the long sleep should have
511 * unwound the slptime and reset our
512 * priority before we run at the stale
513 * priority. Should KASSERT at some
514 * point when all the cases are fixed.
516 updatepri(td);
518 ts->ts_slptime = 0;
519 } else
520 ts->ts_slptime++;
521 if (ts->ts_slptime > 1) {
522 thread_unlock(td);
523 continue;
525 td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
526 resetpriority(td);
527 resetpriority_thread(td);
528 thread_unlock(td);
530 PROC_UNLOCK(p);
532 sx_sunlock(&allproc_lock);
536 * Main loop for a kthread that executes schedcpu once a second.
538 static void
539 schedcpu_thread(void)
542 for (;;) {
543 schedcpu();
544 pause("-", hz);
549 * Recalculate the priority of a process after it has slept for a while.
550 * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
551 * least six times the loadfactor will decay td_estcpu to zero.
553 static void
554 updatepri(struct thread *td)
556 struct td_sched *ts;
557 fixpt_t loadfac;
558 unsigned int newcpu;
560 ts = td->td_sched;
561 loadfac = loadfactor(averunnable.ldavg[0]);
562 if (ts->ts_slptime > 5 * loadfac)
563 td->td_estcpu = 0;
564 else {
565 newcpu = td->td_estcpu;
566 ts->ts_slptime--; /* was incremented in schedcpu() */
567 while (newcpu && --ts->ts_slptime)
568 newcpu = decay_cpu(loadfac, newcpu);
569 td->td_estcpu = newcpu;
574 * Compute the priority of a process when running in user mode.
575 * Arrange to reschedule if the resulting priority is better
576 * than that of the current process.
578 static void
579 resetpriority(struct thread *td)
581 register unsigned int newpriority;
583 if (td->td_pri_class == PRI_TIMESHARE) {
584 newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
585 NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
586 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
587 PRI_MAX_TIMESHARE);
588 sched_user_prio(td, newpriority);
593 * Update the thread's priority when the associated process's user
594 * priority changes.
596 static void
597 resetpriority_thread(struct thread *td)
600 /* Only change threads with a time sharing user priority. */
601 if (td->td_priority < PRI_MIN_TIMESHARE ||
602 td->td_priority > PRI_MAX_TIMESHARE)
603 return;
605 /* XXX the whole needresched thing is broken, but not silly. */
606 maybe_resched(td);
608 sched_prio(td, td->td_user_pri);
611 /* ARGSUSED */
612 static void
613 sched_setup(void *dummy)
615 setup_runqs();
617 if (sched_quantum == 0)
618 sched_quantum = SCHED_QUANTUM;
619 hogticks = 2 * sched_quantum;
621 /* Account for thread0. */
622 sched_load_add();
625 /* External interfaces start here */
628 * Very early in the boot some setup of scheduler-specific
629 * parts of proc0 and of some scheduler resources needs to be done.
630 * Called from:
631 * proc0_init()
633 void
634 schedinit(void)
637 * Set up the scheduler specific parts of proc0.
639 proc0.p_sched = NULL; /* XXX */
640 thread0.td_sched = &td_sched0;
641 thread0.td_lock = &sched_lock;
642 mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
646 sched_runnable(void)
648 #ifdef SMP
649 return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
650 #else
651 return runq_check(&runq);
652 #endif
656 sched_rr_interval(void)
658 if (sched_quantum == 0)
659 sched_quantum = SCHED_QUANTUM;
660 return (sched_quantum);
664 * We adjust the priority of the current process. The priority of
665 * a process gets worse as it accumulates CPU time. The cpu usage
666 * estimator (td_estcpu) is increased here. resetpriority() will
667 * compute a different priority each time td_estcpu increases by
668 * INVERSE_ESTCPU_WEIGHT
669 * (until MAXPRI is reached). The cpu usage estimator ramps up
670 * quite quickly when the process is running (linearly), and decays
671 * away exponentially, at a rate which is proportionally slower when
672 * the system is busy. The basic principle is that the system will
673 * 90% forget that the process used a lot of CPU time in 5 * loadav
674 * seconds. This causes the system to favor processes which haven't
675 * run much recently, and to round-robin among other processes.
677 void
678 sched_clock(struct thread *td)
680 struct td_sched *ts;
682 THREAD_LOCK_ASSERT(td, MA_OWNED);
683 ts = td->td_sched;
685 ts->ts_cpticks++;
686 td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
687 if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
688 resetpriority(td);
689 resetpriority_thread(td);
693 * Force a context switch if the current thread has used up a full
694 * quantum (default quantum is 100ms).
696 if (!TD_IS_IDLETHREAD(td) &&
697 ticks - PCPU_GET(switchticks) >= sched_quantum)
698 td->td_flags |= TDF_NEEDRESCHED;
702 * Charge child's scheduling CPU usage to parent.
704 void
705 sched_exit(struct proc *p, struct thread *td)
708 CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
709 td, td->td_name, td->td_priority);
710 PROC_LOCK_ASSERT(p, MA_OWNED);
711 sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
714 void
715 sched_exit_thread(struct thread *td, struct thread *child)
718 CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
719 child, child->td_name, child->td_priority);
720 thread_lock(td);
721 td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
722 thread_unlock(td);
723 mtx_lock_spin(&sched_lock);
724 if ((child->td_proc->p_flag & P_NOLOAD) == 0)
725 sched_load_rem();
726 mtx_unlock_spin(&sched_lock);
729 void
730 sched_fork(struct thread *td, struct thread *childtd)
732 sched_fork_thread(td, childtd);
735 void
736 sched_fork_thread(struct thread *td, struct thread *childtd)
738 struct td_sched *ts;
740 childtd->td_estcpu = td->td_estcpu;
741 childtd->td_lock = &sched_lock;
742 childtd->td_cpuset = cpuset_ref(td->td_cpuset);
743 ts = childtd->td_sched;
744 bzero(ts, sizeof(*ts));
745 ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
748 void
749 sched_nice(struct proc *p, int nice)
751 struct thread *td;
753 PROC_LOCK_ASSERT(p, MA_OWNED);
754 p->p_nice = nice;
755 FOREACH_THREAD_IN_PROC(p, td) {
756 thread_lock(td);
757 resetpriority(td);
758 resetpriority_thread(td);
759 thread_unlock(td);
763 void
764 sched_class(struct thread *td, int class)
766 THREAD_LOCK_ASSERT(td, MA_OWNED);
767 td->td_pri_class = class;
771 * Adjust the priority of a thread.
773 static void
774 sched_priority(struct thread *td, u_char prio)
776 CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
777 td, td->td_name, td->td_priority, prio, curthread,
778 curthread->td_name);
780 THREAD_LOCK_ASSERT(td, MA_OWNED);
781 if (td->td_priority == prio)
782 return;
783 td->td_priority = prio;
784 if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
785 sched_rem(td);
786 sched_add(td, SRQ_BORING);
791 * Update a thread's priority when it is lent another thread's
792 * priority.
794 void
795 sched_lend_prio(struct thread *td, u_char prio)
798 td->td_flags |= TDF_BORROWING;
799 sched_priority(td, prio);
803 * Restore a thread's priority when priority propagation is
804 * over. The prio argument is the minimum priority the thread
805 * needs to have to satisfy other possible priority lending
806 * requests. If the thread's regulary priority is less
807 * important than prio the thread will keep a priority boost
808 * of prio.
810 void
811 sched_unlend_prio(struct thread *td, u_char prio)
813 u_char base_pri;
815 if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
816 td->td_base_pri <= PRI_MAX_TIMESHARE)
817 base_pri = td->td_user_pri;
818 else
819 base_pri = td->td_base_pri;
820 if (prio >= base_pri) {
821 td->td_flags &= ~TDF_BORROWING;
822 sched_prio(td, base_pri);
823 } else
824 sched_lend_prio(td, prio);
827 void
828 sched_prio(struct thread *td, u_char prio)
830 u_char oldprio;
832 /* First, update the base priority. */
833 td->td_base_pri = prio;
836 * If the thread is borrowing another thread's priority, don't ever
837 * lower the priority.
839 if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
840 return;
842 /* Change the real priority. */
843 oldprio = td->td_priority;
844 sched_priority(td, prio);
847 * If the thread is on a turnstile, then let the turnstile update
848 * its state.
850 if (TD_ON_LOCK(td) && oldprio != prio)
851 turnstile_adjust(td, oldprio);
854 void
855 sched_user_prio(struct thread *td, u_char prio)
857 u_char oldprio;
859 THREAD_LOCK_ASSERT(td, MA_OWNED);
860 td->td_base_user_pri = prio;
861 if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
862 return;
863 oldprio = td->td_user_pri;
864 td->td_user_pri = prio;
867 void
868 sched_lend_user_prio(struct thread *td, u_char prio)
870 u_char oldprio;
872 THREAD_LOCK_ASSERT(td, MA_OWNED);
873 td->td_flags |= TDF_UBORROWING;
874 oldprio = td->td_user_pri;
875 td->td_user_pri = prio;
878 void
879 sched_unlend_user_prio(struct thread *td, u_char prio)
881 u_char base_pri;
883 THREAD_LOCK_ASSERT(td, MA_OWNED);
884 base_pri = td->td_base_user_pri;
885 if (prio >= base_pri) {
886 td->td_flags &= ~TDF_UBORROWING;
887 sched_user_prio(td, base_pri);
888 } else {
889 sched_lend_user_prio(td, prio);
893 void
894 sched_sleep(struct thread *td, int pri)
897 THREAD_LOCK_ASSERT(td, MA_OWNED);
898 td->td_slptick = ticks;
899 td->td_sched->ts_slptime = 0;
900 if (pri)
901 sched_prio(td, pri);
902 if (TD_IS_SUSPENDED(td) || pri <= PSOCK)
903 td->td_flags |= TDF_CANSWAP;
906 void
907 sched_switch(struct thread *td, struct thread *newtd, int flags)
909 struct td_sched *ts;
910 struct proc *p;
912 ts = td->td_sched;
913 p = td->td_proc;
915 THREAD_LOCK_ASSERT(td, MA_OWNED);
918 * Switch to the sched lock to fix things up and pick
919 * a new thread.
921 if (td->td_lock != &sched_lock) {
922 mtx_lock_spin(&sched_lock);
923 thread_unlock(td);
926 if ((p->p_flag & P_NOLOAD) == 0)
927 sched_load_rem();
929 if (newtd)
930 newtd->td_flags |= (td->td_flags & TDF_NEEDRESCHED);
932 td->td_lastcpu = td->td_oncpu;
933 td->td_flags &= ~TDF_NEEDRESCHED;
934 td->td_owepreempt = 0;
935 td->td_oncpu = NOCPU;
938 * At the last moment, if this thread is still marked RUNNING,
939 * then put it back on the run queue as it has not been suspended
940 * or stopped or any thing else similar. We never put the idle
941 * threads on the run queue, however.
943 if (td->td_flags & TDF_IDLETD) {
944 TD_SET_CAN_RUN(td);
945 #ifdef SMP
946 idle_cpus_mask &= ~PCPU_GET(cpumask);
947 #endif
948 } else {
949 if (TD_IS_RUNNING(td)) {
950 /* Put us back on the run queue. */
951 sched_add(td, (flags & SW_PREEMPT) ?
952 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
953 SRQ_OURSELF|SRQ_YIELDING);
956 if (newtd) {
958 * The thread we are about to run needs to be counted
959 * as if it had been added to the run queue and selected.
960 * It came from:
961 * * A preemption
962 * * An upcall
963 * * A followon
965 KASSERT((newtd->td_inhibitors == 0),
966 ("trying to run inhibited thread"));
967 newtd->td_flags |= TDF_DIDRUN;
968 TD_SET_RUNNING(newtd);
969 if ((newtd->td_proc->p_flag & P_NOLOAD) == 0)
970 sched_load_add();
971 } else {
972 newtd = choosethread();
974 MPASS(newtd->td_lock == &sched_lock);
976 if (td != newtd) {
977 #ifdef HWPMC_HOOKS
978 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
979 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
980 #endif
981 /* I feel sleepy */
982 lock_profile_release_lock(&sched_lock.lock_object);
983 #ifdef KDTRACE_HOOKS
985 * If DTrace has set the active vtime enum to anything
986 * other than INACTIVE (0), then it should have set the
987 * function to call.
989 if (dtrace_vtime_active)
990 (*dtrace_vtime_switch_func)(newtd);
991 #endif
993 cpu_switch(td, newtd, td->td_lock);
994 lock_profile_obtain_lock_success(&sched_lock.lock_object,
995 0, 0, __FILE__, __LINE__);
997 * Where am I? What year is it?
998 * We are in the same thread that went to sleep above,
999 * but any amount of time may have passed. All our context
1000 * will still be available as will local variables.
1001 * PCPU values however may have changed as we may have
1002 * changed CPU so don't trust cached values of them.
1003 * New threads will go to fork_exit() instead of here
1004 * so if you change things here you may need to change
1005 * things there too.
1007 * If the thread above was exiting it will never wake
1008 * up again here, so either it has saved everything it
1009 * needed to, or the thread_wait() or wait() will
1010 * need to reap it.
1012 #ifdef HWPMC_HOOKS
1013 if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1014 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1015 #endif
1018 #ifdef SMP
1019 if (td->td_flags & TDF_IDLETD)
1020 idle_cpus_mask |= PCPU_GET(cpumask);
1021 #endif
1022 sched_lock.mtx_lock = (uintptr_t)td;
1023 td->td_oncpu = PCPU_GET(cpuid);
1024 MPASS(td->td_lock == &sched_lock);
1027 void
1028 sched_wakeup(struct thread *td)
1030 struct td_sched *ts;
1032 THREAD_LOCK_ASSERT(td, MA_OWNED);
1033 ts = td->td_sched;
1034 td->td_flags &= ~TDF_CANSWAP;
1035 if (ts->ts_slptime > 1) {
1036 updatepri(td);
1037 resetpriority(td);
1039 td->td_slptick = ticks;
1040 ts->ts_slptime = 0;
1041 sched_add(td, SRQ_BORING);
1044 #ifdef SMP
1045 static int
1046 forward_wakeup(int cpunum)
1048 struct pcpu *pc;
1049 cpumask_t dontuse, id, map, map2, map3, me;
1051 mtx_assert(&sched_lock, MA_OWNED);
1053 CTR0(KTR_RUNQ, "forward_wakeup()");
1055 if ((!forward_wakeup_enabled) ||
1056 (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1057 return (0);
1058 if (!smp_started || cold || panicstr)
1059 return (0);
1061 forward_wakeups_requested++;
1064 * Check the idle mask we received against what we calculated
1065 * before in the old version.
1067 me = PCPU_GET(cpumask);
1069 /* Don't bother if we should be doing it ourself. */
1070 if ((me & idle_cpus_mask) && (cpunum == NOCPU || me == (1 << cpunum)))
1071 return (0);
1073 dontuse = me | stopped_cpus | hlt_cpus_mask;
1074 map3 = 0;
1075 if (forward_wakeup_use_loop) {
1076 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
1077 id = pc->pc_cpumask;
1078 if ((id & dontuse) == 0 &&
1079 pc->pc_curthread == pc->pc_idlethread) {
1080 map3 |= id;
1085 if (forward_wakeup_use_mask) {
1086 map = 0;
1087 map = idle_cpus_mask & ~dontuse;
1089 /* If they are both on, compare and use loop if different. */
1090 if (forward_wakeup_use_loop) {
1091 if (map != map3) {
1092 printf("map (%02X) != map3 (%02X)\n", map,
1093 map3);
1094 map = map3;
1097 } else {
1098 map = map3;
1101 /* If we only allow a specific CPU, then mask off all the others. */
1102 if (cpunum != NOCPU) {
1103 KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1104 map &= (1 << cpunum);
1105 } else {
1106 /* Try choose an idle die. */
1107 if (forward_wakeup_use_htt) {
1108 map2 = (map & (map >> 1)) & 0x5555;
1109 if (map2) {
1110 map = map2;
1114 /* Set only one bit. */
1115 if (forward_wakeup_use_single) {
1116 map = map & ((~map) + 1);
1119 if (map) {
1120 forward_wakeups_delivered++;
1121 ipi_selected(map, IPI_AST);
1122 return (1);
1124 if (cpunum == NOCPU)
1125 printf("forward_wakeup: Idle processor not found\n");
1126 return (0);
1129 static void
1130 kick_other_cpu(int pri, int cpuid)
1132 struct pcpu *pcpu;
1133 int cpri;
1135 pcpu = pcpu_find(cpuid);
1136 if (idle_cpus_mask & pcpu->pc_cpumask) {
1137 forward_wakeups_delivered++;
1138 ipi_selected(pcpu->pc_cpumask, IPI_AST);
1139 return;
1142 cpri = pcpu->pc_curthread->td_priority;
1143 if (pri >= cpri)
1144 return;
1146 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1147 #if !defined(FULL_PREEMPTION)
1148 if (pri <= PRI_MAX_ITHD)
1149 #endif /* ! FULL_PREEMPTION */
1151 ipi_selected(pcpu->pc_cpumask, IPI_PREEMPT);
1152 return;
1154 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1156 pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1157 ipi_selected(pcpu->pc_cpumask, IPI_AST);
1158 return;
1160 #endif /* SMP */
1162 #ifdef SMP
1163 static int
1164 sched_pickcpu(struct thread *td)
1166 int best, cpu;
1168 mtx_assert(&sched_lock, MA_OWNED);
1170 if (THREAD_CAN_SCHED(td, td->td_lastcpu))
1171 best = td->td_lastcpu;
1172 else
1173 best = NOCPU;
1174 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1175 if (CPU_ABSENT(cpu))
1176 continue;
1177 if (!THREAD_CAN_SCHED(td, cpu))
1178 continue;
1180 if (best == NOCPU)
1181 best = cpu;
1182 else if (runq_length[cpu] < runq_length[best])
1183 best = cpu;
1185 KASSERT(best != NOCPU, ("no valid CPUs"));
1187 return (best);
1189 #endif
1191 void
1192 sched_add(struct thread *td, int flags)
1193 #ifdef SMP
1195 struct td_sched *ts;
1196 int forwarded = 0;
1197 int cpu;
1198 int single_cpu = 0;
1200 ts = td->td_sched;
1201 THREAD_LOCK_ASSERT(td, MA_OWNED);
1202 KASSERT((td->td_inhibitors == 0),
1203 ("sched_add: trying to run inhibited thread"));
1204 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1205 ("sched_add: bad thread state"));
1206 KASSERT(td->td_flags & TDF_INMEM,
1207 ("sched_add: thread swapped out"));
1208 CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1209 td, td->td_name, td->td_priority, curthread,
1210 curthread->td_name);
1213 * Now that the thread is moving to the run-queue, set the lock
1214 * to the scheduler's lock.
1216 if (td->td_lock != &sched_lock) {
1217 mtx_lock_spin(&sched_lock);
1218 thread_lock_set(td, &sched_lock);
1220 TD_SET_RUNQ(td);
1222 if (td->td_pinned != 0) {
1223 cpu = td->td_lastcpu;
1224 ts->ts_runq = &runq_pcpu[cpu];
1225 single_cpu = 1;
1226 CTR3(KTR_RUNQ,
1227 "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1228 cpu);
1229 } else if (td->td_flags & TDF_BOUND) {
1230 /* Find CPU from bound runq. */
1231 KASSERT(SKE_RUNQ_PCPU(ts),
1232 ("sched_add: bound td_sched not on cpu runq"));
1233 cpu = ts->ts_runq - &runq_pcpu[0];
1234 single_cpu = 1;
1235 CTR3(KTR_RUNQ,
1236 "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1237 cpu);
1238 } else if (ts->ts_flags & TSF_AFFINITY) {
1239 /* Find a valid CPU for our cpuset */
1240 cpu = sched_pickcpu(td);
1241 ts->ts_runq = &runq_pcpu[cpu];
1242 single_cpu = 1;
1243 CTR3(KTR_RUNQ,
1244 "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1245 cpu);
1246 } else {
1247 CTR2(KTR_RUNQ,
1248 "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1249 td);
1250 cpu = NOCPU;
1251 ts->ts_runq = &runq;
1254 if (single_cpu && (cpu != PCPU_GET(cpuid))) {
1255 kick_other_cpu(td->td_priority, cpu);
1256 } else {
1257 if (!single_cpu) {
1258 cpumask_t me = PCPU_GET(cpumask);
1259 cpumask_t idle = idle_cpus_mask & me;
1261 if (!idle && ((flags & SRQ_INTR) == 0) &&
1262 (idle_cpus_mask & ~(hlt_cpus_mask | me)))
1263 forwarded = forward_wakeup(cpu);
1266 if (!forwarded) {
1267 if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1268 return;
1269 else
1270 maybe_resched(td);
1274 if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1275 sched_load_add();
1276 runq_add(ts->ts_runq, td, flags);
1277 if (cpu != NOCPU)
1278 runq_length[cpu]++;
1280 #else /* SMP */
1282 struct td_sched *ts;
1284 ts = td->td_sched;
1285 THREAD_LOCK_ASSERT(td, MA_OWNED);
1286 KASSERT((td->td_inhibitors == 0),
1287 ("sched_add: trying to run inhibited thread"));
1288 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1289 ("sched_add: bad thread state"));
1290 KASSERT(td->td_flags & TDF_INMEM,
1291 ("sched_add: thread swapped out"));
1292 CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1293 td, td->td_name, td->td_priority, curthread,
1294 curthread->td_name);
1297 * Now that the thread is moving to the run-queue, set the lock
1298 * to the scheduler's lock.
1300 if (td->td_lock != &sched_lock) {
1301 mtx_lock_spin(&sched_lock);
1302 thread_lock_set(td, &sched_lock);
1304 TD_SET_RUNQ(td);
1305 CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1306 ts->ts_runq = &runq;
1309 * If we are yielding (on the way out anyhow) or the thread
1310 * being saved is US, then don't try be smart about preemption
1311 * or kicking off another CPU as it won't help and may hinder.
1312 * In the YIEDLING case, we are about to run whoever is being
1313 * put in the queue anyhow, and in the OURSELF case, we are
1314 * puting ourself on the run queue which also only happens
1315 * when we are about to yield.
1317 if ((flags & SRQ_YIELDING) == 0) {
1318 if (maybe_preempt(td))
1319 return;
1321 if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1322 sched_load_add();
1323 runq_add(ts->ts_runq, td, flags);
1324 maybe_resched(td);
1326 #endif /* SMP */
1328 void
1329 sched_rem(struct thread *td)
1331 struct td_sched *ts;
1333 ts = td->td_sched;
1334 KASSERT(td->td_flags & TDF_INMEM,
1335 ("sched_rem: thread swapped out"));
1336 KASSERT(TD_ON_RUNQ(td),
1337 ("sched_rem: thread not on run queue"));
1338 mtx_assert(&sched_lock, MA_OWNED);
1339 CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1340 td, td->td_name, td->td_priority, curthread,
1341 curthread->td_name);
1343 if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1344 sched_load_rem();
1345 #ifdef SMP
1346 if (ts->ts_runq != &runq)
1347 runq_length[ts->ts_runq - runq_pcpu]--;
1348 #endif
1349 runq_remove(ts->ts_runq, td);
1350 TD_SET_CAN_RUN(td);
1354 * Select threads to run. Note that running threads still consume a
1355 * slot.
1357 struct thread *
1358 sched_choose(void)
1360 struct thread *td;
1361 struct runq *rq;
1363 mtx_assert(&sched_lock, MA_OWNED);
1364 #ifdef SMP
1365 struct thread *tdcpu;
1367 rq = &runq;
1368 td = runq_choose_fuzz(&runq, runq_fuzz);
1369 tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1371 if (td == NULL ||
1372 (tdcpu != NULL &&
1373 tdcpu->td_priority < td->td_priority)) {
1374 CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1375 PCPU_GET(cpuid));
1376 td = tdcpu;
1377 rq = &runq_pcpu[PCPU_GET(cpuid)];
1378 } else {
1379 CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1382 #else
1383 rq = &runq;
1384 td = runq_choose(&runq);
1385 #endif
1387 if (td) {
1388 #ifdef SMP
1389 if (td == tdcpu)
1390 runq_length[PCPU_GET(cpuid)]--;
1391 #endif
1392 runq_remove(rq, td);
1393 td->td_flags |= TDF_DIDRUN;
1395 KASSERT(td->td_flags & TDF_INMEM,
1396 ("sched_choose: thread swapped out"));
1397 return (td);
1399 return (PCPU_GET(idlethread));
1402 void
1403 sched_preempt(struct thread *td)
1405 thread_lock(td);
1406 if (td->td_critnest > 1)
1407 td->td_owepreempt = 1;
1408 else
1409 mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1410 thread_unlock(td);
1413 void
1414 sched_userret(struct thread *td)
1417 * XXX we cheat slightly on the locking here to avoid locking in
1418 * the usual case. Setting td_priority here is essentially an
1419 * incomplete workaround for not setting it properly elsewhere.
1420 * Now that some interrupt handlers are threads, not setting it
1421 * properly elsewhere can clobber it in the window between setting
1422 * it here and returning to user mode, so don't waste time setting
1423 * it perfectly here.
1425 KASSERT((td->td_flags & TDF_BORROWING) == 0,
1426 ("thread with borrowed priority returning to userland"));
1427 if (td->td_priority != td->td_user_pri) {
1428 thread_lock(td);
1429 td->td_priority = td->td_user_pri;
1430 td->td_base_pri = td->td_user_pri;
1431 thread_unlock(td);
1435 void
1436 sched_bind(struct thread *td, int cpu)
1438 struct td_sched *ts;
1440 THREAD_LOCK_ASSERT(td, MA_OWNED);
1441 KASSERT(TD_IS_RUNNING(td),
1442 ("sched_bind: cannot bind non-running thread"));
1444 ts = td->td_sched;
1446 td->td_flags |= TDF_BOUND;
1447 #ifdef SMP
1448 ts->ts_runq = &runq_pcpu[cpu];
1449 if (PCPU_GET(cpuid) == cpu)
1450 return;
1452 mi_switch(SW_VOL, NULL);
1453 #endif
1456 void
1457 sched_unbind(struct thread* td)
1459 THREAD_LOCK_ASSERT(td, MA_OWNED);
1460 td->td_flags &= ~TDF_BOUND;
1464 sched_is_bound(struct thread *td)
1466 THREAD_LOCK_ASSERT(td, MA_OWNED);
1467 return (td->td_flags & TDF_BOUND);
1470 void
1471 sched_relinquish(struct thread *td)
1473 thread_lock(td);
1474 mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1475 thread_unlock(td);
1479 sched_load(void)
1481 return (sched_tdcnt);
1485 sched_sizeof_proc(void)
1487 return (sizeof(struct proc));
1491 sched_sizeof_thread(void)
1493 return (sizeof(struct thread) + sizeof(struct td_sched));
1496 fixpt_t
1497 sched_pctcpu(struct thread *td)
1499 struct td_sched *ts;
1501 ts = td->td_sched;
1502 return (ts->ts_pctcpu);
1505 void
1506 sched_tick(void)
1511 * The actual idle process.
1513 void
1514 sched_idletd(void *dummy)
1517 for (;;) {
1518 mtx_assert(&Giant, MA_NOTOWNED);
1520 while (sched_runnable() == 0)
1521 cpu_idle(0);
1523 mtx_lock_spin(&sched_lock);
1524 mi_switch(SW_VOL | SWT_IDLE, NULL);
1525 mtx_unlock_spin(&sched_lock);
1530 * A CPU is entering for the first time or a thread is exiting.
1532 void
1533 sched_throw(struct thread *td)
1536 * Correct spinlock nesting. The idle thread context that we are
1537 * borrowing was created so that it would start out with a single
1538 * spin lock (sched_lock) held in fork_trampoline(). Since we've
1539 * explicitly acquired locks in this function, the nesting count
1540 * is now 2 rather than 1. Since we are nested, calling
1541 * spinlock_exit() will simply adjust the counts without allowing
1542 * spin lock using code to interrupt us.
1544 if (td == NULL) {
1545 mtx_lock_spin(&sched_lock);
1546 spinlock_exit();
1547 } else {
1548 lock_profile_release_lock(&sched_lock.lock_object);
1549 MPASS(td->td_lock == &sched_lock);
1551 mtx_assert(&sched_lock, MA_OWNED);
1552 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1553 PCPU_SET(switchtime, cpu_ticks());
1554 PCPU_SET(switchticks, ticks);
1555 cpu_throw(td, choosethread()); /* doesn't return */
1558 void
1559 sched_fork_exit(struct thread *td)
1563 * Finish setting up thread glue so that it begins execution in a
1564 * non-nested critical section with sched_lock held but not recursed.
1566 td->td_oncpu = PCPU_GET(cpuid);
1567 sched_lock.mtx_lock = (uintptr_t)td;
1568 lock_profile_obtain_lock_success(&sched_lock.lock_object,
1569 0, 0, __FILE__, __LINE__);
1570 THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1573 void
1574 sched_affinity(struct thread *td)
1576 #ifdef SMP
1577 struct td_sched *ts;
1578 int cpu;
1580 THREAD_LOCK_ASSERT(td, MA_OWNED);
1583 * Set the TSF_AFFINITY flag if there is at least one CPU this
1584 * thread can't run on.
1586 ts = td->td_sched;
1587 ts->ts_flags &= ~TSF_AFFINITY;
1588 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1589 if (CPU_ABSENT(cpu))
1590 continue;
1591 if (!THREAD_CAN_SCHED(td, cpu)) {
1592 ts->ts_flags |= TSF_AFFINITY;
1593 break;
1598 * If this thread can run on all CPUs, nothing else to do.
1600 if (!(ts->ts_flags & TSF_AFFINITY))
1601 return;
1603 /* Pinned threads and bound threads should be left alone. */
1604 if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1605 return;
1607 switch (td->td_state) {
1608 case TDS_RUNQ:
1610 * If we are on a per-CPU runqueue that is in the set,
1611 * then nothing needs to be done.
1613 if (ts->ts_runq != &runq &&
1614 THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1615 return;
1617 /* Put this thread on a valid per-CPU runqueue. */
1618 sched_rem(td);
1619 sched_add(td, SRQ_BORING);
1620 break;
1621 case TDS_RUNNING:
1623 * See if our current CPU is in the set. If not, force a
1624 * context switch.
1626 if (THREAD_CAN_SCHED(td, td->td_oncpu))
1627 return;
1629 td->td_flags |= TDF_NEEDRESCHED;
1630 if (td != curthread)
1631 ipi_selected(1 << cpu, IPI_AST);
1632 break;
1633 default:
1634 break;
1636 #endif