Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_time.c
blob366da9da5007c5af35b646db21fc81e0990d3ca3
1 /*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/limits.h>
38 #include <sys/clock.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/eventhandler.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/kernel.h>
46 #include <sys/syscallsubr.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysent.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/posix4.h>
52 #include <sys/time.h>
53 #include <sys/timers.h>
54 #include <sys/timetc.h>
55 #include <sys/vnode.h>
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
60 #define MAX_CLOCKS (CLOCK_MONOTONIC+1)
62 static struct kclock posix_clocks[MAX_CLOCKS];
63 static uma_zone_t itimer_zone = NULL;
66 * Time of day and interval timer support.
68 * These routines provide the kernel entry points to get and set
69 * the time-of-day and per-process interval timers. Subroutines
70 * here provide support for adding and subtracting timeval structures
71 * and decrementing interval timers, optionally reloading the interval
72 * timers when they expire.
75 static int settime(struct thread *, struct timeval *);
76 static void timevalfix(struct timeval *);
77 static void no_lease_updatetime(int);
79 static void itimer_start(void);
80 static int itimer_init(void *, int, int);
81 static void itimer_fini(void *, int);
82 static void itimer_enter(struct itimer *);
83 static void itimer_leave(struct itimer *);
84 static struct itimer *itimer_find(struct proc *, int);
85 static void itimers_alloc(struct proc *);
86 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
87 static void itimers_event_hook_exit(void *arg, struct proc *p);
88 static int realtimer_create(struct itimer *);
89 static int realtimer_gettime(struct itimer *, struct itimerspec *);
90 static int realtimer_settime(struct itimer *, int,
91 struct itimerspec *, struct itimerspec *);
92 static int realtimer_delete(struct itimer *);
93 static void realtimer_clocktime(clockid_t, struct timespec *);
94 static void realtimer_expire(void *);
95 static int kern_timer_create(struct thread *, clockid_t,
96 struct sigevent *, int *, int);
97 static int kern_timer_delete(struct thread *, int);
99 int register_posix_clock(int, struct kclock *);
100 void itimer_fire(struct itimer *it);
101 int itimespecfix(struct timespec *ts);
103 #define CLOCK_CALL(clock, call, arglist) \
104 ((*posix_clocks[clock].call) arglist)
106 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
109 static void
110 no_lease_updatetime(deltat)
111 int deltat;
115 void (*lease_updatetime)(int) = no_lease_updatetime;
117 static int
118 settime(struct thread *td, struct timeval *tv)
120 struct timeval delta, tv1, tv2;
121 static struct timeval maxtime, laststep;
122 struct timespec ts;
123 int s;
125 s = splclock();
126 microtime(&tv1);
127 delta = *tv;
128 timevalsub(&delta, &tv1);
131 * If the system is secure, we do not allow the time to be
132 * set to a value earlier than 1 second less than the highest
133 * time we have yet seen. The worst a miscreant can do in
134 * this circumstance is "freeze" time. He couldn't go
135 * back to the past.
137 * We similarly do not allow the clock to be stepped more
138 * than one second, nor more than once per second. This allows
139 * a miscreant to make the clock march double-time, but no worse.
141 if (securelevel_gt(td->td_ucred, 1) != 0) {
142 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
144 * Update maxtime to latest time we've seen.
146 if (tv1.tv_sec > maxtime.tv_sec)
147 maxtime = tv1;
148 tv2 = *tv;
149 timevalsub(&tv2, &maxtime);
150 if (tv2.tv_sec < -1) {
151 tv->tv_sec = maxtime.tv_sec - 1;
152 printf("Time adjustment clamped to -1 second\n");
154 } else {
155 if (tv1.tv_sec == laststep.tv_sec) {
156 splx(s);
157 return (EPERM);
159 if (delta.tv_sec > 1) {
160 tv->tv_sec = tv1.tv_sec + 1;
161 printf("Time adjustment clamped to +1 second\n");
163 laststep = *tv;
167 ts.tv_sec = tv->tv_sec;
168 ts.tv_nsec = tv->tv_usec * 1000;
169 mtx_lock(&Giant);
170 tc_setclock(&ts);
171 (void) splsoftclock();
172 lease_updatetime(delta.tv_sec);
173 splx(s);
174 resettodr();
175 mtx_unlock(&Giant);
176 return (0);
179 #ifndef _SYS_SYSPROTO_H_
180 struct clock_gettime_args {
181 clockid_t clock_id;
182 struct timespec *tp;
184 #endif
185 /* ARGSUSED */
187 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
189 struct timespec ats;
190 int error;
192 error = kern_clock_gettime(td, uap->clock_id, &ats);
193 if (error == 0)
194 error = copyout(&ats, uap->tp, sizeof(ats));
196 return (error);
200 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
202 struct timeval sys, user;
203 struct proc *p;
204 uint64_t runtime, curtime, switchtime;
206 p = td->td_proc;
207 switch (clock_id) {
208 case CLOCK_REALTIME: /* Default to precise. */
209 case CLOCK_REALTIME_PRECISE:
210 nanotime(ats);
211 break;
212 case CLOCK_REALTIME_FAST:
213 getnanotime(ats);
214 break;
215 case CLOCK_VIRTUAL:
216 PROC_LOCK(p);
217 PROC_SLOCK(p);
218 calcru(p, &user, &sys);
219 PROC_SUNLOCK(p);
220 PROC_UNLOCK(p);
221 TIMEVAL_TO_TIMESPEC(&user, ats);
222 break;
223 case CLOCK_PROF:
224 PROC_LOCK(p);
225 PROC_SLOCK(p);
226 calcru(p, &user, &sys);
227 PROC_SUNLOCK(p);
228 PROC_UNLOCK(p);
229 timevaladd(&user, &sys);
230 TIMEVAL_TO_TIMESPEC(&user, ats);
231 break;
232 case CLOCK_MONOTONIC: /* Default to precise. */
233 case CLOCK_MONOTONIC_PRECISE:
234 case CLOCK_UPTIME:
235 case CLOCK_UPTIME_PRECISE:
236 nanouptime(ats);
237 break;
238 case CLOCK_UPTIME_FAST:
239 case CLOCK_MONOTONIC_FAST:
240 getnanouptime(ats);
241 break;
242 case CLOCK_SECOND:
243 ats->tv_sec = time_second;
244 ats->tv_nsec = 0;
245 break;
246 case CLOCK_THREAD_CPUTIME_ID:
247 critical_enter();
248 switchtime = PCPU_GET(switchtime);
249 curtime = cpu_ticks();
250 runtime = td->td_runtime;
251 critical_exit();
252 runtime = cputick2usec(runtime + curtime - switchtime);
253 ats->tv_sec = runtime / 1000000;
254 ats->tv_nsec = runtime % 1000000 * 1000;
255 break;
256 default:
257 return (EINVAL);
259 return (0);
262 #ifndef _SYS_SYSPROTO_H_
263 struct clock_settime_args {
264 clockid_t clock_id;
265 const struct timespec *tp;
267 #endif
268 /* ARGSUSED */
270 clock_settime(struct thread *td, struct clock_settime_args *uap)
272 struct timespec ats;
273 int error;
275 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
276 return (error);
277 return (kern_clock_settime(td, uap->clock_id, &ats));
281 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
283 struct timeval atv;
284 int error;
286 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
287 return (error);
288 if (clock_id != CLOCK_REALTIME)
289 return (EINVAL);
290 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
291 return (EINVAL);
292 /* XXX Don't convert nsec->usec and back */
293 TIMESPEC_TO_TIMEVAL(&atv, ats);
294 error = settime(td, &atv);
295 return (error);
298 #ifndef _SYS_SYSPROTO_H_
299 struct clock_getres_args {
300 clockid_t clock_id;
301 struct timespec *tp;
303 #endif
305 clock_getres(struct thread *td, struct clock_getres_args *uap)
307 struct timespec ts;
308 int error;
310 if (uap->tp == NULL)
311 return (0);
313 error = kern_clock_getres(td, uap->clock_id, &ts);
314 if (error == 0)
315 error = copyout(&ts, uap->tp, sizeof(ts));
316 return (error);
320 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
323 ts->tv_sec = 0;
324 switch (clock_id) {
325 case CLOCK_REALTIME:
326 case CLOCK_REALTIME_FAST:
327 case CLOCK_REALTIME_PRECISE:
328 case CLOCK_MONOTONIC:
329 case CLOCK_MONOTONIC_FAST:
330 case CLOCK_MONOTONIC_PRECISE:
331 case CLOCK_UPTIME:
332 case CLOCK_UPTIME_FAST:
333 case CLOCK_UPTIME_PRECISE:
335 * Round up the result of the division cheaply by adding 1.
336 * Rounding up is especially important if rounding down
337 * would give 0. Perfect rounding is unimportant.
339 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
340 break;
341 case CLOCK_VIRTUAL:
342 case CLOCK_PROF:
343 /* Accurately round up here because we can do so cheaply. */
344 ts->tv_nsec = (1000000000 + hz - 1) / hz;
345 break;
346 case CLOCK_SECOND:
347 ts->tv_sec = 1;
348 ts->tv_nsec = 0;
349 break;
350 case CLOCK_THREAD_CPUTIME_ID:
351 /* sync with cputick2usec */
352 ts->tv_nsec = 1000000 / cpu_tickrate();
353 if (ts->tv_nsec == 0)
354 ts->tv_nsec = 1000;
355 break;
356 default:
357 return (EINVAL);
359 return (0);
362 static int nanowait;
365 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
367 struct timespec ts, ts2, ts3;
368 struct timeval tv;
369 int error;
371 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
372 return (EINVAL);
373 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
374 return (0);
375 getnanouptime(&ts);
376 timespecadd(&ts, rqt);
377 TIMESPEC_TO_TIMEVAL(&tv, rqt);
378 for (;;) {
379 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
380 tvtohz(&tv));
381 getnanouptime(&ts2);
382 if (error != EWOULDBLOCK) {
383 if (error == ERESTART)
384 error = EINTR;
385 if (rmt != NULL) {
386 timespecsub(&ts, &ts2);
387 if (ts.tv_sec < 0)
388 timespecclear(&ts);
389 *rmt = ts;
391 return (error);
393 if (timespeccmp(&ts2, &ts, >=))
394 return (0);
395 ts3 = ts;
396 timespecsub(&ts3, &ts2);
397 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
401 #ifndef _SYS_SYSPROTO_H_
402 struct nanosleep_args {
403 struct timespec *rqtp;
404 struct timespec *rmtp;
406 #endif
407 /* ARGSUSED */
409 nanosleep(struct thread *td, struct nanosleep_args *uap)
411 struct timespec rmt, rqt;
412 int error;
414 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
415 if (error)
416 return (error);
418 if (uap->rmtp &&
419 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
420 return (EFAULT);
421 error = kern_nanosleep(td, &rqt, &rmt);
422 if (error && uap->rmtp) {
423 int error2;
425 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
426 if (error2)
427 error = error2;
429 return (error);
432 #ifndef _SYS_SYSPROTO_H_
433 struct gettimeofday_args {
434 struct timeval *tp;
435 struct timezone *tzp;
437 #endif
438 /* ARGSUSED */
440 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
442 struct timeval atv;
443 struct timezone rtz;
444 int error = 0;
446 if (uap->tp) {
447 microtime(&atv);
448 error = copyout(&atv, uap->tp, sizeof (atv));
450 if (error == 0 && uap->tzp != NULL) {
451 rtz.tz_minuteswest = tz_minuteswest;
452 rtz.tz_dsttime = tz_dsttime;
453 error = copyout(&rtz, uap->tzp, sizeof (rtz));
455 return (error);
458 #ifndef _SYS_SYSPROTO_H_
459 struct settimeofday_args {
460 struct timeval *tv;
461 struct timezone *tzp;
463 #endif
464 /* ARGSUSED */
466 settimeofday(struct thread *td, struct settimeofday_args *uap)
468 struct timeval atv, *tvp;
469 struct timezone atz, *tzp;
470 int error;
472 if (uap->tv) {
473 error = copyin(uap->tv, &atv, sizeof(atv));
474 if (error)
475 return (error);
476 tvp = &atv;
477 } else
478 tvp = NULL;
479 if (uap->tzp) {
480 error = copyin(uap->tzp, &atz, sizeof(atz));
481 if (error)
482 return (error);
483 tzp = &atz;
484 } else
485 tzp = NULL;
486 return (kern_settimeofday(td, tvp, tzp));
490 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
492 int error;
494 error = priv_check(td, PRIV_SETTIMEOFDAY);
495 if (error)
496 return (error);
497 /* Verify all parameters before changing time. */
498 if (tv) {
499 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
500 return (EINVAL);
501 error = settime(td, tv);
503 if (tzp && error == 0) {
504 tz_minuteswest = tzp->tz_minuteswest;
505 tz_dsttime = tzp->tz_dsttime;
507 return (error);
511 * Get value of an interval timer. The process virtual and profiling virtual
512 * time timers are kept in the p_stats area, since they can be swapped out.
513 * These are kept internally in the way they are specified externally: in
514 * time until they expire.
516 * The real time interval timer is kept in the process table slot for the
517 * process, and its value (it_value) is kept as an absolute time rather than
518 * as a delta, so that it is easy to keep periodic real-time signals from
519 * drifting.
521 * Virtual time timers are processed in the hardclock() routine of
522 * kern_clock.c. The real time timer is processed by a timeout routine,
523 * called from the softclock() routine. Since a callout may be delayed in
524 * real time due to interrupt processing in the system, it is possible for
525 * the real time timeout routine (realitexpire, given below), to be delayed
526 * in real time past when it is supposed to occur. It does not suffice,
527 * therefore, to reload the real timer .it_value from the real time timers
528 * .it_interval. Rather, we compute the next time in absolute time the timer
529 * should go off.
531 #ifndef _SYS_SYSPROTO_H_
532 struct getitimer_args {
533 u_int which;
534 struct itimerval *itv;
536 #endif
538 getitimer(struct thread *td, struct getitimer_args *uap)
540 struct itimerval aitv;
541 int error;
543 error = kern_getitimer(td, uap->which, &aitv);
544 if (error != 0)
545 return (error);
546 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
550 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
552 struct proc *p = td->td_proc;
553 struct timeval ctv;
555 if (which > ITIMER_PROF)
556 return (EINVAL);
558 if (which == ITIMER_REAL) {
560 * Convert from absolute to relative time in .it_value
561 * part of real time timer. If time for real time timer
562 * has passed return 0, else return difference between
563 * current time and time for the timer to go off.
565 PROC_LOCK(p);
566 *aitv = p->p_realtimer;
567 PROC_UNLOCK(p);
568 if (timevalisset(&aitv->it_value)) {
569 getmicrouptime(&ctv);
570 if (timevalcmp(&aitv->it_value, &ctv, <))
571 timevalclear(&aitv->it_value);
572 else
573 timevalsub(&aitv->it_value, &ctv);
575 } else {
576 PROC_SLOCK(p);
577 *aitv = p->p_stats->p_timer[which];
578 PROC_SUNLOCK(p);
580 return (0);
583 #ifndef _SYS_SYSPROTO_H_
584 struct setitimer_args {
585 u_int which;
586 struct itimerval *itv, *oitv;
588 #endif
590 setitimer(struct thread *td, struct setitimer_args *uap)
592 struct itimerval aitv, oitv;
593 int error;
595 if (uap->itv == NULL) {
596 uap->itv = uap->oitv;
597 return (getitimer(td, (struct getitimer_args *)uap));
600 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
601 return (error);
602 error = kern_setitimer(td, uap->which, &aitv, &oitv);
603 if (error != 0 || uap->oitv == NULL)
604 return (error);
605 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
609 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
610 struct itimerval *oitv)
612 struct proc *p = td->td_proc;
613 struct timeval ctv;
615 if (aitv == NULL)
616 return (kern_getitimer(td, which, oitv));
618 if (which > ITIMER_PROF)
619 return (EINVAL);
620 if (itimerfix(&aitv->it_value))
621 return (EINVAL);
622 if (!timevalisset(&aitv->it_value))
623 timevalclear(&aitv->it_interval);
624 else if (itimerfix(&aitv->it_interval))
625 return (EINVAL);
627 if (which == ITIMER_REAL) {
628 PROC_LOCK(p);
629 if (timevalisset(&p->p_realtimer.it_value))
630 callout_stop(&p->p_itcallout);
631 getmicrouptime(&ctv);
632 if (timevalisset(&aitv->it_value)) {
633 callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
634 realitexpire, p);
635 timevaladd(&aitv->it_value, &ctv);
637 *oitv = p->p_realtimer;
638 p->p_realtimer = *aitv;
639 PROC_UNLOCK(p);
640 if (timevalisset(&oitv->it_value)) {
641 if (timevalcmp(&oitv->it_value, &ctv, <))
642 timevalclear(&oitv->it_value);
643 else
644 timevalsub(&oitv->it_value, &ctv);
646 } else {
647 PROC_SLOCK(p);
648 *oitv = p->p_stats->p_timer[which];
649 p->p_stats->p_timer[which] = *aitv;
650 PROC_SUNLOCK(p);
652 return (0);
656 * Real interval timer expired:
657 * send process whose timer expired an alarm signal.
658 * If time is not set up to reload, then just return.
659 * Else compute next time timer should go off which is > current time.
660 * This is where delay in processing this timeout causes multiple
661 * SIGALRM calls to be compressed into one.
662 * tvtohz() always adds 1 to allow for the time until the next clock
663 * interrupt being strictly less than 1 clock tick, but we don't want
664 * that here since we want to appear to be in sync with the clock
665 * interrupt even when we're delayed.
667 void
668 realitexpire(void *arg)
670 struct proc *p;
671 struct timeval ctv, ntv;
673 p = (struct proc *)arg;
674 PROC_LOCK(p);
675 psignal(p, SIGALRM);
676 if (!timevalisset(&p->p_realtimer.it_interval)) {
677 timevalclear(&p->p_realtimer.it_value);
678 if (p->p_flag & P_WEXIT)
679 wakeup(&p->p_itcallout);
680 PROC_UNLOCK(p);
681 return;
683 for (;;) {
684 timevaladd(&p->p_realtimer.it_value,
685 &p->p_realtimer.it_interval);
686 getmicrouptime(&ctv);
687 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
688 ntv = p->p_realtimer.it_value;
689 timevalsub(&ntv, &ctv);
690 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
691 realitexpire, p);
692 PROC_UNLOCK(p);
693 return;
696 /*NOTREACHED*/
700 * Check that a proposed value to load into the .it_value or
701 * .it_interval part of an interval timer is acceptable, and
702 * fix it to have at least minimal value (i.e. if it is less
703 * than the resolution of the clock, round it up.)
706 itimerfix(struct timeval *tv)
709 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
710 return (EINVAL);
711 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
712 tv->tv_usec = tick;
713 return (0);
717 * Decrement an interval timer by a specified number
718 * of microseconds, which must be less than a second,
719 * i.e. < 1000000. If the timer expires, then reload
720 * it. In this case, carry over (usec - old value) to
721 * reduce the value reloaded into the timer so that
722 * the timer does not drift. This routine assumes
723 * that it is called in a context where the timers
724 * on which it is operating cannot change in value.
727 itimerdecr(struct itimerval *itp, int usec)
730 if (itp->it_value.tv_usec < usec) {
731 if (itp->it_value.tv_sec == 0) {
732 /* expired, and already in next interval */
733 usec -= itp->it_value.tv_usec;
734 goto expire;
736 itp->it_value.tv_usec += 1000000;
737 itp->it_value.tv_sec--;
739 itp->it_value.tv_usec -= usec;
740 usec = 0;
741 if (timevalisset(&itp->it_value))
742 return (1);
743 /* expired, exactly at end of interval */
744 expire:
745 if (timevalisset(&itp->it_interval)) {
746 itp->it_value = itp->it_interval;
747 itp->it_value.tv_usec -= usec;
748 if (itp->it_value.tv_usec < 0) {
749 itp->it_value.tv_usec += 1000000;
750 itp->it_value.tv_sec--;
752 } else
753 itp->it_value.tv_usec = 0; /* sec is already 0 */
754 return (0);
758 * Add and subtract routines for timevals.
759 * N.B.: subtract routine doesn't deal with
760 * results which are before the beginning,
761 * it just gets very confused in this case.
762 * Caveat emptor.
764 void
765 timevaladd(struct timeval *t1, const struct timeval *t2)
768 t1->tv_sec += t2->tv_sec;
769 t1->tv_usec += t2->tv_usec;
770 timevalfix(t1);
773 void
774 timevalsub(struct timeval *t1, const struct timeval *t2)
777 t1->tv_sec -= t2->tv_sec;
778 t1->tv_usec -= t2->tv_usec;
779 timevalfix(t1);
782 static void
783 timevalfix(struct timeval *t1)
786 if (t1->tv_usec < 0) {
787 t1->tv_sec--;
788 t1->tv_usec += 1000000;
790 if (t1->tv_usec >= 1000000) {
791 t1->tv_sec++;
792 t1->tv_usec -= 1000000;
797 * ratecheck(): simple time-based rate-limit checking.
800 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
802 struct timeval tv, delta;
803 int rv = 0;
805 getmicrouptime(&tv); /* NB: 10ms precision */
806 delta = tv;
807 timevalsub(&delta, lasttime);
810 * check for 0,0 is so that the message will be seen at least once,
811 * even if interval is huge.
813 if (timevalcmp(&delta, mininterval, >=) ||
814 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
815 *lasttime = tv;
816 rv = 1;
819 return (rv);
823 * ppsratecheck(): packets (or events) per second limitation.
825 * Return 0 if the limit is to be enforced (e.g. the caller
826 * should drop a packet because of the rate limitation).
828 * maxpps of 0 always causes zero to be returned. maxpps of -1
829 * always causes 1 to be returned; this effectively defeats rate
830 * limiting.
832 * Note that we maintain the struct timeval for compatibility
833 * with other bsd systems. We reuse the storage and just monitor
834 * clock ticks for minimal overhead.
837 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
839 int now;
842 * Reset the last time and counter if this is the first call
843 * or more than a second has passed since the last update of
844 * lasttime.
846 now = ticks;
847 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
848 lasttime->tv_sec = now;
849 *curpps = 1;
850 return (maxpps != 0);
851 } else {
852 (*curpps)++; /* NB: ignore potential overflow */
853 return (maxpps < 0 || *curpps < maxpps);
857 static void
858 itimer_start(void)
860 struct kclock rt_clock = {
861 .timer_create = realtimer_create,
862 .timer_delete = realtimer_delete,
863 .timer_settime = realtimer_settime,
864 .timer_gettime = realtimer_gettime,
865 .event_hook = NULL
868 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
869 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
870 register_posix_clock(CLOCK_REALTIME, &rt_clock);
871 register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
872 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
873 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
874 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
875 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
876 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
877 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
878 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
882 register_posix_clock(int clockid, struct kclock *clk)
884 if ((unsigned)clockid >= MAX_CLOCKS) {
885 printf("%s: invalid clockid\n", __func__);
886 return (0);
888 posix_clocks[clockid] = *clk;
889 return (1);
892 static int
893 itimer_init(void *mem, int size, int flags)
895 struct itimer *it;
897 it = (struct itimer *)mem;
898 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
899 return (0);
902 static void
903 itimer_fini(void *mem, int size)
905 struct itimer *it;
907 it = (struct itimer *)mem;
908 mtx_destroy(&it->it_mtx);
911 static void
912 itimer_enter(struct itimer *it)
915 mtx_assert(&it->it_mtx, MA_OWNED);
916 it->it_usecount++;
919 static void
920 itimer_leave(struct itimer *it)
923 mtx_assert(&it->it_mtx, MA_OWNED);
924 KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
926 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
927 wakeup(it);
930 #ifndef _SYS_SYSPROTO_H_
931 struct ktimer_create_args {
932 clockid_t clock_id;
933 struct sigevent * evp;
934 int * timerid;
936 #endif
938 ktimer_create(struct thread *td, struct ktimer_create_args *uap)
940 struct sigevent *evp1, ev;
941 int id;
942 int error;
944 if (uap->evp != NULL) {
945 error = copyin(uap->evp, &ev, sizeof(ev));
946 if (error != 0)
947 return (error);
948 evp1 = &ev;
949 } else
950 evp1 = NULL;
952 error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
954 if (error == 0) {
955 error = copyout(&id, uap->timerid, sizeof(int));
956 if (error != 0)
957 kern_timer_delete(td, id);
959 return (error);
962 static int
963 kern_timer_create(struct thread *td, clockid_t clock_id,
964 struct sigevent *evp, int *timerid, int preset_id)
966 struct proc *p = td->td_proc;
967 struct itimer *it;
968 int id;
969 int error;
971 if (clock_id < 0 || clock_id >= MAX_CLOCKS)
972 return (EINVAL);
974 if (posix_clocks[clock_id].timer_create == NULL)
975 return (EINVAL);
977 if (evp != NULL) {
978 if (evp->sigev_notify != SIGEV_NONE &&
979 evp->sigev_notify != SIGEV_SIGNAL &&
980 evp->sigev_notify != SIGEV_THREAD_ID)
981 return (EINVAL);
982 if ((evp->sigev_notify == SIGEV_SIGNAL ||
983 evp->sigev_notify == SIGEV_THREAD_ID) &&
984 !_SIG_VALID(evp->sigev_signo))
985 return (EINVAL);
988 if (p->p_itimers == NULL)
989 itimers_alloc(p);
991 it = uma_zalloc(itimer_zone, M_WAITOK);
992 it->it_flags = 0;
993 it->it_usecount = 0;
994 it->it_active = 0;
995 timespecclear(&it->it_time.it_value);
996 timespecclear(&it->it_time.it_interval);
997 it->it_overrun = 0;
998 it->it_overrun_last = 0;
999 it->it_clockid = clock_id;
1000 it->it_timerid = -1;
1001 it->it_proc = p;
1002 ksiginfo_init(&it->it_ksi);
1003 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1004 error = CLOCK_CALL(clock_id, timer_create, (it));
1005 if (error != 0)
1006 goto out;
1008 PROC_LOCK(p);
1009 if (preset_id != -1) {
1010 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1011 id = preset_id;
1012 if (p->p_itimers->its_timers[id] != NULL) {
1013 PROC_UNLOCK(p);
1014 error = 0;
1015 goto out;
1017 } else {
1019 * Find a free timer slot, skipping those reserved
1020 * for setitimer().
1022 for (id = 3; id < TIMER_MAX; id++)
1023 if (p->p_itimers->its_timers[id] == NULL)
1024 break;
1025 if (id == TIMER_MAX) {
1026 PROC_UNLOCK(p);
1027 error = EAGAIN;
1028 goto out;
1031 it->it_timerid = id;
1032 p->p_itimers->its_timers[id] = it;
1033 if (evp != NULL)
1034 it->it_sigev = *evp;
1035 else {
1036 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1037 switch (clock_id) {
1038 default:
1039 case CLOCK_REALTIME:
1040 it->it_sigev.sigev_signo = SIGALRM;
1041 break;
1042 case CLOCK_VIRTUAL:
1043 it->it_sigev.sigev_signo = SIGVTALRM;
1044 break;
1045 case CLOCK_PROF:
1046 it->it_sigev.sigev_signo = SIGPROF;
1047 break;
1049 it->it_sigev.sigev_value.sival_int = id;
1052 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1053 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1054 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1055 it->it_ksi.ksi_code = SI_TIMER;
1056 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1057 it->it_ksi.ksi_timerid = id;
1059 PROC_UNLOCK(p);
1060 *timerid = id;
1061 return (0);
1063 out:
1064 ITIMER_LOCK(it);
1065 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1066 ITIMER_UNLOCK(it);
1067 uma_zfree(itimer_zone, it);
1068 return (error);
1071 #ifndef _SYS_SYSPROTO_H_
1072 struct ktimer_delete_args {
1073 int timerid;
1075 #endif
1077 ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1079 return (kern_timer_delete(td, uap->timerid));
1082 static struct itimer *
1083 itimer_find(struct proc *p, int timerid)
1085 struct itimer *it;
1087 PROC_LOCK_ASSERT(p, MA_OWNED);
1088 if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) ||
1089 (it = p->p_itimers->its_timers[timerid]) == NULL) {
1090 return (NULL);
1092 ITIMER_LOCK(it);
1093 if ((it->it_flags & ITF_DELETING) != 0) {
1094 ITIMER_UNLOCK(it);
1095 it = NULL;
1097 return (it);
1100 static int
1101 kern_timer_delete(struct thread *td, int timerid)
1103 struct proc *p = td->td_proc;
1104 struct itimer *it;
1106 PROC_LOCK(p);
1107 it = itimer_find(p, timerid);
1108 if (it == NULL) {
1109 PROC_UNLOCK(p);
1110 return (EINVAL);
1112 PROC_UNLOCK(p);
1114 it->it_flags |= ITF_DELETING;
1115 while (it->it_usecount > 0) {
1116 it->it_flags |= ITF_WANTED;
1117 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1119 it->it_flags &= ~ITF_WANTED;
1120 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1121 ITIMER_UNLOCK(it);
1123 PROC_LOCK(p);
1124 if (KSI_ONQ(&it->it_ksi))
1125 sigqueue_take(&it->it_ksi);
1126 p->p_itimers->its_timers[timerid] = NULL;
1127 PROC_UNLOCK(p);
1128 uma_zfree(itimer_zone, it);
1129 return (0);
1132 #ifndef _SYS_SYSPROTO_H_
1133 struct ktimer_settime_args {
1134 int timerid;
1135 int flags;
1136 const struct itimerspec * value;
1137 struct itimerspec * ovalue;
1139 #endif
1141 ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1143 struct proc *p = td->td_proc;
1144 struct itimer *it;
1145 struct itimerspec val, oval, *ovalp;
1146 int error;
1148 error = copyin(uap->value, &val, sizeof(val));
1149 if (error != 0)
1150 return (error);
1152 if (uap->ovalue != NULL)
1153 ovalp = &oval;
1154 else
1155 ovalp = NULL;
1157 PROC_LOCK(p);
1158 if (uap->timerid < 3 ||
1159 (it = itimer_find(p, uap->timerid)) == NULL) {
1160 PROC_UNLOCK(p);
1161 error = EINVAL;
1162 } else {
1163 PROC_UNLOCK(p);
1164 itimer_enter(it);
1165 error = CLOCK_CALL(it->it_clockid, timer_settime,
1166 (it, uap->flags, &val, ovalp));
1167 itimer_leave(it);
1168 ITIMER_UNLOCK(it);
1170 if (error == 0 && uap->ovalue != NULL)
1171 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1172 return (error);
1175 #ifndef _SYS_SYSPROTO_H_
1176 struct ktimer_gettime_args {
1177 int timerid;
1178 struct itimerspec * value;
1180 #endif
1182 ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1184 struct proc *p = td->td_proc;
1185 struct itimer *it;
1186 struct itimerspec val;
1187 int error;
1189 PROC_LOCK(p);
1190 if (uap->timerid < 3 ||
1191 (it = itimer_find(p, uap->timerid)) == NULL) {
1192 PROC_UNLOCK(p);
1193 error = EINVAL;
1194 } else {
1195 PROC_UNLOCK(p);
1196 itimer_enter(it);
1197 error = CLOCK_CALL(it->it_clockid, timer_gettime,
1198 (it, &val));
1199 itimer_leave(it);
1200 ITIMER_UNLOCK(it);
1202 if (error == 0)
1203 error = copyout(&val, uap->value, sizeof(val));
1204 return (error);
1207 #ifndef _SYS_SYSPROTO_H_
1208 struct timer_getoverrun_args {
1209 int timerid;
1211 #endif
1213 ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1215 struct proc *p = td->td_proc;
1216 struct itimer *it;
1217 int error ;
1219 PROC_LOCK(p);
1220 if (uap->timerid < 3 ||
1221 (it = itimer_find(p, uap->timerid)) == NULL) {
1222 PROC_UNLOCK(p);
1223 error = EINVAL;
1224 } else {
1225 td->td_retval[0] = it->it_overrun_last;
1226 ITIMER_UNLOCK(it);
1227 PROC_UNLOCK(p);
1228 error = 0;
1230 return (error);
1233 static int
1234 realtimer_create(struct itimer *it)
1236 callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1237 return (0);
1240 static int
1241 realtimer_delete(struct itimer *it)
1243 mtx_assert(&it->it_mtx, MA_OWNED);
1245 ITIMER_UNLOCK(it);
1246 callout_drain(&it->it_callout);
1247 ITIMER_LOCK(it);
1248 return (0);
1251 static int
1252 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1254 struct timespec cts;
1256 mtx_assert(&it->it_mtx, MA_OWNED);
1258 realtimer_clocktime(it->it_clockid, &cts);
1259 *ovalue = it->it_time;
1260 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1261 timespecsub(&ovalue->it_value, &cts);
1262 if (ovalue->it_value.tv_sec < 0 ||
1263 (ovalue->it_value.tv_sec == 0 &&
1264 ovalue->it_value.tv_nsec == 0)) {
1265 ovalue->it_value.tv_sec = 0;
1266 ovalue->it_value.tv_nsec = 1;
1269 return (0);
1272 static int
1273 realtimer_settime(struct itimer *it, int flags,
1274 struct itimerspec *value, struct itimerspec *ovalue)
1276 struct timespec cts, ts;
1277 struct timeval tv;
1278 struct itimerspec val;
1280 mtx_assert(&it->it_mtx, MA_OWNED);
1282 val = *value;
1283 if (itimespecfix(&val.it_value))
1284 return (EINVAL);
1286 if (timespecisset(&val.it_value)) {
1287 if (itimespecfix(&val.it_interval))
1288 return (EINVAL);
1289 } else {
1290 timespecclear(&val.it_interval);
1293 if (ovalue != NULL)
1294 realtimer_gettime(it, ovalue);
1296 it->it_time = val;
1297 if (timespecisset(&val.it_value)) {
1298 realtimer_clocktime(it->it_clockid, &cts);
1299 ts = val.it_value;
1300 if ((flags & TIMER_ABSTIME) == 0) {
1301 /* Convert to absolute time. */
1302 timespecadd(&it->it_time.it_value, &cts);
1303 } else {
1304 timespecsub(&ts, &cts);
1306 * We don't care if ts is negative, tztohz will
1307 * fix it.
1310 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1311 callout_reset(&it->it_callout, tvtohz(&tv),
1312 realtimer_expire, it);
1313 } else {
1314 callout_stop(&it->it_callout);
1317 return (0);
1320 static void
1321 realtimer_clocktime(clockid_t id, struct timespec *ts)
1323 if (id == CLOCK_REALTIME)
1324 getnanotime(ts);
1325 else /* CLOCK_MONOTONIC */
1326 getnanouptime(ts);
1330 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1332 struct itimer *it;
1334 PROC_LOCK_ASSERT(p, MA_OWNED);
1335 it = itimer_find(p, timerid);
1336 if (it != NULL) {
1337 ksi->ksi_overrun = it->it_overrun;
1338 it->it_overrun_last = it->it_overrun;
1339 it->it_overrun = 0;
1340 ITIMER_UNLOCK(it);
1341 return (0);
1343 return (EINVAL);
1347 itimespecfix(struct timespec *ts)
1350 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1351 return (EINVAL);
1352 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1353 ts->tv_nsec = tick * 1000;
1354 return (0);
1357 /* Timeout callback for realtime timer */
1358 static void
1359 realtimer_expire(void *arg)
1361 struct timespec cts, ts;
1362 struct timeval tv;
1363 struct itimer *it;
1364 struct proc *p;
1366 it = (struct itimer *)arg;
1367 p = it->it_proc;
1369 realtimer_clocktime(it->it_clockid, &cts);
1370 /* Only fire if time is reached. */
1371 if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1372 if (timespecisset(&it->it_time.it_interval)) {
1373 timespecadd(&it->it_time.it_value,
1374 &it->it_time.it_interval);
1375 while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1376 if (it->it_overrun < INT_MAX)
1377 it->it_overrun++;
1378 else
1379 it->it_ksi.ksi_errno = ERANGE;
1380 timespecadd(&it->it_time.it_value,
1381 &it->it_time.it_interval);
1383 } else {
1384 /* single shot timer ? */
1385 timespecclear(&it->it_time.it_value);
1387 if (timespecisset(&it->it_time.it_value)) {
1388 ts = it->it_time.it_value;
1389 timespecsub(&ts, &cts);
1390 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1391 callout_reset(&it->it_callout, tvtohz(&tv),
1392 realtimer_expire, it);
1394 ITIMER_UNLOCK(it);
1395 itimer_fire(it);
1396 ITIMER_LOCK(it);
1397 } else if (timespecisset(&it->it_time.it_value)) {
1398 ts = it->it_time.it_value;
1399 timespecsub(&ts, &cts);
1400 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1401 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1402 it);
1406 void
1407 itimer_fire(struct itimer *it)
1409 struct proc *p = it->it_proc;
1410 int ret;
1412 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1413 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1414 PROC_LOCK(p);
1415 if (!KSI_ONQ(&it->it_ksi)) {
1416 it->it_ksi.ksi_errno = 0;
1417 ret = psignal_event(p, &it->it_sigev, &it->it_ksi);
1418 if (__predict_false(ret != 0)) {
1419 it->it_overrun++;
1421 * Broken userland code, thread went
1422 * away, disarm the timer.
1424 if (ret == ESRCH) {
1425 ITIMER_LOCK(it);
1426 timespecclear(&it->it_time.it_value);
1427 timespecclear(&it->it_time.it_interval);
1428 callout_stop(&it->it_callout);
1429 ITIMER_UNLOCK(it);
1432 } else {
1433 if (it->it_overrun < INT_MAX)
1434 it->it_overrun++;
1435 else
1436 it->it_ksi.ksi_errno = ERANGE;
1438 PROC_UNLOCK(p);
1442 static void
1443 itimers_alloc(struct proc *p)
1445 struct itimers *its;
1446 int i;
1448 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1449 LIST_INIT(&its->its_virtual);
1450 LIST_INIT(&its->its_prof);
1451 TAILQ_INIT(&its->its_worklist);
1452 for (i = 0; i < TIMER_MAX; i++)
1453 its->its_timers[i] = NULL;
1454 PROC_LOCK(p);
1455 if (p->p_itimers == NULL) {
1456 p->p_itimers = its;
1457 PROC_UNLOCK(p);
1459 else {
1460 PROC_UNLOCK(p);
1461 free(its, M_SUBPROC);
1465 static void
1466 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1468 itimers_event_hook_exit(arg, p);
1471 /* Clean up timers when some process events are being triggered. */
1472 static void
1473 itimers_event_hook_exit(void *arg, struct proc *p)
1475 struct itimers *its;
1476 struct itimer *it;
1477 int event = (int)(intptr_t)arg;
1478 int i;
1480 if (p->p_itimers != NULL) {
1481 its = p->p_itimers;
1482 for (i = 0; i < MAX_CLOCKS; ++i) {
1483 if (posix_clocks[i].event_hook != NULL)
1484 CLOCK_CALL(i, event_hook, (p, i, event));
1487 * According to susv3, XSI interval timers should be inherited
1488 * by new image.
1490 if (event == ITIMER_EV_EXEC)
1491 i = 3;
1492 else if (event == ITIMER_EV_EXIT)
1493 i = 0;
1494 else
1495 panic("unhandled event");
1496 for (; i < TIMER_MAX; ++i) {
1497 if ((it = its->its_timers[i]) != NULL)
1498 kern_timer_delete(curthread, i);
1500 if (its->its_timers[0] == NULL &&
1501 its->its_timers[1] == NULL &&
1502 its->its_timers[2] == NULL) {
1503 free(its, M_SUBPROC);
1504 p->p_itimers = NULL;