Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_tc.c
blobc84054b6f5b221e025a4f1c605384df94d28ed76
1 /*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
13 #include "opt_ntp.h"
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
25 * A large step happens on boot. This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
30 #define LARGE_STEP 200
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air. This allows the console and other early stuff to use
35 * time services.
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
41 static u_int now;
43 return (++now);
46 static struct timecounter dummy_timecounter = {
47 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
50 struct timehands {
51 /* These fields must be initialized by the driver. */
52 struct timecounter *th_counter;
53 int64_t th_adjustment;
54 u_int64_t th_scale;
55 u_int th_offset_count;
56 struct bintime th_offset;
57 struct timeval th_microtime;
58 struct timespec th_nanotime;
59 /* Fields not to be copied in tc_windup start with th_generation. */
60 volatile u_int th_generation;
61 struct timehands *th_next;
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 &dummy_timecounter,
77 (uint64_t)-1 / 1000000,
79 {1, 0},
80 {0, 0},
81 {0, 0},
83 &th1
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
90 time_t time_second = 1;
91 time_t time_uptime = 1;
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
102 static int timestepwarnings;
103 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104 &timestepwarnings, 0, "");
106 #define TC_STATS(foo) \
107 static u_int foo; \
108 SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
109 struct __hack
111 TC_STATS(nbinuptime); TC_STATS(nnanouptime); TC_STATS(nmicrouptime);
112 TC_STATS(nbintime); TC_STATS(nnanotime); TC_STATS(nmicrotime);
113 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
114 TC_STATS(ngetbintime); TC_STATS(ngetnanotime); TC_STATS(ngetmicrotime);
115 TC_STATS(nsetclock);
117 #undef TC_STATS
119 static void tc_windup(void);
120 static void cpu_tick_calibrate(int);
122 static int
123 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
125 #ifdef SCTL_MASK32
126 int tv[2];
128 if (req->flags & SCTL_MASK32) {
129 tv[0] = boottime.tv_sec;
130 tv[1] = boottime.tv_usec;
131 return SYSCTL_OUT(req, tv, sizeof(tv));
132 } else
133 #endif
134 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
137 static int
138 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
140 u_int ncount;
141 struct timecounter *tc = arg1;
143 ncount = tc->tc_get_timecount(tc);
144 return sysctl_handle_int(oidp, &ncount, 0, req);
147 static int
148 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
150 u_int64_t freq;
151 struct timecounter *tc = arg1;
153 freq = tc->tc_frequency;
154 return sysctl_handle_quad(oidp, &freq, 0, req);
158 * Return the difference between the timehands' counter value now and what
159 * was when we copied it to the timehands' offset_count.
161 static __inline u_int
162 tc_delta(struct timehands *th)
164 struct timecounter *tc;
166 tc = th->th_counter;
167 return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
168 tc->tc_counter_mask);
172 * Functions for reading the time. We have to loop until we are sure that
173 * the timehands that we operated on was not updated under our feet. See
174 * the comment in <sys/time.h> for a description of these 12 functions.
177 void
178 binuptime(struct bintime *bt)
180 struct timehands *th;
181 u_int gen;
183 nbinuptime++;
184 do {
185 th = timehands;
186 gen = th->th_generation;
187 *bt = th->th_offset;
188 bintime_addx(bt, th->th_scale * tc_delta(th));
189 } while (gen == 0 || gen != th->th_generation);
192 void
193 nanouptime(struct timespec *tsp)
195 struct bintime bt;
197 nnanouptime++;
198 binuptime(&bt);
199 bintime2timespec(&bt, tsp);
202 void
203 microuptime(struct timeval *tvp)
205 struct bintime bt;
207 nmicrouptime++;
208 binuptime(&bt);
209 bintime2timeval(&bt, tvp);
212 void
213 bintime(struct bintime *bt)
216 nbintime++;
217 binuptime(bt);
218 bintime_add(bt, &boottimebin);
221 void
222 nanotime(struct timespec *tsp)
224 struct bintime bt;
226 nnanotime++;
227 bintime(&bt);
228 bintime2timespec(&bt, tsp);
231 void
232 microtime(struct timeval *tvp)
234 struct bintime bt;
236 nmicrotime++;
237 bintime(&bt);
238 bintime2timeval(&bt, tvp);
241 void
242 getbinuptime(struct bintime *bt)
244 struct timehands *th;
245 u_int gen;
247 ngetbinuptime++;
248 do {
249 th = timehands;
250 gen = th->th_generation;
251 *bt = th->th_offset;
252 } while (gen == 0 || gen != th->th_generation);
255 void
256 getnanouptime(struct timespec *tsp)
258 struct timehands *th;
259 u_int gen;
261 ngetnanouptime++;
262 do {
263 th = timehands;
264 gen = th->th_generation;
265 bintime2timespec(&th->th_offset, tsp);
266 } while (gen == 0 || gen != th->th_generation);
269 void
270 getmicrouptime(struct timeval *tvp)
272 struct timehands *th;
273 u_int gen;
275 ngetmicrouptime++;
276 do {
277 th = timehands;
278 gen = th->th_generation;
279 bintime2timeval(&th->th_offset, tvp);
280 } while (gen == 0 || gen != th->th_generation);
283 void
284 getbintime(struct bintime *bt)
286 struct timehands *th;
287 u_int gen;
289 ngetbintime++;
290 do {
291 th = timehands;
292 gen = th->th_generation;
293 *bt = th->th_offset;
294 } while (gen == 0 || gen != th->th_generation);
295 bintime_add(bt, &boottimebin);
298 void
299 getnanotime(struct timespec *tsp)
301 struct timehands *th;
302 u_int gen;
304 ngetnanotime++;
305 do {
306 th = timehands;
307 gen = th->th_generation;
308 *tsp = th->th_nanotime;
309 } while (gen == 0 || gen != th->th_generation);
312 void
313 getmicrotime(struct timeval *tvp)
315 struct timehands *th;
316 u_int gen;
318 ngetmicrotime++;
319 do {
320 th = timehands;
321 gen = th->th_generation;
322 *tvp = th->th_microtime;
323 } while (gen == 0 || gen != th->th_generation);
327 * Initialize a new timecounter and possibly use it.
329 void
330 tc_init(struct timecounter *tc)
332 u_int u;
333 struct sysctl_oid *tc_root;
335 u = tc->tc_frequency / tc->tc_counter_mask;
336 /* XXX: We need some margin here, 10% is a guess */
337 u *= 11;
338 u /= 10;
339 if (u > hz && tc->tc_quality >= 0) {
340 tc->tc_quality = -2000;
341 if (bootverbose) {
342 printf("Timecounter \"%s\" frequency %ju Hz",
343 tc->tc_name, (uintmax_t)tc->tc_frequency);
344 printf(" -- Insufficient hz, needs at least %u\n", u);
346 } else if (tc->tc_quality >= 0 || bootverbose) {
347 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
348 tc->tc_name, (uintmax_t)tc->tc_frequency,
349 tc->tc_quality);
352 tc->tc_next = timecounters;
353 timecounters = tc;
355 * Set up sysctl tree for this counter.
357 tc_root = SYSCTL_ADD_NODE(NULL,
358 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
359 CTLFLAG_RW, 0, "timecounter description");
360 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
361 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
362 "mask for implemented bits");
363 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
364 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
365 sysctl_kern_timecounter_get, "IU", "current timecounter value");
366 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
367 "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
368 sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
369 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
370 "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
371 "goodness of time counter");
373 * Never automatically use a timecounter with negative quality.
374 * Even though we run on the dummy counter, switching here may be
375 * worse since this timecounter may not be monotonous.
377 if (tc->tc_quality < 0)
378 return;
379 if (tc->tc_quality < timecounter->tc_quality)
380 return;
381 if (tc->tc_quality == timecounter->tc_quality &&
382 tc->tc_frequency < timecounter->tc_frequency)
383 return;
384 (void)tc->tc_get_timecount(tc);
385 (void)tc->tc_get_timecount(tc);
386 timecounter = tc;
389 /* Report the frequency of the current timecounter. */
390 u_int64_t
391 tc_getfrequency(void)
394 return (timehands->th_counter->tc_frequency);
398 * Step our concept of UTC. This is done by modifying our estimate of
399 * when we booted.
400 * XXX: not locked.
402 void
403 tc_setclock(struct timespec *ts)
405 struct timespec tbef, taft;
406 struct bintime bt, bt2;
408 cpu_tick_calibrate(1);
409 nsetclock++;
410 nanotime(&tbef);
411 timespec2bintime(ts, &bt);
412 binuptime(&bt2);
413 bintime_sub(&bt, &bt2);
414 bintime_add(&bt2, &boottimebin);
415 boottimebin = bt;
416 bintime2timeval(&bt, &boottime);
418 /* XXX fiddle all the little crinkly bits around the fiords... */
419 tc_windup();
420 nanotime(&taft);
421 if (timestepwarnings) {
422 log(LOG_INFO,
423 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
424 (intmax_t)tbef.tv_sec, tbef.tv_nsec,
425 (intmax_t)taft.tv_sec, taft.tv_nsec,
426 (intmax_t)ts->tv_sec, ts->tv_nsec);
428 cpu_tick_calibrate(1);
432 * Initialize the next struct timehands in the ring and make
433 * it the active timehands. Along the way we might switch to a different
434 * timecounter and/or do seconds processing in NTP. Slightly magic.
436 static void
437 tc_windup(void)
439 struct bintime bt;
440 struct timehands *th, *tho;
441 u_int64_t scale;
442 u_int delta, ncount, ogen;
443 int i;
444 time_t t;
447 * Make the next timehands a copy of the current one, but do not
448 * overwrite the generation or next pointer. While we update
449 * the contents, the generation must be zero.
451 tho = timehands;
452 th = tho->th_next;
453 ogen = th->th_generation;
454 th->th_generation = 0;
455 bcopy(tho, th, offsetof(struct timehands, th_generation));
458 * Capture a timecounter delta on the current timecounter and if
459 * changing timecounters, a counter value from the new timecounter.
460 * Update the offset fields accordingly.
462 delta = tc_delta(th);
463 if (th->th_counter != timecounter)
464 ncount = timecounter->tc_get_timecount(timecounter);
465 else
466 ncount = 0;
467 th->th_offset_count += delta;
468 th->th_offset_count &= th->th_counter->tc_counter_mask;
469 bintime_addx(&th->th_offset, th->th_scale * delta);
472 * Hardware latching timecounters may not generate interrupts on
473 * PPS events, so instead we poll them. There is a finite risk that
474 * the hardware might capture a count which is later than the one we
475 * got above, and therefore possibly in the next NTP second which might
476 * have a different rate than the current NTP second. It doesn't
477 * matter in practice.
479 if (tho->th_counter->tc_poll_pps)
480 tho->th_counter->tc_poll_pps(tho->th_counter);
483 * Deal with NTP second processing. The for loop normally
484 * iterates at most once, but in extreme situations it might
485 * keep NTP sane if timeouts are not run for several seconds.
486 * At boot, the time step can be large when the TOD hardware
487 * has been read, so on really large steps, we call
488 * ntp_update_second only twice. We need to call it twice in
489 * case we missed a leap second.
491 bt = th->th_offset;
492 bintime_add(&bt, &boottimebin);
493 i = bt.sec - tho->th_microtime.tv_sec;
494 if (i > LARGE_STEP)
495 i = 2;
496 for (; i > 0; i--) {
497 t = bt.sec;
498 ntp_update_second(&th->th_adjustment, &bt.sec);
499 if (bt.sec != t)
500 boottimebin.sec += bt.sec - t;
502 /* Update the UTC timestamps used by the get*() functions. */
503 /* XXX shouldn't do this here. Should force non-`get' versions. */
504 bintime2timeval(&bt, &th->th_microtime);
505 bintime2timespec(&bt, &th->th_nanotime);
507 /* Now is a good time to change timecounters. */
508 if (th->th_counter != timecounter) {
509 th->th_counter = timecounter;
510 th->th_offset_count = ncount;
514 * Recalculate the scaling factor. We want the number of 1/2^64
515 * fractions of a second per period of the hardware counter, taking
516 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
517 * processing provides us with.
519 * The th_adjustment is nanoseconds per second with 32 bit binary
520 * fraction and we want 64 bit binary fraction of second:
522 * x = a * 2^32 / 10^9 = a * 4.294967296
524 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
525 * we can only multiply by about 850 without overflowing, that
526 * leaves no suitably precise fractions for multiply before divide.
528 * Divide before multiply with a fraction of 2199/512 results in a
529 * systematic undercompensation of 10PPM of th_adjustment. On a
530 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
532 * We happily sacrifice the lowest of the 64 bits of our result
533 * to the goddess of code clarity.
536 scale = (u_int64_t)1 << 63;
537 scale += (th->th_adjustment / 1024) * 2199;
538 scale /= th->th_counter->tc_frequency;
539 th->th_scale = scale * 2;
542 * Now that the struct timehands is again consistent, set the new
543 * generation number, making sure to not make it zero.
545 if (++ogen == 0)
546 ogen = 1;
547 th->th_generation = ogen;
549 /* Go live with the new struct timehands. */
550 time_second = th->th_microtime.tv_sec;
551 time_uptime = th->th_offset.sec;
552 timehands = th;
555 /* Report or change the active timecounter hardware. */
556 static int
557 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
559 char newname[32];
560 struct timecounter *newtc, *tc;
561 int error;
563 tc = timecounter;
564 strlcpy(newname, tc->tc_name, sizeof(newname));
566 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
567 if (error != 0 || req->newptr == NULL ||
568 strcmp(newname, tc->tc_name) == 0)
569 return (error);
570 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
571 if (strcmp(newname, newtc->tc_name) != 0)
572 continue;
574 /* Warm up new timecounter. */
575 (void)newtc->tc_get_timecount(newtc);
576 (void)newtc->tc_get_timecount(newtc);
578 timecounter = newtc;
579 return (0);
581 return (EINVAL);
584 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
585 0, 0, sysctl_kern_timecounter_hardware, "A", "");
588 /* Report or change the active timecounter hardware. */
589 static int
590 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
592 char buf[32], *spc;
593 struct timecounter *tc;
594 int error;
596 spc = "";
597 error = 0;
598 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
599 sprintf(buf, "%s%s(%d)",
600 spc, tc->tc_name, tc->tc_quality);
601 error = SYSCTL_OUT(req, buf, strlen(buf));
602 spc = " ";
604 return (error);
607 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
608 0, 0, sysctl_kern_timecounter_choice, "A", "");
611 * RFC 2783 PPS-API implementation.
615 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
617 pps_params_t *app;
618 struct pps_fetch_args *fapi;
619 #ifdef PPS_SYNC
620 struct pps_kcbind_args *kapi;
621 #endif
623 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
624 switch (cmd) {
625 case PPS_IOC_CREATE:
626 return (0);
627 case PPS_IOC_DESTROY:
628 return (0);
629 case PPS_IOC_SETPARAMS:
630 app = (pps_params_t *)data;
631 if (app->mode & ~pps->ppscap)
632 return (EINVAL);
633 pps->ppsparam = *app;
634 return (0);
635 case PPS_IOC_GETPARAMS:
636 app = (pps_params_t *)data;
637 *app = pps->ppsparam;
638 app->api_version = PPS_API_VERS_1;
639 return (0);
640 case PPS_IOC_GETCAP:
641 *(int*)data = pps->ppscap;
642 return (0);
643 case PPS_IOC_FETCH:
644 fapi = (struct pps_fetch_args *)data;
645 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
646 return (EINVAL);
647 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
648 return (EOPNOTSUPP);
649 pps->ppsinfo.current_mode = pps->ppsparam.mode;
650 fapi->pps_info_buf = pps->ppsinfo;
651 return (0);
652 case PPS_IOC_KCBIND:
653 #ifdef PPS_SYNC
654 kapi = (struct pps_kcbind_args *)data;
655 /* XXX Only root should be able to do this */
656 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
657 return (EINVAL);
658 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
659 return (EINVAL);
660 if (kapi->edge & ~pps->ppscap)
661 return (EINVAL);
662 pps->kcmode = kapi->edge;
663 return (0);
664 #else
665 return (EOPNOTSUPP);
666 #endif
667 default:
668 return (ENOIOCTL);
672 void
673 pps_init(struct pps_state *pps)
675 pps->ppscap |= PPS_TSFMT_TSPEC;
676 if (pps->ppscap & PPS_CAPTUREASSERT)
677 pps->ppscap |= PPS_OFFSETASSERT;
678 if (pps->ppscap & PPS_CAPTURECLEAR)
679 pps->ppscap |= PPS_OFFSETCLEAR;
682 void
683 pps_capture(struct pps_state *pps)
685 struct timehands *th;
687 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
688 th = timehands;
689 pps->capgen = th->th_generation;
690 pps->capth = th;
691 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
692 if (pps->capgen != th->th_generation)
693 pps->capgen = 0;
696 void
697 pps_event(struct pps_state *pps, int event)
699 struct bintime bt;
700 struct timespec ts, *tsp, *osp;
701 u_int tcount, *pcount;
702 int foff, fhard;
703 pps_seq_t *pseq;
705 KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
706 /* If the timecounter was wound up underneath us, bail out. */
707 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
708 return;
710 /* Things would be easier with arrays. */
711 if (event == PPS_CAPTUREASSERT) {
712 tsp = &pps->ppsinfo.assert_timestamp;
713 osp = &pps->ppsparam.assert_offset;
714 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
715 fhard = pps->kcmode & PPS_CAPTUREASSERT;
716 pcount = &pps->ppscount[0];
717 pseq = &pps->ppsinfo.assert_sequence;
718 } else {
719 tsp = &pps->ppsinfo.clear_timestamp;
720 osp = &pps->ppsparam.clear_offset;
721 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
722 fhard = pps->kcmode & PPS_CAPTURECLEAR;
723 pcount = &pps->ppscount[1];
724 pseq = &pps->ppsinfo.clear_sequence;
728 * If the timecounter changed, we cannot compare the count values, so
729 * we have to drop the rest of the PPS-stuff until the next event.
731 if (pps->ppstc != pps->capth->th_counter) {
732 pps->ppstc = pps->capth->th_counter;
733 *pcount = pps->capcount;
734 pps->ppscount[2] = pps->capcount;
735 return;
738 /* Convert the count to a timespec. */
739 tcount = pps->capcount - pps->capth->th_offset_count;
740 tcount &= pps->capth->th_counter->tc_counter_mask;
741 bt = pps->capth->th_offset;
742 bintime_addx(&bt, pps->capth->th_scale * tcount);
743 bintime_add(&bt, &boottimebin);
744 bintime2timespec(&bt, &ts);
746 /* If the timecounter was wound up underneath us, bail out. */
747 if (pps->capgen != pps->capth->th_generation)
748 return;
750 *pcount = pps->capcount;
751 (*pseq)++;
752 *tsp = ts;
754 if (foff) {
755 timespecadd(tsp, osp);
756 if (tsp->tv_nsec < 0) {
757 tsp->tv_nsec += 1000000000;
758 tsp->tv_sec -= 1;
761 #ifdef PPS_SYNC
762 if (fhard) {
763 u_int64_t scale;
766 * Feed the NTP PLL/FLL.
767 * The FLL wants to know how many (hardware) nanoseconds
768 * elapsed since the previous event.
770 tcount = pps->capcount - pps->ppscount[2];
771 pps->ppscount[2] = pps->capcount;
772 tcount &= pps->capth->th_counter->tc_counter_mask;
773 scale = (u_int64_t)1 << 63;
774 scale /= pps->capth->th_counter->tc_frequency;
775 scale *= 2;
776 bt.sec = 0;
777 bt.frac = 0;
778 bintime_addx(&bt, scale * tcount);
779 bintime2timespec(&bt, &ts);
780 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
782 #endif
786 * Timecounters need to be updated every so often to prevent the hardware
787 * counter from overflowing. Updating also recalculates the cached values
788 * used by the get*() family of functions, so their precision depends on
789 * the update frequency.
792 static int tc_tick;
793 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
795 void
796 tc_ticktock(void)
798 static int count;
799 static time_t last_calib;
801 if (++count < tc_tick)
802 return;
803 count = 0;
804 tc_windup();
805 if (time_uptime != last_calib && !(time_uptime & 0xf)) {
806 cpu_tick_calibrate(0);
807 last_calib = time_uptime;
811 static void
812 inittimecounter(void *dummy)
814 u_int p;
817 * Set the initial timeout to
818 * max(1, <approx. number of hardclock ticks in a millisecond>).
819 * People should probably not use the sysctl to set the timeout
820 * to smaller than its inital value, since that value is the
821 * smallest reasonable one. If they want better timestamps they
822 * should use the non-"get"* functions.
824 if (hz > 1000)
825 tc_tick = (hz + 500) / 1000;
826 else
827 tc_tick = 1;
828 p = (tc_tick * 1000000) / hz;
829 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
831 /* warm up new timecounter (again) and get rolling. */
832 (void)timecounter->tc_get_timecount(timecounter);
833 (void)timecounter->tc_get_timecount(timecounter);
836 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
838 /* Cpu tick handling -------------------------------------------------*/
840 static int cpu_tick_variable;
841 static uint64_t cpu_tick_frequency;
843 static uint64_t
844 tc_cpu_ticks(void)
846 static uint64_t base;
847 static unsigned last;
848 unsigned u;
849 struct timecounter *tc;
851 tc = timehands->th_counter;
852 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
853 if (u < last)
854 base += (uint64_t)tc->tc_counter_mask + 1;
855 last = u;
856 return (u + base);
860 * This function gets called every 16 seconds on only one designated
861 * CPU in the system from hardclock() via tc_ticktock().
863 * Whenever the real time clock is stepped we get called with reset=1
864 * to make sure we handle suspend/resume and similar events correctly.
867 static void
868 cpu_tick_calibrate(int reset)
870 static uint64_t c_last;
871 uint64_t c_this, c_delta;
872 static struct bintime t_last;
873 struct bintime t_this, t_delta;
874 uint32_t divi;
876 if (reset) {
877 /* The clock was stepped, abort & reset */
878 t_last.sec = 0;
879 return;
882 /* we don't calibrate fixed rate cputicks */
883 if (!cpu_tick_variable)
884 return;
886 getbinuptime(&t_this);
887 c_this = cpu_ticks();
888 if (t_last.sec != 0) {
889 c_delta = c_this - c_last;
890 t_delta = t_this;
891 bintime_sub(&t_delta, &t_last);
893 * Validate that 16 +/- 1/256 seconds passed.
894 * After division by 16 this gives us a precision of
895 * roughly 250PPM which is sufficient
897 if (t_delta.sec > 16 || (
898 t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
899 /* too long */
900 if (bootverbose)
901 printf("t_delta %ju.%016jx too long\n",
902 (uintmax_t)t_delta.sec,
903 (uintmax_t)t_delta.frac);
904 } else if (t_delta.sec < 15 ||
905 (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
906 /* too short */
907 if (bootverbose)
908 printf("t_delta %ju.%016jx too short\n",
909 (uintmax_t)t_delta.sec,
910 (uintmax_t)t_delta.frac);
911 } else {
912 /* just right */
914 * Headroom:
915 * 2^(64-20) / 16[s] =
916 * 2^(44) / 16[s] =
917 * 17.592.186.044.416 / 16 =
918 * 1.099.511.627.776 [Hz]
920 divi = t_delta.sec << 20;
921 divi |= t_delta.frac >> (64 - 20);
922 c_delta <<= 20;
923 c_delta /= divi;
924 if (c_delta > cpu_tick_frequency) {
925 if (0 && bootverbose)
926 printf("cpu_tick increased to %ju Hz\n",
927 c_delta);
928 cpu_tick_frequency = c_delta;
932 c_last = c_this;
933 t_last = t_this;
936 void
937 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
940 if (func == NULL) {
941 cpu_ticks = tc_cpu_ticks;
942 } else {
943 cpu_tick_frequency = freq;
944 cpu_tick_variable = var;
945 cpu_ticks = func;
949 uint64_t
950 cpu_tickrate(void)
953 if (cpu_ticks == tc_cpu_ticks)
954 return (tc_getfrequency());
955 return (cpu_tick_frequency);
959 * We need to be slightly careful converting cputicks to microseconds.
960 * There is plenty of margin in 64 bits of microseconds (half a million
961 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
962 * before divide conversion (to retain precision) we find that the
963 * margin shrinks to 1.5 hours (one millionth of 146y).
964 * With a three prong approach we never lose significant bits, no
965 * matter what the cputick rate and length of timeinterval is.
968 uint64_t
969 cputick2usec(uint64_t tick)
972 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */
973 return (tick / (cpu_tickrate() / 1000000LL));
974 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */
975 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
976 else
977 return ((tick * 1000000LL) / cpu_tickrate());
980 cpu_tick_f *cpu_ticks = tc_cpu_ticks;