2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
47 #include <sys/kernel.h>
50 #include <sys/mutex.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/sleepqueue.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
63 #include <sys/ktrace.h>
66 #include <machine/cpu.h>
68 static void synch_setup(void *dummy
);
69 SYSINIT(synch_setup
, SI_SUB_KICK_SCHEDULER
, SI_ORDER_FIRST
, synch_setup
,
73 static int pause_wchan
;
75 static struct callout loadav_callout
;
77 struct loadavg averunnable
=
78 { {0, 0, 0}, FSCALE
}; /* load average, of runnable procs */
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
83 static fixpt_t cexp
[3] = {
84 0.9200444146293232 * FSCALE
, /* exp(-1/12) */
85 0.9834714538216174 * FSCALE
, /* exp(-1/60) */
86 0.9944598480048967 * FSCALE
, /* exp(-1/180) */
89 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90 static int fscale __unused
= FSCALE
;
91 SYSCTL_INT(_kern
, OID_AUTO
, fscale
, CTLFLAG_RD
, 0, FSCALE
, "");
93 static void loadav(void *arg
);
99 hogticks
= (hz
/ 10) * 2; /* Default only. */
104 * General sleep call. Suspends the current thread until a wakeup is
105 * performed on the specified identifier. The thread will then be made
106 * runnable with the specified priority. Sleeps at most timo/hz seconds
107 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked. Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
114 * The lock argument is unlocked before the caller is suspended, and
115 * re-locked before _sleep() returns. If priority includes the PDROP
116 * flag the lock is not re-locked before returning.
119 _sleep(void *ident
, struct lock_object
*lock
, int priority
,
120 const char *wmesg
, int timo
)
124 struct lock_class
*class;
125 int catch, flags
, lock_state
, pri
, rval
;
126 WITNESS_SAVE_DECL(lock_witness
);
131 if (KTRPOINT(td
, KTR_CSW
))
134 WITNESS_WARN(WARN_GIANTOK
| WARN_SLEEPOK
, lock
,
135 "Sleeping on \"%s\"", wmesg
);
136 KASSERT(timo
!= 0 || mtx_owned(&Giant
) || lock
!= NULL
,
137 ("sleeping without a lock"));
138 KASSERT(p
!= NULL
, ("msleep1"));
139 KASSERT(ident
!= NULL
&& TD_IS_RUNNING(td
), ("msleep"));
140 if (priority
& PDROP
)
141 KASSERT(lock
!= NULL
&& lock
!= &Giant
.lock_object
,
142 ("PDROP requires a non-Giant lock"));
144 class = LOCK_CLASS(lock
);
150 * During autoconfiguration, just return;
151 * don't run any other threads or panic below,
152 * in case this is the idle thread and already asleep.
153 * XXX: this used to do "s = splhigh(); splx(safepri);
154 * splx(s);" to give interrupts a chance, but there is
155 * no way to give interrupts a chance now.
157 if (lock
!= NULL
&& priority
& PDROP
)
158 class->lc_unlock(lock
);
161 catch = priority
& PCATCH
;
162 pri
= priority
& PRIMASK
;
166 * If we are already on a sleep queue, then remove us from that
167 * sleep queue first. We have to do this to handle recursive
170 if (TD_ON_SLEEPQ(td
))
171 sleepq_remove(td
, td
->td_wchan
);
173 if (ident
== &pause_wchan
)
174 flags
= SLEEPQ_PAUSE
;
176 flags
= SLEEPQ_SLEEP
;
178 flags
|= SLEEPQ_INTERRUPTIBLE
;
181 CTR5(KTR_PROC
, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182 td
->td_tid
, p
->p_pid
, td
->td_name
, wmesg
, ident
);
185 if (lock
!= NULL
&& lock
!= &Giant
.lock_object
&&
186 !(class->lc_flags
& LC_SLEEPABLE
)) {
187 WITNESS_SAVE(lock
, lock_witness
);
188 lock_state
= class->lc_unlock(lock
);
190 /* GCC needs to follow the Yellow Brick Road */
194 * We put ourselves on the sleep queue and start our timeout
195 * before calling thread_suspend_check, as we could stop there,
196 * and a wakeup or a SIGCONT (or both) could occur while we were
197 * stopped without resuming us. Thus, we must be ready for sleep
198 * when cursig() is called. If the wakeup happens while we're
199 * stopped, then td will no longer be on a sleep queue upon
200 * return from cursig().
202 sleepq_add(ident
, lock
, wmesg
, flags
, 0);
204 sleepq_set_timeout(ident
, timo
);
205 if (lock
!= NULL
&& class->lc_flags
& LC_SLEEPABLE
) {
206 sleepq_release(ident
);
207 WITNESS_SAVE(lock
, lock_witness
);
208 lock_state
= class->lc_unlock(lock
);
212 rval
= sleepq_timedwait_sig(ident
, pri
);
214 rval
= sleepq_timedwait(ident
, pri
);
216 rval
= sleepq_wait_sig(ident
, pri
);
218 sleepq_wait(ident
, pri
);
222 if (KTRPOINT(td
, KTR_CSW
))
226 if (lock
!= NULL
&& lock
!= &Giant
.lock_object
&& !(priority
& PDROP
)) {
227 class->lc_lock(lock
, lock_state
);
228 WITNESS_RESTORE(lock
, lock_witness
);
234 msleep_spin(void *ident
, struct mtx
*mtx
, const char *wmesg
, int timo
)
239 WITNESS_SAVE_DECL(mtx
);
243 KASSERT(mtx
!= NULL
, ("sleeping without a mutex"));
244 KASSERT(p
!= NULL
, ("msleep1"));
245 KASSERT(ident
!= NULL
&& TD_IS_RUNNING(td
), ("msleep"));
249 * During autoconfiguration, just return;
250 * don't run any other threads or panic below,
251 * in case this is the idle thread and already asleep.
252 * XXX: this used to do "s = splhigh(); splx(safepri);
253 * splx(s);" to give interrupts a chance, but there is
254 * no way to give interrupts a chance now.
260 CTR5(KTR_PROC
, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
261 td
->td_tid
, p
->p_pid
, td
->td_name
, wmesg
, ident
);
264 mtx_assert(mtx
, MA_OWNED
| MA_NOTRECURSED
);
265 WITNESS_SAVE(&mtx
->lock_object
, mtx
);
266 mtx_unlock_spin(mtx
);
269 * We put ourselves on the sleep queue and start our timeout.
271 sleepq_add(ident
, &mtx
->lock_object
, wmesg
, SLEEPQ_SLEEP
, 0);
273 sleepq_set_timeout(ident
, timo
);
276 * Can't call ktrace with any spin locks held so it can lock the
277 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
278 * any spin lock. Thus, we have to drop the sleepq spin lock while
279 * we handle those requests. This is safe since we have placed our
280 * thread on the sleep queue already.
283 if (KTRPOINT(td
, KTR_CSW
)) {
284 sleepq_release(ident
);
290 sleepq_release(ident
);
291 WITNESS_WARN(WARN_GIANTOK
| WARN_SLEEPOK
, NULL
, "Sleeping on \"%s\"",
296 rval
= sleepq_timedwait(ident
, 0);
298 sleepq_wait(ident
, 0);
302 if (KTRPOINT(td
, KTR_CSW
))
307 WITNESS_RESTORE(&mtx
->lock_object
, mtx
);
312 * pause() is like tsleep() except that the intention is to not be
313 * explicitly woken up by another thread. Instead, the current thread
314 * simply wishes to sleep until the timeout expires. It is
315 * implemented using a dummy wait channel.
318 pause(const char *wmesg
, int timo
)
321 KASSERT(timo
!= 0, ("pause: timeout required"));
322 return (tsleep(&pause_wchan
, 0, wmesg
, timo
));
326 * Make all threads sleeping on the specified identifier runnable.
334 wakeup_swapper
= sleepq_broadcast(ident
, SLEEPQ_SLEEP
, 0, 0);
335 sleepq_release(ident
);
341 * Make a thread sleeping on the specified identifier runnable.
342 * May wake more than one thread if a target thread is currently
346 wakeup_one(void *ident
)
351 wakeup_swapper
= sleepq_signal(ident
, SLEEPQ_SLEEP
, 0, 0);
352 sleepq_release(ident
);
360 thread_unlock(curthread
);
363 panic("%s: did not reenter debugger", __func__
);
367 * The machine independent parts of context switching.
370 mi_switch(int flags
, struct thread
*newtd
)
372 uint64_t runtime
, new_switchtime
;
376 td
= curthread
; /* XXX */
377 THREAD_LOCK_ASSERT(td
, MA_OWNED
| MA_NOTRECURSED
);
378 p
= td
->td_proc
; /* XXX */
379 KASSERT(!TD_ON_RUNQ(td
), ("mi_switch: called by old code"));
381 if (!TD_ON_LOCK(td
) && !TD_IS_RUNNING(td
))
382 mtx_assert(&Giant
, MA_NOTOWNED
);
384 KASSERT(td
->td_critnest
== 1 || (td
->td_critnest
== 2 &&
385 (td
->td_owepreempt
) && (flags
& SW_INVOL
) != 0 &&
386 newtd
== NULL
) || panicstr
,
387 ("mi_switch: switch in a critical section"));
388 KASSERT((flags
& (SW_INVOL
| SW_VOL
)) != 0,
389 ("mi_switch: switch must be voluntary or involuntary"));
390 KASSERT(newtd
!= curthread
, ("mi_switch: preempting back to ourself"));
393 * Don't perform context switches from the debugger.
398 td
->td_ru
.ru_nvcsw
++;
400 td
->td_ru
.ru_nivcsw
++;
402 SCHED_STAT_INC(sched_switch_stats
[flags
& SW_TYPE_MASK
]);
405 * Compute the amount of time during which the current
406 * thread was running, and add that to its total so far.
408 new_switchtime
= cpu_ticks();
409 runtime
= new_switchtime
- PCPU_GET(switchtime
);
410 td
->td_runtime
+= runtime
;
411 td
->td_incruntime
+= runtime
;
412 PCPU_SET(switchtime
, new_switchtime
);
413 td
->td_generation
++; /* bump preempt-detect counter */
414 PCPU_INC(cnt
.v_swtch
);
415 PCPU_SET(switchticks
, ticks
);
416 CTR4(KTR_PROC
, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
417 td
->td_tid
, td
->td_sched
, p
->p_pid
, td
->td_name
);
418 #if (KTR_COMPILE & KTR_SCHED) != 0
419 if (TD_IS_IDLETHREAD(td
))
420 CTR3(KTR_SCHED
, "mi_switch: %p(%s) prio %d idle",
421 td
, td
->td_name
, td
->td_priority
);
422 else if (newtd
!= NULL
)
424 "mi_switch: %p(%s) prio %d preempted by %p(%s)",
425 td
, td
->td_name
, td
->td_priority
, newtd
,
429 "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
430 td
, td
->td_name
, td
->td_priority
,
431 td
->td_inhibitors
, td
->td_wmesg
, td
->td_lockname
);
433 sched_switch(td
, newtd
, flags
);
434 CTR3(KTR_SCHED
, "mi_switch: running %p(%s) prio %d",
435 td
, td
->td_name
, td
->td_priority
);
437 CTR4(KTR_PROC
, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
438 td
->td_tid
, td
->td_sched
, p
->p_pid
, td
->td_name
);
441 * If the last thread was exiting, finish cleaning it up.
443 if ((td
= PCPU_GET(deadthread
))) {
444 PCPU_SET(deadthread
, NULL
);
450 * Change thread state to be runnable, placing it on the run queue if
451 * it is in memory. If it is swapped out, return true so our caller
452 * will know to awaken the swapper.
455 setrunnable(struct thread
*td
)
458 THREAD_LOCK_ASSERT(td
, MA_OWNED
);
459 KASSERT(td
->td_proc
->p_state
!= PRS_ZOMBIE
,
460 ("setrunnable: pid %d is a zombie", td
->td_proc
->p_pid
));
461 switch (td
->td_state
) {
467 * If we are only inhibited because we are swapped out
468 * then arange to swap in this process. Otherwise just return.
470 if (td
->td_inhibitors
!= TDI_SWAPPED
)
476 printf("state is 0x%x", td
->td_state
);
477 panic("setrunnable(2)");
479 if ((td
->td_flags
& TDF_INMEM
) == 0) {
480 if ((td
->td_flags
& TDF_SWAPINREQ
) == 0) {
481 td
->td_flags
|= TDF_SWAPINREQ
;
490 * Compute a tenex style load average of a quantity on
491 * 1, 5 and 15 minute intervals.
502 for (i
= 0; i
< 3; i
++)
503 avg
->ldavg
[i
] = (cexp
[i
] * avg
->ldavg
[i
] +
504 nrun
* FSCALE
* (FSCALE
- cexp
[i
])) >> FSHIFT
;
507 * Schedule the next update to occur after 5 seconds, but add a
508 * random variation to avoid synchronisation with processes that
509 * run at regular intervals.
511 callout_reset(&loadav_callout
, hz
* 4 + (int)(random() % (hz
* 2 + 1)),
517 synch_setup(void *dummy
)
519 callout_init(&loadav_callout
, CALLOUT_MPSAFE
);
521 /* Kick off timeout driven events by calling first time. */
526 * General purpose yield system call.
529 yield(struct thread
*td
, struct yield_args
*uap
)
533 sched_prio(td
, PRI_MAX_TIMESHARE
);
534 mi_switch(SW_VOL
| SWT_RELINQUISH
, NULL
);
536 td
->td_retval
[0] = 0;