Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_synch.c
blob9b7804b1bde9e2d3386dec0e1bc8eb793df42675
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
40 #include "opt_ktrace.h"
41 #include "opt_sched.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/signalvar.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/vmmeter.h>
61 #ifdef KTRACE
62 #include <sys/uio.h>
63 #include <sys/ktrace.h>
64 #endif
66 #include <machine/cpu.h>
68 static void synch_setup(void *dummy);
69 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
70 NULL);
72 int hogticks;
73 static int pause_wchan;
75 static struct callout loadav_callout;
77 struct loadavg averunnable =
78 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
80 * Constants for averages over 1, 5, and 15 minutes
81 * when sampling at 5 second intervals.
83 static fixpt_t cexp[3] = {
84 0.9200444146293232 * FSCALE, /* exp(-1/12) */
85 0.9834714538216174 * FSCALE, /* exp(-1/60) */
86 0.9944598480048967 * FSCALE, /* exp(-1/180) */
89 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
90 static int fscale __unused = FSCALE;
91 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
93 static void loadav(void *arg);
95 void
96 sleepinit(void)
99 hogticks = (hz / 10) * 2; /* Default only. */
100 init_sleepqueues();
104 * General sleep call. Suspends the current thread until a wakeup is
105 * performed on the specified identifier. The thread will then be made
106 * runnable with the specified priority. Sleeps at most timo/hz seconds
107 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
108 * before and after sleeping, else signals are not checked. Returns 0 if
109 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
110 * signal needs to be delivered, ERESTART is returned if the current system
111 * call should be restarted if possible, and EINTR is returned if the system
112 * call should be interrupted by the signal (return EINTR).
114 * The lock argument is unlocked before the caller is suspended, and
115 * re-locked before _sleep() returns. If priority includes the PDROP
116 * flag the lock is not re-locked before returning.
119 _sleep(void *ident, struct lock_object *lock, int priority,
120 const char *wmesg, int timo)
122 struct thread *td;
123 struct proc *p;
124 struct lock_class *class;
125 int catch, flags, lock_state, pri, rval;
126 WITNESS_SAVE_DECL(lock_witness);
128 td = curthread;
129 p = td->td_proc;
130 #ifdef KTRACE
131 if (KTRPOINT(td, KTR_CSW))
132 ktrcsw(1, 0);
133 #endif
134 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
135 "Sleeping on \"%s\"", wmesg);
136 KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
137 ("sleeping without a lock"));
138 KASSERT(p != NULL, ("msleep1"));
139 KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
140 if (priority & PDROP)
141 KASSERT(lock != NULL && lock != &Giant.lock_object,
142 ("PDROP requires a non-Giant lock"));
143 if (lock != NULL)
144 class = LOCK_CLASS(lock);
145 else
146 class = NULL;
148 if (cold) {
150 * During autoconfiguration, just return;
151 * don't run any other threads or panic below,
152 * in case this is the idle thread and already asleep.
153 * XXX: this used to do "s = splhigh(); splx(safepri);
154 * splx(s);" to give interrupts a chance, but there is
155 * no way to give interrupts a chance now.
157 if (lock != NULL && priority & PDROP)
158 class->lc_unlock(lock);
159 return (0);
161 catch = priority & PCATCH;
162 pri = priority & PRIMASK;
163 rval = 0;
166 * If we are already on a sleep queue, then remove us from that
167 * sleep queue first. We have to do this to handle recursive
168 * sleeps.
170 if (TD_ON_SLEEPQ(td))
171 sleepq_remove(td, td->td_wchan);
173 if (ident == &pause_wchan)
174 flags = SLEEPQ_PAUSE;
175 else
176 flags = SLEEPQ_SLEEP;
177 if (catch)
178 flags |= SLEEPQ_INTERRUPTIBLE;
180 sleepq_lock(ident);
181 CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
182 td->td_tid, p->p_pid, td->td_name, wmesg, ident);
184 DROP_GIANT();
185 if (lock != NULL && lock != &Giant.lock_object &&
186 !(class->lc_flags & LC_SLEEPABLE)) {
187 WITNESS_SAVE(lock, lock_witness);
188 lock_state = class->lc_unlock(lock);
189 } else
190 /* GCC needs to follow the Yellow Brick Road */
191 lock_state = -1;
194 * We put ourselves on the sleep queue and start our timeout
195 * before calling thread_suspend_check, as we could stop there,
196 * and a wakeup or a SIGCONT (or both) could occur while we were
197 * stopped without resuming us. Thus, we must be ready for sleep
198 * when cursig() is called. If the wakeup happens while we're
199 * stopped, then td will no longer be on a sleep queue upon
200 * return from cursig().
202 sleepq_add(ident, lock, wmesg, flags, 0);
203 if (timo)
204 sleepq_set_timeout(ident, timo);
205 if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
206 sleepq_release(ident);
207 WITNESS_SAVE(lock, lock_witness);
208 lock_state = class->lc_unlock(lock);
209 sleepq_lock(ident);
211 if (timo && catch)
212 rval = sleepq_timedwait_sig(ident, pri);
213 else if (timo)
214 rval = sleepq_timedwait(ident, pri);
215 else if (catch)
216 rval = sleepq_wait_sig(ident, pri);
217 else {
218 sleepq_wait(ident, pri);
219 rval = 0;
221 #ifdef KTRACE
222 if (KTRPOINT(td, KTR_CSW))
223 ktrcsw(0, 0);
224 #endif
225 PICKUP_GIANT();
226 if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
227 class->lc_lock(lock, lock_state);
228 WITNESS_RESTORE(lock, lock_witness);
230 return (rval);
234 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
236 struct thread *td;
237 struct proc *p;
238 int rval;
239 WITNESS_SAVE_DECL(mtx);
241 td = curthread;
242 p = td->td_proc;
243 KASSERT(mtx != NULL, ("sleeping without a mutex"));
244 KASSERT(p != NULL, ("msleep1"));
245 KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
247 if (cold) {
249 * During autoconfiguration, just return;
250 * don't run any other threads or panic below,
251 * in case this is the idle thread and already asleep.
252 * XXX: this used to do "s = splhigh(); splx(safepri);
253 * splx(s);" to give interrupts a chance, but there is
254 * no way to give interrupts a chance now.
256 return (0);
259 sleepq_lock(ident);
260 CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
261 td->td_tid, p->p_pid, td->td_name, wmesg, ident);
263 DROP_GIANT();
264 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
265 WITNESS_SAVE(&mtx->lock_object, mtx);
266 mtx_unlock_spin(mtx);
269 * We put ourselves on the sleep queue and start our timeout.
271 sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
272 if (timo)
273 sleepq_set_timeout(ident, timo);
276 * Can't call ktrace with any spin locks held so it can lock the
277 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
278 * any spin lock. Thus, we have to drop the sleepq spin lock while
279 * we handle those requests. This is safe since we have placed our
280 * thread on the sleep queue already.
282 #ifdef KTRACE
283 if (KTRPOINT(td, KTR_CSW)) {
284 sleepq_release(ident);
285 ktrcsw(1, 0);
286 sleepq_lock(ident);
288 #endif
289 #ifdef WITNESS
290 sleepq_release(ident);
291 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
292 wmesg);
293 sleepq_lock(ident);
294 #endif
295 if (timo)
296 rval = sleepq_timedwait(ident, 0);
297 else {
298 sleepq_wait(ident, 0);
299 rval = 0;
301 #ifdef KTRACE
302 if (KTRPOINT(td, KTR_CSW))
303 ktrcsw(0, 0);
304 #endif
305 PICKUP_GIANT();
306 mtx_lock_spin(mtx);
307 WITNESS_RESTORE(&mtx->lock_object, mtx);
308 return (rval);
312 * pause() is like tsleep() except that the intention is to not be
313 * explicitly woken up by another thread. Instead, the current thread
314 * simply wishes to sleep until the timeout expires. It is
315 * implemented using a dummy wait channel.
318 pause(const char *wmesg, int timo)
321 KASSERT(timo != 0, ("pause: timeout required"));
322 return (tsleep(&pause_wchan, 0, wmesg, timo));
326 * Make all threads sleeping on the specified identifier runnable.
328 void
329 wakeup(void *ident)
331 int wakeup_swapper;
333 sleepq_lock(ident);
334 wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
335 sleepq_release(ident);
336 if (wakeup_swapper)
337 kick_proc0();
341 * Make a thread sleeping on the specified identifier runnable.
342 * May wake more than one thread if a target thread is currently
343 * swapped out.
345 void
346 wakeup_one(void *ident)
348 int wakeup_swapper;
350 sleepq_lock(ident);
351 wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
352 sleepq_release(ident);
353 if (wakeup_swapper)
354 kick_proc0();
357 static void
358 kdb_switch(void)
360 thread_unlock(curthread);
361 kdb_backtrace();
362 kdb_reenter();
363 panic("%s: did not reenter debugger", __func__);
367 * The machine independent parts of context switching.
369 void
370 mi_switch(int flags, struct thread *newtd)
372 uint64_t runtime, new_switchtime;
373 struct thread *td;
374 struct proc *p;
376 td = curthread; /* XXX */
377 THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
378 p = td->td_proc; /* XXX */
379 KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
380 #ifdef INVARIANTS
381 if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
382 mtx_assert(&Giant, MA_NOTOWNED);
383 #endif
384 KASSERT(td->td_critnest == 1 || (td->td_critnest == 2 &&
385 (td->td_owepreempt) && (flags & SW_INVOL) != 0 &&
386 newtd == NULL) || panicstr,
387 ("mi_switch: switch in a critical section"));
388 KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
389 ("mi_switch: switch must be voluntary or involuntary"));
390 KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
393 * Don't perform context switches from the debugger.
395 if (kdb_active)
396 kdb_switch();
397 if (flags & SW_VOL)
398 td->td_ru.ru_nvcsw++;
399 else
400 td->td_ru.ru_nivcsw++;
401 #ifdef SCHED_STATS
402 SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
403 #endif
405 * Compute the amount of time during which the current
406 * thread was running, and add that to its total so far.
408 new_switchtime = cpu_ticks();
409 runtime = new_switchtime - PCPU_GET(switchtime);
410 td->td_runtime += runtime;
411 td->td_incruntime += runtime;
412 PCPU_SET(switchtime, new_switchtime);
413 td->td_generation++; /* bump preempt-detect counter */
414 PCPU_INC(cnt.v_swtch);
415 PCPU_SET(switchticks, ticks);
416 CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
417 td->td_tid, td->td_sched, p->p_pid, td->td_name);
418 #if (KTR_COMPILE & KTR_SCHED) != 0
419 if (TD_IS_IDLETHREAD(td))
420 CTR3(KTR_SCHED, "mi_switch: %p(%s) prio %d idle",
421 td, td->td_name, td->td_priority);
422 else if (newtd != NULL)
423 CTR5(KTR_SCHED,
424 "mi_switch: %p(%s) prio %d preempted by %p(%s)",
425 td, td->td_name, td->td_priority, newtd,
426 newtd->td_name);
427 else
428 CTR6(KTR_SCHED,
429 "mi_switch: %p(%s) prio %d inhibit %d wmesg %s lock %s",
430 td, td->td_name, td->td_priority,
431 td->td_inhibitors, td->td_wmesg, td->td_lockname);
432 #endif
433 sched_switch(td, newtd, flags);
434 CTR3(KTR_SCHED, "mi_switch: running %p(%s) prio %d",
435 td, td->td_name, td->td_priority);
437 CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
438 td->td_tid, td->td_sched, p->p_pid, td->td_name);
441 * If the last thread was exiting, finish cleaning it up.
443 if ((td = PCPU_GET(deadthread))) {
444 PCPU_SET(deadthread, NULL);
445 thread_stash(td);
450 * Change thread state to be runnable, placing it on the run queue if
451 * it is in memory. If it is swapped out, return true so our caller
452 * will know to awaken the swapper.
455 setrunnable(struct thread *td)
458 THREAD_LOCK_ASSERT(td, MA_OWNED);
459 KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
460 ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
461 switch (td->td_state) {
462 case TDS_RUNNING:
463 case TDS_RUNQ:
464 return (0);
465 case TDS_INHIBITED:
467 * If we are only inhibited because we are swapped out
468 * then arange to swap in this process. Otherwise just return.
470 if (td->td_inhibitors != TDI_SWAPPED)
471 return (0);
472 /* FALLTHROUGH */
473 case TDS_CAN_RUN:
474 break;
475 default:
476 printf("state is 0x%x", td->td_state);
477 panic("setrunnable(2)");
479 if ((td->td_flags & TDF_INMEM) == 0) {
480 if ((td->td_flags & TDF_SWAPINREQ) == 0) {
481 td->td_flags |= TDF_SWAPINREQ;
482 return (1);
484 } else
485 sched_wakeup(td);
486 return (0);
490 * Compute a tenex style load average of a quantity on
491 * 1, 5 and 15 minute intervals.
493 static void
494 loadav(void *arg)
496 int i, nrun;
497 struct loadavg *avg;
499 nrun = sched_load();
500 avg = &averunnable;
502 for (i = 0; i < 3; i++)
503 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
504 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
507 * Schedule the next update to occur after 5 seconds, but add a
508 * random variation to avoid synchronisation with processes that
509 * run at regular intervals.
511 callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
512 loadav, NULL);
515 /* ARGSUSED */
516 static void
517 synch_setup(void *dummy)
519 callout_init(&loadav_callout, CALLOUT_MPSAFE);
521 /* Kick off timeout driven events by calling first time. */
522 loadav(NULL);
526 * General purpose yield system call.
529 yield(struct thread *td, struct yield_args *uap)
532 thread_lock(td);
533 sched_prio(td, PRI_MAX_TIMESHARE);
534 mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
535 thread_unlock(td);
536 td->td_retval[0] = 0;
537 return (0);