Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_switch.c
blob48aa029d36fbb33fd0410e384feaedbc08e9a638
1 /*-
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
31 #include "opt_sched.h"
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kdb.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
46 #include <machine/cpu.h>
48 /* Uncomment this to enable logging of critical_enter/exit. */
49 #if 0
50 #define KTR_CRITICAL KTR_SCHED
51 #else
52 #define KTR_CRITICAL 0
53 #endif
55 #ifdef FULL_PREEMPTION
56 #ifndef PREEMPTION
57 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
58 #endif
59 #endif
61 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
64 * kern.sched.preemption allows user space to determine if preemption support
65 * is compiled in or not. It is not currently a boot or runtime flag that
66 * can be changed.
68 #ifdef PREEMPTION
69 static int kern_sched_preemption = 1;
70 #else
71 static int kern_sched_preemption = 0;
72 #endif
73 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
74 &kern_sched_preemption, 0, "Kernel preemption enabled");
77 * Support for scheduler stats exported via kern.sched.stats. All stats may
78 * be reset with kern.sched.stats.reset = 1. Stats may be defined elsewhere
79 * with SCHED_STAT_DEFINE().
81 #ifdef SCHED_STATS
82 long sched_switch_stats[SWT_COUNT]; /* Switch reasons from mi_switch(). */
84 SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
85 SCHED_STAT_DEFINE_VAR(uncategorized, &sched_switch_stats[SWT_NONE], "");
86 SCHED_STAT_DEFINE_VAR(preempt, &sched_switch_stats[SWT_PREEMPT], "");
87 SCHED_STAT_DEFINE_VAR(owepreempt, &sched_switch_stats[SWT_OWEPREEMPT], "");
88 SCHED_STAT_DEFINE_VAR(turnstile, &sched_switch_stats[SWT_TURNSTILE], "");
89 SCHED_STAT_DEFINE_VAR(sleepq, &sched_switch_stats[SWT_SLEEPQ], "");
90 SCHED_STAT_DEFINE_VAR(sleepqtimo, &sched_switch_stats[SWT_SLEEPQTIMO], "");
91 SCHED_STAT_DEFINE_VAR(relinquish, &sched_switch_stats[SWT_RELINQUISH], "");
92 SCHED_STAT_DEFINE_VAR(needresched, &sched_switch_stats[SWT_NEEDRESCHED], "");
93 SCHED_STAT_DEFINE_VAR(idle, &sched_switch_stats[SWT_IDLE], "");
94 SCHED_STAT_DEFINE_VAR(iwait, &sched_switch_stats[SWT_IWAIT], "");
95 SCHED_STAT_DEFINE_VAR(suspend, &sched_switch_stats[SWT_SUSPEND], "");
96 SCHED_STAT_DEFINE_VAR(remotepreempt, &sched_switch_stats[SWT_REMOTEPREEMPT],
97 "");
98 SCHED_STAT_DEFINE_VAR(remotewakeidle, &sched_switch_stats[SWT_REMOTEWAKEIDLE],
99 "");
101 static int
102 sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
104 struct sysctl_oid *p;
105 int error;
106 int val;
108 val = 0;
109 error = sysctl_handle_int(oidp, &val, 0, req);
110 if (error != 0 || req->newptr == NULL)
111 return (error);
112 if (val == 0)
113 return (0);
115 * Traverse the list of children of _kern_sched_stats and reset each
116 * to 0. Skip the reset entry.
118 SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
119 if (p == oidp || p->oid_arg1 == NULL)
120 continue;
121 *(long *)p->oid_arg1 = 0;
123 return (0);
126 SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
127 0, sysctl_stats_reset, "I", "Reset scheduler statistics");
128 #endif
130 /************************************************************************
131 * Functions that manipulate runnability from a thread perspective. *
132 ************************************************************************/
134 * Select the thread that will be run next.
136 struct thread *
137 choosethread(void)
139 struct thread *td;
141 retry:
142 td = sched_choose();
145 * If we are in panic, only allow system threads,
146 * plus the one we are running in, to be run.
148 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
149 (td->td_flags & TDF_INPANIC) == 0)) {
150 /* note that it is no longer on the run queue */
151 TD_SET_CAN_RUN(td);
152 goto retry;
155 TD_SET_RUNNING(td);
156 return (td);
160 * Kernel thread preemption implementation. Critical sections mark
161 * regions of code in which preemptions are not allowed.
163 void
164 critical_enter(void)
166 struct thread *td;
168 td = curthread;
169 td->td_critnest++;
170 CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
171 (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
174 void
175 critical_exit(void)
177 struct thread *td;
178 int flags;
180 td = curthread;
181 KASSERT(td->td_critnest != 0,
182 ("critical_exit: td_critnest == 0"));
184 if (td->td_critnest == 1) {
185 td->td_critnest = 0;
186 if (td->td_owepreempt) {
187 td->td_critnest = 1;
188 thread_lock(td);
189 td->td_critnest--;
190 flags = SW_INVOL | SW_PREEMPT;
191 if (TD_IS_IDLETHREAD(td))
192 flags |= SWT_IDLE;
193 else
194 flags |= SWT_OWEPREEMPT;
195 mi_switch(flags, NULL);
196 thread_unlock(td);
198 } else
199 td->td_critnest--;
201 CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
202 (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
205 /************************************************************************
206 * SYSTEM RUN QUEUE manipulations and tests *
207 ************************************************************************/
209 * Initialize a run structure.
211 void
212 runq_init(struct runq *rq)
214 int i;
216 bzero(rq, sizeof *rq);
217 for (i = 0; i < RQ_NQS; i++)
218 TAILQ_INIT(&rq->rq_queues[i]);
222 * Clear the status bit of the queue corresponding to priority level pri,
223 * indicating that it is empty.
225 static __inline void
226 runq_clrbit(struct runq *rq, int pri)
228 struct rqbits *rqb;
230 rqb = &rq->rq_status;
231 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
232 rqb->rqb_bits[RQB_WORD(pri)],
233 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
234 RQB_BIT(pri), RQB_WORD(pri));
235 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
239 * Find the index of the first non-empty run queue. This is done by
240 * scanning the status bits, a set bit indicates a non-empty queue.
242 static __inline int
243 runq_findbit(struct runq *rq)
245 struct rqbits *rqb;
246 int pri;
247 int i;
249 rqb = &rq->rq_status;
250 for (i = 0; i < RQB_LEN; i++)
251 if (rqb->rqb_bits[i]) {
252 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
253 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
254 rqb->rqb_bits[i], i, pri);
255 return (pri);
258 return (-1);
261 static __inline int
262 runq_findbit_from(struct runq *rq, u_char pri)
264 struct rqbits *rqb;
265 rqb_word_t mask;
266 int i;
269 * Set the mask for the first word so we ignore priorities before 'pri'.
271 mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
272 rqb = &rq->rq_status;
273 again:
274 for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
275 mask = rqb->rqb_bits[i] & mask;
276 if (mask == 0)
277 continue;
278 pri = RQB_FFS(mask) + (i << RQB_L2BPW);
279 CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
280 mask, i, pri);
281 return (pri);
283 if (pri == 0)
284 return (-1);
286 * Wrap back around to the beginning of the list just once so we
287 * scan the whole thing.
289 pri = 0;
290 goto again;
294 * Set the status bit of the queue corresponding to priority level pri,
295 * indicating that it is non-empty.
297 static __inline void
298 runq_setbit(struct runq *rq, int pri)
300 struct rqbits *rqb;
302 rqb = &rq->rq_status;
303 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
304 rqb->rqb_bits[RQB_WORD(pri)],
305 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
306 RQB_BIT(pri), RQB_WORD(pri));
307 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
311 * Add the thread to the queue specified by its priority, and set the
312 * corresponding status bit.
314 void
315 runq_add(struct runq *rq, struct thread *td, int flags)
317 struct rqhead *rqh;
318 int pri;
320 pri = td->td_priority / RQ_PPQ;
321 td->td_rqindex = pri;
322 runq_setbit(rq, pri);
323 rqh = &rq->rq_queues[pri];
324 CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
325 td, td->td_priority, pri, rqh);
326 if (flags & SRQ_PREEMPTED) {
327 TAILQ_INSERT_HEAD(rqh, td, td_runq);
328 } else {
329 TAILQ_INSERT_TAIL(rqh, td, td_runq);
333 void
334 runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
336 struct rqhead *rqh;
338 KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
339 td->td_rqindex = pri;
340 runq_setbit(rq, pri);
341 rqh = &rq->rq_queues[pri];
342 CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
343 td, td->td_priority, pri, rqh);
344 if (flags & SRQ_PREEMPTED) {
345 TAILQ_INSERT_HEAD(rqh, td, td_runq);
346 } else {
347 TAILQ_INSERT_TAIL(rqh, td, td_runq);
351 * Return true if there are runnable processes of any priority on the run
352 * queue, false otherwise. Has no side effects, does not modify the run
353 * queue structure.
356 runq_check(struct runq *rq)
358 struct rqbits *rqb;
359 int i;
361 rqb = &rq->rq_status;
362 for (i = 0; i < RQB_LEN; i++)
363 if (rqb->rqb_bits[i]) {
364 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
365 rqb->rqb_bits[i], i);
366 return (1);
368 CTR0(KTR_RUNQ, "runq_check: empty");
370 return (0);
374 * Find the highest priority process on the run queue.
376 struct thread *
377 runq_choose_fuzz(struct runq *rq, int fuzz)
379 struct rqhead *rqh;
380 struct thread *td;
381 int pri;
383 while ((pri = runq_findbit(rq)) != -1) {
384 rqh = &rq->rq_queues[pri];
385 /* fuzz == 1 is normal.. 0 or less are ignored */
386 if (fuzz > 1) {
388 * In the first couple of entries, check if
389 * there is one for our CPU as a preference.
391 int count = fuzz;
392 int cpu = PCPU_GET(cpuid);
393 struct thread *td2;
394 td2 = td = TAILQ_FIRST(rqh);
396 while (count-- && td2) {
397 if (td2->td_lastcpu == cpu) {
398 td = td2;
399 break;
401 td2 = TAILQ_NEXT(td2, td_runq);
403 } else
404 td = TAILQ_FIRST(rqh);
405 KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
406 CTR3(KTR_RUNQ,
407 "runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
408 return (td);
410 CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
412 return (NULL);
416 * Find the highest priority process on the run queue.
418 struct thread *
419 runq_choose(struct runq *rq)
421 struct rqhead *rqh;
422 struct thread *td;
423 int pri;
425 while ((pri = runq_findbit(rq)) != -1) {
426 rqh = &rq->rq_queues[pri];
427 td = TAILQ_FIRST(rqh);
428 KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
429 CTR3(KTR_RUNQ,
430 "runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
431 return (td);
433 CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
435 return (NULL);
438 struct thread *
439 runq_choose_from(struct runq *rq, u_char idx)
441 struct rqhead *rqh;
442 struct thread *td;
443 int pri;
445 if ((pri = runq_findbit_from(rq, idx)) != -1) {
446 rqh = &rq->rq_queues[pri];
447 td = TAILQ_FIRST(rqh);
448 KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
449 CTR4(KTR_RUNQ,
450 "runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
451 pri, td, td->td_rqindex, rqh);
452 return (td);
454 CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
456 return (NULL);
459 * Remove the thread from the queue specified by its priority, and clear the
460 * corresponding status bit if the queue becomes empty.
461 * Caller must set state afterwards.
463 void
464 runq_remove(struct runq *rq, struct thread *td)
467 runq_remove_idx(rq, td, NULL);
470 void
471 runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
473 struct rqhead *rqh;
474 u_char pri;
476 KASSERT(td->td_flags & TDF_INMEM,
477 ("runq_remove_idx: thread swapped out"));
478 pri = td->td_rqindex;
479 KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
480 rqh = &rq->rq_queues[pri];
481 CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
482 td, td->td_priority, pri, rqh);
483 TAILQ_REMOVE(rqh, td, td_runq);
484 if (TAILQ_EMPTY(rqh)) {
485 CTR0(KTR_RUNQ, "runq_remove_idx: empty");
486 runq_clrbit(rq, pri);
487 if (idx != NULL && *idx == pri)
488 *idx = (pri + 1) % RQ_NQS;