Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_subr.c
blobce1afd24304b723584e58588bc17923345d18f30
1 /*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_subr.c 8.3 (Berkeley) 1/21/94
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
40 #include "opt_zero.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/sysctl.h>
54 #include <sys/vnode.h>
56 #include <vm/vm.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_map.h>
59 #ifdef ZERO_COPY_SOCKETS
60 #include <vm/vm_param.h>
61 #include <vm/vm_object.h>
62 #endif
64 SYSCTL_INT(_kern, KERN_IOV_MAX, iov_max, CTLFLAG_RD, NULL, UIO_MAXIOV,
65 "Maximum number of elements in an I/O vector; sysconf(_SC_IOV_MAX)");
67 #ifdef ZERO_COPY_SOCKETS
68 /* Declared in uipc_socket.c */
69 extern int so_zero_copy_receive;
72 * Identify the physical page mapped at the given kernel virtual
73 * address. Insert this physical page into the given address space at
74 * the given virtual address, replacing the physical page, if any,
75 * that already exists there.
77 static int
78 vm_pgmoveco(vm_map_t mapa, vm_offset_t kaddr, vm_offset_t uaddr)
80 vm_map_t map = mapa;
81 vm_page_t kern_pg, user_pg;
82 vm_object_t uobject;
83 vm_map_entry_t entry;
84 vm_pindex_t upindex;
85 vm_prot_t prot;
86 boolean_t wired;
88 KASSERT((uaddr & PAGE_MASK) == 0,
89 ("vm_pgmoveco: uaddr is not page aligned"));
92 * Herein the physical page is validated and dirtied. It is
93 * unwired in sf_buf_mext().
95 kern_pg = PHYS_TO_VM_PAGE(vtophys(kaddr));
96 kern_pg->valid = VM_PAGE_BITS_ALL;
97 KASSERT(kern_pg->queue == PQ_NONE && kern_pg->wire_count == 1,
98 ("vm_pgmoveco: kern_pg is not correctly wired"));
100 if ((vm_map_lookup(&map, uaddr,
101 VM_PROT_WRITE, &entry, &uobject,
102 &upindex, &prot, &wired)) != KERN_SUCCESS) {
103 return(EFAULT);
105 VM_OBJECT_LOCK(uobject);
106 retry:
107 if ((user_pg = vm_page_lookup(uobject, upindex)) != NULL) {
108 if (vm_page_sleep_if_busy(user_pg, TRUE, "vm_pgmoveco"))
109 goto retry;
110 vm_page_lock_queues();
111 pmap_remove_all(user_pg);
112 vm_page_free(user_pg);
113 } else {
115 * Even if a physical page does not exist in the
116 * object chain's first object, a physical page from a
117 * backing object may be mapped read only.
119 if (uobject->backing_object != NULL)
120 pmap_remove(map->pmap, uaddr, uaddr + PAGE_SIZE);
121 vm_page_lock_queues();
123 vm_page_insert(kern_pg, uobject, upindex);
124 vm_page_dirty(kern_pg);
125 vm_page_unlock_queues();
126 VM_OBJECT_UNLOCK(uobject);
127 vm_map_lookup_done(map, entry);
128 return(KERN_SUCCESS);
130 #endif /* ZERO_COPY_SOCKETS */
133 uiomove(void *cp, int n, struct uio *uio)
135 struct thread *td = curthread;
136 struct iovec *iov;
137 u_int cnt;
138 int error = 0;
139 int save = 0;
141 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
142 ("uiomove: mode"));
143 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
144 ("uiomove proc"));
145 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
146 "Calling uiomove()");
148 save = td->td_pflags & TDP_DEADLKTREAT;
149 td->td_pflags |= TDP_DEADLKTREAT;
151 while (n > 0 && uio->uio_resid) {
152 iov = uio->uio_iov;
153 cnt = iov->iov_len;
154 if (cnt == 0) {
155 uio->uio_iov++;
156 uio->uio_iovcnt--;
157 continue;
159 if (cnt > n)
160 cnt = n;
162 switch (uio->uio_segflg) {
164 case UIO_USERSPACE:
165 if (ticks - PCPU_GET(switchticks) >= hogticks)
166 uio_yield();
167 if (uio->uio_rw == UIO_READ)
168 error = copyout(cp, iov->iov_base, cnt);
169 else
170 error = copyin(iov->iov_base, cp, cnt);
171 if (error)
172 goto out;
173 break;
175 case UIO_SYSSPACE:
176 if (uio->uio_rw == UIO_READ)
177 bcopy(cp, iov->iov_base, cnt);
178 else
179 bcopy(iov->iov_base, cp, cnt);
180 break;
181 case UIO_NOCOPY:
182 break;
184 iov->iov_base = (char *)iov->iov_base + cnt;
185 iov->iov_len -= cnt;
186 uio->uio_resid -= cnt;
187 uio->uio_offset += cnt;
188 cp = (char *)cp + cnt;
189 n -= cnt;
191 out:
192 if (save == 0)
193 td->td_pflags &= ~TDP_DEADLKTREAT;
194 return (error);
198 * Wrapper for uiomove() that validates the arguments against a known-good
199 * kernel buffer. Currently, uiomove accepts a signed (n) argument, which
200 * is almost definitely a bad thing, so we catch that here as well. We
201 * return a runtime failure, but it might be desirable to generate a runtime
202 * assertion failure instead.
205 uiomove_frombuf(void *buf, int buflen, struct uio *uio)
207 unsigned int offset, n;
209 if (uio->uio_offset < 0 || uio->uio_resid < 0 ||
210 (offset = uio->uio_offset) != uio->uio_offset)
211 return (EINVAL);
212 if (buflen <= 0 || offset >= buflen)
213 return (0);
214 if ((n = buflen - offset) > INT_MAX)
215 return (EINVAL);
216 return (uiomove((char *)buf + offset, n, uio));
219 #ifdef ZERO_COPY_SOCKETS
221 * Experimental support for zero-copy I/O
223 static int
224 userspaceco(void *cp, u_int cnt, struct uio *uio, int disposable)
226 struct iovec *iov;
227 int error;
229 iov = uio->uio_iov;
230 if (uio->uio_rw == UIO_READ) {
231 if ((so_zero_copy_receive != 0)
232 && ((cnt & PAGE_MASK) == 0)
233 && ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
234 && ((uio->uio_offset & PAGE_MASK) == 0)
235 && ((((intptr_t) cp) & PAGE_MASK) == 0)
236 && (disposable != 0)) {
237 /* SOCKET: use page-trading */
239 * We only want to call vm_pgmoveco() on
240 * disposeable pages, since it gives the
241 * kernel page to the userland process.
243 error = vm_pgmoveco(&curproc->p_vmspace->vm_map,
244 (vm_offset_t)cp, (vm_offset_t)iov->iov_base);
247 * If we get an error back, attempt
248 * to use copyout() instead. The
249 * disposable page should be freed
250 * automatically if we weren't able to move
251 * it into userland.
253 if (error != 0)
254 error = copyout(cp, iov->iov_base, cnt);
255 } else {
256 error = copyout(cp, iov->iov_base, cnt);
258 } else {
259 error = copyin(iov->iov_base, cp, cnt);
261 return (error);
265 uiomoveco(void *cp, int n, struct uio *uio, int disposable)
267 struct iovec *iov;
268 u_int cnt;
269 int error;
271 KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
272 ("uiomoveco: mode"));
273 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
274 ("uiomoveco proc"));
276 while (n > 0 && uio->uio_resid) {
277 iov = uio->uio_iov;
278 cnt = iov->iov_len;
279 if (cnt == 0) {
280 uio->uio_iov++;
281 uio->uio_iovcnt--;
282 continue;
284 if (cnt > n)
285 cnt = n;
287 switch (uio->uio_segflg) {
289 case UIO_USERSPACE:
290 if (ticks - PCPU_GET(switchticks) >= hogticks)
291 uio_yield();
293 error = userspaceco(cp, cnt, uio, disposable);
295 if (error)
296 return (error);
297 break;
299 case UIO_SYSSPACE:
300 if (uio->uio_rw == UIO_READ)
301 bcopy(cp, iov->iov_base, cnt);
302 else
303 bcopy(iov->iov_base, cp, cnt);
304 break;
305 case UIO_NOCOPY:
306 break;
308 iov->iov_base = (char *)iov->iov_base + cnt;
309 iov->iov_len -= cnt;
310 uio->uio_resid -= cnt;
311 uio->uio_offset += cnt;
312 cp = (char *)cp + cnt;
313 n -= cnt;
315 return (0);
317 #endif /* ZERO_COPY_SOCKETS */
320 * Give next character to user as result of read.
323 ureadc(int c, struct uio *uio)
325 struct iovec *iov;
326 char *iov_base;
328 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
329 "Calling ureadc()");
331 again:
332 if (uio->uio_iovcnt == 0 || uio->uio_resid == 0)
333 panic("ureadc");
334 iov = uio->uio_iov;
335 if (iov->iov_len == 0) {
336 uio->uio_iovcnt--;
337 uio->uio_iov++;
338 goto again;
340 switch (uio->uio_segflg) {
342 case UIO_USERSPACE:
343 if (subyte(iov->iov_base, c) < 0)
344 return (EFAULT);
345 break;
347 case UIO_SYSSPACE:
348 iov_base = iov->iov_base;
349 *iov_base = c;
350 iov->iov_base = iov_base;
351 break;
353 case UIO_NOCOPY:
354 break;
356 iov->iov_base = (char *)iov->iov_base + 1;
357 iov->iov_len--;
358 uio->uio_resid--;
359 uio->uio_offset++;
360 return (0);
364 * General routine to allocate a hash table with control of memory flags.
366 void *
367 hashinit_flags(int elements, struct malloc_type *type, u_long *hashmask,
368 int flags)
370 long hashsize;
371 LIST_HEAD(generic, generic) *hashtbl;
372 int i;
374 if (elements <= 0)
375 panic("hashinit: bad elements");
377 /* Exactly one of HASH_WAITOK and HASH_NOWAIT must be set. */
378 KASSERT((flags & HASH_WAITOK) ^ (flags & HASH_NOWAIT),
379 ("Bad flags (0x%x) passed to hashinit_flags", flags));
381 for (hashsize = 1; hashsize <= elements; hashsize <<= 1)
382 continue;
383 hashsize >>= 1;
385 if (flags & HASH_NOWAIT)
386 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl),
387 type, M_NOWAIT);
388 else
389 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl),
390 type, M_WAITOK);
392 if (hashtbl != NULL) {
393 for (i = 0; i < hashsize; i++)
394 LIST_INIT(&hashtbl[i]);
395 *hashmask = hashsize - 1;
397 return (hashtbl);
401 * Allocate and initialize a hash table with default flag: may sleep.
403 void *
404 hashinit(int elements, struct malloc_type *type, u_long *hashmask)
407 return (hashinit_flags(elements, type, hashmask, HASH_WAITOK));
410 void
411 hashdestroy(void *vhashtbl, struct malloc_type *type, u_long hashmask)
413 LIST_HEAD(generic, generic) *hashtbl, *hp;
415 hashtbl = vhashtbl;
416 for (hp = hashtbl; hp <= &hashtbl[hashmask]; hp++)
417 if (!LIST_EMPTY(hp))
418 panic("hashdestroy: hash not empty");
419 free(hashtbl, type);
422 static int primes[] = { 1, 13, 31, 61, 127, 251, 509, 761, 1021, 1531, 2039,
423 2557, 3067, 3583, 4093, 4603, 5119, 5623, 6143, 6653,
424 7159, 7673, 8191, 12281, 16381, 24571, 32749 };
425 #define NPRIMES (sizeof(primes) / sizeof(primes[0]))
428 * General routine to allocate a prime number sized hash table.
430 void *
431 phashinit(int elements, struct malloc_type *type, u_long *nentries)
433 long hashsize;
434 LIST_HEAD(generic, generic) *hashtbl;
435 int i;
437 if (elements <= 0)
438 panic("phashinit: bad elements");
439 for (i = 1, hashsize = primes[1]; hashsize <= elements;) {
440 i++;
441 if (i == NPRIMES)
442 break;
443 hashsize = primes[i];
445 hashsize = primes[i - 1];
446 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
447 for (i = 0; i < hashsize; i++)
448 LIST_INIT(&hashtbl[i]);
449 *nentries = hashsize;
450 return (hashtbl);
453 void
454 uio_yield(void)
456 struct thread *td;
458 td = curthread;
459 DROP_GIANT();
460 thread_lock(td);
461 sched_prio(td, td->td_user_pri);
462 mi_switch(SW_INVOL | SWT_RELINQUISH, NULL);
463 thread_unlock(td);
464 PICKUP_GIANT();
468 copyinfrom(const void * __restrict src, void * __restrict dst, size_t len,
469 int seg)
471 int error = 0;
473 switch (seg) {
474 case UIO_USERSPACE:
475 error = copyin(src, dst, len);
476 break;
477 case UIO_SYSSPACE:
478 bcopy(src, dst, len);
479 break;
480 default:
481 panic("copyinfrom: bad seg %d\n", seg);
483 return (error);
487 copyinstrfrom(const void * __restrict src, void * __restrict dst, size_t len,
488 size_t * __restrict copied, int seg)
490 int error = 0;
492 switch (seg) {
493 case UIO_USERSPACE:
494 error = copyinstr(src, dst, len, copied);
495 break;
496 case UIO_SYSSPACE:
497 error = copystr(src, dst, len, copied);
498 break;
499 default:
500 panic("copyinstrfrom: bad seg %d\n", seg);
502 return (error);
506 copyiniov(struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error)
508 u_int iovlen;
510 *iov = NULL;
511 if (iovcnt > UIO_MAXIOV)
512 return (error);
513 iovlen = iovcnt * sizeof (struct iovec);
514 *iov = malloc(iovlen, M_IOV, M_WAITOK);
515 error = copyin(iovp, *iov, iovlen);
516 if (error) {
517 free(*iov, M_IOV);
518 *iov = NULL;
520 return (error);
524 copyinuio(struct iovec *iovp, u_int iovcnt, struct uio **uiop)
526 struct iovec *iov;
527 struct uio *uio;
528 u_int iovlen;
529 int error, i;
531 *uiop = NULL;
532 if (iovcnt > UIO_MAXIOV)
533 return (EINVAL);
534 iovlen = iovcnt * sizeof (struct iovec);
535 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
536 iov = (struct iovec *)(uio + 1);
537 error = copyin(iovp, iov, iovlen);
538 if (error) {
539 free(uio, M_IOV);
540 return (error);
542 uio->uio_iov = iov;
543 uio->uio_iovcnt = iovcnt;
544 uio->uio_segflg = UIO_USERSPACE;
545 uio->uio_offset = -1;
546 uio->uio_resid = 0;
547 for (i = 0; i < iovcnt; i++) {
548 if (iov->iov_len > INT_MAX - uio->uio_resid) {
549 free(uio, M_IOV);
550 return (EINVAL);
552 uio->uio_resid += iov->iov_len;
553 iov++;
555 *uiop = uio;
556 return (0);
559 struct uio *
560 cloneuio(struct uio *uiop)
562 struct uio *uio;
563 int iovlen;
565 iovlen = uiop->uio_iovcnt * sizeof (struct iovec);
566 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
567 *uio = *uiop;
568 uio->uio_iov = (struct iovec *)(uio + 1);
569 bcopy(uiop->uio_iov, uio->uio_iov, iovlen);
570 return (uio);