2 ***********************************************************************
4 * Copyright (c) David L. Mills 1993-2001 *
6 * Permission to use, copy, modify, and distribute this software and *
7 * its documentation for any purpose and without fee is hereby *
8 * granted, provided that the above copyright notice appears in all *
9 * copies and that both the copyright notice and this permission *
10 * notice appear in supporting documentation, and that the name *
11 * University of Delaware not be used in advertising or publicity *
12 * pertaining to distribution of the software without specific, *
13 * written prior permission. The University of Delaware makes no *
14 * representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied *
18 **********************************************************************/
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/kernel.h>
45 #include <sys/mutex.h>
47 #include <sys/timex.h>
48 #include <sys/timetc.h>
49 #include <sys/timepps.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysctl.h>
54 * Single-precision macros for 64-bit machines
57 #define L_ADD(v, u) ((v) += (u))
58 #define L_SUB(v, u) ((v) -= (u))
59 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
60 #define L_NEG(v) ((v) = -(v))
61 #define L_RSHIFT(v, n) \
64 (v) = -(-(v) >> (n)); \
68 #define L_MPY(v, a) ((v) *= (a))
69 #define L_CLR(v) ((v) = 0)
70 #define L_ISNEG(v) ((v) < 0)
71 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
72 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
75 * Generic NTP kernel interface
77 * These routines constitute the Network Time Protocol (NTP) interfaces
78 * for user and daemon application programs. The ntp_gettime() routine
79 * provides the time, maximum error (synch distance) and estimated error
80 * (dispersion) to client user application programs. The ntp_adjtime()
81 * routine is used by the NTP daemon to adjust the system clock to an
82 * externally derived time. The time offset and related variables set by
83 * this routine are used by other routines in this module to adjust the
84 * phase and frequency of the clock discipline loop which controls the
87 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
88 * defined), the time at each tick interrupt is derived directly from
89 * the kernel time variable. When the kernel time is reckoned in
90 * microseconds, (NTP_NANO undefined), the time is derived from the
91 * kernel time variable together with a variable representing the
92 * leftover nanoseconds at the last tick interrupt. In either case, the
93 * current nanosecond time is reckoned from these values plus an
94 * interpolated value derived by the clock routines in another
95 * architecture-specific module. The interpolation can use either a
96 * dedicated counter or a processor cycle counter (PCC) implemented in
99 * Note that all routines must run at priority splclock or higher.
102 * Phase/frequency-lock loop (PLL/FLL) definitions
104 * The nanosecond clock discipline uses two variable types, time
105 * variables and frequency variables. Both types are represented as 64-
106 * bit fixed-point quantities with the decimal point between two 32-bit
107 * halves. On a 32-bit machine, each half is represented as a single
108 * word and mathematical operations are done using multiple-precision
109 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
112 * A time variable is a signed 64-bit fixed-point number in ns and
113 * fraction. It represents the remaining time offset to be amortized
114 * over succeeding tick interrupts. The maximum time offset is about
115 * 0.5 s and the resolution is about 2.3e-10 ns.
117 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 * A frequency variable is a signed 64-bit fixed-point number in ns/s
126 * and fraction. It represents the ns and fraction to be added to the
127 * kernel time variable at each second. The maximum frequency offset is
128 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
130 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
131 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 * |s s s s s s s s s s s s s| ns/s |
134 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
139 * The following variables establish the state of the PLL/FLL and the
140 * residual time and frequency offset of the local clock.
142 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
143 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
145 static int time_state
= TIME_OK
; /* clock state */
146 static int time_status
= STA_UNSYNC
; /* clock status bits */
147 static long time_tai
; /* TAI offset (s) */
148 static long time_monitor
; /* last time offset scaled (ns) */
149 static long time_constant
; /* poll interval (shift) (s) */
150 static long time_precision
= 1; /* clock precision (ns) */
151 static long time_maxerror
= MAXPHASE
/ 1000; /* maximum error (us) */
152 static long time_esterror
= MAXPHASE
/ 1000; /* estimated error (us) */
153 static long time_reftime
; /* time at last adjustment (s) */
154 static l_fp time_offset
; /* time offset (ns) */
155 static l_fp time_freq
; /* frequency offset (ns/s) */
156 static l_fp time_adj
; /* tick adjust (ns/s) */
158 static int64_t time_adjtime
; /* correction from adjtime(2) (usec) */
162 * The following variables are used when a pulse-per-second (PPS) signal
163 * is available and connected via a modem control lead. They establish
164 * the engineering parameters of the clock discipline loop when
165 * controlled by the PPS signal.
167 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
168 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
169 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
170 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
171 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
172 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
173 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
175 static struct timespec pps_tf
[3]; /* phase median filter */
176 static l_fp pps_freq
; /* scaled frequency offset (ns/s) */
177 static long pps_fcount
; /* frequency accumulator */
178 static long pps_jitter
; /* nominal jitter (ns) */
179 static long pps_stabil
; /* nominal stability (scaled ns/s) */
180 static long pps_lastsec
; /* time at last calibration (s) */
181 static int pps_valid
; /* signal watchdog counter */
182 static int pps_shift
= PPS_FAVG
; /* interval duration (s) (shift) */
183 static int pps_shiftmax
= PPS_FAVGDEF
; /* max interval duration (s) (shift) */
184 static int pps_intcnt
; /* wander counter */
187 * PPS signal quality monitors
189 static long pps_calcnt
; /* calibration intervals */
190 static long pps_jitcnt
; /* jitter limit exceeded */
191 static long pps_stbcnt
; /* stability limit exceeded */
192 static long pps_errcnt
; /* calibration errors */
193 #endif /* PPS_SYNC */
195 * End of phase/frequency-lock loop (PLL/FLL) definitions
198 static void ntp_init(void);
199 static void hardupdate(long offset
);
200 static void ntp_gettime1(struct ntptimeval
*ntvp
);
203 ntp_gettime1(struct ntptimeval
*ntvp
)
205 struct timespec atv
; /* nanosecond time */
210 ntvp
->time
.tv_sec
= atv
.tv_sec
;
211 ntvp
->time
.tv_nsec
= atv
.tv_nsec
;
212 ntvp
->maxerror
= time_maxerror
;
213 ntvp
->esterror
= time_esterror
;
214 ntvp
->tai
= time_tai
;
215 ntvp
->time_state
= time_state
;
218 * Status word error decode. If any of these conditions occur,
219 * an error is returned, instead of the status word. Most
220 * applications will care only about the fact the system clock
221 * may not be trusted, not about the details.
223 * Hardware or software error
225 if ((time_status
& (STA_UNSYNC
| STA_CLOCKERR
)) ||
228 * PPS signal lost when either time or frequency synchronization
231 (time_status
& (STA_PPSFREQ
| STA_PPSTIME
) &&
232 !(time_status
& STA_PPSSIGNAL
)) ||
235 * PPS jitter exceeded when time synchronization requested
237 (time_status
& STA_PPSTIME
&&
238 time_status
& STA_PPSJITTER
) ||
241 * PPS wander exceeded or calibration error when frequency
242 * synchronization requested
244 (time_status
& STA_PPSFREQ
&&
245 time_status
& (STA_PPSWANDER
| STA_PPSERROR
)))
246 ntvp
->time_state
= TIME_ERROR
;
250 * ntp_gettime() - NTP user application interface
252 * See the timex.h header file for synopsis and API description. Note that
253 * the TAI offset is returned in the ntvtimeval.tai structure member.
255 #ifndef _SYS_SYSPROTO_H_
256 struct ntp_gettime_args
{
257 struct ntptimeval
*ntvp
;
262 ntp_gettime(struct thread
*td
, struct ntp_gettime_args
*uap
)
264 struct ntptimeval ntv
;
270 td
->td_retval
[0] = ntv
.time_state
;
271 return (copyout(&ntv
, uap
->ntvp
, sizeof(ntv
)));
275 ntp_sysctl(SYSCTL_HANDLER_ARGS
)
277 struct ntptimeval ntv
; /* temporary structure */
281 return (sysctl_handle_opaque(oidp
, &ntv
, sizeof(ntv
), req
));
284 SYSCTL_NODE(_kern
, OID_AUTO
, ntp_pll
, CTLFLAG_RW
, 0, "");
285 SYSCTL_PROC(_kern_ntp_pll
, OID_AUTO
, gettime
, CTLTYPE_OPAQUE
|CTLFLAG_RD
,
286 0, sizeof(struct ntptimeval
) , ntp_sysctl
, "S,ntptimeval", "");
289 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, pps_shiftmax
, CTLFLAG_RW
, &pps_shiftmax
, 0, "");
290 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, pps_shift
, CTLFLAG_RW
, &pps_shift
, 0, "");
291 SYSCTL_INT(_kern_ntp_pll
, OID_AUTO
, time_monitor
, CTLFLAG_RD
, &time_monitor
, 0, "");
293 SYSCTL_OPAQUE(_kern_ntp_pll
, OID_AUTO
, pps_freq
, CTLFLAG_RD
, &pps_freq
, sizeof(pps_freq
), "I", "");
294 SYSCTL_OPAQUE(_kern_ntp_pll
, OID_AUTO
, time_freq
, CTLFLAG_RD
, &time_freq
, sizeof(time_freq
), "I", "");
298 * ntp_adjtime() - NTP daemon application interface
300 * See the timex.h header file for synopsis and API description. Note that
301 * the timex.constant structure member has a dual purpose to set the time
302 * constant and to set the TAI offset.
304 #ifndef _SYS_SYSPROTO_H_
305 struct ntp_adjtime_args
{
311 ntp_adjtime(struct thread
*td
, struct ntp_adjtime_args
*uap
)
313 struct timex ntv
; /* temporary structure */
314 long freq
; /* frequency ns/s) */
315 int modes
; /* mode bits from structure */
316 int s
; /* caller priority */
319 error
= copyin((caddr_t
)uap
->tp
, (caddr_t
)&ntv
, sizeof(ntv
));
324 * Update selected clock variables - only the superuser can
325 * change anything. Note that there is no error checking here on
326 * the assumption the superuser should know what it is doing.
327 * Note that either the time constant or TAI offset are loaded
328 * from the ntv.constant member, depending on the mode bits. If
329 * the STA_PLL bit in the status word is cleared, the state and
330 * status words are reset to the initial values at boot.
335 error
= priv_check(td
, PRIV_NTP_ADJTIME
);
339 if (modes
& MOD_MAXERROR
)
340 time_maxerror
= ntv
.maxerror
;
341 if (modes
& MOD_ESTERROR
)
342 time_esterror
= ntv
.esterror
;
343 if (modes
& MOD_STATUS
) {
344 if (time_status
& STA_PLL
&& !(ntv
.status
& STA_PLL
)) {
345 time_state
= TIME_OK
;
346 time_status
= STA_UNSYNC
;
348 pps_shift
= PPS_FAVG
;
349 #endif /* PPS_SYNC */
351 time_status
&= STA_RONLY
;
352 time_status
|= ntv
.status
& ~STA_RONLY
;
354 if (modes
& MOD_TIMECONST
) {
355 if (ntv
.constant
< 0)
357 else if (ntv
.constant
> MAXTC
)
358 time_constant
= MAXTC
;
360 time_constant
= ntv
.constant
;
362 if (modes
& MOD_TAI
) {
363 if (ntv
.constant
> 0) /* XXX zero & negative numbers ? */
364 time_tai
= ntv
.constant
;
367 if (modes
& MOD_PPSMAX
) {
368 if (ntv
.shift
< PPS_FAVG
)
369 pps_shiftmax
= PPS_FAVG
;
370 else if (ntv
.shift
> PPS_FAVGMAX
)
371 pps_shiftmax
= PPS_FAVGMAX
;
373 pps_shiftmax
= ntv
.shift
;
375 #endif /* PPS_SYNC */
376 if (modes
& MOD_NANO
)
377 time_status
|= STA_NANO
;
378 if (modes
& MOD_MICRO
)
379 time_status
&= ~STA_NANO
;
380 if (modes
& MOD_CLKB
)
381 time_status
|= STA_CLK
;
382 if (modes
& MOD_CLKA
)
383 time_status
&= ~STA_CLK
;
384 if (modes
& MOD_FREQUENCY
) {
385 freq
= (ntv
.freq
* 1000LL) >> 16;
387 L_LINT(time_freq
, MAXFREQ
);
388 else if (freq
< -MAXFREQ
)
389 L_LINT(time_freq
, -MAXFREQ
);
392 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
393 * time_freq is [ns/s * 2^32]
395 time_freq
= ntv
.freq
* 1000LL * 65536LL;
398 pps_freq
= time_freq
;
399 #endif /* PPS_SYNC */
401 if (modes
& MOD_OFFSET
) {
402 if (time_status
& STA_NANO
)
403 hardupdate(ntv
.offset
);
405 hardupdate(ntv
.offset
* 1000);
409 * Retrieve all clock variables. Note that the TAI offset is
410 * returned only by ntp_gettime();
412 if (time_status
& STA_NANO
)
413 ntv
.offset
= L_GINT(time_offset
);
415 ntv
.offset
= L_GINT(time_offset
) / 1000; /* XXX rounding ? */
416 ntv
.freq
= L_GINT((time_freq
/ 1000LL) << 16);
417 ntv
.maxerror
= time_maxerror
;
418 ntv
.esterror
= time_esterror
;
419 ntv
.status
= time_status
;
420 ntv
.constant
= time_constant
;
421 if (time_status
& STA_NANO
)
422 ntv
.precision
= time_precision
;
424 ntv
.precision
= time_precision
/ 1000;
425 ntv
.tolerance
= MAXFREQ
* SCALE_PPM
;
427 ntv
.shift
= pps_shift
;
428 ntv
.ppsfreq
= L_GINT((pps_freq
/ 1000LL) << 16);
429 if (time_status
& STA_NANO
)
430 ntv
.jitter
= pps_jitter
;
432 ntv
.jitter
= pps_jitter
/ 1000;
433 ntv
.stabil
= pps_stabil
;
434 ntv
.calcnt
= pps_calcnt
;
435 ntv
.errcnt
= pps_errcnt
;
436 ntv
.jitcnt
= pps_jitcnt
;
437 ntv
.stbcnt
= pps_stbcnt
;
438 #endif /* PPS_SYNC */
441 error
= copyout((caddr_t
)&ntv
, (caddr_t
)uap
->tp
, sizeof(ntv
));
446 * Status word error decode. See comments in
447 * ntp_gettime() routine.
449 if ((time_status
& (STA_UNSYNC
| STA_CLOCKERR
)) ||
450 (time_status
& (STA_PPSFREQ
| STA_PPSTIME
) &&
451 !(time_status
& STA_PPSSIGNAL
)) ||
452 (time_status
& STA_PPSTIME
&&
453 time_status
& STA_PPSJITTER
) ||
454 (time_status
& STA_PPSFREQ
&&
455 time_status
& (STA_PPSWANDER
| STA_PPSERROR
))) {
456 td
->td_retval
[0] = TIME_ERROR
;
458 td
->td_retval
[0] = time_state
;
466 * second_overflow() - called after ntp_tick_adjust()
468 * This routine is ordinarily called immediately following the above
469 * routine ntp_tick_adjust(). While these two routines are normally
470 * combined, they are separated here only for the purposes of
474 ntp_update_second(int64_t *adjustment
, time_t *newsec
)
477 l_fp ftemp
; /* 32/64-bit temporary */
480 * On rollover of the second both the nanosecond and microsecond
481 * clocks are updated and the state machine cranked as
482 * necessary. The phase adjustment to be used for the next
483 * second is calculated and the maximum error is increased by
486 time_maxerror
+= MAXFREQ
/ 1000;
489 * Leap second processing. If in leap-insert state at
490 * the end of the day, the system clock is set back one
491 * second; if in leap-delete state, the system clock is
492 * set ahead one second. The nano_time() routine or
493 * external clock driver will insure that reported time
494 * is always monotonic.
496 switch (time_state
) {
502 if (time_status
& STA_INS
)
503 time_state
= TIME_INS
;
504 else if (time_status
& STA_DEL
)
505 time_state
= TIME_DEL
;
509 * Insert second 23:59:60 following second
513 if (!(time_status
& STA_INS
))
514 time_state
= TIME_OK
;
515 else if ((*newsec
) % 86400 == 0) {
517 time_state
= TIME_OOP
;
523 * Delete second 23:59:59.
526 if (!(time_status
& STA_DEL
))
527 time_state
= TIME_OK
;
528 else if (((*newsec
) + 1) % 86400 == 0) {
531 time_state
= TIME_WAIT
;
536 * Insert second in progress.
539 time_state
= TIME_WAIT
;
543 * Wait for status bits to clear.
546 if (!(time_status
& (STA_INS
| STA_DEL
)))
547 time_state
= TIME_OK
;
551 * Compute the total time adjustment for the next second
552 * in ns. The offset is reduced by a factor depending on
553 * whether the PPS signal is operating. Note that the
554 * value is in effect scaled by the clock frequency,
555 * since the adjustment is added at each tick interrupt.
559 /* XXX even if PPS signal dies we should finish adjustment ? */
560 if (time_status
& STA_PPSTIME
&& time_status
&
562 L_RSHIFT(ftemp
, pps_shift
);
564 L_RSHIFT(ftemp
, SHIFT_PLL
+ time_constant
);
566 L_RSHIFT(ftemp
, SHIFT_PLL
+ time_constant
);
567 #endif /* PPS_SYNC */
569 L_SUB(time_offset
, ftemp
);
570 L_ADD(time_adj
, time_freq
);
573 * Apply any correction from adjtime(2). If more than one second
574 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
575 * until the last second is slewed the final < 500 usecs.
577 if (time_adjtime
!= 0) {
578 if (time_adjtime
> 1000000)
580 else if (time_adjtime
< -1000000)
582 else if (time_adjtime
> 500)
584 else if (time_adjtime
< -500)
587 tickrate
= time_adjtime
;
588 time_adjtime
-= tickrate
;
589 L_LINT(ftemp
, tickrate
* 1000);
590 L_ADD(time_adj
, ftemp
);
592 *adjustment
= time_adj
;
598 time_status
&= ~STA_PPSSIGNAL
;
599 #endif /* PPS_SYNC */
603 * ntp_init() - initialize variables and structures
605 * This routine must be called after the kernel variables hz and tick
606 * are set or changed and before the next tick interrupt. In this
607 * particular implementation, these values are assumed set elsewhere in
608 * the kernel. The design allows the clock frequency and tick interval
609 * to be changed while the system is running. So, this routine should
610 * probably be integrated with the code that does that.
617 * The following variables are initialized only at startup. Only
618 * those structures not cleared by the compiler need to be
619 * initialized, and these only in the simulator. In the actual
620 * kernel, any nonzero values here will quickly evaporate.
625 pps_tf
[0].tv_sec
= pps_tf
[0].tv_nsec
= 0;
626 pps_tf
[1].tv_sec
= pps_tf
[1].tv_nsec
= 0;
627 pps_tf
[2].tv_sec
= pps_tf
[2].tv_nsec
= 0;
630 #endif /* PPS_SYNC */
633 SYSINIT(ntpclocks
, SI_SUB_CLOCKS
, SI_ORDER_MIDDLE
, ntp_init
, NULL
);
636 * hardupdate() - local clock update
638 * This routine is called by ntp_adjtime() to update the local clock
639 * phase and frequency. The implementation is of an adaptive-parameter,
640 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
641 * time and frequency offset estimates for each call. If the kernel PPS
642 * discipline code is configured (PPS_SYNC), the PPS signal itself
643 * determines the new time offset, instead of the calling argument.
644 * Presumably, calls to ntp_adjtime() occur only when the caller
645 * believes the local clock is valid within some bound (+-128 ms with
646 * NTP). If the caller's time is far different than the PPS time, an
647 * argument will ensue, and it's not clear who will lose.
649 * For uncompensated quartz crystal oscillators and nominal update
650 * intervals less than 256 s, operation should be in phase-lock mode,
651 * where the loop is disciplined to phase. For update intervals greater
652 * than 1024 s, operation should be in frequency-lock mode, where the
653 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
654 * is selected by the STA_MODE status bit.
658 long offset
; /* clock offset (ns) */
664 * Select how the phase is to be controlled and from which
665 * source. If the PPS signal is present and enabled to
666 * discipline the time, the PPS offset is used; otherwise, the
667 * argument offset is used.
669 if (!(time_status
& STA_PLL
))
671 if (!(time_status
& STA_PPSTIME
&& time_status
&
673 if (offset
> MAXPHASE
)
674 time_monitor
= MAXPHASE
;
675 else if (offset
< -MAXPHASE
)
676 time_monitor
= -MAXPHASE
;
678 time_monitor
= offset
;
679 L_LINT(time_offset
, time_monitor
);
683 * Select how the frequency is to be controlled and in which
684 * mode (PLL or FLL). If the PPS signal is present and enabled
685 * to discipline the frequency, the PPS frequency is used;
686 * otherwise, the argument offset is used to compute it.
688 if (time_status
& STA_PPSFREQ
&& time_status
& STA_PPSSIGNAL
) {
689 time_reftime
= time_second
;
692 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
693 time_reftime
= time_second
;
694 mtemp
= time_second
- time_reftime
;
695 L_LINT(ftemp
, time_monitor
);
696 L_RSHIFT(ftemp
, (SHIFT_PLL
+ 2 + time_constant
) << 1);
698 L_ADD(time_freq
, ftemp
);
699 time_status
&= ~STA_MODE
;
700 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
>
702 L_LINT(ftemp
, (time_monitor
<< 4) / mtemp
);
703 L_RSHIFT(ftemp
, SHIFT_FLL
+ 4);
704 L_ADD(time_freq
, ftemp
);
705 time_status
|= STA_MODE
;
707 time_reftime
= time_second
;
708 if (L_GINT(time_freq
) > MAXFREQ
)
709 L_LINT(time_freq
, MAXFREQ
);
710 else if (L_GINT(time_freq
) < -MAXFREQ
)
711 L_LINT(time_freq
, -MAXFREQ
);
716 * hardpps() - discipline CPU clock oscillator to external PPS signal
718 * This routine is called at each PPS interrupt in order to discipline
719 * the CPU clock oscillator to the PPS signal. There are two independent
720 * first-order feedback loops, one for the phase, the other for the
721 * frequency. The phase loop measures and grooms the PPS phase offset
722 * and leaves it in a handy spot for the seconds overflow routine. The
723 * frequency loop averages successive PPS phase differences and
724 * calculates the PPS frequency offset, which is also processed by the
725 * seconds overflow routine. The code requires the caller to capture the
726 * time and architecture-dependent hardware counter values in
727 * nanoseconds at the on-time PPS signal transition.
729 * Note that, on some Unix systems this routine runs at an interrupt
730 * priority level higher than the timer interrupt routine hardclock().
731 * Therefore, the variables used are distinct from the hardclock()
732 * variables, except for the actual time and frequency variables, which
733 * are determined by this routine and updated atomically.
737 struct timespec
*tsp
; /* time at PPS */
738 long nsec
; /* hardware counter at PPS */
740 long u_sec
, u_nsec
, v_nsec
; /* temps */
744 * The signal is first processed by a range gate and frequency
745 * discriminator. The range gate rejects noise spikes outside
746 * the range +-500 us. The frequency discriminator rejects input
747 * signals with apparent frequency outside the range 1 +-500
748 * PPM. If two hits occur in the same second, we ignore the
749 * later hit; if not and a hit occurs outside the range gate,
750 * keep the later hit for later comparison, but do not process
753 time_status
|= STA_PPSSIGNAL
| STA_PPSJITTER
;
754 time_status
&= ~(STA_PPSWANDER
| STA_PPSERROR
);
755 pps_valid
= PPS_VALID
;
757 u_nsec
= tsp
->tv_nsec
;
758 if (u_nsec
>= (NANOSECOND
>> 1)) {
759 u_nsec
-= NANOSECOND
;
762 v_nsec
= u_nsec
- pps_tf
[0].tv_nsec
;
763 if (u_sec
== pps_tf
[0].tv_sec
&& v_nsec
< NANOSECOND
-
766 pps_tf
[2] = pps_tf
[1];
767 pps_tf
[1] = pps_tf
[0];
768 pps_tf
[0].tv_sec
= u_sec
;
769 pps_tf
[0].tv_nsec
= u_nsec
;
772 * Compute the difference between the current and previous
773 * counter values. If the difference exceeds 0.5 s, assume it
774 * has wrapped around, so correct 1.0 s. If the result exceeds
775 * the tick interval, the sample point has crossed a tick
776 * boundary during the last second, so correct the tick. Very
780 if (u_nsec
> (NANOSECOND
>> 1))
781 u_nsec
-= NANOSECOND
;
782 else if (u_nsec
< -(NANOSECOND
>> 1))
783 u_nsec
+= NANOSECOND
;
784 pps_fcount
+= u_nsec
;
785 if (v_nsec
> MAXFREQ
|| v_nsec
< -MAXFREQ
)
787 time_status
&= ~STA_PPSJITTER
;
790 * A three-stage median filter is used to help denoise the PPS
791 * time. The median sample becomes the time offset estimate; the
792 * difference between the other two samples becomes the time
793 * dispersion (jitter) estimate.
795 if (pps_tf
[0].tv_nsec
> pps_tf
[1].tv_nsec
) {
796 if (pps_tf
[1].tv_nsec
> pps_tf
[2].tv_nsec
) {
797 v_nsec
= pps_tf
[1].tv_nsec
; /* 0 1 2 */
798 u_nsec
= pps_tf
[0].tv_nsec
- pps_tf
[2].tv_nsec
;
799 } else if (pps_tf
[2].tv_nsec
> pps_tf
[0].tv_nsec
) {
800 v_nsec
= pps_tf
[0].tv_nsec
; /* 2 0 1 */
801 u_nsec
= pps_tf
[2].tv_nsec
- pps_tf
[1].tv_nsec
;
803 v_nsec
= pps_tf
[2].tv_nsec
; /* 0 2 1 */
804 u_nsec
= pps_tf
[0].tv_nsec
- pps_tf
[1].tv_nsec
;
807 if (pps_tf
[1].tv_nsec
< pps_tf
[2].tv_nsec
) {
808 v_nsec
= pps_tf
[1].tv_nsec
; /* 2 1 0 */
809 u_nsec
= pps_tf
[2].tv_nsec
- pps_tf
[0].tv_nsec
;
810 } else if (pps_tf
[2].tv_nsec
< pps_tf
[0].tv_nsec
) {
811 v_nsec
= pps_tf
[0].tv_nsec
; /* 1 0 2 */
812 u_nsec
= pps_tf
[1].tv_nsec
- pps_tf
[2].tv_nsec
;
814 v_nsec
= pps_tf
[2].tv_nsec
; /* 1 2 0 */
815 u_nsec
= pps_tf
[1].tv_nsec
- pps_tf
[0].tv_nsec
;
820 * Nominal jitter is due to PPS signal noise and interrupt
821 * latency. If it exceeds the popcorn threshold, the sample is
822 * discarded. otherwise, if so enabled, the time offset is
823 * updated. We can tolerate a modest loss of data here without
824 * much degrading time accuracy.
826 if (u_nsec
> (pps_jitter
<< PPS_POPCORN
)) {
827 time_status
|= STA_PPSJITTER
;
829 } else if (time_status
& STA_PPSTIME
) {
830 time_monitor
= -v_nsec
;
831 L_LINT(time_offset
, time_monitor
);
833 pps_jitter
+= (u_nsec
- pps_jitter
) >> PPS_FAVG
;
834 u_sec
= pps_tf
[0].tv_sec
- pps_lastsec
;
835 if (u_sec
< (1 << pps_shift
))
839 * At the end of the calibration interval the difference between
840 * the first and last counter values becomes the scaled
841 * frequency. It will later be divided by the length of the
842 * interval to determine the frequency update. If the frequency
843 * exceeds a sanity threshold, or if the actual calibration
844 * interval is not equal to the expected length, the data are
845 * discarded. We can tolerate a modest loss of data here without
846 * much degrading frequency accuracy.
849 v_nsec
= -pps_fcount
;
850 pps_lastsec
= pps_tf
[0].tv_sec
;
852 u_nsec
= MAXFREQ
<< pps_shift
;
853 if (v_nsec
> u_nsec
|| v_nsec
< -u_nsec
|| u_sec
!= (1 <<
855 time_status
|= STA_PPSERROR
;
861 * Here the raw frequency offset and wander (stability) is
862 * calculated. If the wander is less than the wander threshold
863 * for four consecutive averaging intervals, the interval is
864 * doubled; if it is greater than the threshold for four
865 * consecutive intervals, the interval is halved. The scaled
866 * frequency offset is converted to frequency offset. The
867 * stability metric is calculated as the average of recent
868 * frequency changes, but is used only for performance
871 L_LINT(ftemp
, v_nsec
);
872 L_RSHIFT(ftemp
, pps_shift
);
873 L_SUB(ftemp
, pps_freq
);
874 u_nsec
= L_GINT(ftemp
);
875 if (u_nsec
> PPS_MAXWANDER
) {
876 L_LINT(ftemp
, PPS_MAXWANDER
);
878 time_status
|= STA_PPSWANDER
;
880 } else if (u_nsec
< -PPS_MAXWANDER
) {
881 L_LINT(ftemp
, -PPS_MAXWANDER
);
883 time_status
|= STA_PPSWANDER
;
888 if (pps_intcnt
>= 4) {
890 if (pps_shift
< pps_shiftmax
) {
894 } else if (pps_intcnt
<= -4 || pps_shift
> pps_shiftmax
) {
896 if (pps_shift
> PPS_FAVG
) {
903 pps_stabil
+= (u_nsec
* SCALE_PPM
- pps_stabil
) >> PPS_FAVG
;
906 * The PPS frequency is recalculated and clamped to the maximum
907 * MAXFREQ. If enabled, the system clock frequency is updated as
910 L_ADD(pps_freq
, ftemp
);
911 u_nsec
= L_GINT(pps_freq
);
912 if (u_nsec
> MAXFREQ
)
913 L_LINT(pps_freq
, MAXFREQ
);
914 else if (u_nsec
< -MAXFREQ
)
915 L_LINT(pps_freq
, -MAXFREQ
);
916 if (time_status
& STA_PPSFREQ
)
917 time_freq
= pps_freq
;
919 #endif /* PPS_SYNC */
921 #ifndef _SYS_SYSPROTO_H_
922 struct adjtime_args
{
923 struct timeval
*delta
;
924 struct timeval
*olddelta
;
929 adjtime(struct thread
*td
, struct adjtime_args
*uap
)
931 struct timeval delta
, olddelta
, *deltap
;
935 error
= copyin(uap
->delta
, &delta
, sizeof(delta
));
941 error
= kern_adjtime(td
, deltap
, &olddelta
);
942 if (uap
->olddelta
&& error
== 0)
943 error
= copyout(&olddelta
, uap
->olddelta
, sizeof(olddelta
));
948 kern_adjtime(struct thread
*td
, struct timeval
*delta
, struct timeval
*olddelta
)
955 atv
.tv_sec
= time_adjtime
/ 1000000;
956 atv
.tv_usec
= time_adjtime
% 1000000;
957 if (atv
.tv_usec
< 0) {
958 atv
.tv_usec
+= 1000000;
964 if ((error
= priv_check(td
, PRIV_ADJTIME
))) {
968 time_adjtime
= (int64_t)delta
->tv_sec
* 1000000 +