2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2005-2006 Robert N. M. Watson
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types. Back end is implemented using the UMA(9) zone
37 * allocator. A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type. Statistics are maintained per-CPU for performance
41 * reasons. See malloc(9) and comments in malloc.h for a detailed
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
49 #include "opt_kdtrace.h"
52 #include <sys/param.h>
53 #include <sys/systm.h>
55 #include <sys/kernel.h>
57 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/vmmeter.h>
63 #include <sys/sysctl.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_page.h>
74 #include <vm/uma_int.h>
75 #include <vm/uma_dbg.h>
78 #include <vm/memguard.h>
81 #include <vm/redzone.h>
84 #if defined(INVARIANTS) && defined(__i386__)
85 #include <machine/cpu.h>
91 #include <sys/dtrace_bsd.h>
93 dtrace_malloc_probe_func_t dtrace_malloc_probe
;
97 * When realloc() is called, if the new size is sufficiently smaller than
98 * the old size, realloc() will allocate a new, smaller block to avoid
99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
102 #ifndef REALLOC_FRACTION
103 #define REALLOC_FRACTION 1 /* new block if <= half the size */
107 * Centrally define some common malloc types.
109 MALLOC_DEFINE(M_CACHE
, "cache", "Various Dynamically allocated caches");
110 MALLOC_DEFINE(M_DEVBUF
, "devbuf", "device driver memory");
111 MALLOC_DEFINE(M_TEMP
, "temp", "misc temporary data buffers");
113 MALLOC_DEFINE(M_IP6OPT
, "ip6opt", "IPv6 options");
114 MALLOC_DEFINE(M_IP6NDP
, "ip6ndp", "IPv6 Neighbor Discovery");
116 static void kmeminit(void *);
117 SYSINIT(kmem
, SI_SUB_KMEM
, SI_ORDER_FIRST
, kmeminit
, NULL
);
119 static MALLOC_DEFINE(M_FREE
, "free", "should be on free list");
121 static struct malloc_type
*kmemstatistics
;
122 static vm_offset_t kmembase
;
123 static vm_offset_t kmemlimit
;
124 static int kmemcount
;
126 #define KMEM_ZSHIFT 4
127 #define KMEM_ZBASE 16
128 #define KMEM_ZMASK (KMEM_ZBASE - 1)
130 #define KMEM_ZMAX PAGE_SIZE
131 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
132 static u_int8_t kmemsize
[KMEM_ZSIZE
+ 1];
135 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
138 * XXX: The comment here used to read "These won't be powers of two for
139 * long." It's possible that a significant amount of wasted memory could be
140 * recovered by tuning the sizes of these buckets.
153 {1024, "1024", NULL
},
154 {2048, "2048", NULL
},
155 {4096, "4096", NULL
},
157 {8192, "8192", NULL
},
159 {16384, "16384", NULL
},
160 #if PAGE_SIZE > 16384
161 {32768, "32768", NULL
},
162 #if PAGE_SIZE > 32768
163 {65536, "65536", NULL
},
164 #if PAGE_SIZE > 65536
165 #error "Unsupported PAGE_SIZE"
175 * Zone to allocate malloc type descriptions from. For ABI reasons, memory
176 * types are described by a data structure passed by the declaring code, but
177 * the malloc(9) implementation has its own data structure describing the
178 * type and statistics. This permits the malloc(9)-internal data structures
179 * to be modified without breaking binary-compiled kernel modules that
180 * declare malloc types.
182 static uma_zone_t mt_zone
;
185 SYSCTL_ULONG(_vm
, OID_AUTO
, kmem_size
, CTLFLAG_RD
, &vm_kmem_size
, 0,
186 "Size of kernel memory");
188 static u_long vm_kmem_size_min
;
189 SYSCTL_ULONG(_vm
, OID_AUTO
, kmem_size_min
, CTLFLAG_RD
, &vm_kmem_size_min
, 0,
190 "Minimum size of kernel memory");
192 static u_long vm_kmem_size_max
;
193 SYSCTL_ULONG(_vm
, OID_AUTO
, kmem_size_max
, CTLFLAG_RD
, &vm_kmem_size_max
, 0,
194 "Maximum size of kernel memory");
196 static u_int vm_kmem_size_scale
;
197 SYSCTL_UINT(_vm
, OID_AUTO
, kmem_size_scale
, CTLFLAG_RD
, &vm_kmem_size_scale
, 0,
198 "Scale factor for kernel memory size");
201 * The malloc_mtx protects the kmemstatistics linked list.
203 struct mtx malloc_mtx
;
205 #ifdef MALLOC_PROFILE
206 uint64_t krequests
[KMEM_ZSIZE
+ 1];
208 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS
);
211 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS
);
214 * time_uptime of the last malloc(9) failure (induced or real).
216 static time_t t_malloc_fail
;
219 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
220 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
222 #ifdef MALLOC_MAKE_FAILURES
223 SYSCTL_NODE(_debug
, OID_AUTO
, malloc
, CTLFLAG_RD
, 0,
224 "Kernel malloc debugging options");
226 static int malloc_failure_rate
;
227 static int malloc_nowait_count
;
228 static int malloc_failure_count
;
229 SYSCTL_INT(_debug_malloc
, OID_AUTO
, failure_rate
, CTLFLAG_RW
,
230 &malloc_failure_rate
, 0, "Every (n) mallocs with M_NOWAIT will fail");
231 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate
);
232 SYSCTL_INT(_debug_malloc
, OID_AUTO
, failure_count
, CTLFLAG_RD
,
233 &malloc_failure_count
, 0, "Number of imposed M_NOWAIT malloc failures");
237 malloc_last_fail(void)
240 return (time_uptime
- t_malloc_fail
);
244 * An allocation has succeeded -- update malloc type statistics for the
245 * amount of bucket size. Occurs within a critical section so that the
246 * thread isn't preempted and doesn't migrate while updating per-PCU
250 malloc_type_zone_allocated(struct malloc_type
*mtp
, unsigned long size
,
253 struct malloc_type_internal
*mtip
;
254 struct malloc_type_stats
*mtsp
;
257 mtip
= mtp
->ks_handle
;
258 mtsp
= &mtip
->mti_stats
[curcpu
];
260 mtsp
->mts_memalloced
+= size
;
261 mtsp
->mts_numallocs
++;
264 mtsp
->mts_size
|= 1 << zindx
;
267 if (dtrace_malloc_probe
!= NULL
) {
268 uint32_t probe_id
= mtip
->mti_probes
[DTMALLOC_PROBE_MALLOC
];
270 (dtrace_malloc_probe
)(probe_id
,
271 (uintptr_t) mtp
, (uintptr_t) mtip
,
272 (uintptr_t) mtsp
, size
, zindx
);
280 malloc_type_allocated(struct malloc_type
*mtp
, unsigned long size
)
284 malloc_type_zone_allocated(mtp
, size
, -1);
288 * A free operation has occurred -- update malloc type statistics for the
289 * amount of the bucket size. Occurs within a critical section so that the
290 * thread isn't preempted and doesn't migrate while updating per-CPU
294 malloc_type_freed(struct malloc_type
*mtp
, unsigned long size
)
296 struct malloc_type_internal
*mtip
;
297 struct malloc_type_stats
*mtsp
;
300 mtip
= mtp
->ks_handle
;
301 mtsp
= &mtip
->mti_stats
[curcpu
];
302 mtsp
->mts_memfreed
+= size
;
303 mtsp
->mts_numfrees
++;
306 if (dtrace_malloc_probe
!= NULL
) {
307 uint32_t probe_id
= mtip
->mti_probes
[DTMALLOC_PROBE_FREE
];
309 (dtrace_malloc_probe
)(probe_id
,
310 (uintptr_t) mtp
, (uintptr_t) mtip
,
311 (uintptr_t) mtsp
, size
, 0);
321 * Allocate a block of memory.
323 * If M_NOWAIT is set, this routine will not block and return NULL if
324 * the allocation fails.
327 malloc(unsigned long size
, struct malloc_type
*mtp
, int flags
)
333 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
334 unsigned long osize
= size
;
339 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
341 indx
= flags
& (M_WAITOK
| M_NOWAIT
);
342 if (indx
!= M_NOWAIT
&& indx
!= M_WAITOK
) {
343 static struct timeval lasterr
;
344 static int curerr
, once
;
345 if (once
== 0 && ppsratecheck(&lasterr
, &curerr
, 1)) {
346 printf("Bad malloc flags: %x\n", indx
);
353 #ifdef MALLOC_MAKE_FAILURES
354 if ((flags
& M_NOWAIT
) && (malloc_failure_rate
!= 0)) {
355 atomic_add_int(&malloc_nowait_count
, 1);
356 if ((malloc_nowait_count
% malloc_failure_rate
) == 0) {
357 atomic_add_int(&malloc_failure_count
, 1);
358 t_malloc_fail
= time_uptime
;
363 if (flags
& M_WAITOK
)
364 KASSERT(curthread
->td_intr_nesting_level
== 0,
365 ("malloc(M_WAITOK) in interrupt context"));
367 #ifdef DEBUG_MEMGUARD
368 if (memguard_cmp(mtp
))
369 return memguard_alloc(size
, flags
);
373 size
= redzone_size_ntor(size
);
376 if (size
<= KMEM_ZMAX
) {
377 if (size
& KMEM_ZMASK
)
378 size
= (size
& ~KMEM_ZMASK
) + KMEM_ZBASE
;
379 indx
= kmemsize
[size
>> KMEM_ZSHIFT
];
380 zone
= kmemzones
[indx
].kz_zone
;
382 #ifdef MALLOC_PROFILE
383 krequests
[size
>> KMEM_ZSHIFT
]++;
385 va
= uma_zalloc(zone
, flags
);
388 malloc_type_zone_allocated(mtp
, va
== NULL
? 0 : size
, indx
);
390 size
= roundup(size
, PAGE_SIZE
);
393 va
= uma_large_malloc(size
, flags
);
394 malloc_type_allocated(mtp
, va
== NULL
? 0 : size
);
396 if (flags
& M_WAITOK
)
397 KASSERT(va
!= NULL
, ("malloc(M_WAITOK) returned NULL"));
399 t_malloc_fail
= time_uptime
;
401 if (va
!= NULL
&& !(flags
& M_ZERO
)) {
402 memset(va
, 0x70, osize
);
407 va
= redzone_setup(va
, osize
);
409 return ((void *) va
);
415 * Free a block of memory allocated by malloc.
417 * This routine may not block.
420 free(void *addr
, struct malloc_type
*mtp
)
425 /* free(NULL, ...) does nothing */
429 #ifdef DEBUG_MEMGUARD
430 if (memguard_cmp(mtp
)) {
438 addr
= redzone_addr_ntor(addr
);
443 slab
= vtoslab((vm_offset_t
)addr
& (~UMA_SLAB_MASK
));
446 panic("free: address %p(%p) has not been allocated.\n",
447 addr
, (void *)((u_long
)addr
& (~UMA_SLAB_MASK
)));
450 if (!(slab
->us_flags
& UMA_SLAB_MALLOC
)) {
452 struct malloc_type
**mtpp
= addr
;
454 size
= slab
->us_keg
->uk_size
;
457 * Cache a pointer to the malloc_type that most recently freed
458 * this memory here. This way we know who is most likely to
459 * have stepped on it later.
461 * This code assumes that size is a multiple of 8 bytes for
464 mtpp
= (struct malloc_type
**)
465 ((unsigned long)mtpp
& ~UMA_ALIGN_PTR
);
466 mtpp
+= (size
- sizeof(struct malloc_type
*)) /
467 sizeof(struct malloc_type
*);
470 uma_zfree_arg(LIST_FIRST(&slab
->us_keg
->uk_zones
), addr
, slab
);
472 size
= slab
->us_size
;
473 uma_large_free(slab
);
475 malloc_type_freed(mtp
, size
);
479 * realloc: change the size of a memory block
482 realloc(void *addr
, unsigned long size
, struct malloc_type
*mtp
, int flags
)
488 /* realloc(NULL, ...) is equivalent to malloc(...) */
490 return (malloc(size
, mtp
, flags
));
493 * XXX: Should report free of old memory and alloc of new memory to
497 #ifdef DEBUG_MEMGUARD
498 if (memguard_cmp(mtp
)) {
506 alloc
= redzone_get_size(addr
);
508 slab
= vtoslab((vm_offset_t
)addr
& ~(UMA_SLAB_MASK
));
511 KASSERT(slab
!= NULL
,
512 ("realloc: address %p out of range", (void *)addr
));
514 /* Get the size of the original block */
515 if (!(slab
->us_flags
& UMA_SLAB_MALLOC
))
516 alloc
= slab
->us_keg
->uk_size
;
518 alloc
= slab
->us_size
;
520 /* Reuse the original block if appropriate */
522 && (size
> (alloc
>> REALLOC_FRACTION
) || alloc
== MINALLOCSIZE
))
524 #endif /* !DEBUG_REDZONE */
526 #ifdef DEBUG_MEMGUARD
530 /* Allocate a new, bigger (or smaller) block */
531 if ((newaddr
= malloc(size
, mtp
, flags
)) == NULL
)
534 /* Copy over original contents */
535 bcopy(addr
, newaddr
, min(size
, alloc
));
541 * reallocf: same as realloc() but free memory on failure.
544 reallocf(void *addr
, unsigned long size
, struct malloc_type
*mtp
, int flags
)
548 if ((mem
= realloc(addr
, size
, mtp
, flags
)) == NULL
)
554 * Initialize the kernel memory allocator
558 kmeminit(void *dummy
)
564 mtx_init(&malloc_mtx
, "malloc", NULL
, MTX_DEF
);
567 * Try to auto-tune the kernel memory size, so that it is
568 * more applicable for a wider range of machine sizes.
569 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
570 * a VM_KMEM_SIZE of 12MB is a fair compromise. The
571 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
572 * available, and on an X86 with a total KVA space of 256MB,
573 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
575 * Note that the kmem_map is also used by the zone allocator,
576 * so make sure that there is enough space.
578 vm_kmem_size
= VM_KMEM_SIZE
+ nmbclusters
* PAGE_SIZE
;
579 mem_size
= cnt
.v_page_count
;
581 #if defined(VM_KMEM_SIZE_SCALE)
582 vm_kmem_size_scale
= VM_KMEM_SIZE_SCALE
;
584 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale
);
585 if (vm_kmem_size_scale
> 0 &&
586 (mem_size
/ vm_kmem_size_scale
) > (vm_kmem_size
/ PAGE_SIZE
))
587 vm_kmem_size
= (mem_size
/ vm_kmem_size_scale
) * PAGE_SIZE
;
589 #if defined(VM_KMEM_SIZE_MIN)
590 vm_kmem_size_min
= VM_KMEM_SIZE_MIN
;
592 TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min
);
593 if (vm_kmem_size_min
> 0 && vm_kmem_size
< vm_kmem_size_min
) {
594 vm_kmem_size
= vm_kmem_size_min
;
597 #if defined(VM_KMEM_SIZE_MAX)
598 vm_kmem_size_max
= VM_KMEM_SIZE_MAX
;
600 TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max
);
601 if (vm_kmem_size_max
> 0 && vm_kmem_size
>= vm_kmem_size_max
)
602 vm_kmem_size
= vm_kmem_size_max
;
604 /* Allow final override from the kernel environment */
606 if (TUNABLE_ULONG_FETCH("kern.vm.kmem.size", &vm_kmem_size
) != 0)
607 printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
609 TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size
);
612 * Limit kmem virtual size to twice the physical memory.
613 * This allows for kmem map sparseness, but limits the size
614 * to something sane. Be careful to not overflow the 32bit
615 * ints while doing the check.
617 if (((vm_kmem_size
/ 2) / PAGE_SIZE
) > cnt
.v_page_count
)
618 vm_kmem_size
= 2 * cnt
.v_page_count
* PAGE_SIZE
;
621 * Tune settings based on the kmem map's size at this time.
623 init_param3(vm_kmem_size
/ PAGE_SIZE
);
625 kmem_map
= kmem_suballoc(kernel_map
, &kmembase
, &kmemlimit
,
627 kmem_map
->system_map
= 1;
629 #ifdef DEBUG_MEMGUARD
631 * Initialize MemGuard if support compiled in. MemGuard is a
632 * replacement allocator used for detecting tamper-after-free
633 * scenarios as they occur. It is only used for debugging.
635 vm_memguard_divisor
= 10;
636 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor
);
638 /* Pick a conservative value if provided value sucks. */
639 if ((vm_memguard_divisor
<= 0) ||
640 ((vm_kmem_size
/ vm_memguard_divisor
) == 0))
641 vm_memguard_divisor
= 10;
642 memguard_init(kmem_map
, vm_kmem_size
/ vm_memguard_divisor
);
647 mt_zone
= uma_zcreate("mt_zone", sizeof(struct malloc_type_internal
),
649 mtrash_ctor
, mtrash_dtor
, mtrash_init
, mtrash_fini
,
651 NULL
, NULL
, NULL
, NULL
,
653 UMA_ALIGN_PTR
, UMA_ZONE_MALLOC
);
654 for (i
= 0, indx
= 0; kmemzones
[indx
].kz_size
!= 0; indx
++) {
655 int size
= kmemzones
[indx
].kz_size
;
656 char *name
= kmemzones
[indx
].kz_name
;
658 kmemzones
[indx
].kz_zone
= uma_zcreate(name
, size
,
660 mtrash_ctor
, mtrash_dtor
, mtrash_init
, mtrash_fini
,
662 NULL
, NULL
, NULL
, NULL
,
664 UMA_ALIGN_PTR
, UMA_ZONE_MALLOC
);
666 for (;i
<= size
; i
+= KMEM_ZBASE
)
667 kmemsize
[i
>> KMEM_ZSHIFT
] = indx
;
673 malloc_init(void *data
)
675 struct malloc_type_internal
*mtip
;
676 struct malloc_type
*mtp
;
678 KASSERT(cnt
.v_page_count
!= 0, ("malloc_register before vm_init"));
681 mtip
= uma_zalloc(mt_zone
, M_WAITOK
| M_ZERO
);
682 mtp
->ks_handle
= mtip
;
684 mtx_lock(&malloc_mtx
);
685 mtp
->ks_next
= kmemstatistics
;
686 kmemstatistics
= mtp
;
688 mtx_unlock(&malloc_mtx
);
692 malloc_uninit(void *data
)
694 struct malloc_type_internal
*mtip
;
695 struct malloc_type_stats
*mtsp
;
696 struct malloc_type
*mtp
, *temp
;
698 long temp_allocs
, temp_bytes
;
702 KASSERT(mtp
->ks_handle
!= NULL
, ("malloc_deregister: cookie NULL"));
703 mtx_lock(&malloc_mtx
);
704 mtip
= mtp
->ks_handle
;
705 mtp
->ks_handle
= NULL
;
706 if (mtp
!= kmemstatistics
) {
707 for (temp
= kmemstatistics
; temp
!= NULL
;
708 temp
= temp
->ks_next
) {
709 if (temp
->ks_next
== mtp
)
710 temp
->ks_next
= mtp
->ks_next
;
713 kmemstatistics
= mtp
->ks_next
;
715 mtx_unlock(&malloc_mtx
);
718 * Look for memory leaks.
720 temp_allocs
= temp_bytes
= 0;
721 for (i
= 0; i
< MAXCPU
; i
++) {
722 mtsp
= &mtip
->mti_stats
[i
];
723 temp_allocs
+= mtsp
->mts_numallocs
;
724 temp_allocs
-= mtsp
->mts_numfrees
;
725 temp_bytes
+= mtsp
->mts_memalloced
;
726 temp_bytes
-= mtsp
->mts_memfreed
;
728 if (temp_allocs
> 0 || temp_bytes
> 0) {
729 printf("Warning: memory type %s leaked memory on destroy "
730 "(%ld allocations, %ld bytes leaked).\n", mtp
->ks_shortdesc
,
731 temp_allocs
, temp_bytes
);
734 slab
= vtoslab((vm_offset_t
) mtip
& (~UMA_SLAB_MASK
));
735 uma_zfree_arg(mt_zone
, mtip
, slab
);
739 malloc_desc2type(const char *desc
)
741 struct malloc_type
*mtp
;
743 mtx_assert(&malloc_mtx
, MA_OWNED
);
744 for (mtp
= kmemstatistics
; mtp
!= NULL
; mtp
= mtp
->ks_next
) {
745 if (strcmp(mtp
->ks_shortdesc
, desc
) == 0)
752 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS
)
754 struct malloc_type_stream_header mtsh
;
755 struct malloc_type_internal
*mtip
;
756 struct malloc_type_header mth
;
757 struct malloc_type
*mtp
;
758 int buflen
, count
, error
, i
;
762 mtx_lock(&malloc_mtx
);
764 mtx_assert(&malloc_mtx
, MA_OWNED
);
766 mtx_unlock(&malloc_mtx
);
767 buflen
= sizeof(mtsh
) + count
* (sizeof(mth
) +
768 sizeof(struct malloc_type_stats
) * MAXCPU
) + 1;
769 buffer
= malloc(buflen
, M_TEMP
, M_WAITOK
| M_ZERO
);
770 mtx_lock(&malloc_mtx
);
771 if (count
< kmemcount
) {
772 free(buffer
, M_TEMP
);
776 sbuf_new(&sbuf
, buffer
, buflen
, SBUF_FIXEDLEN
);
779 * Insert stream header.
781 bzero(&mtsh
, sizeof(mtsh
));
782 mtsh
.mtsh_version
= MALLOC_TYPE_STREAM_VERSION
;
783 mtsh
.mtsh_maxcpus
= MAXCPU
;
784 mtsh
.mtsh_count
= kmemcount
;
785 if (sbuf_bcat(&sbuf
, &mtsh
, sizeof(mtsh
)) < 0) {
786 mtx_unlock(&malloc_mtx
);
792 * Insert alternating sequence of type headers and type statistics.
794 for (mtp
= kmemstatistics
; mtp
!= NULL
; mtp
= mtp
->ks_next
) {
795 mtip
= (struct malloc_type_internal
*)mtp
->ks_handle
;
798 * Insert type header.
800 bzero(&mth
, sizeof(mth
));
801 strlcpy(mth
.mth_name
, mtp
->ks_shortdesc
, MALLOC_MAX_NAME
);
802 if (sbuf_bcat(&sbuf
, &mth
, sizeof(mth
)) < 0) {
803 mtx_unlock(&malloc_mtx
);
809 * Insert type statistics for each CPU.
811 for (i
= 0; i
< MAXCPU
; i
++) {
812 if (sbuf_bcat(&sbuf
, &mtip
->mti_stats
[i
],
813 sizeof(mtip
->mti_stats
[i
])) < 0) {
814 mtx_unlock(&malloc_mtx
);
820 mtx_unlock(&malloc_mtx
);
822 error
= SYSCTL_OUT(req
, sbuf_data(&sbuf
), sbuf_len(&sbuf
));
825 free(buffer
, M_TEMP
);
829 SYSCTL_PROC(_kern
, OID_AUTO
, malloc_stats
, CTLFLAG_RD
|CTLTYPE_STRUCT
,
830 0, 0, sysctl_kern_malloc_stats
, "s,malloc_type_ustats",
831 "Return malloc types");
833 SYSCTL_INT(_kern
, OID_AUTO
, malloc_count
, CTLFLAG_RD
, &kmemcount
, 0,
834 "Count of kernel malloc types");
837 malloc_type_list(malloc_type_list_func_t
*func
, void *arg
)
839 struct malloc_type
*mtp
, **bufmtp
;
843 mtx_lock(&malloc_mtx
);
845 mtx_assert(&malloc_mtx
, MA_OWNED
);
847 mtx_unlock(&malloc_mtx
);
849 buflen
= sizeof(struct malloc_type
*) * count
;
850 bufmtp
= malloc(buflen
, M_TEMP
, M_WAITOK
);
852 mtx_lock(&malloc_mtx
);
854 if (count
< kmemcount
) {
855 free(bufmtp
, M_TEMP
);
859 for (mtp
= kmemstatistics
, i
= 0; mtp
!= NULL
; mtp
= mtp
->ks_next
, i
++)
862 mtx_unlock(&malloc_mtx
);
864 for (i
= 0; i
< count
; i
++)
865 (func
)(bufmtp
[i
], arg
);
867 free(bufmtp
, M_TEMP
);
871 DB_SHOW_COMMAND(malloc
, db_show_malloc
)
873 struct malloc_type_internal
*mtip
;
874 struct malloc_type
*mtp
;
875 u_int64_t allocs
, frees
;
876 u_int64_t alloced
, freed
;
879 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
881 for (mtp
= kmemstatistics
; mtp
!= NULL
; mtp
= mtp
->ks_next
) {
882 mtip
= (struct malloc_type_internal
*)mtp
->ks_handle
;
887 for (i
= 0; i
< MAXCPU
; i
++) {
888 allocs
+= mtip
->mti_stats
[i
].mts_numallocs
;
889 frees
+= mtip
->mti_stats
[i
].mts_numfrees
;
890 alloced
+= mtip
->mti_stats
[i
].mts_memalloced
;
891 freed
+= mtip
->mti_stats
[i
].mts_memfreed
;
893 db_printf("%18s %12ju %12juK %12ju\n",
894 mtp
->ks_shortdesc
, allocs
- frees
,
895 (alloced
- freed
+ 1023) / 1024, allocs
);
900 #ifdef MALLOC_PROFILE
903 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS
)
917 bufsize
= linesize
* (KMEM_ZSIZE
+ 1);
918 bufsize
+= 128; /* For the stats line */
919 bufsize
+= 128; /* For the banner line */
923 buf
= malloc(bufsize
, M_TEMP
, M_WAITOK
|M_ZERO
);
924 sbuf_new(&sbuf
, buf
, bufsize
, SBUF_FIXEDLEN
);
926 "\n Size Requests Real Size\n");
927 for (i
= 0; i
< KMEM_ZSIZE
; i
++) {
928 size
= i
<< KMEM_ZSHIFT
;
929 rsize
= kmemzones
[kmemsize
[i
]].kz_size
;
930 count
= (long long unsigned)krequests
[i
];
932 sbuf_printf(&sbuf
, "%6d%28llu%11d\n", size
,
933 (unsigned long long)count
, rsize
);
935 if ((rsize
* count
) > (size
* count
))
936 waste
+= (rsize
* count
) - (size
* count
);
937 mem
+= (rsize
* count
);
940 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
941 (unsigned long long)mem
, (unsigned long long)waste
);
944 error
= SYSCTL_OUT(req
, sbuf_data(&sbuf
), sbuf_len(&sbuf
));
951 SYSCTL_OID(_kern
, OID_AUTO
, mprof
, CTLTYPE_STRING
|CTLFLAG_RD
,
952 NULL
, 0, sysctl_kern_mprof
, "A", "Malloc Profiling");
953 #endif /* MALLOC_PROFILE */