2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/eventhandler.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/sysctl.h>
53 #include <sys/malloc.h>
54 #include <sys/mutex.h>
57 #include <sys/pioctl.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/syscall.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
65 #include <sys/ktrace.h>
66 #include <sys/unistd.h>
69 #include <sys/signalvar.h>
71 #include <security/audit/audit.h>
72 #include <security/mac/mac_framework.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_extern.h>
81 #include <sys/dtrace_bsd.h>
82 dtrace_fork_func_t dtrace_fasttrap_fork
;
85 SDT_PROVIDER_DECLARE(proc
);
86 SDT_PROBE_DEFINE(proc
, kernel
, , create
);
87 SDT_PROBE_ARGTYPE(proc
, kernel
, , create
, 0, "struct proc *");
88 SDT_PROBE_ARGTYPE(proc
, kernel
, , create
, 1, "struct proc *");
89 SDT_PROBE_ARGTYPE(proc
, kernel
, , create
, 2, "int");
91 #ifndef _SYS_SYSPROTO_H_
101 struct fork_args
*uap
;
106 error
= fork1(td
, RFFDG
| RFPROC
, 0, &p2
);
108 td
->td_retval
[0] = p2
->p_pid
;
109 td
->td_retval
[1] = 0;
118 struct vfork_args
*uap
;
123 error
= fork1(td
, RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
, 0, &p2
);
125 td
->td_retval
[0] = p2
->p_pid
;
126 td
->td_retval
[1] = 0;
134 struct rfork_args
*uap
;
139 /* Don't allow kernel-only flags. */
140 if ((uap
->flags
& RFKERNELONLY
) != 0)
143 AUDIT_ARG(fflags
, uap
->flags
);
144 error
= fork1(td
, uap
->flags
, 0, &p2
);
146 td
->td_retval
[0] = p2
? p2
->p_pid
: 0;
147 td
->td_retval
[1] = 0;
152 int nprocs
= 1; /* process 0 */
154 SYSCTL_INT(_kern
, OID_AUTO
, lastpid
, CTLFLAG_RD
, &lastpid
, 0,
158 * Random component to lastpid generation. We mix in a random factor to make
159 * it a little harder to predict. We sanity check the modulus value to avoid
160 * doing it in critical paths. Don't let it be too small or we pointlessly
161 * waste randomness entropy, and don't let it be impossibly large. Using a
162 * modulus that is too big causes a LOT more process table scans and slows
163 * down fork processing as the pidchecked caching is defeated.
165 static int randompid
= 0;
168 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS
)
172 error
= sysctl_wire_old_buffer(req
, sizeof(int));
175 sx_xlock(&allproc_lock
);
177 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
178 if (error
== 0 && req
->newptr
!= NULL
) {
179 if (pid
< 0 || pid
> PID_MAX
- 100) /* out of range */
181 else if (pid
< 2) /* NOP */
183 else if (pid
< 100) /* Make it reasonable */
187 sx_xunlock(&allproc_lock
);
191 SYSCTL_PROC(_kern
, OID_AUTO
, randompid
, CTLTYPE_INT
|CTLFLAG_RW
,
192 0, 0, sysctl_kern_randompid
, "I", "Random PID modulus");
195 fork1(td
, flags
, pages
, procp
)
201 struct proc
*p1
, *p2
, *pptr
;
202 struct proc
*newproc
;
204 static int curfail
, pidchecked
= 0;
205 static struct timeval lastfail
;
207 struct filedesc_to_leader
*fdtol
;
209 struct sigacts
*newsigacts
;
213 /* Can't copy and clear. */
214 if ((flags
& (RFFDG
|RFCFDG
)) == (RFFDG
|RFCFDG
))
220 * Here we don't create a new process, but we divorce
221 * certain parts of a process from itself.
223 if ((flags
& RFPROC
) == 0) {
224 if (((p1
->p_flag
& (P_HADTHREADS
|P_SYSTEM
)) == P_HADTHREADS
) &&
225 (flags
& (RFCFDG
| RFFDG
))) {
227 if (thread_single(SINGLE_BOUNDARY
)) {
234 error
= vm_forkproc(td
, NULL
, NULL
, NULL
, flags
);
239 * Close all file descriptors.
241 if (flags
& RFCFDG
) {
242 struct filedesc
*fdtmp
;
243 fdtmp
= fdinit(td
->td_proc
->p_fd
);
249 * Unshare file descriptors (from parent).
255 if (((p1
->p_flag
& (P_HADTHREADS
|P_SYSTEM
)) == P_HADTHREADS
) &&
256 (flags
& (RFCFDG
| RFFDG
))) {
267 * We did have single-threading code here
268 * however it proved un-needed and caused problems
272 /* Allocate new proc. */
273 newproc
= uma_zalloc(proc_zone
, M_WAITOK
);
274 if (TAILQ_EMPTY(&newproc
->p_threads
)) {
275 td2
= thread_alloc();
280 proc_linkup(newproc
, td2
);
282 td2
= FIRST_THREAD_IN_PROC(newproc
);
284 /* Allocate and switch to an alternate kstack if specified. */
286 if (!vm_thread_new_altkstack(td2
, pages
)) {
291 if ((flags
& RFMEM
) == 0) {
292 vm2
= vmspace_fork(p1
->p_vmspace
);
299 mac_proc_init(newproc
);
301 knlist_init(&newproc
->p_klist
, &newproc
->p_mtx
, NULL
, NULL
, NULL
);
302 STAILQ_INIT(&newproc
->p_ktr
);
304 /* We have to lock the process tree while we look for a pid. */
305 sx_slock(&proctree_lock
);
308 * Although process entries are dynamically created, we still keep
309 * a global limit on the maximum number we will create. Don't allow
310 * a nonprivileged user to use the last ten processes; don't let root
311 * exceed the limit. The variable nprocs is the current number of
312 * processes, maxproc is the limit.
314 sx_xlock(&allproc_lock
);
315 if ((nprocs
>= maxproc
- 10 && priv_check_cred(td
->td_ucred
,
316 PRIV_MAXPROC
, 0) != 0) || nprocs
>= maxproc
) {
322 * Increment the count of procs running with this uid. Don't allow
323 * a nonprivileged user to exceed their current limit.
325 * XXXRW: Can we avoid privilege here if it's not needed?
327 error
= priv_check_cred(td
->td_ucred
, PRIV_PROC_LIMIT
, 0);
329 ok
= chgproccnt(td
->td_ucred
->cr_ruidinfo
, 1, 0);
332 ok
= chgproccnt(td
->td_ucred
->cr_ruidinfo
, 1,
333 lim_cur(p1
, RLIMIT_NPROC
));
342 * Increment the nprocs resource before blocking can occur. There
343 * are hard-limits as to the number of processes that can run.
348 * Find an unused process ID. We remember a range of unused IDs
349 * ready to use (from lastpid+1 through pidchecked-1).
351 * If RFHIGHPID is set (used during system boot), do not allocate
354 trypid
= lastpid
+ 1;
355 if (flags
& RFHIGHPID
) {
360 trypid
+= arc4random() % randompid
;
364 * If the process ID prototype has wrapped around,
365 * restart somewhat above 0, as the low-numbered procs
366 * tend to include daemons that don't exit.
368 if (trypid
>= PID_MAX
) {
369 trypid
= trypid
% PID_MAX
;
374 if (trypid
>= pidchecked
) {
377 pidchecked
= PID_MAX
;
379 * Scan the active and zombie procs to check whether this pid
380 * is in use. Remember the lowest pid that's greater
381 * than trypid, so we can avoid checking for a while.
383 p2
= LIST_FIRST(&allproc
);
385 for (; p2
!= NULL
; p2
= LIST_NEXT(p2
, p_list
)) {
386 while (p2
->p_pid
== trypid
||
387 (p2
->p_pgrp
!= NULL
&&
388 (p2
->p_pgrp
->pg_id
== trypid
||
389 (p2
->p_session
!= NULL
&&
390 p2
->p_session
->s_sid
== trypid
)))) {
392 if (trypid
>= pidchecked
)
395 if (p2
->p_pid
> trypid
&& pidchecked
> p2
->p_pid
)
396 pidchecked
= p2
->p_pid
;
397 if (p2
->p_pgrp
!= NULL
) {
398 if (p2
->p_pgrp
->pg_id
> trypid
&&
399 pidchecked
> p2
->p_pgrp
->pg_id
)
400 pidchecked
= p2
->p_pgrp
->pg_id
;
401 if (p2
->p_session
!= NULL
&&
402 p2
->p_session
->s_sid
> trypid
&&
403 pidchecked
> p2
->p_session
->s_sid
)
404 pidchecked
= p2
->p_session
->s_sid
;
409 p2
= LIST_FIRST(&zombproc
);
413 sx_sunlock(&proctree_lock
);
416 * RFHIGHPID does not mess with the lastpid counter during boot.
418 if (flags
& RFHIGHPID
)
424 p2
->p_state
= PRS_NEW
; /* protect against others */
427 * Allow the scheduler to initialize the child.
432 AUDIT_ARG(pid
, p2
->p_pid
);
433 LIST_INSERT_HEAD(&allproc
, p2
, p_list
);
434 LIST_INSERT_HEAD(PIDHASH(p2
->p_pid
), p2
, p_hash
);
439 sx_xunlock(&allproc_lock
);
441 bcopy(&p1
->p_startcopy
, &p2
->p_startcopy
,
442 __rangeof(struct proc
, p_startcopy
, p_endcopy
));
443 pargs_hold(p2
->p_args
);
446 bzero(&p2
->p_startzero
,
447 __rangeof(struct proc
, p_startzero
, p_endzero
));
449 p2
->p_ucred
= crhold(td
->td_ucred
);
453 * Malloc things while we don't hold any locks.
455 if (flags
& RFSIGSHARE
)
458 newsigacts
= sigacts_alloc();
463 if (flags
& RFCFDG
) {
464 fd
= fdinit(p1
->p_fd
);
466 } else if (flags
& RFFDG
) {
467 fd
= fdcopy(p1
->p_fd
);
470 fd
= fdshare(p1
->p_fd
);
471 if (p1
->p_fdtol
== NULL
)
473 filedesc_to_leader_alloc(NULL
,
476 if ((flags
& RFTHREAD
) != 0) {
478 * Shared file descriptor table and
479 * shared process leaders.
482 FILEDESC_XLOCK(p1
->p_fd
);
483 fdtol
->fdl_refcount
++;
484 FILEDESC_XUNLOCK(p1
->p_fd
);
487 * Shared file descriptor table, and
488 * different process leaders
490 fdtol
= filedesc_to_leader_alloc(p1
->p_fdtol
,
496 * Make a proc table entry for the new process.
497 * Start by zeroing the section of proc that is zero-initialized,
498 * then copy the section that is copied directly from the parent.
504 bzero(&td2
->td_startzero
,
505 __rangeof(struct thread
, td_startzero
, td_endzero
));
507 bcopy(&td
->td_startcopy
, &td2
->td_startcopy
,
508 __rangeof(struct thread
, td_startcopy
, td_endcopy
));
510 bcopy(&p2
->p_comm
, &td2
->td_name
, sizeof(td2
->td_name
));
511 td2
->td_sigstk
= td
->td_sigstk
;
512 td2
->td_sigmask
= td
->td_sigmask
;
513 td2
->td_flags
= TDF_INMEM
;
516 * Duplicate sub-structures as needed.
517 * Increase reference counts on shared objects.
519 p2
->p_flag
= P_INMEM
;
520 p2
->p_swtick
= ticks
;
521 if (p1
->p_flag
& P_PROFIL
)
523 td2
->td_ucred
= crhold(p2
->p_ucred
);
525 if (flags
& RFSIGSHARE
) {
526 p2
->p_sigacts
= sigacts_hold(p1
->p_sigacts
);
528 sigacts_copy(newsigacts
, p1
->p_sigacts
);
529 p2
->p_sigacts
= newsigacts
;
531 if (flags
& RFLINUXTHPN
)
532 p2
->p_sigparent
= SIGUSR1
;
534 p2
->p_sigparent
= SIGCHLD
;
536 p2
->p_textvp
= p1
->p_textvp
;
541 * p_limit is copy-on-write. Bump its refcount.
545 pstats_fork(p1
->p_stats
, p2
->p_stats
);
550 /* Bump references to the text vnode (for procfs) */
555 * Set up linkage for kernel based threading.
557 if ((flags
& RFTHREAD
) != 0) {
558 mtx_lock(&ppeers_lock
);
559 p2
->p_peers
= p1
->p_peers
;
561 p2
->p_leader
= p1
->p_leader
;
562 mtx_unlock(&ppeers_lock
);
563 PROC_LOCK(p1
->p_leader
);
564 if ((p1
->p_leader
->p_flag
& P_WEXIT
) != 0) {
565 PROC_UNLOCK(p1
->p_leader
);
567 * The task leader is exiting, so process p1 is
568 * going to be killed shortly. Since p1 obviously
569 * isn't dead yet, we know that the leader is either
570 * sending SIGKILL's to all the processes in this
571 * task or is sleeping waiting for all the peers to
572 * exit. We let p1 complete the fork, but we need
573 * to go ahead and kill the new process p2 since
574 * the task leader may not get a chance to send
575 * SIGKILL to it. We leave it on the list so that
576 * the task leader will wait for this new process
580 psignal(p2
, SIGKILL
);
583 PROC_UNLOCK(p1
->p_leader
);
589 sx_xlock(&proctree_lock
);
590 PGRP_LOCK(p1
->p_pgrp
);
595 * Preserve some more flags in subprocess. P_PROFIL has already
598 p2
->p_flag
|= p1
->p_flag
& P_SUGID
;
599 td2
->td_pflags
|= td
->td_pflags
& TDP_ALTSTACK
;
600 SESS_LOCK(p1
->p_session
);
601 if (p1
->p_session
->s_ttyvp
!= NULL
&& p1
->p_flag
& P_CONTROLT
)
602 p2
->p_flag
|= P_CONTROLT
;
603 SESS_UNLOCK(p1
->p_session
);
604 if (flags
& RFPPWAIT
)
605 p2
->p_flag
|= P_PPWAIT
;
607 p2
->p_pgrp
= p1
->p_pgrp
;
608 LIST_INSERT_AFTER(p1
, p2
, p_pglist
);
609 PGRP_UNLOCK(p1
->p_pgrp
);
610 LIST_INIT(&p2
->p_children
);
612 callout_init(&p2
->p_itcallout
, CALLOUT_MPSAFE
);
616 * Copy traceflag and tracefile if enabled.
618 mtx_lock(&ktrace_mtx
);
619 KASSERT(p2
->p_tracevp
== NULL
, ("new process has a ktrace vnode"));
620 if (p1
->p_traceflag
& KTRFAC_INHERIT
) {
621 p2
->p_traceflag
= p1
->p_traceflag
;
622 if ((p2
->p_tracevp
= p1
->p_tracevp
) != NULL
) {
624 KASSERT(p1
->p_tracecred
!= NULL
,
625 ("ktrace vnode with no cred"));
626 p2
->p_tracecred
= crhold(p1
->p_tracecred
);
629 mtx_unlock(&ktrace_mtx
);
633 * If PF_FORK is set, the child process inherits the
634 * procfs ioctl flags from its parent.
636 if (p1
->p_pfsflags
& PF_FORK
) {
637 p2
->p_stops
= p1
->p_stops
;
638 p2
->p_pfsflags
= p1
->p_pfsflags
;
643 * Tell the DTrace fasttrap provider about the new process
644 * if it has registered an interest.
646 if (dtrace_fasttrap_fork
)
647 dtrace_fasttrap_fork(p1
, p2
);
651 * This begins the section where we must prevent the parent
652 * from being swapped.
658 * Attach the new process to its parent.
660 * If RFNOWAIT is set, the newly created process becomes a child
661 * of init. This effectively disassociates the child from the
664 if (flags
& RFNOWAIT
)
669 LIST_INSERT_HEAD(&pptr
->p_children
, p2
, p_sibling
);
670 sx_xunlock(&proctree_lock
);
672 /* Inform accounting that we have forked. */
673 p2
->p_acflag
= AFORK
;
677 * Finish creating the child process. It will return via a different
678 * execution path later. (ie: directly into user mode)
680 vm_forkproc(td
, p2
, td2
, vm2
, flags
);
682 if (flags
== (RFFDG
| RFPROC
)) {
683 PCPU_INC(cnt
.v_forks
);
684 PCPU_ADD(cnt
.v_forkpages
, p2
->p_vmspace
->vm_dsize
+
685 p2
->p_vmspace
->vm_ssize
);
686 } else if (flags
== (RFFDG
| RFPROC
| RFPPWAIT
| RFMEM
)) {
687 PCPU_INC(cnt
.v_vforks
);
688 PCPU_ADD(cnt
.v_vforkpages
, p2
->p_vmspace
->vm_dsize
+
689 p2
->p_vmspace
->vm_ssize
);
690 } else if (p1
== &proc0
) {
691 PCPU_INC(cnt
.v_kthreads
);
692 PCPU_ADD(cnt
.v_kthreadpages
, p2
->p_vmspace
->vm_dsize
+
693 p2
->p_vmspace
->vm_ssize
);
695 PCPU_INC(cnt
.v_rforks
);
696 PCPU_ADD(cnt
.v_rforkpages
, p2
->p_vmspace
->vm_dsize
+
697 p2
->p_vmspace
->vm_ssize
);
701 * Both processes are set up, now check if any loadable modules want
702 * to adjust anything.
703 * What if they have an error? XXX
705 EVENTHANDLER_INVOKE(process_fork
, p1
, p2
, flags
);
708 * Set the child start time and mark the process as being complete.
710 microuptime(&p2
->p_stats
->p_start
);
712 p2
->p_state
= PRS_NORMAL
;
716 * If RFSTOPPED not requested, make child runnable and add to
719 if ((flags
& RFSTOPPED
) == 0) {
722 sched_add(td2
, SRQ_BORING
);
727 * Now can be swapped.
734 * Tell any interested parties about the new process.
736 knote_fork(&p1
->p_klist
, p2
->p_pid
);
737 SDT_PROBE(proc
, kernel
, , create
, p2
, p1
, flags
, 0, 0);
740 * Preserve synchronization semantics of vfork. If waiting for
741 * child to exec or exit, set P_PPWAIT on child, and sleep on our
742 * proc (in case of exit).
745 while (p2
->p_flag
& P_PPWAIT
)
746 msleep(p1
, &p2
->p_mtx
, PWAIT
, "ppwait", 0);
750 * Return child proc pointer to parent.
755 sx_sunlock(&proctree_lock
);
756 if (ppsratecheck(&lastfail
, &curfail
, 1))
757 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
758 td
->td_ucred
->cr_ruid
);
759 sx_xunlock(&allproc_lock
);
761 mac_proc_destroy(newproc
);
766 uma_zfree(proc_zone
, newproc
);
767 pause("fork", hz
/ 2);
772 * Handle the return of a child process from fork1(). This function
773 * is called from the MD fork_trampoline() entry point.
776 fork_exit(callout
, arg
, frame
)
777 void (*callout
)(void *, struct trapframe
*);
779 struct trapframe
*frame
;
787 KASSERT(p
->p_state
== PRS_NORMAL
, ("executing process is still new"));
789 CTR4(KTR_PROC
, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
790 td
, td
->td_sched
, p
->p_pid
, td
->td_name
);
794 * Processes normally resume in mi_switch() after being
795 * cpu_switch()'ed to, but when children start up they arrive here
796 * instead, so we must do much the same things as mi_switch() would.
798 if ((dtd
= PCPU_GET(deadthread
))) {
799 PCPU_SET(deadthread
, NULL
);
805 * cpu_set_fork_handler intercepts this function call to
806 * have this call a non-return function to stay in kernel mode.
807 * initproc has its own fork handler, but it does return.
809 KASSERT(callout
!= NULL
, ("NULL callout in fork_exit"));
813 * Check if a kernel thread misbehaved and returned from its main
816 if (p
->p_flag
& P_KTHREAD
) {
817 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
818 td
->td_name
, p
->p_pid
);
821 mtx_assert(&Giant
, MA_NOTOWNED
);
823 EVENTHANDLER_INVOKE(schedtail
, p
);
827 * Simplified back end of syscall(), used when returning from fork()
828 * directly into user mode. Giant is not held on entry, and must not
829 * be held on return. This function is passed in to fork_exit() as the
830 * first parameter and is called when returning to a new userland process.
833 fork_return(td
, frame
)
835 struct trapframe
*frame
;
840 if (KTRPOINT(td
, KTR_SYSRET
))
841 ktrsysret(SYS_fork
, 0, 0);
843 mtx_assert(&Giant
, MA_NOTOWNED
);