Ignore machine-check MSRs
[freebsd-src/fkvm-freebsd.git] / sys / kern / kern_event.c
blobab3cbb7abde021d2dd2721d68e64aeb3a9b2011b
1 /*-
2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
31 #include "opt_ktrace.h"
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/proc.h>
39 #include <sys/malloc.h>
40 #include <sys/unistd.h>
41 #include <sys/file.h>
42 #include <sys/filedesc.h>
43 #include <sys/filio.h>
44 #include <sys/fcntl.h>
45 #include <sys/kthread.h>
46 #include <sys/selinfo.h>
47 #include <sys/queue.h>
48 #include <sys/event.h>
49 #include <sys/eventvar.h>
50 #include <sys/poll.h>
51 #include <sys/protosw.h>
52 #include <sys/sigio.h>
53 #include <sys/signalvar.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/stat.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/syscallsubr.h>
60 #include <sys/taskqueue.h>
61 #include <sys/uio.h>
62 #ifdef KTRACE
63 #include <sys/ktrace.h>
64 #endif
66 #include <vm/uma.h>
68 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
71 * This lock is used if multiple kq locks are required. This possibly
72 * should be made into a per proc lock.
74 static struct mtx kq_global;
75 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
76 #define KQ_GLOBAL_LOCK(lck, haslck) do { \
77 if (!haslck) \
78 mtx_lock(lck); \
79 haslck = 1; \
80 } while (0)
81 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
82 if (haslck) \
83 mtx_unlock(lck); \
84 haslck = 0; \
85 } while (0)
87 TASKQUEUE_DEFINE_THREAD(kqueue);
89 static int kevent_copyout(void *arg, struct kevent *kevp, int count);
90 static int kevent_copyin(void *arg, struct kevent *kevp, int count);
91 static int kqueue_register(struct kqueue *kq, struct kevent *kev,
92 struct thread *td, int waitok);
93 static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
94 static void kqueue_release(struct kqueue *kq, int locked);
95 static int kqueue_expand(struct kqueue *kq, struct filterops *fops,
96 uintptr_t ident, int waitok);
97 static void kqueue_task(void *arg, int pending);
98 static int kqueue_scan(struct kqueue *kq, int maxevents,
99 struct kevent_copyops *k_ops,
100 const struct timespec *timeout,
101 struct kevent *keva, struct thread *td);
102 static void kqueue_wakeup(struct kqueue *kq);
103 static struct filterops *kqueue_fo_find(int filt);
104 static void kqueue_fo_release(int filt);
106 static fo_rdwr_t kqueue_read;
107 static fo_rdwr_t kqueue_write;
108 static fo_truncate_t kqueue_truncate;
109 static fo_ioctl_t kqueue_ioctl;
110 static fo_poll_t kqueue_poll;
111 static fo_kqfilter_t kqueue_kqfilter;
112 static fo_stat_t kqueue_stat;
113 static fo_close_t kqueue_close;
115 static struct fileops kqueueops = {
116 .fo_read = kqueue_read,
117 .fo_write = kqueue_write,
118 .fo_truncate = kqueue_truncate,
119 .fo_ioctl = kqueue_ioctl,
120 .fo_poll = kqueue_poll,
121 .fo_kqfilter = kqueue_kqfilter,
122 .fo_stat = kqueue_stat,
123 .fo_close = kqueue_close,
126 static int knote_attach(struct knote *kn, struct kqueue *kq);
127 static void knote_drop(struct knote *kn, struct thread *td);
128 static void knote_enqueue(struct knote *kn);
129 static void knote_dequeue(struct knote *kn);
130 static void knote_init(void);
131 static struct knote *knote_alloc(int waitok);
132 static void knote_free(struct knote *kn);
134 static void filt_kqdetach(struct knote *kn);
135 static int filt_kqueue(struct knote *kn, long hint);
136 static int filt_procattach(struct knote *kn);
137 static void filt_procdetach(struct knote *kn);
138 static int filt_proc(struct knote *kn, long hint);
139 static int filt_fileattach(struct knote *kn);
140 static void filt_timerexpire(void *knx);
141 static int filt_timerattach(struct knote *kn);
142 static void filt_timerdetach(struct knote *kn);
143 static int filt_timer(struct knote *kn, long hint);
145 static struct filterops file_filtops =
146 { 1, filt_fileattach, NULL, NULL };
147 static struct filterops kqread_filtops =
148 { 1, NULL, filt_kqdetach, filt_kqueue };
149 /* XXX - move to kern_proc.c? */
150 static struct filterops proc_filtops =
151 { 0, filt_procattach, filt_procdetach, filt_proc };
152 static struct filterops timer_filtops =
153 { 0, filt_timerattach, filt_timerdetach, filt_timer };
155 static uma_zone_t knote_zone;
156 static int kq_ncallouts = 0;
157 static int kq_calloutmax = (4 * 1024);
158 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
159 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
161 /* XXX - ensure not KN_INFLUX?? */
162 #define KNOTE_ACTIVATE(kn, islock) do { \
163 if ((islock)) \
164 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \
165 else \
166 KQ_LOCK((kn)->kn_kq); \
167 (kn)->kn_status |= KN_ACTIVE; \
168 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
169 knote_enqueue((kn)); \
170 if (!(islock)) \
171 KQ_UNLOCK((kn)->kn_kq); \
172 } while(0)
173 #define KQ_LOCK(kq) do { \
174 mtx_lock(&(kq)->kq_lock); \
175 } while (0)
176 #define KQ_FLUX_WAKEUP(kq) do { \
177 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \
178 (kq)->kq_state &= ~KQ_FLUXWAIT; \
179 wakeup((kq)); \
181 } while (0)
182 #define KQ_UNLOCK_FLUX(kq) do { \
183 KQ_FLUX_WAKEUP(kq); \
184 mtx_unlock(&(kq)->kq_lock); \
185 } while (0)
186 #define KQ_UNLOCK(kq) do { \
187 mtx_unlock(&(kq)->kq_lock); \
188 } while (0)
189 #define KQ_OWNED(kq) do { \
190 mtx_assert(&(kq)->kq_lock, MA_OWNED); \
191 } while (0)
192 #define KQ_NOTOWNED(kq) do { \
193 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
194 } while (0)
195 #define KN_LIST_LOCK(kn) do { \
196 if (kn->kn_knlist != NULL) \
197 kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg); \
198 } while (0)
199 #define KN_LIST_UNLOCK(kn) do { \
200 if (kn->kn_knlist != NULL) \
201 kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg); \
202 } while (0)
203 #define KNL_ASSERT_LOCK(knl, islocked) do { \
204 if (islocked) \
205 KNL_ASSERT_LOCKED(knl); \
206 else \
207 KNL_ASSERT_UNLOCKED(knl); \
208 } while (0)
209 #ifdef INVARIANTS
210 #define KNL_ASSERT_LOCKED(knl) do { \
211 if (!knl->kl_locked((knl)->kl_lockarg)) \
212 panic("knlist not locked, but should be"); \
213 } while (0)
214 #define KNL_ASSERT_UNLOCKED(knl) do { \
215 if (knl->kl_locked((knl)->kl_lockarg)) \
216 panic("knlist locked, but should not be"); \
217 } while (0)
218 #else /* !INVARIANTS */
219 #define KNL_ASSERT_LOCKED(knl) do {} while(0)
220 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
221 #endif /* INVARIANTS */
223 #define KN_HASHSIZE 64 /* XXX should be tunable */
224 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
226 static int
227 filt_nullattach(struct knote *kn)
230 return (ENXIO);
233 struct filterops null_filtops =
234 { 0, filt_nullattach, NULL, NULL };
236 /* XXX - make SYSINIT to add these, and move into respective modules. */
237 extern struct filterops sig_filtops;
238 extern struct filterops fs_filtops;
241 * Table for for all system-defined filters.
243 static struct mtx filterops_lock;
244 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
245 MTX_DEF);
246 static struct {
247 struct filterops *for_fop;
248 int for_refcnt;
249 } sysfilt_ops[EVFILT_SYSCOUNT] = {
250 { &file_filtops }, /* EVFILT_READ */
251 { &file_filtops }, /* EVFILT_WRITE */
252 { &null_filtops }, /* EVFILT_AIO */
253 { &file_filtops }, /* EVFILT_VNODE */
254 { &proc_filtops }, /* EVFILT_PROC */
255 { &sig_filtops }, /* EVFILT_SIGNAL */
256 { &timer_filtops }, /* EVFILT_TIMER */
257 { &file_filtops }, /* EVFILT_NETDEV */
258 { &fs_filtops }, /* EVFILT_FS */
259 { &null_filtops }, /* EVFILT_LIO */
263 * Simple redirection for all cdevsw style objects to call their fo_kqfilter
264 * method.
266 static int
267 filt_fileattach(struct knote *kn)
270 return (fo_kqfilter(kn->kn_fp, kn));
273 /*ARGSUSED*/
274 static int
275 kqueue_kqfilter(struct file *fp, struct knote *kn)
277 struct kqueue *kq = kn->kn_fp->f_data;
279 if (kn->kn_filter != EVFILT_READ)
280 return (EINVAL);
282 kn->kn_status |= KN_KQUEUE;
283 kn->kn_fop = &kqread_filtops;
284 knlist_add(&kq->kq_sel.si_note, kn, 0);
286 return (0);
289 static void
290 filt_kqdetach(struct knote *kn)
292 struct kqueue *kq = kn->kn_fp->f_data;
294 knlist_remove(&kq->kq_sel.si_note, kn, 0);
297 /*ARGSUSED*/
298 static int
299 filt_kqueue(struct knote *kn, long hint)
301 struct kqueue *kq = kn->kn_fp->f_data;
303 kn->kn_data = kq->kq_count;
304 return (kn->kn_data > 0);
307 /* XXX - move to kern_proc.c? */
308 static int
309 filt_procattach(struct knote *kn)
311 struct proc *p;
312 int immediate;
313 int error;
315 immediate = 0;
316 p = pfind(kn->kn_id);
317 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
318 p = zpfind(kn->kn_id);
319 immediate = 1;
320 } else if (p != NULL && (p->p_flag & P_WEXIT)) {
321 immediate = 1;
324 if (p == NULL)
325 return (ESRCH);
326 if ((error = p_cansee(curthread, p)))
327 return (error);
329 kn->kn_ptr.p_proc = p;
330 kn->kn_flags |= EV_CLEAR; /* automatically set */
333 * internal flag indicating registration done by kernel
335 if (kn->kn_flags & EV_FLAG1) {
336 kn->kn_data = kn->kn_sdata; /* ppid */
337 kn->kn_fflags = NOTE_CHILD;
338 kn->kn_flags &= ~EV_FLAG1;
341 if (immediate == 0)
342 knlist_add(&p->p_klist, kn, 1);
345 * Immediately activate any exit notes if the target process is a
346 * zombie. This is necessary to handle the case where the target
347 * process, e.g. a child, dies before the kevent is registered.
349 if (immediate && filt_proc(kn, NOTE_EXIT))
350 KNOTE_ACTIVATE(kn, 0);
352 PROC_UNLOCK(p);
354 return (0);
358 * The knote may be attached to a different process, which may exit,
359 * leaving nothing for the knote to be attached to. So when the process
360 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
361 * it will be deleted when read out. However, as part of the knote deletion,
362 * this routine is called, so a check is needed to avoid actually performing
363 * a detach, because the original process does not exist any more.
365 /* XXX - move to kern_proc.c? */
366 static void
367 filt_procdetach(struct knote *kn)
369 struct proc *p;
371 p = kn->kn_ptr.p_proc;
372 knlist_remove(&p->p_klist, kn, 0);
373 kn->kn_ptr.p_proc = NULL;
376 /* XXX - move to kern_proc.c? */
377 static int
378 filt_proc(struct knote *kn, long hint)
380 struct proc *p = kn->kn_ptr.p_proc;
381 u_int event;
384 * mask off extra data
386 event = (u_int)hint & NOTE_PCTRLMASK;
389 * if the user is interested in this event, record it.
391 if (kn->kn_sfflags & event)
392 kn->kn_fflags |= event;
395 * process is gone, so flag the event as finished.
397 if (event == NOTE_EXIT) {
398 if (!(kn->kn_status & KN_DETACHED))
399 knlist_remove_inevent(&p->p_klist, kn);
400 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
401 kn->kn_data = p->p_xstat;
402 kn->kn_ptr.p_proc = NULL;
403 return (1);
406 return (kn->kn_fflags != 0);
410 * Called when the process forked. It mostly does the same as the
411 * knote(), activating all knotes registered to be activated when the
412 * process forked. Additionally, for each knote attached to the
413 * parent, check whether user wants to track the new process. If so
414 * attach a new knote to it, and immediately report an event with the
415 * child's pid.
417 void
418 knote_fork(struct knlist *list, int pid)
420 struct kqueue *kq;
421 struct knote *kn;
422 struct kevent kev;
423 int error;
425 if (list == NULL)
426 return;
427 list->kl_lock(list->kl_lockarg);
429 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
430 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
431 continue;
432 kq = kn->kn_kq;
433 KQ_LOCK(kq);
434 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
435 KQ_UNLOCK(kq);
436 continue;
440 * The same as knote(), activate the event.
442 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
443 kn->kn_status |= KN_HASKQLOCK;
444 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
445 KNOTE_ACTIVATE(kn, 1);
446 kn->kn_status &= ~KN_HASKQLOCK;
447 KQ_UNLOCK(kq);
448 continue;
452 * The NOTE_TRACK case. In addition to the activation
453 * of the event, we need to register new event to
454 * track the child. Drop the locks in preparation for
455 * the call to kqueue_register().
457 kn->kn_status |= KN_INFLUX;
458 KQ_UNLOCK(kq);
459 list->kl_unlock(list->kl_lockarg);
462 * Activate existing knote and register a knote with
463 * new process.
465 kev.ident = pid;
466 kev.filter = kn->kn_filter;
467 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
468 kev.fflags = kn->kn_sfflags;
469 kev.data = kn->kn_id; /* parent */
470 kev.udata = kn->kn_kevent.udata;/* preserve udata */
471 error = kqueue_register(kq, &kev, NULL, 0);
472 if (kn->kn_fop->f_event(kn, NOTE_FORK | pid))
473 KNOTE_ACTIVATE(kn, 0);
474 if (error)
475 kn->kn_fflags |= NOTE_TRACKERR;
476 KQ_LOCK(kq);
477 kn->kn_status &= ~KN_INFLUX;
478 KQ_UNLOCK_FLUX(kq);
479 list->kl_lock(list->kl_lockarg);
481 list->kl_unlock(list->kl_lockarg);
484 static int
485 timertoticks(intptr_t data)
487 struct timeval tv;
488 int tticks;
490 tv.tv_sec = data / 1000;
491 tv.tv_usec = (data % 1000) * 1000;
492 tticks = tvtohz(&tv);
494 return tticks;
497 /* XXX - move to kern_timeout.c? */
498 static void
499 filt_timerexpire(void *knx)
501 struct knote *kn = knx;
502 struct callout *calloutp;
504 kn->kn_data++;
505 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */
507 if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
508 calloutp = (struct callout *)kn->kn_hook;
509 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
510 filt_timerexpire, kn);
515 * data contains amount of time to sleep, in milliseconds
517 /* XXX - move to kern_timeout.c? */
518 static int
519 filt_timerattach(struct knote *kn)
521 struct callout *calloutp;
523 atomic_add_int(&kq_ncallouts, 1);
525 if (kq_ncallouts >= kq_calloutmax) {
526 atomic_add_int(&kq_ncallouts, -1);
527 return (ENOMEM);
530 kn->kn_flags |= EV_CLEAR; /* automatically set */
531 kn->kn_status &= ~KN_DETACHED; /* knlist_add usually sets it */
532 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
533 M_KQUEUE, M_WAITOK);
534 callout_init(calloutp, CALLOUT_MPSAFE);
535 kn->kn_hook = calloutp;
536 callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
537 filt_timerexpire, kn);
539 return (0);
542 /* XXX - move to kern_timeout.c? */
543 static void
544 filt_timerdetach(struct knote *kn)
546 struct callout *calloutp;
548 calloutp = (struct callout *)kn->kn_hook;
549 callout_drain(calloutp);
550 FREE(calloutp, M_KQUEUE);
551 atomic_add_int(&kq_ncallouts, -1);
552 kn->kn_status |= KN_DETACHED; /* knlist_remove usually clears it */
555 /* XXX - move to kern_timeout.c? */
556 static int
557 filt_timer(struct knote *kn, long hint)
560 return (kn->kn_data != 0);
564 kqueue(struct thread *td, struct kqueue_args *uap)
566 struct filedesc *fdp;
567 struct kqueue *kq;
568 struct file *fp;
569 int fd, error;
571 fdp = td->td_proc->p_fd;
572 error = falloc(td, &fp, &fd);
573 if (error)
574 goto done2;
576 /* An extra reference on `nfp' has been held for us by falloc(). */
577 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
578 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
579 TAILQ_INIT(&kq->kq_head);
580 kq->kq_fdp = fdp;
581 knlist_init(&kq->kq_sel.si_note, &kq->kq_lock, NULL, NULL, NULL);
582 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
584 FILEDESC_XLOCK(fdp);
585 SLIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
586 FILEDESC_XUNLOCK(fdp);
588 finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
589 fdrop(fp, td);
591 td->td_retval[0] = fd;
592 done2:
593 return (error);
596 #ifndef _SYS_SYSPROTO_H_
597 struct kevent_args {
598 int fd;
599 const struct kevent *changelist;
600 int nchanges;
601 struct kevent *eventlist;
602 int nevents;
603 const struct timespec *timeout;
605 #endif
607 kevent(struct thread *td, struct kevent_args *uap)
609 struct timespec ts, *tsp;
610 struct kevent_copyops k_ops = { uap,
611 kevent_copyout,
612 kevent_copyin};
613 int error;
614 #ifdef KTRACE
615 struct uio ktruio;
616 struct iovec ktriov;
617 struct uio *ktruioin = NULL;
618 struct uio *ktruioout = NULL;
619 #endif
621 if (uap->timeout != NULL) {
622 error = copyin(uap->timeout, &ts, sizeof(ts));
623 if (error)
624 return (error);
625 tsp = &ts;
626 } else
627 tsp = NULL;
629 #ifdef KTRACE
630 if (KTRPOINT(td, KTR_GENIO)) {
631 ktriov.iov_base = uap->changelist;
632 ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
633 ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
634 .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
635 .uio_td = td };
636 ktruioin = cloneuio(&ktruio);
637 ktriov.iov_base = uap->eventlist;
638 ktriov.iov_len = uap->nevents * sizeof(struct kevent);
639 ktruioout = cloneuio(&ktruio);
641 #endif
643 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
644 &k_ops, tsp);
646 #ifdef KTRACE
647 if (ktruioin != NULL) {
648 ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
649 ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
650 ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
651 ktrgenio(uap->fd, UIO_READ, ktruioout, error);
653 #endif
655 return (error);
659 * Copy 'count' items into the destination list pointed to by uap->eventlist.
661 static int
662 kevent_copyout(void *arg, struct kevent *kevp, int count)
664 struct kevent_args *uap;
665 int error;
667 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
668 uap = (struct kevent_args *)arg;
670 error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
671 if (error == 0)
672 uap->eventlist += count;
673 return (error);
677 * Copy 'count' items from the list pointed to by uap->changelist.
679 static int
680 kevent_copyin(void *arg, struct kevent *kevp, int count)
682 struct kevent_args *uap;
683 int error;
685 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
686 uap = (struct kevent_args *)arg;
688 error = copyin(uap->changelist, kevp, count * sizeof *kevp);
689 if (error == 0)
690 uap->changelist += count;
691 return (error);
695 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
696 struct kevent_copyops *k_ops, const struct timespec *timeout)
698 struct kevent keva[KQ_NEVENTS];
699 struct kevent *kevp, *changes;
700 struct kqueue *kq;
701 struct file *fp;
702 int i, n, nerrors, error;
704 if ((error = fget(td, fd, &fp)) != 0)
705 return (error);
706 if ((error = kqueue_acquire(fp, &kq)) != 0)
707 goto done_norel;
709 nerrors = 0;
711 while (nchanges > 0) {
712 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
713 error = k_ops->k_copyin(k_ops->arg, keva, n);
714 if (error)
715 goto done;
716 changes = keva;
717 for (i = 0; i < n; i++) {
718 kevp = &changes[i];
719 if (!kevp->filter)
720 continue;
721 kevp->flags &= ~EV_SYSFLAGS;
722 error = kqueue_register(kq, kevp, td, 1);
723 if (error) {
724 if (nevents != 0) {
725 kevp->flags = EV_ERROR;
726 kevp->data = error;
727 (void) k_ops->k_copyout(k_ops->arg,
728 kevp, 1);
729 nevents--;
730 nerrors++;
731 } else {
732 goto done;
736 nchanges -= n;
738 if (nerrors) {
739 td->td_retval[0] = nerrors;
740 error = 0;
741 goto done;
744 error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
745 done:
746 kqueue_release(kq, 0);
747 done_norel:
748 fdrop(fp, td);
749 return (error);
753 kqueue_add_filteropts(int filt, struct filterops *filtops)
755 int error;
757 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
758 printf(
759 "trying to add a filterop that is out of range: %d is beyond %d\n",
760 ~filt, EVFILT_SYSCOUNT);
761 return EINVAL;
763 mtx_lock(&filterops_lock);
764 if (sysfilt_ops[~filt].for_fop != &null_filtops &&
765 sysfilt_ops[~filt].for_fop != NULL)
766 error = EEXIST;
767 else {
768 sysfilt_ops[~filt].for_fop = filtops;
769 sysfilt_ops[~filt].for_refcnt = 0;
771 mtx_unlock(&filterops_lock);
773 return (0);
777 kqueue_del_filteropts(int filt)
779 int error;
781 error = 0;
782 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
783 return EINVAL;
785 mtx_lock(&filterops_lock);
786 if (sysfilt_ops[~filt].for_fop == &null_filtops ||
787 sysfilt_ops[~filt].for_fop == NULL)
788 error = EINVAL;
789 else if (sysfilt_ops[~filt].for_refcnt != 0)
790 error = EBUSY;
791 else {
792 sysfilt_ops[~filt].for_fop = &null_filtops;
793 sysfilt_ops[~filt].for_refcnt = 0;
795 mtx_unlock(&filterops_lock);
797 return error;
800 static struct filterops *
801 kqueue_fo_find(int filt)
804 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
805 return NULL;
807 mtx_lock(&filterops_lock);
808 sysfilt_ops[~filt].for_refcnt++;
809 if (sysfilt_ops[~filt].for_fop == NULL)
810 sysfilt_ops[~filt].for_fop = &null_filtops;
811 mtx_unlock(&filterops_lock);
813 return sysfilt_ops[~filt].for_fop;
816 static void
817 kqueue_fo_release(int filt)
820 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
821 return;
823 mtx_lock(&filterops_lock);
824 KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
825 ("filter object refcount not valid on release"));
826 sysfilt_ops[~filt].for_refcnt--;
827 mtx_unlock(&filterops_lock);
831 * A ref to kq (obtained via kqueue_acquire) must be held. waitok will
832 * influence if memory allocation should wait. Make sure it is 0 if you
833 * hold any mutexes.
835 static int
836 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
838 struct filterops *fops;
839 struct file *fp;
840 struct knote *kn, *tkn;
841 int error, filt, event;
842 int haskqglobal;
844 fp = NULL;
845 kn = NULL;
846 error = 0;
847 haskqglobal = 0;
849 filt = kev->filter;
850 fops = kqueue_fo_find(filt);
851 if (fops == NULL)
852 return EINVAL;
854 tkn = knote_alloc(waitok); /* prevent waiting with locks */
856 findkn:
857 if (fops->f_isfd) {
858 KASSERT(td != NULL, ("td is NULL"));
859 error = fget(td, kev->ident, &fp);
860 if (error)
861 goto done;
863 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
864 kev->ident, 0) != 0) {
865 /* try again */
866 fdrop(fp, td);
867 fp = NULL;
868 error = kqueue_expand(kq, fops, kev->ident, waitok);
869 if (error)
870 goto done;
871 goto findkn;
874 if (fp->f_type == DTYPE_KQUEUE) {
876 * if we add some inteligence about what we are doing,
877 * we should be able to support events on ourselves.
878 * We need to know when we are doing this to prevent
879 * getting both the knlist lock and the kq lock since
880 * they are the same thing.
882 if (fp->f_data == kq) {
883 error = EINVAL;
884 goto done;
887 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
890 KQ_LOCK(kq);
891 if (kev->ident < kq->kq_knlistsize) {
892 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
893 if (kev->filter == kn->kn_filter)
894 break;
896 } else {
897 if ((kev->flags & EV_ADD) == EV_ADD)
898 kqueue_expand(kq, fops, kev->ident, waitok);
900 KQ_LOCK(kq);
901 if (kq->kq_knhashmask != 0) {
902 struct klist *list;
904 list = &kq->kq_knhash[
905 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
906 SLIST_FOREACH(kn, list, kn_link)
907 if (kev->ident == kn->kn_id &&
908 kev->filter == kn->kn_filter)
909 break;
913 /* knote is in the process of changing, wait for it to stablize. */
914 if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
915 if (fp != NULL) {
916 fdrop(fp, td);
917 fp = NULL;
919 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
920 kq->kq_state |= KQ_FLUXWAIT;
921 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
922 goto findkn;
925 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
926 KQ_UNLOCK(kq);
927 error = ENOENT;
928 goto done;
932 * kn now contains the matching knote, or NULL if no match
934 if (kev->flags & EV_ADD) {
935 if (kn == NULL) {
936 kn = tkn;
937 tkn = NULL;
938 if (kn == NULL) {
939 KQ_UNLOCK(kq);
940 error = ENOMEM;
941 goto done;
943 kn->kn_fp = fp;
944 kn->kn_kq = kq;
945 kn->kn_fop = fops;
947 * apply reference counts to knote structure, and
948 * do not release it at the end of this routine.
950 fops = NULL;
951 fp = NULL;
953 kn->kn_sfflags = kev->fflags;
954 kn->kn_sdata = kev->data;
955 kev->fflags = 0;
956 kev->data = 0;
957 kn->kn_kevent = *kev;
958 kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
959 EV_ENABLE | EV_DISABLE);
960 kn->kn_status = KN_INFLUX|KN_DETACHED;
962 error = knote_attach(kn, kq);
963 KQ_UNLOCK(kq);
964 if (error != 0) {
965 tkn = kn;
966 goto done;
969 if ((error = kn->kn_fop->f_attach(kn)) != 0) {
970 knote_drop(kn, td);
971 goto done;
973 KN_LIST_LOCK(kn);
974 } else {
976 * The user may change some filter values after the
977 * initial EV_ADD, but doing so will not reset any
978 * filter which has already been triggered.
980 kn->kn_status |= KN_INFLUX;
981 KQ_UNLOCK(kq);
982 KN_LIST_LOCK(kn);
983 kn->kn_sfflags = kev->fflags;
984 kn->kn_sdata = kev->data;
985 kn->kn_kevent.udata = kev->udata;
989 * We can get here with kn->kn_knlist == NULL.
990 * This can happen when the initial attach event decides that
991 * the event is "completed" already. i.e. filt_procattach
992 * is called on a zombie process. It will call filt_proc
993 * which will remove it from the list, and NULL kn_knlist.
995 event = kn->kn_fop->f_event(kn, 0);
996 KQ_LOCK(kq);
997 if (event)
998 KNOTE_ACTIVATE(kn, 1);
999 kn->kn_status &= ~KN_INFLUX;
1000 KN_LIST_UNLOCK(kn);
1001 } else if (kev->flags & EV_DELETE) {
1002 kn->kn_status |= KN_INFLUX;
1003 KQ_UNLOCK(kq);
1004 if (!(kn->kn_status & KN_DETACHED))
1005 kn->kn_fop->f_detach(kn);
1006 knote_drop(kn, td);
1007 goto done;
1010 if ((kev->flags & EV_DISABLE) &&
1011 ((kn->kn_status & KN_DISABLED) == 0)) {
1012 kn->kn_status |= KN_DISABLED;
1015 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1016 kn->kn_status &= ~KN_DISABLED;
1017 if ((kn->kn_status & KN_ACTIVE) &&
1018 ((kn->kn_status & KN_QUEUED) == 0))
1019 knote_enqueue(kn);
1021 KQ_UNLOCK_FLUX(kq);
1023 done:
1024 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1025 if (fp != NULL)
1026 fdrop(fp, td);
1027 if (tkn != NULL)
1028 knote_free(tkn);
1029 if (fops != NULL)
1030 kqueue_fo_release(filt);
1031 return (error);
1034 static int
1035 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1037 int error;
1038 struct kqueue *kq;
1040 error = 0;
1042 kq = fp->f_data;
1043 if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1044 return (EBADF);
1045 *kqp = kq;
1046 KQ_LOCK(kq);
1047 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1048 KQ_UNLOCK(kq);
1049 return (EBADF);
1051 kq->kq_refcnt++;
1052 KQ_UNLOCK(kq);
1054 return error;
1057 static void
1058 kqueue_release(struct kqueue *kq, int locked)
1060 if (locked)
1061 KQ_OWNED(kq);
1062 else
1063 KQ_LOCK(kq);
1064 kq->kq_refcnt--;
1065 if (kq->kq_refcnt == 1)
1066 wakeup(&kq->kq_refcnt);
1067 if (!locked)
1068 KQ_UNLOCK(kq);
1071 static void
1072 kqueue_schedtask(struct kqueue *kq)
1075 KQ_OWNED(kq);
1076 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1077 ("scheduling kqueue task while draining"));
1079 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1080 taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1081 kq->kq_state |= KQ_TASKSCHED;
1086 * Expand the kq to make sure we have storage for fops/ident pair.
1088 * Return 0 on success (or no work necessary), return errno on failure.
1090 * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1091 * If kqueue_register is called from a non-fd context, there usually/should
1092 * be no locks held.
1094 static int
1095 kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1096 int waitok)
1098 struct klist *list, *tmp_knhash;
1099 u_long tmp_knhashmask;
1100 int size;
1101 int fd;
1102 int mflag = waitok ? M_WAITOK : M_NOWAIT;
1104 KQ_NOTOWNED(kq);
1106 if (fops->f_isfd) {
1107 fd = ident;
1108 if (kq->kq_knlistsize <= fd) {
1109 size = kq->kq_knlistsize;
1110 while (size <= fd)
1111 size += KQEXTENT;
1112 MALLOC(list, struct klist *,
1113 size * sizeof list, M_KQUEUE, mflag);
1114 if (list == NULL)
1115 return ENOMEM;
1116 KQ_LOCK(kq);
1117 if (kq->kq_knlistsize > fd) {
1118 FREE(list, M_KQUEUE);
1119 list = NULL;
1120 } else {
1121 if (kq->kq_knlist != NULL) {
1122 bcopy(kq->kq_knlist, list,
1123 kq->kq_knlistsize * sizeof list);
1124 FREE(kq->kq_knlist, M_KQUEUE);
1125 kq->kq_knlist = NULL;
1127 bzero((caddr_t)list +
1128 kq->kq_knlistsize * sizeof list,
1129 (size - kq->kq_knlistsize) * sizeof list);
1130 kq->kq_knlistsize = size;
1131 kq->kq_knlist = list;
1133 KQ_UNLOCK(kq);
1135 } else {
1136 if (kq->kq_knhashmask == 0) {
1137 tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1138 &tmp_knhashmask);
1139 if (tmp_knhash == NULL)
1140 return ENOMEM;
1141 KQ_LOCK(kq);
1142 if (kq->kq_knhashmask == 0) {
1143 kq->kq_knhash = tmp_knhash;
1144 kq->kq_knhashmask = tmp_knhashmask;
1145 } else {
1146 free(tmp_knhash, M_KQUEUE);
1148 KQ_UNLOCK(kq);
1152 KQ_NOTOWNED(kq);
1153 return 0;
1156 static void
1157 kqueue_task(void *arg, int pending)
1159 struct kqueue *kq;
1160 int haskqglobal;
1162 haskqglobal = 0;
1163 kq = arg;
1165 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1166 KQ_LOCK(kq);
1168 KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1170 kq->kq_state &= ~KQ_TASKSCHED;
1171 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1172 wakeup(&kq->kq_state);
1174 KQ_UNLOCK(kq);
1175 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1179 * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1180 * We treat KN_MARKER knotes as if they are INFLUX.
1182 static int
1183 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1184 const struct timespec *tsp, struct kevent *keva, struct thread *td)
1186 struct kevent *kevp;
1187 struct timeval atv, rtv, ttv;
1188 struct knote *kn, *marker;
1189 int count, timeout, nkev, error, influx;
1190 int haskqglobal;
1192 count = maxevents;
1193 nkev = 0;
1194 error = 0;
1195 haskqglobal = 0;
1197 if (maxevents == 0)
1198 goto done_nl;
1200 if (tsp != NULL) {
1201 TIMESPEC_TO_TIMEVAL(&atv, tsp);
1202 if (itimerfix(&atv)) {
1203 error = EINVAL;
1204 goto done_nl;
1206 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1207 timeout = -1;
1208 else
1209 timeout = atv.tv_sec > 24 * 60 * 60 ?
1210 24 * 60 * 60 * hz : tvtohz(&atv);
1211 getmicrouptime(&rtv);
1212 timevaladd(&atv, &rtv);
1213 } else {
1214 atv.tv_sec = 0;
1215 atv.tv_usec = 0;
1216 timeout = 0;
1218 marker = knote_alloc(1);
1219 if (marker == NULL) {
1220 error = ENOMEM;
1221 goto done_nl;
1223 marker->kn_status = KN_MARKER;
1224 KQ_LOCK(kq);
1225 goto start;
1227 retry:
1228 if (atv.tv_sec || atv.tv_usec) {
1229 getmicrouptime(&rtv);
1230 if (timevalcmp(&rtv, &atv, >=))
1231 goto done;
1232 ttv = atv;
1233 timevalsub(&ttv, &rtv);
1234 timeout = ttv.tv_sec > 24 * 60 * 60 ?
1235 24 * 60 * 60 * hz : tvtohz(&ttv);
1238 start:
1239 kevp = keva;
1240 if (kq->kq_count == 0) {
1241 if (timeout < 0) {
1242 error = EWOULDBLOCK;
1243 } else {
1244 kq->kq_state |= KQ_SLEEP;
1245 error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1246 "kqread", timeout);
1248 if (error == 0)
1249 goto retry;
1250 /* don't restart after signals... */
1251 if (error == ERESTART)
1252 error = EINTR;
1253 else if (error == EWOULDBLOCK)
1254 error = 0;
1255 goto done;
1258 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1259 influx = 0;
1260 while (count) {
1261 KQ_OWNED(kq);
1262 kn = TAILQ_FIRST(&kq->kq_head);
1264 if ((kn->kn_status == KN_MARKER && kn != marker) ||
1265 (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1266 if (influx) {
1267 influx = 0;
1268 KQ_FLUX_WAKEUP(kq);
1270 kq->kq_state |= KQ_FLUXWAIT;
1271 error = msleep(kq, &kq->kq_lock, PSOCK,
1272 "kqflxwt", 0);
1273 continue;
1276 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1277 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1278 kn->kn_status &= ~KN_QUEUED;
1279 kq->kq_count--;
1280 continue;
1282 if (kn == marker) {
1283 KQ_FLUX_WAKEUP(kq);
1284 if (count == maxevents)
1285 goto retry;
1286 goto done;
1288 KASSERT((kn->kn_status & KN_INFLUX) == 0,
1289 ("KN_INFLUX set when not suppose to be"));
1291 if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1292 kn->kn_status &= ~KN_QUEUED;
1293 kn->kn_status |= KN_INFLUX;
1294 kq->kq_count--;
1295 KQ_UNLOCK(kq);
1297 * We don't need to lock the list since we've marked
1298 * it _INFLUX.
1300 *kevp = kn->kn_kevent;
1301 if (!(kn->kn_status & KN_DETACHED))
1302 kn->kn_fop->f_detach(kn);
1303 knote_drop(kn, td);
1304 KQ_LOCK(kq);
1305 kn = NULL;
1306 } else {
1307 kn->kn_status |= KN_INFLUX;
1308 KQ_UNLOCK(kq);
1309 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1310 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1311 KN_LIST_LOCK(kn);
1312 if (kn->kn_fop->f_event(kn, 0) == 0) {
1313 KQ_LOCK(kq);
1314 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1315 kn->kn_status &=
1316 ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX);
1317 kq->kq_count--;
1318 KN_LIST_UNLOCK(kn);
1319 influx = 1;
1320 continue;
1322 *kevp = kn->kn_kevent;
1323 KQ_LOCK(kq);
1324 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1325 if (kn->kn_flags & EV_CLEAR) {
1326 kn->kn_data = 0;
1327 kn->kn_fflags = 0;
1328 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1329 kq->kq_count--;
1330 } else
1331 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1333 kn->kn_status &= ~(KN_INFLUX);
1334 KN_LIST_UNLOCK(kn);
1335 influx = 1;
1338 /* we are returning a copy to the user */
1339 kevp++;
1340 nkev++;
1341 count--;
1343 if (nkev == KQ_NEVENTS) {
1344 influx = 0;
1345 KQ_UNLOCK_FLUX(kq);
1346 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1347 nkev = 0;
1348 kevp = keva;
1349 KQ_LOCK(kq);
1350 if (error)
1351 break;
1354 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1355 done:
1356 KQ_OWNED(kq);
1357 KQ_UNLOCK_FLUX(kq);
1358 knote_free(marker);
1359 done_nl:
1360 KQ_NOTOWNED(kq);
1361 if (nkev != 0)
1362 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1363 td->td_retval[0] = maxevents - count;
1364 return (error);
1368 * XXX
1369 * This could be expanded to call kqueue_scan, if desired.
1371 /*ARGSUSED*/
1372 static int
1373 kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1374 int flags, struct thread *td)
1376 return (ENXIO);
1379 /*ARGSUSED*/
1380 static int
1381 kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1382 int flags, struct thread *td)
1384 return (ENXIO);
1387 /*ARGSUSED*/
1388 static int
1389 kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1390 struct thread *td)
1393 return (EINVAL);
1396 /*ARGSUSED*/
1397 static int
1398 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1399 struct ucred *active_cred, struct thread *td)
1402 * Enabling sigio causes two major problems:
1403 * 1) infinite recursion:
1404 * Synopsys: kevent is being used to track signals and have FIOASYNC
1405 * set. On receipt of a signal this will cause a kqueue to recurse
1406 * into itself over and over. Sending the sigio causes the kqueue
1407 * to become ready, which in turn posts sigio again, forever.
1408 * Solution: this can be solved by setting a flag in the kqueue that
1409 * we have a SIGIO in progress.
1410 * 2) locking problems:
1411 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1412 * us above the proc and pgrp locks.
1413 * Solution: Post a signal using an async mechanism, being sure to
1414 * record a generation count in the delivery so that we do not deliver
1415 * a signal to the wrong process.
1417 * Note, these two mechanisms are somewhat mutually exclusive!
1419 #if 0
1420 struct kqueue *kq;
1422 kq = fp->f_data;
1423 switch (cmd) {
1424 case FIOASYNC:
1425 if (*(int *)data) {
1426 kq->kq_state |= KQ_ASYNC;
1427 } else {
1428 kq->kq_state &= ~KQ_ASYNC;
1430 return (0);
1432 case FIOSETOWN:
1433 return (fsetown(*(int *)data, &kq->kq_sigio));
1435 case FIOGETOWN:
1436 *(int *)data = fgetown(&kq->kq_sigio);
1437 return (0);
1439 #endif
1441 return (ENOTTY);
1444 /*ARGSUSED*/
1445 static int
1446 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1447 struct thread *td)
1449 struct kqueue *kq;
1450 int revents = 0;
1451 int error;
1453 if ((error = kqueue_acquire(fp, &kq)))
1454 return POLLERR;
1456 KQ_LOCK(kq);
1457 if (events & (POLLIN | POLLRDNORM)) {
1458 if (kq->kq_count) {
1459 revents |= events & (POLLIN | POLLRDNORM);
1460 } else {
1461 selrecord(td, &kq->kq_sel);
1462 if (SEL_WAITING(&kq->kq_sel))
1463 kq->kq_state |= KQ_SEL;
1466 kqueue_release(kq, 1);
1467 KQ_UNLOCK(kq);
1468 return (revents);
1471 /*ARGSUSED*/
1472 static int
1473 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1474 struct thread *td)
1477 bzero((void *)st, sizeof *st);
1479 * We no longer return kq_count because the unlocked value is useless.
1480 * If you spent all this time getting the count, why not spend your
1481 * syscall better by calling kevent?
1483 * XXX - This is needed for libc_r.
1485 st->st_mode = S_IFIFO;
1486 return (0);
1489 /*ARGSUSED*/
1490 static int
1491 kqueue_close(struct file *fp, struct thread *td)
1493 struct kqueue *kq = fp->f_data;
1494 struct filedesc *fdp;
1495 struct knote *kn;
1496 int i;
1497 int error;
1499 if ((error = kqueue_acquire(fp, &kq)))
1500 return error;
1502 KQ_LOCK(kq);
1504 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1505 ("kqueue already closing"));
1506 kq->kq_state |= KQ_CLOSING;
1507 if (kq->kq_refcnt > 1)
1508 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1510 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1511 fdp = kq->kq_fdp;
1513 KASSERT(knlist_empty(&kq->kq_sel.si_note),
1514 ("kqueue's knlist not empty"));
1516 for (i = 0; i < kq->kq_knlistsize; i++) {
1517 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1518 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1519 kq->kq_state |= KQ_FLUXWAIT;
1520 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1521 continue;
1523 kn->kn_status |= KN_INFLUX;
1524 KQ_UNLOCK(kq);
1525 if (!(kn->kn_status & KN_DETACHED))
1526 kn->kn_fop->f_detach(kn);
1527 knote_drop(kn, td);
1528 KQ_LOCK(kq);
1531 if (kq->kq_knhashmask != 0) {
1532 for (i = 0; i <= kq->kq_knhashmask; i++) {
1533 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1534 if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1535 kq->kq_state |= KQ_FLUXWAIT;
1536 msleep(kq, &kq->kq_lock, PSOCK,
1537 "kqclo2", 0);
1538 continue;
1540 kn->kn_status |= KN_INFLUX;
1541 KQ_UNLOCK(kq);
1542 if (!(kn->kn_status & KN_DETACHED))
1543 kn->kn_fop->f_detach(kn);
1544 knote_drop(kn, td);
1545 KQ_LOCK(kq);
1550 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1551 kq->kq_state |= KQ_TASKDRAIN;
1552 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1555 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1556 selwakeuppri(&kq->kq_sel, PSOCK);
1557 if (!SEL_WAITING(&kq->kq_sel))
1558 kq->kq_state &= ~KQ_SEL;
1561 KQ_UNLOCK(kq);
1563 FILEDESC_XLOCK(fdp);
1564 SLIST_REMOVE(&fdp->fd_kqlist, kq, kqueue, kq_list);
1565 FILEDESC_XUNLOCK(fdp);
1567 knlist_destroy(&kq->kq_sel.si_note);
1568 mtx_destroy(&kq->kq_lock);
1569 kq->kq_fdp = NULL;
1571 if (kq->kq_knhash != NULL)
1572 free(kq->kq_knhash, M_KQUEUE);
1573 if (kq->kq_knlist != NULL)
1574 free(kq->kq_knlist, M_KQUEUE);
1576 funsetown(&kq->kq_sigio);
1577 free(kq, M_KQUEUE);
1578 fp->f_data = NULL;
1580 return (0);
1583 static void
1584 kqueue_wakeup(struct kqueue *kq)
1586 KQ_OWNED(kq);
1588 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1589 kq->kq_state &= ~KQ_SLEEP;
1590 wakeup(kq);
1592 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1593 selwakeuppri(&kq->kq_sel, PSOCK);
1594 if (!SEL_WAITING(&kq->kq_sel))
1595 kq->kq_state &= ~KQ_SEL;
1597 if (!knlist_empty(&kq->kq_sel.si_note))
1598 kqueue_schedtask(kq);
1599 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1600 pgsigio(&kq->kq_sigio, SIGIO, 0);
1605 * Walk down a list of knotes, activating them if their event has triggered.
1607 * There is a possibility to optimize in the case of one kq watching another.
1608 * Instead of scheduling a task to wake it up, you could pass enough state
1609 * down the chain to make up the parent kqueue. Make this code functional
1610 * first.
1612 void
1613 knote(struct knlist *list, long hint, int islocked)
1615 struct kqueue *kq;
1616 struct knote *kn;
1618 if (list == NULL)
1619 return;
1621 KNL_ASSERT_LOCK(list, islocked);
1623 if (!islocked)
1624 list->kl_lock(list->kl_lockarg);
1627 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1628 * the kqueue scheduling, but this will introduce four
1629 * lock/unlock's for each knote to test. If we do, continue to use
1630 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1631 * only safe if you want to remove the current item, which we are
1632 * not doing.
1634 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1635 kq = kn->kn_kq;
1636 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1637 KQ_LOCK(kq);
1638 if ((kn->kn_status & KN_INFLUX) != KN_INFLUX) {
1639 kn->kn_status |= KN_HASKQLOCK;
1640 if (kn->kn_fop->f_event(kn, hint))
1641 KNOTE_ACTIVATE(kn, 1);
1642 kn->kn_status &= ~KN_HASKQLOCK;
1644 KQ_UNLOCK(kq);
1646 kq = NULL;
1648 if (!islocked)
1649 list->kl_unlock(list->kl_lockarg);
1653 * add a knote to a knlist
1655 void
1656 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1658 KNL_ASSERT_LOCK(knl, islocked);
1659 KQ_NOTOWNED(kn->kn_kq);
1660 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1661 (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1662 if (!islocked)
1663 knl->kl_lock(knl->kl_lockarg);
1664 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1665 if (!islocked)
1666 knl->kl_unlock(knl->kl_lockarg);
1667 KQ_LOCK(kn->kn_kq);
1668 kn->kn_knlist = knl;
1669 kn->kn_status &= ~KN_DETACHED;
1670 KQ_UNLOCK(kn->kn_kq);
1673 static void
1674 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1676 KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1677 KNL_ASSERT_LOCK(knl, knlislocked);
1678 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1679 if (!kqislocked)
1680 KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1681 ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1682 if (!knlislocked)
1683 knl->kl_lock(knl->kl_lockarg);
1684 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1685 kn->kn_knlist = NULL;
1686 if (!knlislocked)
1687 knl->kl_unlock(knl->kl_lockarg);
1688 if (!kqislocked)
1689 KQ_LOCK(kn->kn_kq);
1690 kn->kn_status |= KN_DETACHED;
1691 if (!kqislocked)
1692 KQ_UNLOCK(kn->kn_kq);
1696 * remove all knotes from a specified klist
1698 void
1699 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1702 knlist_remove_kq(knl, kn, islocked, 0);
1706 * remove knote from a specified klist while in f_event handler.
1708 void
1709 knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1712 knlist_remove_kq(knl, kn, 1,
1713 (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1717 knlist_empty(struct knlist *knl)
1719 KNL_ASSERT_LOCKED(knl);
1720 return SLIST_EMPTY(&knl->kl_list);
1723 static struct mtx knlist_lock;
1724 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1725 MTX_DEF);
1726 static void knlist_mtx_lock(void *arg);
1727 static void knlist_mtx_unlock(void *arg);
1728 static int knlist_mtx_locked(void *arg);
1730 static void
1731 knlist_mtx_lock(void *arg)
1733 mtx_lock((struct mtx *)arg);
1736 static void
1737 knlist_mtx_unlock(void *arg)
1739 mtx_unlock((struct mtx *)arg);
1742 static int
1743 knlist_mtx_locked(void *arg)
1745 return (mtx_owned((struct mtx *)arg));
1748 void
1749 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1750 void (*kl_unlock)(void *), int (*kl_locked)(void *))
1753 if (lock == NULL)
1754 knl->kl_lockarg = &knlist_lock;
1755 else
1756 knl->kl_lockarg = lock;
1758 if (kl_lock == NULL)
1759 knl->kl_lock = knlist_mtx_lock;
1760 else
1761 knl->kl_lock = kl_lock;
1762 if (kl_unlock == NULL)
1763 knl->kl_unlock = knlist_mtx_unlock;
1764 else
1765 knl->kl_unlock = kl_unlock;
1766 if (kl_locked == NULL)
1767 knl->kl_locked = knlist_mtx_locked;
1768 else
1769 knl->kl_locked = kl_locked;
1771 SLIST_INIT(&knl->kl_list);
1774 void
1775 knlist_destroy(struct knlist *knl)
1778 #ifdef INVARIANTS
1780 * if we run across this error, we need to find the offending
1781 * driver and have it call knlist_clear.
1783 if (!SLIST_EMPTY(&knl->kl_list))
1784 printf("WARNING: destroying knlist w/ knotes on it!\n");
1785 #endif
1787 knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
1788 SLIST_INIT(&knl->kl_list);
1792 * Even if we are locked, we may need to drop the lock to allow any influx
1793 * knotes time to "settle".
1795 void
1796 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
1798 struct knote *kn, *kn2;
1799 struct kqueue *kq;
1801 if (islocked)
1802 KNL_ASSERT_LOCKED(knl);
1803 else {
1804 KNL_ASSERT_UNLOCKED(knl);
1805 again: /* need to reacquire lock since we have dropped it */
1806 knl->kl_lock(knl->kl_lockarg);
1809 SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
1810 kq = kn->kn_kq;
1811 KQ_LOCK(kq);
1812 if ((kn->kn_status & KN_INFLUX)) {
1813 KQ_UNLOCK(kq);
1814 continue;
1816 knlist_remove_kq(knl, kn, 1, 1);
1817 if (killkn) {
1818 kn->kn_status |= KN_INFLUX | KN_DETACHED;
1819 KQ_UNLOCK(kq);
1820 knote_drop(kn, td);
1821 } else {
1822 /* Make sure cleared knotes disappear soon */
1823 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1824 KQ_UNLOCK(kq);
1826 kq = NULL;
1829 if (!SLIST_EMPTY(&knl->kl_list)) {
1830 /* there are still KN_INFLUX remaining */
1831 kn = SLIST_FIRST(&knl->kl_list);
1832 kq = kn->kn_kq;
1833 KQ_LOCK(kq);
1834 KASSERT(kn->kn_status & KN_INFLUX,
1835 ("knote removed w/o list lock"));
1836 knl->kl_unlock(knl->kl_lockarg);
1837 kq->kq_state |= KQ_FLUXWAIT;
1838 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
1839 kq = NULL;
1840 goto again;
1843 if (islocked)
1844 KNL_ASSERT_LOCKED(knl);
1845 else {
1846 knl->kl_unlock(knl->kl_lockarg);
1847 KNL_ASSERT_UNLOCKED(knl);
1852 * Remove all knotes referencing a specified fd must be called with FILEDESC
1853 * lock. This prevents a race where a new fd comes along and occupies the
1854 * entry and we attach a knote to the fd.
1856 void
1857 knote_fdclose(struct thread *td, int fd)
1859 struct filedesc *fdp = td->td_proc->p_fd;
1860 struct kqueue *kq;
1861 struct knote *kn;
1862 int influx;
1864 FILEDESC_XLOCK_ASSERT(fdp);
1867 * We shouldn't have to worry about new kevents appearing on fd
1868 * since filedesc is locked.
1870 SLIST_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
1871 KQ_LOCK(kq);
1873 again:
1874 influx = 0;
1875 while (kq->kq_knlistsize > fd &&
1876 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
1877 if (kn->kn_status & KN_INFLUX) {
1878 /* someone else might be waiting on our knote */
1879 if (influx)
1880 wakeup(kq);
1881 kq->kq_state |= KQ_FLUXWAIT;
1882 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
1883 goto again;
1885 kn->kn_status |= KN_INFLUX;
1886 KQ_UNLOCK(kq);
1887 if (!(kn->kn_status & KN_DETACHED))
1888 kn->kn_fop->f_detach(kn);
1889 knote_drop(kn, td);
1890 influx = 1;
1891 KQ_LOCK(kq);
1893 KQ_UNLOCK_FLUX(kq);
1897 static int
1898 knote_attach(struct knote *kn, struct kqueue *kq)
1900 struct klist *list;
1902 KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
1903 KQ_OWNED(kq);
1905 if (kn->kn_fop->f_isfd) {
1906 if (kn->kn_id >= kq->kq_knlistsize)
1907 return ENOMEM;
1908 list = &kq->kq_knlist[kn->kn_id];
1909 } else {
1910 if (kq->kq_knhash == NULL)
1911 return ENOMEM;
1912 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1915 SLIST_INSERT_HEAD(list, kn, kn_link);
1917 return 0;
1921 * knote must already have been detached using the f_detach method.
1922 * no lock need to be held, it is assumed that the KN_INFLUX flag is set
1923 * to prevent other removal.
1925 static void
1926 knote_drop(struct knote *kn, struct thread *td)
1928 struct kqueue *kq;
1929 struct klist *list;
1931 kq = kn->kn_kq;
1933 KQ_NOTOWNED(kq);
1934 KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
1935 ("knote_drop called without KN_INFLUX set in kn_status"));
1937 KQ_LOCK(kq);
1938 if (kn->kn_fop->f_isfd)
1939 list = &kq->kq_knlist[kn->kn_id];
1940 else
1941 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1943 if (!SLIST_EMPTY(list))
1944 SLIST_REMOVE(list, kn, knote, kn_link);
1945 if (kn->kn_status & KN_QUEUED)
1946 knote_dequeue(kn);
1947 KQ_UNLOCK_FLUX(kq);
1949 if (kn->kn_fop->f_isfd) {
1950 fdrop(kn->kn_fp, td);
1951 kn->kn_fp = NULL;
1953 kqueue_fo_release(kn->kn_kevent.filter);
1954 kn->kn_fop = NULL;
1955 knote_free(kn);
1958 static void
1959 knote_enqueue(struct knote *kn)
1961 struct kqueue *kq = kn->kn_kq;
1963 KQ_OWNED(kn->kn_kq);
1964 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1966 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1967 kn->kn_status |= KN_QUEUED;
1968 kq->kq_count++;
1969 kqueue_wakeup(kq);
1972 static void
1973 knote_dequeue(struct knote *kn)
1975 struct kqueue *kq = kn->kn_kq;
1977 KQ_OWNED(kn->kn_kq);
1978 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1980 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1981 kn->kn_status &= ~KN_QUEUED;
1982 kq->kq_count--;
1985 static void
1986 knote_init(void)
1989 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
1990 NULL, NULL, UMA_ALIGN_PTR, 0);
1992 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
1994 static struct knote *
1995 knote_alloc(int waitok)
1997 return ((struct knote *)uma_zalloc(knote_zone,
1998 (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2001 static void
2002 knote_free(struct knote *kn)
2004 if (kn != NULL)
2005 uma_zfree(knote_zone, kn);
2009 * Register the kev w/ the kq specified by fd.
2011 int
2012 kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2014 struct kqueue *kq;
2015 struct file *fp;
2016 int error;
2018 if ((error = fget(td, fd, &fp)) != 0)
2019 return (error);
2020 if ((error = kqueue_acquire(fp, &kq)) != 0)
2021 goto noacquire;
2023 error = kqueue_register(kq, kev, td, waitok);
2025 kqueue_release(kq, 0);
2027 noacquire:
2028 fdrop(fp, td);
2030 return error;