print more junk
[freebsd-src/fkvm-freebsd.git] / sys / kern / sys_pipe.c
blobb8c1dfeecd2fda2e975d2497e26b3f9c19e840fe
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
48 * In order to limit the resource use of pipes, two sysctls exist:
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
94 #include "opt_mac.h"
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
119 #include <security/mac/mac_framework.h>
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
134 * NetBSD or OpenBSD.
136 /* #define PIPE_NODIRECT */
139 * interfaces to the outside world
141 static fo_rdwr_t pipe_read;
142 static fo_rdwr_t pipe_write;
143 static fo_truncate_t pipe_truncate;
144 static fo_ioctl_t pipe_ioctl;
145 static fo_poll_t pipe_poll;
146 static fo_kqfilter_t pipe_kqfilter;
147 static fo_stat_t pipe_stat;
148 static fo_close_t pipe_close;
150 static struct fileops pipeops = {
151 .fo_read = pipe_read,
152 .fo_write = pipe_write,
153 .fo_truncate = pipe_truncate,
154 .fo_ioctl = pipe_ioctl,
155 .fo_poll = pipe_poll,
156 .fo_kqfilter = pipe_kqfilter,
157 .fo_stat = pipe_stat,
158 .fo_close = pipe_close,
159 .fo_flags = DFLAG_PASSABLE
162 static void filt_pipedetach(struct knote *kn);
163 static int filt_piperead(struct knote *kn, long hint);
164 static int filt_pipewrite(struct knote *kn, long hint);
166 static struct filterops pipe_rfiltops =
167 { 1, NULL, filt_pipedetach, filt_piperead };
168 static struct filterops pipe_wfiltops =
169 { 1, NULL, filt_pipedetach, filt_pipewrite };
172 * Default pipe buffer size(s), this can be kind-of large now because pipe
173 * space is pageable. The pipe code will try to maintain locality of
174 * reference for performance reasons, so small amounts of outstanding I/O
175 * will not wipe the cache.
177 #define MINPIPESIZE (PIPE_SIZE/3)
178 #define MAXPIPESIZE (2*PIPE_SIZE/3)
180 static int amountpipekva;
181 static int pipefragretry;
182 static int pipeallocfail;
183 static int piperesizefail;
184 static int piperesizeallowed = 1;
186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
187 &maxpipekva, 0, "Pipe KVA limit");
188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
189 &amountpipekva, 0, "Pipe KVA usage");
190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
191 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
193 &pipeallocfail, 0, "Pipe allocation failures");
194 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
195 &piperesizefail, 0, "Pipe resize failures");
196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
197 &piperesizeallowed, 0, "Pipe resizing allowed");
199 static void pipeinit(void *dummy __unused);
200 static void pipeclose(struct pipe *cpipe);
201 static void pipe_free_kmem(struct pipe *cpipe);
202 static int pipe_create(struct pipe *pipe, int backing);
203 static __inline int pipelock(struct pipe *cpipe, int catch);
204 static __inline void pipeunlock(struct pipe *cpipe);
205 static __inline void pipeselwakeup(struct pipe *cpipe);
206 #ifndef PIPE_NODIRECT
207 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
208 static void pipe_destroy_write_buffer(struct pipe *wpipe);
209 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
210 static void pipe_clone_write_buffer(struct pipe *wpipe);
211 #endif
212 static int pipespace(struct pipe *cpipe, int size);
213 static int pipespace_new(struct pipe *cpipe, int size);
215 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
216 static int pipe_zone_init(void *mem, int size, int flags);
217 static void pipe_zone_fini(void *mem, int size);
219 static uma_zone_t pipe_zone;
221 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
223 static void
224 pipeinit(void *dummy __unused)
227 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
228 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
229 UMA_ALIGN_PTR, 0);
230 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
233 static int
234 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
236 struct pipepair *pp;
237 struct pipe *rpipe, *wpipe;
239 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
241 pp = (struct pipepair *)mem;
244 * We zero both pipe endpoints to make sure all the kmem pointers
245 * are NULL, flag fields are zero'd, etc. We timestamp both
246 * endpoints with the same time.
248 rpipe = &pp->pp_rpipe;
249 bzero(rpipe, sizeof(*rpipe));
250 vfs_timestamp(&rpipe->pipe_ctime);
251 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
253 wpipe = &pp->pp_wpipe;
254 bzero(wpipe, sizeof(*wpipe));
255 wpipe->pipe_ctime = rpipe->pipe_ctime;
256 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
258 rpipe->pipe_peer = wpipe;
259 rpipe->pipe_pair = pp;
260 wpipe->pipe_peer = rpipe;
261 wpipe->pipe_pair = pp;
264 * Mark both endpoints as present; they will later get free'd
265 * one at a time. When both are free'd, then the whole pair
266 * is released.
268 rpipe->pipe_present = PIPE_ACTIVE;
269 wpipe->pipe_present = PIPE_ACTIVE;
272 * Eventually, the MAC Framework may initialize the label
273 * in ctor or init, but for now we do it elswhere to avoid
274 * blocking in ctor or init.
276 pp->pp_label = NULL;
278 return (0);
281 static int
282 pipe_zone_init(void *mem, int size, int flags)
284 struct pipepair *pp;
286 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
288 pp = (struct pipepair *)mem;
290 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
291 return (0);
294 static void
295 pipe_zone_fini(void *mem, int size)
297 struct pipepair *pp;
299 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
301 pp = (struct pipepair *)mem;
303 mtx_destroy(&pp->pp_mtx);
307 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
308 * the zone pick up the pieces via pipeclose().
310 /* ARGSUSED */
312 pipe(td, uap)
313 struct thread *td;
314 struct pipe_args /* {
315 int dummy;
316 } */ *uap;
318 struct filedesc *fdp = td->td_proc->p_fd;
319 struct file *rf, *wf;
320 struct pipepair *pp;
321 struct pipe *rpipe, *wpipe;
322 int fd, error;
324 pp = uma_zalloc(pipe_zone, M_WAITOK);
325 #ifdef MAC
327 * The MAC label is shared between the connected endpoints. As a
328 * result mac_pipe_init() and mac_pipe_create() are called once
329 * for the pair, and not on the endpoints.
331 mac_pipe_init(pp);
332 mac_pipe_create(td->td_ucred, pp);
333 #endif
334 rpipe = &pp->pp_rpipe;
335 wpipe = &pp->pp_wpipe;
337 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
338 NULL);
339 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
340 NULL);
342 /* Only the forward direction pipe is backed by default */
343 if ((error = pipe_create(rpipe, 1)) != 0 ||
344 (error = pipe_create(wpipe, 0)) != 0) {
345 pipeclose(rpipe);
346 pipeclose(wpipe);
347 return (error);
350 rpipe->pipe_state |= PIPE_DIRECTOK;
351 wpipe->pipe_state |= PIPE_DIRECTOK;
353 error = falloc(td, &rf, &fd);
354 if (error) {
355 pipeclose(rpipe);
356 pipeclose(wpipe);
357 return (error);
359 /* An extra reference on `rf' has been held for us by falloc(). */
360 td->td_retval[0] = fd;
363 * Warning: once we've gotten past allocation of the fd for the
364 * read-side, we can only drop the read side via fdrop() in order
365 * to avoid races against processes which manage to dup() the read
366 * side while we are blocked trying to allocate the write side.
368 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
369 error = falloc(td, &wf, &fd);
370 if (error) {
371 fdclose(fdp, rf, td->td_retval[0], td);
372 fdrop(rf, td);
373 /* rpipe has been closed by fdrop(). */
374 pipeclose(wpipe);
375 return (error);
377 /* An extra reference on `wf' has been held for us by falloc(). */
378 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
379 fdrop(wf, td);
380 td->td_retval[1] = fd;
381 fdrop(rf, td);
383 return (0);
387 * Allocate kva for pipe circular buffer, the space is pageable
388 * This routine will 'realloc' the size of a pipe safely, if it fails
389 * it will retain the old buffer.
390 * If it fails it will return ENOMEM.
392 static int
393 pipespace_new(cpipe, size)
394 struct pipe *cpipe;
395 int size;
397 caddr_t buffer;
398 int error, cnt, firstseg;
399 static int curfail = 0;
400 static struct timeval lastfail;
402 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
403 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
404 ("pipespace: resize of direct writes not allowed"));
405 retry:
406 cnt = cpipe->pipe_buffer.cnt;
407 if (cnt > size)
408 size = cnt;
410 size = round_page(size);
411 buffer = (caddr_t) vm_map_min(pipe_map);
413 error = vm_map_find(pipe_map, NULL, 0,
414 (vm_offset_t *) &buffer, size, 1,
415 VM_PROT_ALL, VM_PROT_ALL, 0);
416 if (error != KERN_SUCCESS) {
417 if ((cpipe->pipe_buffer.buffer == NULL) &&
418 (size > SMALL_PIPE_SIZE)) {
419 size = SMALL_PIPE_SIZE;
420 pipefragretry++;
421 goto retry;
423 if (cpipe->pipe_buffer.buffer == NULL) {
424 pipeallocfail++;
425 if (ppsratecheck(&lastfail, &curfail, 1))
426 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
427 } else {
428 piperesizefail++;
430 return (ENOMEM);
433 /* copy data, then free old resources if we're resizing */
434 if (cnt > 0) {
435 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
436 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
437 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
438 buffer, firstseg);
439 if ((cnt - firstseg) > 0)
440 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
441 cpipe->pipe_buffer.in);
442 } else {
443 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
444 buffer, cnt);
447 pipe_free_kmem(cpipe);
448 cpipe->pipe_buffer.buffer = buffer;
449 cpipe->pipe_buffer.size = size;
450 cpipe->pipe_buffer.in = cnt;
451 cpipe->pipe_buffer.out = 0;
452 cpipe->pipe_buffer.cnt = cnt;
453 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
454 return (0);
458 * Wrapper for pipespace_new() that performs locking assertions.
460 static int
461 pipespace(cpipe, size)
462 struct pipe *cpipe;
463 int size;
466 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
467 ("Unlocked pipe passed to pipespace"));
468 return (pipespace_new(cpipe, size));
472 * lock a pipe for I/O, blocking other access
474 static __inline int
475 pipelock(cpipe, catch)
476 struct pipe *cpipe;
477 int catch;
479 int error;
481 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
482 while (cpipe->pipe_state & PIPE_LOCKFL) {
483 cpipe->pipe_state |= PIPE_LWANT;
484 error = msleep(cpipe, PIPE_MTX(cpipe),
485 catch ? (PRIBIO | PCATCH) : PRIBIO,
486 "pipelk", 0);
487 if (error != 0)
488 return (error);
490 cpipe->pipe_state |= PIPE_LOCKFL;
491 return (0);
495 * unlock a pipe I/O lock
497 static __inline void
498 pipeunlock(cpipe)
499 struct pipe *cpipe;
502 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
503 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
504 ("Unlocked pipe passed to pipeunlock"));
505 cpipe->pipe_state &= ~PIPE_LOCKFL;
506 if (cpipe->pipe_state & PIPE_LWANT) {
507 cpipe->pipe_state &= ~PIPE_LWANT;
508 wakeup(cpipe);
512 static __inline void
513 pipeselwakeup(cpipe)
514 struct pipe *cpipe;
517 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
518 if (cpipe->pipe_state & PIPE_SEL) {
519 selwakeuppri(&cpipe->pipe_sel, PSOCK);
520 if (!SEL_WAITING(&cpipe->pipe_sel))
521 cpipe->pipe_state &= ~PIPE_SEL;
523 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
524 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
525 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
529 * Initialize and allocate VM and memory for pipe. The structure
530 * will start out zero'd from the ctor, so we just manage the kmem.
532 static int
533 pipe_create(pipe, backing)
534 struct pipe *pipe;
535 int backing;
537 int error;
539 if (backing) {
540 if (amountpipekva > maxpipekva / 2)
541 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
542 else
543 error = pipespace_new(pipe, PIPE_SIZE);
544 } else {
545 /* If we're not backing this pipe, no need to do anything. */
546 error = 0;
548 return (error);
551 /* ARGSUSED */
552 static int
553 pipe_read(fp, uio, active_cred, flags, td)
554 struct file *fp;
555 struct uio *uio;
556 struct ucred *active_cred;
557 struct thread *td;
558 int flags;
560 struct pipe *rpipe = fp->f_data;
561 int error;
562 int nread = 0;
563 u_int size;
565 PIPE_LOCK(rpipe);
566 ++rpipe->pipe_busy;
567 error = pipelock(rpipe, 1);
568 if (error)
569 goto unlocked_error;
571 #ifdef MAC
572 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
573 if (error)
574 goto locked_error;
575 #endif
576 if (amountpipekva > (3 * maxpipekva) / 4) {
577 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
578 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
579 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
580 (piperesizeallowed == 1)) {
581 PIPE_UNLOCK(rpipe);
582 pipespace(rpipe, SMALL_PIPE_SIZE);
583 PIPE_LOCK(rpipe);
587 while (uio->uio_resid) {
589 * normal pipe buffer receive
591 if (rpipe->pipe_buffer.cnt > 0) {
592 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
593 if (size > rpipe->pipe_buffer.cnt)
594 size = rpipe->pipe_buffer.cnt;
595 if (size > (u_int) uio->uio_resid)
596 size = (u_int) uio->uio_resid;
598 PIPE_UNLOCK(rpipe);
599 error = uiomove(
600 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
601 size, uio);
602 PIPE_LOCK(rpipe);
603 if (error)
604 break;
606 rpipe->pipe_buffer.out += size;
607 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
608 rpipe->pipe_buffer.out = 0;
610 rpipe->pipe_buffer.cnt -= size;
613 * If there is no more to read in the pipe, reset
614 * its pointers to the beginning. This improves
615 * cache hit stats.
617 if (rpipe->pipe_buffer.cnt == 0) {
618 rpipe->pipe_buffer.in = 0;
619 rpipe->pipe_buffer.out = 0;
621 nread += size;
622 #ifndef PIPE_NODIRECT
624 * Direct copy, bypassing a kernel buffer.
626 } else if ((size = rpipe->pipe_map.cnt) &&
627 (rpipe->pipe_state & PIPE_DIRECTW)) {
628 if (size > (u_int) uio->uio_resid)
629 size = (u_int) uio->uio_resid;
631 PIPE_UNLOCK(rpipe);
632 error = uiomove_fromphys(rpipe->pipe_map.ms,
633 rpipe->pipe_map.pos, size, uio);
634 PIPE_LOCK(rpipe);
635 if (error)
636 break;
637 nread += size;
638 rpipe->pipe_map.pos += size;
639 rpipe->pipe_map.cnt -= size;
640 if (rpipe->pipe_map.cnt == 0) {
641 rpipe->pipe_state &= ~PIPE_DIRECTW;
642 wakeup(rpipe);
644 #endif
645 } else {
647 * detect EOF condition
648 * read returns 0 on EOF, no need to set error
650 if (rpipe->pipe_state & PIPE_EOF)
651 break;
654 * If the "write-side" has been blocked, wake it up now.
656 if (rpipe->pipe_state & PIPE_WANTW) {
657 rpipe->pipe_state &= ~PIPE_WANTW;
658 wakeup(rpipe);
662 * Break if some data was read.
664 if (nread > 0)
665 break;
668 * Unlock the pipe buffer for our remaining processing.
669 * We will either break out with an error or we will
670 * sleep and relock to loop.
672 pipeunlock(rpipe);
675 * Handle non-blocking mode operation or
676 * wait for more data.
678 if (fp->f_flag & FNONBLOCK) {
679 error = EAGAIN;
680 } else {
681 rpipe->pipe_state |= PIPE_WANTR;
682 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
683 PRIBIO | PCATCH,
684 "piperd", 0)) == 0)
685 error = pipelock(rpipe, 1);
687 if (error)
688 goto unlocked_error;
691 #ifdef MAC
692 locked_error:
693 #endif
694 pipeunlock(rpipe);
696 /* XXX: should probably do this before getting any locks. */
697 if (error == 0)
698 vfs_timestamp(&rpipe->pipe_atime);
699 unlocked_error:
700 --rpipe->pipe_busy;
703 * PIPE_WANT processing only makes sense if pipe_busy is 0.
705 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
706 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
707 wakeup(rpipe);
708 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
710 * Handle write blocking hysteresis.
712 if (rpipe->pipe_state & PIPE_WANTW) {
713 rpipe->pipe_state &= ~PIPE_WANTW;
714 wakeup(rpipe);
718 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
719 pipeselwakeup(rpipe);
721 PIPE_UNLOCK(rpipe);
722 return (error);
725 #ifndef PIPE_NODIRECT
727 * Map the sending processes' buffer into kernel space and wire it.
728 * This is similar to a physical write operation.
730 static int
731 pipe_build_write_buffer(wpipe, uio)
732 struct pipe *wpipe;
733 struct uio *uio;
735 pmap_t pmap;
736 u_int size;
737 int i, j;
738 vm_offset_t addr, endaddr;
740 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
741 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
742 ("Clone attempt on non-direct write pipe!"));
744 size = (u_int) uio->uio_iov->iov_len;
745 if (size > wpipe->pipe_buffer.size)
746 size = wpipe->pipe_buffer.size;
748 pmap = vmspace_pmap(curproc->p_vmspace);
749 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
750 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
751 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
753 * vm_fault_quick() can sleep. Consequently,
754 * vm_page_lock_queue() and vm_page_unlock_queue()
755 * should not be performed outside of this loop.
757 race:
758 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
759 vm_page_lock_queues();
760 for (j = 0; j < i; j++)
761 vm_page_unhold(wpipe->pipe_map.ms[j]);
762 vm_page_unlock_queues();
763 return (EFAULT);
765 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
766 VM_PROT_READ);
767 if (wpipe->pipe_map.ms[i] == NULL)
768 goto race;
772 * set up the control block
774 wpipe->pipe_map.npages = i;
775 wpipe->pipe_map.pos =
776 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
777 wpipe->pipe_map.cnt = size;
780 * and update the uio data
783 uio->uio_iov->iov_len -= size;
784 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
785 if (uio->uio_iov->iov_len == 0)
786 uio->uio_iov++;
787 uio->uio_resid -= size;
788 uio->uio_offset += size;
789 return (0);
793 * unmap and unwire the process buffer
795 static void
796 pipe_destroy_write_buffer(wpipe)
797 struct pipe *wpipe;
799 int i;
801 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
802 vm_page_lock_queues();
803 for (i = 0; i < wpipe->pipe_map.npages; i++) {
804 vm_page_unhold(wpipe->pipe_map.ms[i]);
806 vm_page_unlock_queues();
807 wpipe->pipe_map.npages = 0;
811 * In the case of a signal, the writing process might go away. This
812 * code copies the data into the circular buffer so that the source
813 * pages can be freed without loss of data.
815 static void
816 pipe_clone_write_buffer(wpipe)
817 struct pipe *wpipe;
819 struct uio uio;
820 struct iovec iov;
821 int size;
822 int pos;
824 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
825 size = wpipe->pipe_map.cnt;
826 pos = wpipe->pipe_map.pos;
828 wpipe->pipe_buffer.in = size;
829 wpipe->pipe_buffer.out = 0;
830 wpipe->pipe_buffer.cnt = size;
831 wpipe->pipe_state &= ~PIPE_DIRECTW;
833 PIPE_UNLOCK(wpipe);
834 iov.iov_base = wpipe->pipe_buffer.buffer;
835 iov.iov_len = size;
836 uio.uio_iov = &iov;
837 uio.uio_iovcnt = 1;
838 uio.uio_offset = 0;
839 uio.uio_resid = size;
840 uio.uio_segflg = UIO_SYSSPACE;
841 uio.uio_rw = UIO_READ;
842 uio.uio_td = curthread;
843 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
844 PIPE_LOCK(wpipe);
845 pipe_destroy_write_buffer(wpipe);
849 * This implements the pipe buffer write mechanism. Note that only
850 * a direct write OR a normal pipe write can be pending at any given time.
851 * If there are any characters in the pipe buffer, the direct write will
852 * be deferred until the receiving process grabs all of the bytes from
853 * the pipe buffer. Then the direct mapping write is set-up.
855 static int
856 pipe_direct_write(wpipe, uio)
857 struct pipe *wpipe;
858 struct uio *uio;
860 int error;
862 retry:
863 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
864 error = pipelock(wpipe, 1);
865 if (wpipe->pipe_state & PIPE_EOF)
866 error = EPIPE;
867 if (error) {
868 pipeunlock(wpipe);
869 goto error1;
871 while (wpipe->pipe_state & PIPE_DIRECTW) {
872 if (wpipe->pipe_state & PIPE_WANTR) {
873 wpipe->pipe_state &= ~PIPE_WANTR;
874 wakeup(wpipe);
876 pipeselwakeup(wpipe);
877 wpipe->pipe_state |= PIPE_WANTW;
878 pipeunlock(wpipe);
879 error = msleep(wpipe, PIPE_MTX(wpipe),
880 PRIBIO | PCATCH, "pipdww", 0);
881 if (error)
882 goto error1;
883 else
884 goto retry;
886 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
887 if (wpipe->pipe_buffer.cnt > 0) {
888 if (wpipe->pipe_state & PIPE_WANTR) {
889 wpipe->pipe_state &= ~PIPE_WANTR;
890 wakeup(wpipe);
892 pipeselwakeup(wpipe);
893 wpipe->pipe_state |= PIPE_WANTW;
894 pipeunlock(wpipe);
895 error = msleep(wpipe, PIPE_MTX(wpipe),
896 PRIBIO | PCATCH, "pipdwc", 0);
897 if (error)
898 goto error1;
899 else
900 goto retry;
903 wpipe->pipe_state |= PIPE_DIRECTW;
905 PIPE_UNLOCK(wpipe);
906 error = pipe_build_write_buffer(wpipe, uio);
907 PIPE_LOCK(wpipe);
908 if (error) {
909 wpipe->pipe_state &= ~PIPE_DIRECTW;
910 pipeunlock(wpipe);
911 goto error1;
914 error = 0;
915 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
916 if (wpipe->pipe_state & PIPE_EOF) {
917 pipe_destroy_write_buffer(wpipe);
918 pipeselwakeup(wpipe);
919 pipeunlock(wpipe);
920 error = EPIPE;
921 goto error1;
923 if (wpipe->pipe_state & PIPE_WANTR) {
924 wpipe->pipe_state &= ~PIPE_WANTR;
925 wakeup(wpipe);
927 pipeselwakeup(wpipe);
928 pipeunlock(wpipe);
929 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
930 "pipdwt", 0);
931 pipelock(wpipe, 0);
934 if (wpipe->pipe_state & PIPE_EOF)
935 error = EPIPE;
936 if (wpipe->pipe_state & PIPE_DIRECTW) {
938 * this bit of trickery substitutes a kernel buffer for
939 * the process that might be going away.
941 pipe_clone_write_buffer(wpipe);
942 } else {
943 pipe_destroy_write_buffer(wpipe);
945 pipeunlock(wpipe);
946 return (error);
948 error1:
949 wakeup(wpipe);
950 return (error);
952 #endif
954 static int
955 pipe_write(fp, uio, active_cred, flags, td)
956 struct file *fp;
957 struct uio *uio;
958 struct ucred *active_cred;
959 struct thread *td;
960 int flags;
962 int error = 0;
963 int desiredsize, orig_resid;
964 struct pipe *wpipe, *rpipe;
966 rpipe = fp->f_data;
967 wpipe = rpipe->pipe_peer;
969 PIPE_LOCK(rpipe);
970 error = pipelock(wpipe, 1);
971 if (error) {
972 PIPE_UNLOCK(rpipe);
973 return (error);
976 * detect loss of pipe read side, issue SIGPIPE if lost.
978 if (wpipe->pipe_present != PIPE_ACTIVE ||
979 (wpipe->pipe_state & PIPE_EOF)) {
980 pipeunlock(wpipe);
981 PIPE_UNLOCK(rpipe);
982 return (EPIPE);
984 #ifdef MAC
985 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
986 if (error) {
987 pipeunlock(wpipe);
988 PIPE_UNLOCK(rpipe);
989 return (error);
991 #endif
992 ++wpipe->pipe_busy;
994 /* Choose a larger size if it's advantageous */
995 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
996 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
997 if (piperesizeallowed != 1)
998 break;
999 if (amountpipekva > maxpipekva / 2)
1000 break;
1001 if (desiredsize == BIG_PIPE_SIZE)
1002 break;
1003 desiredsize = desiredsize * 2;
1006 /* Choose a smaller size if we're in a OOM situation */
1007 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1008 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1009 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1010 (piperesizeallowed == 1))
1011 desiredsize = SMALL_PIPE_SIZE;
1013 /* Resize if the above determined that a new size was necessary */
1014 if ((desiredsize != wpipe->pipe_buffer.size) &&
1015 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1016 PIPE_UNLOCK(wpipe);
1017 pipespace(wpipe, desiredsize);
1018 PIPE_LOCK(wpipe);
1020 if (wpipe->pipe_buffer.size == 0) {
1022 * This can only happen for reverse direction use of pipes
1023 * in a complete OOM situation.
1025 error = ENOMEM;
1026 --wpipe->pipe_busy;
1027 pipeunlock(wpipe);
1028 PIPE_UNLOCK(wpipe);
1029 return (error);
1032 pipeunlock(wpipe);
1034 orig_resid = uio->uio_resid;
1036 while (uio->uio_resid) {
1037 int space;
1039 pipelock(wpipe, 0);
1040 if (wpipe->pipe_state & PIPE_EOF) {
1041 pipeunlock(wpipe);
1042 error = EPIPE;
1043 break;
1045 #ifndef PIPE_NODIRECT
1047 * If the transfer is large, we can gain performance if
1048 * we do process-to-process copies directly.
1049 * If the write is non-blocking, we don't use the
1050 * direct write mechanism.
1052 * The direct write mechanism will detect the reader going
1053 * away on us.
1055 if (uio->uio_segflg == UIO_USERSPACE &&
1056 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1057 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1058 (fp->f_flag & FNONBLOCK) == 0) {
1059 pipeunlock(wpipe);
1060 error = pipe_direct_write(wpipe, uio);
1061 if (error)
1062 break;
1063 continue;
1065 #endif
1068 * Pipe buffered writes cannot be coincidental with
1069 * direct writes. We wait until the currently executing
1070 * direct write is completed before we start filling the
1071 * pipe buffer. We break out if a signal occurs or the
1072 * reader goes away.
1074 if (wpipe->pipe_state & PIPE_DIRECTW) {
1075 if (wpipe->pipe_state & PIPE_WANTR) {
1076 wpipe->pipe_state &= ~PIPE_WANTR;
1077 wakeup(wpipe);
1079 pipeselwakeup(wpipe);
1080 wpipe->pipe_state |= PIPE_WANTW;
1081 pipeunlock(wpipe);
1082 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1083 "pipbww", 0);
1084 if (error)
1085 break;
1086 else
1087 continue;
1090 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1092 /* Writes of size <= PIPE_BUF must be atomic. */
1093 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1094 space = 0;
1096 if (space > 0) {
1097 int size; /* Transfer size */
1098 int segsize; /* first segment to transfer */
1101 * Transfer size is minimum of uio transfer
1102 * and free space in pipe buffer.
1104 if (space > uio->uio_resid)
1105 size = uio->uio_resid;
1106 else
1107 size = space;
1109 * First segment to transfer is minimum of
1110 * transfer size and contiguous space in
1111 * pipe buffer. If first segment to transfer
1112 * is less than the transfer size, we've got
1113 * a wraparound in the buffer.
1115 segsize = wpipe->pipe_buffer.size -
1116 wpipe->pipe_buffer.in;
1117 if (segsize > size)
1118 segsize = size;
1120 /* Transfer first segment */
1122 PIPE_UNLOCK(rpipe);
1123 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1124 segsize, uio);
1125 PIPE_LOCK(rpipe);
1127 if (error == 0 && segsize < size) {
1128 KASSERT(wpipe->pipe_buffer.in + segsize ==
1129 wpipe->pipe_buffer.size,
1130 ("Pipe buffer wraparound disappeared"));
1132 * Transfer remaining part now, to
1133 * support atomic writes. Wraparound
1134 * happened.
1137 PIPE_UNLOCK(rpipe);
1138 error = uiomove(
1139 &wpipe->pipe_buffer.buffer[0],
1140 size - segsize, uio);
1141 PIPE_LOCK(rpipe);
1143 if (error == 0) {
1144 wpipe->pipe_buffer.in += size;
1145 if (wpipe->pipe_buffer.in >=
1146 wpipe->pipe_buffer.size) {
1147 KASSERT(wpipe->pipe_buffer.in ==
1148 size - segsize +
1149 wpipe->pipe_buffer.size,
1150 ("Expected wraparound bad"));
1151 wpipe->pipe_buffer.in = size - segsize;
1154 wpipe->pipe_buffer.cnt += size;
1155 KASSERT(wpipe->pipe_buffer.cnt <=
1156 wpipe->pipe_buffer.size,
1157 ("Pipe buffer overflow"));
1159 pipeunlock(wpipe);
1160 if (error != 0)
1161 break;
1162 } else {
1164 * If the "read-side" has been blocked, wake it up now.
1166 if (wpipe->pipe_state & PIPE_WANTR) {
1167 wpipe->pipe_state &= ~PIPE_WANTR;
1168 wakeup(wpipe);
1172 * don't block on non-blocking I/O
1174 if (fp->f_flag & FNONBLOCK) {
1175 error = EAGAIN;
1176 pipeunlock(wpipe);
1177 break;
1181 * We have no more space and have something to offer,
1182 * wake up select/poll.
1184 pipeselwakeup(wpipe);
1186 wpipe->pipe_state |= PIPE_WANTW;
1187 pipeunlock(wpipe);
1188 error = msleep(wpipe, PIPE_MTX(rpipe),
1189 PRIBIO | PCATCH, "pipewr", 0);
1190 if (error != 0)
1191 break;
1195 pipelock(wpipe, 0);
1196 --wpipe->pipe_busy;
1198 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1199 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1200 wakeup(wpipe);
1201 } else if (wpipe->pipe_buffer.cnt > 0) {
1203 * If we have put any characters in the buffer, we wake up
1204 * the reader.
1206 if (wpipe->pipe_state & PIPE_WANTR) {
1207 wpipe->pipe_state &= ~PIPE_WANTR;
1208 wakeup(wpipe);
1213 * Don't return EPIPE if I/O was successful
1215 if ((wpipe->pipe_buffer.cnt == 0) &&
1216 (uio->uio_resid == 0) &&
1217 (error == EPIPE)) {
1218 error = 0;
1221 if (error == 0)
1222 vfs_timestamp(&wpipe->pipe_mtime);
1225 * We have something to offer,
1226 * wake up select/poll.
1228 if (wpipe->pipe_buffer.cnt)
1229 pipeselwakeup(wpipe);
1231 pipeunlock(wpipe);
1232 PIPE_UNLOCK(rpipe);
1233 return (error);
1236 /* ARGSUSED */
1237 static int
1238 pipe_truncate(fp, length, active_cred, td)
1239 struct file *fp;
1240 off_t length;
1241 struct ucred *active_cred;
1242 struct thread *td;
1245 return (EINVAL);
1249 * we implement a very minimal set of ioctls for compatibility with sockets.
1251 static int
1252 pipe_ioctl(fp, cmd, data, active_cred, td)
1253 struct file *fp;
1254 u_long cmd;
1255 void *data;
1256 struct ucred *active_cred;
1257 struct thread *td;
1259 struct pipe *mpipe = fp->f_data;
1260 int error;
1262 PIPE_LOCK(mpipe);
1264 #ifdef MAC
1265 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1266 if (error) {
1267 PIPE_UNLOCK(mpipe);
1268 return (error);
1270 #endif
1272 error = 0;
1273 switch (cmd) {
1275 case FIONBIO:
1276 break;
1278 case FIOASYNC:
1279 if (*(int *)data) {
1280 mpipe->pipe_state |= PIPE_ASYNC;
1281 } else {
1282 mpipe->pipe_state &= ~PIPE_ASYNC;
1284 break;
1286 case FIONREAD:
1287 if (mpipe->pipe_state & PIPE_DIRECTW)
1288 *(int *)data = mpipe->pipe_map.cnt;
1289 else
1290 *(int *)data = mpipe->pipe_buffer.cnt;
1291 break;
1293 case FIOSETOWN:
1294 PIPE_UNLOCK(mpipe);
1295 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1296 goto out_unlocked;
1298 case FIOGETOWN:
1299 *(int *)data = fgetown(&mpipe->pipe_sigio);
1300 break;
1302 /* This is deprecated, FIOSETOWN should be used instead. */
1303 case TIOCSPGRP:
1304 PIPE_UNLOCK(mpipe);
1305 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1306 goto out_unlocked;
1308 /* This is deprecated, FIOGETOWN should be used instead. */
1309 case TIOCGPGRP:
1310 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1311 break;
1313 default:
1314 error = ENOTTY;
1315 break;
1317 PIPE_UNLOCK(mpipe);
1318 out_unlocked:
1319 return (error);
1322 static int
1323 pipe_poll(fp, events, active_cred, td)
1324 struct file *fp;
1325 int events;
1326 struct ucred *active_cred;
1327 struct thread *td;
1329 struct pipe *rpipe = fp->f_data;
1330 struct pipe *wpipe;
1331 int revents = 0;
1332 #ifdef MAC
1333 int error;
1334 #endif
1336 wpipe = rpipe->pipe_peer;
1337 PIPE_LOCK(rpipe);
1338 #ifdef MAC
1339 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1340 if (error)
1341 goto locked_error;
1342 #endif
1343 if (events & (POLLIN | POLLRDNORM))
1344 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1345 (rpipe->pipe_buffer.cnt > 0) ||
1346 (rpipe->pipe_state & PIPE_EOF))
1347 revents |= events & (POLLIN | POLLRDNORM);
1349 if (events & (POLLOUT | POLLWRNORM))
1350 if (wpipe->pipe_present != PIPE_ACTIVE ||
1351 (wpipe->pipe_state & PIPE_EOF) ||
1352 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1353 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1354 revents |= events & (POLLOUT | POLLWRNORM);
1356 if ((rpipe->pipe_state & PIPE_EOF) ||
1357 wpipe->pipe_present != PIPE_ACTIVE ||
1358 (wpipe->pipe_state & PIPE_EOF))
1359 revents |= POLLHUP;
1361 if (revents == 0) {
1362 if (events & (POLLIN | POLLRDNORM)) {
1363 selrecord(td, &rpipe->pipe_sel);
1364 if (SEL_WAITING(&rpipe->pipe_sel))
1365 rpipe->pipe_state |= PIPE_SEL;
1368 if (events & (POLLOUT | POLLWRNORM)) {
1369 selrecord(td, &wpipe->pipe_sel);
1370 if (SEL_WAITING(&wpipe->pipe_sel))
1371 wpipe->pipe_state |= PIPE_SEL;
1374 #ifdef MAC
1375 locked_error:
1376 #endif
1377 PIPE_UNLOCK(rpipe);
1379 return (revents);
1383 * We shouldn't need locks here as we're doing a read and this should
1384 * be a natural race.
1386 static int
1387 pipe_stat(fp, ub, active_cred, td)
1388 struct file *fp;
1389 struct stat *ub;
1390 struct ucred *active_cred;
1391 struct thread *td;
1393 struct pipe *pipe = fp->f_data;
1394 #ifdef MAC
1395 int error;
1397 PIPE_LOCK(pipe);
1398 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1399 PIPE_UNLOCK(pipe);
1400 if (error)
1401 return (error);
1402 #endif
1403 bzero(ub, sizeof(*ub));
1404 ub->st_mode = S_IFIFO;
1405 ub->st_blksize = PAGE_SIZE;
1406 if (pipe->pipe_state & PIPE_DIRECTW)
1407 ub->st_size = pipe->pipe_map.cnt;
1408 else
1409 ub->st_size = pipe->pipe_buffer.cnt;
1410 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1411 ub->st_atimespec = pipe->pipe_atime;
1412 ub->st_mtimespec = pipe->pipe_mtime;
1413 ub->st_ctimespec = pipe->pipe_ctime;
1414 ub->st_uid = fp->f_cred->cr_uid;
1415 ub->st_gid = fp->f_cred->cr_gid;
1417 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1418 * XXX (st_dev, st_ino) should be unique.
1420 return (0);
1423 /* ARGSUSED */
1424 static int
1425 pipe_close(fp, td)
1426 struct file *fp;
1427 struct thread *td;
1429 struct pipe *cpipe = fp->f_data;
1431 fp->f_ops = &badfileops;
1432 fp->f_data = NULL;
1433 funsetown(&cpipe->pipe_sigio);
1434 pipeclose(cpipe);
1435 return (0);
1438 static void
1439 pipe_free_kmem(cpipe)
1440 struct pipe *cpipe;
1443 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1444 ("pipe_free_kmem: pipe mutex locked"));
1446 if (cpipe->pipe_buffer.buffer != NULL) {
1447 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1448 vm_map_remove(pipe_map,
1449 (vm_offset_t)cpipe->pipe_buffer.buffer,
1450 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1451 cpipe->pipe_buffer.buffer = NULL;
1453 #ifndef PIPE_NODIRECT
1455 cpipe->pipe_map.cnt = 0;
1456 cpipe->pipe_map.pos = 0;
1457 cpipe->pipe_map.npages = 0;
1459 #endif
1463 * shutdown the pipe
1465 static void
1466 pipeclose(cpipe)
1467 struct pipe *cpipe;
1469 struct pipepair *pp;
1470 struct pipe *ppipe;
1472 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1474 PIPE_LOCK(cpipe);
1475 pipelock(cpipe, 0);
1476 pp = cpipe->pipe_pair;
1478 pipeselwakeup(cpipe);
1481 * If the other side is blocked, wake it up saying that
1482 * we want to close it down.
1484 cpipe->pipe_state |= PIPE_EOF;
1485 while (cpipe->pipe_busy) {
1486 wakeup(cpipe);
1487 cpipe->pipe_state |= PIPE_WANT;
1488 pipeunlock(cpipe);
1489 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1490 pipelock(cpipe, 0);
1495 * Disconnect from peer, if any.
1497 ppipe = cpipe->pipe_peer;
1498 if (ppipe->pipe_present == PIPE_ACTIVE) {
1499 pipeselwakeup(ppipe);
1501 ppipe->pipe_state |= PIPE_EOF;
1502 wakeup(ppipe);
1503 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1507 * Mark this endpoint as free. Release kmem resources. We
1508 * don't mark this endpoint as unused until we've finished
1509 * doing that, or the pipe might disappear out from under
1510 * us.
1512 PIPE_UNLOCK(cpipe);
1513 pipe_free_kmem(cpipe);
1514 PIPE_LOCK(cpipe);
1515 cpipe->pipe_present = PIPE_CLOSING;
1516 pipeunlock(cpipe);
1519 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1520 * PIPE_FINALIZED, that allows other end to free the
1521 * pipe_pair, only after the knotes are completely dismantled.
1523 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1524 cpipe->pipe_present = PIPE_FINALIZED;
1525 knlist_destroy(&cpipe->pipe_sel.si_note);
1528 * If both endpoints are now closed, release the memory for the
1529 * pipe pair. If not, unlock.
1531 if (ppipe->pipe_present == PIPE_FINALIZED) {
1532 PIPE_UNLOCK(cpipe);
1533 #ifdef MAC
1534 mac_pipe_destroy(pp);
1535 #endif
1536 uma_zfree(pipe_zone, cpipe->pipe_pair);
1537 } else
1538 PIPE_UNLOCK(cpipe);
1541 /*ARGSUSED*/
1542 static int
1543 pipe_kqfilter(struct file *fp, struct knote *kn)
1545 struct pipe *cpipe;
1547 cpipe = kn->kn_fp->f_data;
1548 PIPE_LOCK(cpipe);
1549 switch (kn->kn_filter) {
1550 case EVFILT_READ:
1551 kn->kn_fop = &pipe_rfiltops;
1552 break;
1553 case EVFILT_WRITE:
1554 kn->kn_fop = &pipe_wfiltops;
1555 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1556 /* other end of pipe has been closed */
1557 PIPE_UNLOCK(cpipe);
1558 return (EPIPE);
1560 cpipe = cpipe->pipe_peer;
1561 break;
1562 default:
1563 PIPE_UNLOCK(cpipe);
1564 return (EINVAL);
1567 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1568 PIPE_UNLOCK(cpipe);
1569 return (0);
1572 static void
1573 filt_pipedetach(struct knote *kn)
1575 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1577 PIPE_LOCK(cpipe);
1578 if (kn->kn_filter == EVFILT_WRITE)
1579 cpipe = cpipe->pipe_peer;
1580 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1581 PIPE_UNLOCK(cpipe);
1584 /*ARGSUSED*/
1585 static int
1586 filt_piperead(struct knote *kn, long hint)
1588 struct pipe *rpipe = kn->kn_fp->f_data;
1589 struct pipe *wpipe = rpipe->pipe_peer;
1590 int ret;
1592 PIPE_LOCK(rpipe);
1593 kn->kn_data = rpipe->pipe_buffer.cnt;
1594 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1595 kn->kn_data = rpipe->pipe_map.cnt;
1597 if ((rpipe->pipe_state & PIPE_EOF) ||
1598 wpipe->pipe_present != PIPE_ACTIVE ||
1599 (wpipe->pipe_state & PIPE_EOF)) {
1600 kn->kn_flags |= EV_EOF;
1601 PIPE_UNLOCK(rpipe);
1602 return (1);
1604 ret = kn->kn_data > 0;
1605 PIPE_UNLOCK(rpipe);
1606 return ret;
1609 /*ARGSUSED*/
1610 static int
1611 filt_pipewrite(struct knote *kn, long hint)
1613 struct pipe *rpipe = kn->kn_fp->f_data;
1614 struct pipe *wpipe = rpipe->pipe_peer;
1616 PIPE_LOCK(rpipe);
1617 if (wpipe->pipe_present != PIPE_ACTIVE ||
1618 (wpipe->pipe_state & PIPE_EOF)) {
1619 kn->kn_data = 0;
1620 kn->kn_flags |= EV_EOF;
1621 PIPE_UNLOCK(rpipe);
1622 return (1);
1624 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1625 if (wpipe->pipe_state & PIPE_DIRECTW)
1626 kn->kn_data = 0;
1628 PIPE_UNLOCK(rpipe);
1629 return (kn->kn_data >= PIPE_BUF);