print more junk
[freebsd-src/fkvm-freebsd.git] / sys / kern / subr_sleepqueue.c
blob54bd2b11606fd48d6de1d5563e13738d27385821
1 /*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel. Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals. That said, there are several similarities between the turnstile
36 * and sleep queue implementations. (Note: turnstiles were implemented
37 * first.) For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues. An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue. This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head. Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking. Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout. The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep. A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep). The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally,
53 * sleep queues also provide some extra assertions. One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API. The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/sysctl.h>
82 #include <vm/uma.h>
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
89 * Constants for the hash table of sleep queue chains. These constants are
90 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91 * Basically, we ignore the lower 8 bits of the address since most wait
92 * channel pointers are aligned and only look at the next 7 bits for the
93 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly.
95 #define SC_TABLESIZE 128 /* Must be power of 2. */
96 #define SC_MASK (SC_TABLESIZE - 1)
97 #define SC_SHIFT 8
98 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)]
100 #define NR_SLEEPQS 2
102 * There two different lists of sleep queues. Both lists are connected
103 * via the sq_hash entries. The first list is the sleep queue chain list
104 * that a sleep queue is on when it is attached to a wait channel. The
105 * second list is the free list hung off of a sleep queue that is attached
106 * to a wait channel.
108 * Each sleep queue also contains the wait channel it is attached to, the
109 * list of threads blocked on that wait channel, flags specific to the
110 * wait channel, and the lock used to synchronize with a wait channel.
111 * The flags are used to catch mismatches between the various consumers
112 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113 * The lock pointer is only used when invariants are enabled for various
114 * debugging checks.
116 * Locking key:
117 * c - sleep queue chain lock
119 struct sleepqueue {
120 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */
122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */
123 void *sq_wchan; /* (c) Wait channel. */
124 #ifdef INVARIANTS
125 int sq_type; /* (c) Queue type. */
126 struct lock_object *sq_lock; /* (c) Associated lock. */
127 #endif
130 struct sleepqueue_chain {
131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */
132 struct mtx sc_lock; /* Spin lock for this chain. */
133 #ifdef SLEEPQUEUE_PROFILING
134 u_int sc_depth; /* Length of sc_queues. */
135 u_int sc_max_depth; /* Max length of sc_queues. */
136 #endif
139 #ifdef SLEEPQUEUE_PROFILING
140 u_int sleepq_max_depth;
141 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143 "sleepq chain stats");
144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145 0, "maxmimum depth achieved of a single chain");
147 static void sleepq_profile(const char *wmesg);
148 static int prof_enabled;
149 #endif
150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151 static uma_zone_t sleepq_zone;
154 * Prototypes for non-exported routines.
156 static int sleepq_catch_signals(void *wchan, int pri);
157 static int sleepq_check_signals(void);
158 static int sleepq_check_timeout(void);
159 #ifdef INVARIANTS
160 static void sleepq_dtor(void *mem, int size, void *arg);
161 #endif
162 static int sleepq_init(void *mem, int size, int flags);
163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164 int pri);
165 static void sleepq_switch(void *wchan, int pri);
166 static void sleepq_timeout(void *arg);
169 * Early initialization of sleep queues that is called from the sleepinit()
170 * SYSINIT.
172 void
173 init_sleepqueues(void)
175 #ifdef SLEEPQUEUE_PROFILING
176 struct sysctl_oid *chain_oid;
177 char chain_name[10];
178 #endif
179 int i;
181 for (i = 0; i < SC_TABLESIZE; i++) {
182 LIST_INIT(&sleepq_chains[i].sc_queues);
183 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
184 MTX_SPIN | MTX_RECURSE);
185 #ifdef SLEEPQUEUE_PROFILING
186 snprintf(chain_name, sizeof(chain_name), "%d", i);
187 chain_oid = SYSCTL_ADD_NODE(NULL,
188 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
189 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
190 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
191 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
192 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
194 NULL);
195 #endif
197 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
198 #ifdef INVARIANTS
199 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
200 #else
201 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
202 #endif
204 thread0.td_sleepqueue = sleepq_alloc();
208 * Get a sleep queue for a new thread.
210 struct sleepqueue *
211 sleepq_alloc(void)
214 return (uma_zalloc(sleepq_zone, M_WAITOK));
218 * Free a sleep queue when a thread is destroyed.
220 void
221 sleepq_free(struct sleepqueue *sq)
224 uma_zfree(sleepq_zone, sq);
228 * Lock the sleep queue chain associated with the specified wait channel.
230 void
231 sleepq_lock(void *wchan)
233 struct sleepqueue_chain *sc;
235 sc = SC_LOOKUP(wchan);
236 mtx_lock_spin(&sc->sc_lock);
240 * Look up the sleep queue associated with a given wait channel in the hash
241 * table locking the associated sleep queue chain. If no queue is found in
242 * the table, NULL is returned.
244 struct sleepqueue *
245 sleepq_lookup(void *wchan)
247 struct sleepqueue_chain *sc;
248 struct sleepqueue *sq;
250 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
251 sc = SC_LOOKUP(wchan);
252 mtx_assert(&sc->sc_lock, MA_OWNED);
253 LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
254 if (sq->sq_wchan == wchan)
255 return (sq);
256 return (NULL);
260 * Unlock the sleep queue chain associated with a given wait channel.
262 void
263 sleepq_release(void *wchan)
265 struct sleepqueue_chain *sc;
267 sc = SC_LOOKUP(wchan);
268 mtx_unlock_spin(&sc->sc_lock);
272 * Places the current thread on the sleep queue for the specified wait
273 * channel. If INVARIANTS is enabled, then it associates the passed in
274 * lock with the sleepq to make sure it is held when that sleep queue is
275 * woken up.
277 void
278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
279 int queue)
281 struct sleepqueue_chain *sc;
282 struct sleepqueue *sq;
283 struct thread *td;
285 td = curthread;
286 sc = SC_LOOKUP(wchan);
287 mtx_assert(&sc->sc_lock, MA_OWNED);
288 MPASS(td->td_sleepqueue != NULL);
289 MPASS(wchan != NULL);
290 MPASS((queue >= 0) && (queue < NR_SLEEPQS));
292 /* If this thread is not allowed to sleep, die a horrible death. */
293 KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
294 ("Trying sleep, but thread marked as sleeping prohibited"));
296 /* Look up the sleep queue associated with the wait channel 'wchan'. */
297 sq = sleepq_lookup(wchan);
300 * If the wait channel does not already have a sleep queue, use
301 * this thread's sleep queue. Otherwise, insert the current thread
302 * into the sleep queue already in use by this wait channel.
304 if (sq == NULL) {
305 #ifdef INVARIANTS
306 int i;
308 sq = td->td_sleepqueue;
309 for (i = 0; i < NR_SLEEPQS; i++)
310 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
311 ("thread's sleep queue %d is not empty", i));
312 KASSERT(LIST_EMPTY(&sq->sq_free),
313 ("thread's sleep queue has a non-empty free list"));
314 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
315 sq->sq_lock = lock;
316 sq->sq_type = flags & SLEEPQ_TYPE;
317 #endif
318 #ifdef SLEEPQUEUE_PROFILING
319 sc->sc_depth++;
320 if (sc->sc_depth > sc->sc_max_depth) {
321 sc->sc_max_depth = sc->sc_depth;
322 if (sc->sc_max_depth > sleepq_max_depth)
323 sleepq_max_depth = sc->sc_max_depth;
325 #endif
326 sq = td->td_sleepqueue;
327 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
328 sq->sq_wchan = wchan;
329 } else {
330 MPASS(wchan == sq->sq_wchan);
331 MPASS(lock == sq->sq_lock);
332 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
333 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
335 thread_lock(td);
336 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
337 td->td_sleepqueue = NULL;
338 td->td_sqqueue = queue;
339 td->td_wchan = wchan;
340 td->td_wmesg = wmesg;
341 if (flags & SLEEPQ_INTERRUPTIBLE) {
342 td->td_flags |= TDF_SINTR;
343 td->td_flags &= ~TDF_SLEEPABORT;
345 thread_unlock(td);
349 * Sets a timeout that will remove the current thread from the specified
350 * sleep queue after timo ticks if the thread has not already been awakened.
352 void
353 sleepq_set_timeout(void *wchan, int timo)
355 struct sleepqueue_chain *sc;
356 struct thread *td;
358 td = curthread;
359 sc = SC_LOOKUP(wchan);
360 mtx_assert(&sc->sc_lock, MA_OWNED);
361 MPASS(TD_ON_SLEEPQ(td));
362 MPASS(td->td_sleepqueue == NULL);
363 MPASS(wchan != NULL);
364 callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
368 * Marks the pending sleep of the current thread as interruptible and
369 * makes an initial check for pending signals before putting a thread
370 * to sleep. Enters and exits with the thread lock held. Thread lock
371 * may have transitioned from the sleepq lock to a run lock.
373 static int
374 sleepq_catch_signals(void *wchan, int pri)
376 struct sleepqueue_chain *sc;
377 struct sleepqueue *sq;
378 struct thread *td;
379 struct proc *p;
380 struct sigacts *ps;
381 int sig, ret;
383 td = curthread;
384 p = curproc;
385 sc = SC_LOOKUP(wchan);
386 mtx_assert(&sc->sc_lock, MA_OWNED);
387 MPASS(wchan != NULL);
389 * See if there are any pending signals for this thread. If not
390 * we can switch immediately. Otherwise do the signal processing
391 * directly.
393 thread_lock(td);
394 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
395 sleepq_switch(wchan, pri);
396 return (0);
398 thread_unlock(td);
399 mtx_unlock_spin(&sc->sc_lock);
400 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
401 (void *)td, (long)p->p_pid, td->td_name);
402 PROC_LOCK(p);
403 ps = p->p_sigacts;
404 mtx_lock(&ps->ps_mtx);
405 sig = cursig(td);
406 if (sig == 0) {
407 mtx_unlock(&ps->ps_mtx);
408 ret = thread_suspend_check(1);
409 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
410 } else {
411 if (SIGISMEMBER(ps->ps_sigintr, sig))
412 ret = EINTR;
413 else
414 ret = ERESTART;
415 mtx_unlock(&ps->ps_mtx);
418 * Lock the per-process spinlock prior to dropping the PROC_LOCK
419 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and
420 * thread_lock() are currently held in tdsignal().
422 PROC_SLOCK(p);
423 mtx_lock_spin(&sc->sc_lock);
424 PROC_UNLOCK(p);
425 thread_lock(td);
426 PROC_SUNLOCK(p);
427 if (ret == 0) {
428 sleepq_switch(wchan, pri);
429 return (0);
432 * There were pending signals and this thread is still
433 * on the sleep queue, remove it from the sleep queue.
435 if (TD_ON_SLEEPQ(td)) {
436 sq = sleepq_lookup(wchan);
437 if (sleepq_resume_thread(sq, td, 0)) {
438 #ifdef INVARIANTS
440 * This thread hasn't gone to sleep yet, so it
441 * should not be swapped out.
443 panic("not waking up swapper");
444 #endif
447 mtx_unlock_spin(&sc->sc_lock);
448 MPASS(td->td_lock != &sc->sc_lock);
449 return (ret);
453 * Switches to another thread if we are still asleep on a sleep queue.
454 * Returns with thread lock.
456 static void
457 sleepq_switch(void *wchan, int pri)
459 struct sleepqueue_chain *sc;
460 struct sleepqueue *sq;
461 struct thread *td;
463 td = curthread;
464 sc = SC_LOOKUP(wchan);
465 mtx_assert(&sc->sc_lock, MA_OWNED);
466 THREAD_LOCK_ASSERT(td, MA_OWNED);
469 * If we have a sleep queue, then we've already been woken up, so
470 * just return.
472 if (td->td_sleepqueue != NULL) {
473 mtx_unlock_spin(&sc->sc_lock);
474 return;
478 * If TDF_TIMEOUT is set, then our sleep has been timed out
479 * already but we are still on the sleep queue, so dequeue the
480 * thread and return.
482 if (td->td_flags & TDF_TIMEOUT) {
483 MPASS(TD_ON_SLEEPQ(td));
484 sq = sleepq_lookup(wchan);
485 if (sleepq_resume_thread(sq, td, 0)) {
486 #ifdef INVARIANTS
488 * This thread hasn't gone to sleep yet, so it
489 * should not be swapped out.
491 panic("not waking up swapper");
492 #endif
494 mtx_unlock_spin(&sc->sc_lock);
495 return;
497 #ifdef SLEEPQUEUE_PROFILING
498 if (prof_enabled)
499 sleepq_profile(td->td_wmesg);
500 #endif
501 MPASS(td->td_sleepqueue == NULL);
502 sched_sleep(td, pri);
503 thread_lock_set(td, &sc->sc_lock);
504 TD_SET_SLEEPING(td);
505 mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
506 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
507 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
508 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
512 * Check to see if we timed out.
514 static int
515 sleepq_check_timeout(void)
517 struct thread *td;
519 td = curthread;
520 THREAD_LOCK_ASSERT(td, MA_OWNED);
523 * If TDF_TIMEOUT is set, we timed out.
525 if (td->td_flags & TDF_TIMEOUT) {
526 td->td_flags &= ~TDF_TIMEOUT;
527 return (EWOULDBLOCK);
531 * If TDF_TIMOFAIL is set, the timeout ran after we had
532 * already been woken up.
534 if (td->td_flags & TDF_TIMOFAIL)
535 td->td_flags &= ~TDF_TIMOFAIL;
538 * If callout_stop() fails, then the timeout is running on
539 * another CPU, so synchronize with it to avoid having it
540 * accidentally wake up a subsequent sleep.
542 else if (callout_stop(&td->td_slpcallout) == 0) {
543 td->td_flags |= TDF_TIMEOUT;
544 TD_SET_SLEEPING(td);
545 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
547 return (0);
551 * Check to see if we were awoken by a signal.
553 static int
554 sleepq_check_signals(void)
556 struct thread *td;
558 td = curthread;
559 THREAD_LOCK_ASSERT(td, MA_OWNED);
561 /* We are no longer in an interruptible sleep. */
562 if (td->td_flags & TDF_SINTR)
563 td->td_flags &= ~TDF_SINTR;
565 if (td->td_flags & TDF_SLEEPABORT) {
566 td->td_flags &= ~TDF_SLEEPABORT;
567 return (td->td_intrval);
570 return (0);
574 * Block the current thread until it is awakened from its sleep queue.
576 void
577 sleepq_wait(void *wchan, int pri)
579 struct thread *td;
581 td = curthread;
582 MPASS(!(td->td_flags & TDF_SINTR));
583 thread_lock(td);
584 sleepq_switch(wchan, pri);
585 thread_unlock(td);
589 * Block the current thread until it is awakened from its sleep queue
590 * or it is interrupted by a signal.
593 sleepq_wait_sig(void *wchan, int pri)
595 int rcatch;
596 int rval;
598 rcatch = sleepq_catch_signals(wchan, pri);
599 rval = sleepq_check_signals();
600 thread_unlock(curthread);
601 if (rcatch)
602 return (rcatch);
603 return (rval);
607 * Block the current thread until it is awakened from its sleep queue
608 * or it times out while waiting.
611 sleepq_timedwait(void *wchan, int pri)
613 struct thread *td;
614 int rval;
616 td = curthread;
617 MPASS(!(td->td_flags & TDF_SINTR));
618 thread_lock(td);
619 sleepq_switch(wchan, pri);
620 rval = sleepq_check_timeout();
621 thread_unlock(td);
623 return (rval);
627 * Block the current thread until it is awakened from its sleep queue,
628 * it is interrupted by a signal, or it times out waiting to be awakened.
631 sleepq_timedwait_sig(void *wchan, int pri)
633 int rcatch, rvalt, rvals;
635 rcatch = sleepq_catch_signals(wchan, pri);
636 rvalt = sleepq_check_timeout();
637 rvals = sleepq_check_signals();
638 thread_unlock(curthread);
639 if (rcatch)
640 return (rcatch);
641 if (rvals)
642 return (rvals);
643 return (rvalt);
647 * Removes a thread from a sleep queue and makes it
648 * runnable.
650 static int
651 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
653 struct sleepqueue_chain *sc;
655 MPASS(td != NULL);
656 MPASS(sq->sq_wchan != NULL);
657 MPASS(td->td_wchan == sq->sq_wchan);
658 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
659 THREAD_LOCK_ASSERT(td, MA_OWNED);
660 sc = SC_LOOKUP(sq->sq_wchan);
661 mtx_assert(&sc->sc_lock, MA_OWNED);
663 /* Remove the thread from the queue. */
664 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
667 * Get a sleep queue for this thread. If this is the last waiter,
668 * use the queue itself and take it out of the chain, otherwise,
669 * remove a queue from the free list.
671 if (LIST_EMPTY(&sq->sq_free)) {
672 td->td_sleepqueue = sq;
673 #ifdef INVARIANTS
674 sq->sq_wchan = NULL;
675 #endif
676 #ifdef SLEEPQUEUE_PROFILING
677 sc->sc_depth--;
678 #endif
679 } else
680 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
681 LIST_REMOVE(td->td_sleepqueue, sq_hash);
683 td->td_wmesg = NULL;
684 td->td_wchan = NULL;
685 td->td_flags &= ~TDF_SINTR;
688 * Note that thread td might not be sleeping if it is running
689 * sleepq_catch_signals() on another CPU or is blocked on
690 * its proc lock to check signals. It doesn't hurt to clear
691 * the sleeping flag if it isn't set though, so we just always
692 * do it. However, we can't assert that it is set.
694 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
695 (void *)td, (long)td->td_proc->p_pid, td->td_name);
696 TD_CLR_SLEEPING(td);
698 /* Adjust priority if requested. */
699 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
700 if (pri != 0 && td->td_priority > pri)
701 sched_prio(td, pri);
702 return (setrunnable(td));
705 #ifdef INVARIANTS
707 * UMA zone item deallocator.
709 static void
710 sleepq_dtor(void *mem, int size, void *arg)
712 struct sleepqueue *sq;
713 int i;
715 sq = mem;
716 for (i = 0; i < NR_SLEEPQS; i++)
717 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
719 #endif
722 * UMA zone item initializer.
724 static int
725 sleepq_init(void *mem, int size, int flags)
727 struct sleepqueue *sq;
728 int i;
730 bzero(mem, size);
731 sq = mem;
732 for (i = 0; i < NR_SLEEPQS; i++)
733 TAILQ_INIT(&sq->sq_blocked[i]);
734 LIST_INIT(&sq->sq_free);
735 return (0);
739 * Find the highest priority thread sleeping on a wait channel and resume it.
742 sleepq_signal(void *wchan, int flags, int pri, int queue)
744 struct sleepqueue *sq;
745 struct thread *td, *besttd;
746 int wakeup_swapper;
748 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
749 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
750 MPASS((queue >= 0) && (queue < NR_SLEEPQS));
751 sq = sleepq_lookup(wchan);
752 if (sq == NULL)
753 return (0);
754 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
755 ("%s: mismatch between sleep/wakeup and cv_*", __func__));
758 * Find the highest priority thread on the queue. If there is a
759 * tie, use the thread that first appears in the queue as it has
760 * been sleeping the longest since threads are always added to
761 * the tail of sleep queues.
763 besttd = NULL;
764 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
765 if (besttd == NULL || td->td_priority < besttd->td_priority)
766 besttd = td;
768 MPASS(besttd != NULL);
769 thread_lock(besttd);
770 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
771 thread_unlock(besttd);
772 return (wakeup_swapper);
776 * Resume all threads sleeping on a specified wait channel.
779 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
781 struct sleepqueue *sq;
782 struct thread *td, *tdn;
783 int wakeup_swapper;
785 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
786 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
787 MPASS((queue >= 0) && (queue < NR_SLEEPQS));
788 sq = sleepq_lookup(wchan);
789 if (sq == NULL)
790 return (0);
791 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
792 ("%s: mismatch between sleep/wakeup and cv_*", __func__));
794 /* Resume all blocked threads on the sleep queue. */
795 wakeup_swapper = 0;
796 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
797 thread_lock(td);
798 if (sleepq_resume_thread(sq, td, pri))
799 wakeup_swapper = 1;
800 thread_unlock(td);
802 return (wakeup_swapper);
806 * Time sleeping threads out. When the timeout expires, the thread is
807 * removed from the sleep queue and made runnable if it is still asleep.
809 static void
810 sleepq_timeout(void *arg)
812 struct sleepqueue_chain *sc;
813 struct sleepqueue *sq;
814 struct thread *td;
815 void *wchan;
816 int wakeup_swapper;
818 td = arg;
819 wakeup_swapper = 0;
820 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
821 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
824 * First, see if the thread is asleep and get the wait channel if
825 * it is.
827 thread_lock(td);
828 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
829 wchan = td->td_wchan;
830 sc = SC_LOOKUP(wchan);
831 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
832 sq = sleepq_lookup(wchan);
833 MPASS(sq != NULL);
834 td->td_flags |= TDF_TIMEOUT;
835 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
836 thread_unlock(td);
837 if (wakeup_swapper)
838 kick_proc0();
839 return;
843 * If the thread is on the SLEEPQ but isn't sleeping yet, it
844 * can either be on another CPU in between sleepq_add() and
845 * one of the sleepq_*wait*() routines or it can be in
846 * sleepq_catch_signals().
848 if (TD_ON_SLEEPQ(td)) {
849 td->td_flags |= TDF_TIMEOUT;
850 thread_unlock(td);
851 return;
855 * Now check for the edge cases. First, if TDF_TIMEOUT is set,
856 * then the other thread has already yielded to us, so clear
857 * the flag and resume it. If TDF_TIMEOUT is not set, then the
858 * we know that the other thread is not on a sleep queue, but it
859 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL
860 * to let it know that the timeout has already run and doesn't
861 * need to be canceled.
863 if (td->td_flags & TDF_TIMEOUT) {
864 MPASS(TD_IS_SLEEPING(td));
865 td->td_flags &= ~TDF_TIMEOUT;
866 TD_CLR_SLEEPING(td);
867 wakeup_swapper = setrunnable(td);
868 } else
869 td->td_flags |= TDF_TIMOFAIL;
870 thread_unlock(td);
871 if (wakeup_swapper)
872 kick_proc0();
876 * Resumes a specific thread from the sleep queue associated with a specific
877 * wait channel if it is on that queue.
879 void
880 sleepq_remove(struct thread *td, void *wchan)
882 struct sleepqueue *sq;
883 int wakeup_swapper;
886 * Look up the sleep queue for this wait channel, then re-check
887 * that the thread is asleep on that channel, if it is not, then
888 * bail.
890 MPASS(wchan != NULL);
891 sleepq_lock(wchan);
892 sq = sleepq_lookup(wchan);
894 * We can not lock the thread here as it may be sleeping on a
895 * different sleepq. However, holding the sleepq lock for this
896 * wchan can guarantee that we do not miss a wakeup for this
897 * channel. The asserts below will catch any false positives.
899 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
900 sleepq_release(wchan);
901 return;
903 /* Thread is asleep on sleep queue sq, so wake it up. */
904 thread_lock(td);
905 MPASS(sq != NULL);
906 MPASS(td->td_wchan == wchan);
907 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
908 thread_unlock(td);
909 sleepq_release(wchan);
910 if (wakeup_swapper)
911 kick_proc0();
915 * Abort a thread as if an interrupt had occurred. Only abort
916 * interruptible waits (unfortunately it isn't safe to abort others).
919 sleepq_abort(struct thread *td, int intrval)
921 struct sleepqueue *sq;
922 void *wchan;
924 THREAD_LOCK_ASSERT(td, MA_OWNED);
925 MPASS(TD_ON_SLEEPQ(td));
926 MPASS(td->td_flags & TDF_SINTR);
927 MPASS(intrval == EINTR || intrval == ERESTART);
930 * If the TDF_TIMEOUT flag is set, just leave. A
931 * timeout is scheduled anyhow.
933 if (td->td_flags & TDF_TIMEOUT)
934 return (0);
936 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
937 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
938 td->td_intrval = intrval;
939 td->td_flags |= TDF_SLEEPABORT;
941 * If the thread has not slept yet it will find the signal in
942 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise
943 * we have to do it here.
945 if (!TD_IS_SLEEPING(td))
946 return (0);
947 wchan = td->td_wchan;
948 MPASS(wchan != NULL);
949 sq = sleepq_lookup(wchan);
950 MPASS(sq != NULL);
952 /* Thread is asleep on sleep queue sq, so wake it up. */
953 return (sleepq_resume_thread(sq, td, 0));
956 #ifdef SLEEPQUEUE_PROFILING
957 #define SLEEPQ_PROF_LOCATIONS 1024
958 #define SLEEPQ_SBUFSIZE (40 * 512)
959 struct sleepq_prof {
960 LIST_ENTRY(sleepq_prof) sp_link;
961 const char *sp_wmesg;
962 long sp_count;
965 LIST_HEAD(sqphead, sleepq_prof);
967 struct sqphead sleepq_prof_free;
968 struct sqphead sleepq_hash[SC_TABLESIZE];
969 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
970 static struct mtx sleepq_prof_lock;
971 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
973 static void
974 sleepq_profile(const char *wmesg)
976 struct sleepq_prof *sp;
978 mtx_lock_spin(&sleepq_prof_lock);
979 if (prof_enabled == 0)
980 goto unlock;
981 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
982 if (sp->sp_wmesg == wmesg)
983 goto done;
984 sp = LIST_FIRST(&sleepq_prof_free);
985 if (sp == NULL)
986 goto unlock;
987 sp->sp_wmesg = wmesg;
988 LIST_REMOVE(sp, sp_link);
989 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
990 done:
991 sp->sp_count++;
992 unlock:
993 mtx_unlock_spin(&sleepq_prof_lock);
994 return;
997 static void
998 sleepq_prof_reset(void)
1000 struct sleepq_prof *sp;
1001 int enabled;
1002 int i;
1004 mtx_lock_spin(&sleepq_prof_lock);
1005 enabled = prof_enabled;
1006 prof_enabled = 0;
1007 for (i = 0; i < SC_TABLESIZE; i++)
1008 LIST_INIT(&sleepq_hash[i]);
1009 LIST_INIT(&sleepq_prof_free);
1010 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1011 sp = &sleepq_profent[i];
1012 sp->sp_wmesg = NULL;
1013 sp->sp_count = 0;
1014 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1016 prof_enabled = enabled;
1017 mtx_unlock_spin(&sleepq_prof_lock);
1020 static int
1021 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1023 int error, v;
1025 v = prof_enabled;
1026 error = sysctl_handle_int(oidp, &v, v, req);
1027 if (error)
1028 return (error);
1029 if (req->newptr == NULL)
1030 return (error);
1031 if (v == prof_enabled)
1032 return (0);
1033 if (v == 1)
1034 sleepq_prof_reset();
1035 mtx_lock_spin(&sleepq_prof_lock);
1036 prof_enabled = !!v;
1037 mtx_unlock_spin(&sleepq_prof_lock);
1039 return (0);
1042 static int
1043 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1045 int error, v;
1047 v = 0;
1048 error = sysctl_handle_int(oidp, &v, 0, req);
1049 if (error)
1050 return (error);
1051 if (req->newptr == NULL)
1052 return (error);
1053 if (v == 0)
1054 return (0);
1055 sleepq_prof_reset();
1057 return (0);
1060 static int
1061 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1063 static int multiplier = 1;
1064 struct sleepq_prof *sp;
1065 struct sbuf *sb;
1066 int enabled;
1067 int error;
1068 int i;
1070 retry_sbufops:
1071 sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
1072 sbuf_printf(sb, "\nwmesg\tcount\n");
1073 enabled = prof_enabled;
1074 mtx_lock_spin(&sleepq_prof_lock);
1075 prof_enabled = 0;
1076 mtx_unlock_spin(&sleepq_prof_lock);
1077 for (i = 0; i < SC_TABLESIZE; i++) {
1078 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1079 sbuf_printf(sb, "%s\t%ld\n",
1080 sp->sp_wmesg, sp->sp_count);
1081 if (sbuf_overflowed(sb)) {
1082 sbuf_delete(sb);
1083 multiplier++;
1084 goto retry_sbufops;
1088 mtx_lock_spin(&sleepq_prof_lock);
1089 prof_enabled = enabled;
1090 mtx_unlock_spin(&sleepq_prof_lock);
1092 sbuf_finish(sb);
1093 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
1094 sbuf_delete(sb);
1095 return (error);
1098 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1099 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1100 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1101 NULL, 0, reset_sleepq_prof_stats, "I",
1102 "Reset sleepqueue profiling statistics");
1103 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1104 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1105 #endif
1107 #ifdef DDB
1108 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1110 struct sleepqueue_chain *sc;
1111 struct sleepqueue *sq;
1112 #ifdef INVARIANTS
1113 struct lock_object *lock;
1114 #endif
1115 struct thread *td;
1116 void *wchan;
1117 int i;
1119 if (!have_addr)
1120 return;
1123 * First, see if there is an active sleep queue for the wait channel
1124 * indicated by the address.
1126 wchan = (void *)addr;
1127 sc = SC_LOOKUP(wchan);
1128 LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1129 if (sq->sq_wchan == wchan)
1130 goto found;
1133 * Second, see if there is an active sleep queue at the address
1134 * indicated.
1136 for (i = 0; i < SC_TABLESIZE; i++)
1137 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1138 if (sq == (struct sleepqueue *)addr)
1139 goto found;
1142 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1143 return;
1144 found:
1145 db_printf("Wait channel: %p\n", sq->sq_wchan);
1146 #ifdef INVARIANTS
1147 db_printf("Queue type: %d\n", sq->sq_type);
1148 if (sq->sq_lock) {
1149 lock = sq->sq_lock;
1150 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1151 LOCK_CLASS(lock)->lc_name, lock->lo_name);
1153 #endif
1154 db_printf("Blocked threads:\n");
1155 for (i = 0; i < NR_SLEEPQS; i++) {
1156 db_printf("\nQueue[%d]:\n", i);
1157 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1158 db_printf("\tempty\n");
1159 else
1160 TAILQ_FOREACH(td, &sq->sq_blocked[0],
1161 td_slpq) {
1162 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1163 td->td_tid, td->td_proc->p_pid,
1164 td->td_name);
1169 /* Alias 'show sleepqueue' to 'show sleepq'. */
1170 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
1171 #endif