llvm-libunwind: use conventional (non-Darwin) X86 register numbers
[freebsd-src.git] / usr.bin / top / machine.c
blob92cd7c5224314b1e8bdbad7c644bde0cf2b75d09
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For FreeBSD-2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
16 * LIBS: -lkvm
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Thomas Moestl <tmoestl@gmx.net>
23 * $FreeBSD$
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/file.h>
29 #include <sys/proc.h>
30 #include <sys/resource.h>
31 #include <sys/rtprio.h>
32 #include <sys/signal.h>
33 #include <sys/sysctl.h>
34 #include <sys/time.h>
35 #include <sys/user.h>
36 #include <sys/vmmeter.h>
38 #include <err.h>
39 #include <kvm.h>
40 #include <math.h>
41 #include <nlist.h>
42 #include <paths.h>
43 #include <pwd.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <strings.h>
48 #include <unistd.h>
49 #include <vis.h>
51 #include "top.h"
52 #include "machine.h"
53 #include "screen.h"
54 #include "utils.h"
55 #include "layout.h"
57 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
58 #define SMPUNAMELEN 13
59 #define UPUNAMELEN 15
61 extern struct process_select ps;
62 extern char* printable(char *);
63 static int smpmode;
64 enum displaymodes displaymode;
65 #ifdef TOP_USERNAME_LEN
66 static int namelength = TOP_USERNAME_LEN;
67 #else
68 static int namelength = 8;
69 #endif
70 /* TOP_JID_LEN based on max of 999999 */
71 #define TOP_JID_LEN 7
72 static int jidlength;
73 static int cmdlengthdelta;
75 /* Prototypes for top internals */
76 void quit(int);
78 /* get_process_info passes back a handle. This is what it looks like: */
80 struct handle {
81 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
82 int remaining; /* number of pointers remaining */
85 /* declarations for load_avg */
86 #include "loadavg.h"
88 /* define what weighted cpu is. */
89 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
90 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
92 /* what we consider to be process size: */
93 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
95 #define RU(pp) (&(pp)->ki_rusage)
96 #define RUTOT(pp) \
97 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
99 #define PCTCPU(pp) (pcpu[pp - pbase])
101 /* definitions for indices in the nlist array */
104 * These definitions control the format of the per-process area
107 static char io_header[] =
108 " PID%*s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND";
110 #define io_Proc_format \
111 "%5d%*s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
113 static char smp_header_thr[] =
114 " PID%*s %-*.*s THR PRI NICE SIZE RES STATE C TIME %7s COMMAND";
115 static char smp_header[] =
116 " PID%*s %-*.*s " "PRI NICE SIZE RES STATE C TIME %7s COMMAND";
118 #define smp_Proc_format \
119 "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %6.2f%% %.*s"
121 static char up_header_thr[] =
122 " PID%*s %-*.*s THR PRI NICE SIZE RES STATE TIME %7s COMMAND";
123 static char up_header[] =
124 " PID%*s %-*.*s " "PRI NICE SIZE RES STATE TIME %7s COMMAND";
126 #define up_Proc_format \
127 "%5d%*s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %6.2f%% %.*s"
130 /* process state names for the "STATE" column of the display */
131 /* the extra nulls in the string "run" are for adding a slash and
132 the processor number when needed */
134 char *state_abbrev[] = {
135 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
139 static kvm_t *kd;
141 /* values that we stash away in _init and use in later routines */
143 static double logcpu;
145 /* these are retrieved from the kernel in _init */
147 static load_avg ccpu;
149 /* these are used in the get_ functions */
151 static int lastpid;
153 /* these are for calculating cpu state percentages */
155 static long cp_time[CPUSTATES];
156 static long cp_old[CPUSTATES];
157 static long cp_diff[CPUSTATES];
159 /* these are for detailing the process states */
161 int process_states[8];
162 char *procstatenames[] = {
163 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
164 " zombie, ", " waiting, ", " lock, ",
165 NULL
168 /* these are for detailing the cpu states */
170 int cpu_states[CPUSTATES];
171 char *cpustatenames[] = {
172 "user", "nice", "system", "interrupt", "idle", NULL
175 /* these are for detailing the memory statistics */
177 int memory_stats[7];
178 char *memorynames[] = {
179 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
180 "K Free", NULL
183 int arc_stats[7];
184 char *arcnames[] = {
185 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
186 NULL
189 int swap_stats[7];
190 char *swapnames[] = {
191 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
192 NULL
196 /* these are for keeping track of the proc array */
198 static int nproc;
199 static int onproc = -1;
200 static int pref_len;
201 static struct kinfo_proc *pbase;
202 static struct kinfo_proc **pref;
203 static struct kinfo_proc *previous_procs;
204 static struct kinfo_proc **previous_pref;
205 static int previous_proc_count = 0;
206 static int previous_proc_count_max = 0;
207 static int previous_thread;
209 /* data used for recalculating pctcpu */
210 static double *pcpu;
211 static struct timespec proc_uptime;
212 static struct timeval proc_wall_time;
213 static struct timeval previous_wall_time;
214 static uint64_t previous_interval = 0;
216 /* total number of io operations */
217 static long total_inblock;
218 static long total_oublock;
219 static long total_majflt;
221 /* these are for getting the memory statistics */
223 static int arc_enabled;
224 static int pageshift; /* log base 2 of the pagesize */
226 /* define pagetok in terms of pageshift */
228 #define pagetok(size) ((size) << pageshift)
230 /* useful externals */
231 long percentages();
233 #ifdef ORDER
235 * Sorting orders. The first element is the default.
237 char *ordernames[] = {
238 "cpu", "size", "res", "time", "pri", "threads",
239 "total", "read", "write", "fault", "vcsw", "ivcsw",
240 "jid", "pid", NULL
242 #endif
244 /* Per-cpu time states */
245 static int maxcpu;
246 static int maxid;
247 static int ncpus;
248 static u_long cpumask;
249 static long *times;
250 static long *pcpu_cp_time;
251 static long *pcpu_cp_old;
252 static long *pcpu_cp_diff;
253 static int *pcpu_cpu_states;
255 static int compare_jid(const void *a, const void *b);
256 static int compare_pid(const void *a, const void *b);
257 static int compare_tid(const void *a, const void *b);
258 static const char *format_nice(const struct kinfo_proc *pp);
259 static void getsysctl(const char *name, void *ptr, size_t len);
260 static int swapmode(int *retavail, int *retfree);
261 static void update_layout(void);
263 void
264 toggle_pcpustats(void)
267 if (ncpus == 1)
268 return;
269 update_layout();
272 /* Adjust display based on ncpus and the ARC state. */
273 static void
274 update_layout(void)
277 y_mem = 3;
278 y_arc = 4;
279 y_swap = 4 + arc_enabled;
280 y_idlecursor = 5 + arc_enabled;
281 y_message = 5 + arc_enabled;
282 y_header = 6 + arc_enabled;
283 y_procs = 7 + arc_enabled;
284 Header_lines = 7 + arc_enabled;
286 if (pcpu_stats) {
287 y_mem += ncpus - 1;
288 y_arc += ncpus - 1;
289 y_swap += ncpus - 1;
290 y_idlecursor += ncpus - 1;
291 y_message += ncpus - 1;
292 y_header += ncpus - 1;
293 y_procs += ncpus - 1;
294 Header_lines += ncpus - 1;
299 machine_init(struct statics *statics, char do_unames)
301 int i, j, empty, pagesize;
302 uint64_t arc_size;
303 size_t size;
304 struct passwd *pw;
306 size = sizeof(smpmode);
307 if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
308 NULL, 0) != 0 &&
309 sysctlbyname("kern.smp.active", &smpmode, &size,
310 NULL, 0) != 0) ||
311 size != sizeof(smpmode))
312 smpmode = 0;
314 size = sizeof(arc_size);
315 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
316 NULL, 0) == 0 && arc_size != 0)
317 arc_enabled = 1;
319 if (do_unames) {
320 while ((pw = getpwent()) != NULL) {
321 if (strlen(pw->pw_name) > namelength)
322 namelength = strlen(pw->pw_name);
325 if (smpmode && namelength > SMPUNAMELEN)
326 namelength = SMPUNAMELEN;
327 else if (namelength > UPUNAMELEN)
328 namelength = UPUNAMELEN;
330 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
331 if (kd == NULL)
332 return (-1);
334 GETSYSCTL("kern.ccpu", ccpu);
336 /* this is used in calculating WCPU -- calculate it ahead of time */
337 logcpu = log(loaddouble(ccpu));
339 pbase = NULL;
340 pref = NULL;
341 pcpu = NULL;
342 nproc = 0;
343 onproc = -1;
345 /* get the page size and calculate pageshift from it */
346 pagesize = getpagesize();
347 pageshift = 0;
348 while (pagesize > 1) {
349 pageshift++;
350 pagesize >>= 1;
353 /* we only need the amount of log(2)1024 for our conversion */
354 pageshift -= LOG1024;
356 /* fill in the statics information */
357 statics->procstate_names = procstatenames;
358 statics->cpustate_names = cpustatenames;
359 statics->memory_names = memorynames;
360 if (arc_enabled)
361 statics->arc_names = arcnames;
362 else
363 statics->arc_names = NULL;
364 statics->swap_names = swapnames;
365 #ifdef ORDER
366 statics->order_names = ordernames;
367 #endif
369 /* Allocate state for per-CPU stats. */
370 cpumask = 0;
371 ncpus = 0;
372 GETSYSCTL("kern.smp.maxcpus", maxcpu);
373 size = sizeof(long) * maxcpu * CPUSTATES;
374 times = malloc(size);
375 if (times == NULL)
376 err(1, "malloc %zu bytes", size);
377 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
378 err(1, "sysctlbyname kern.cp_times");
379 pcpu_cp_time = calloc(1, size);
380 maxid = (size / CPUSTATES / sizeof(long)) - 1;
381 for (i = 0; i <= maxid; i++) {
382 empty = 1;
383 for (j = 0; empty && j < CPUSTATES; j++) {
384 if (times[i * CPUSTATES + j] != 0)
385 empty = 0;
387 if (!empty) {
388 cpumask |= (1ul << i);
389 ncpus++;
392 size = sizeof(long) * ncpus * CPUSTATES;
393 pcpu_cp_old = calloc(1, size);
394 pcpu_cp_diff = calloc(1, size);
395 pcpu_cpu_states = calloc(1, size);
396 statics->ncpus = ncpus;
398 update_layout();
400 /* all done! */
401 return (0);
404 char *
405 format_header(char *uname_field)
407 static char Header[128];
408 const char *prehead;
410 if (ps.jail)
411 jidlength = TOP_JID_LEN + 1; /* +1 for extra left space. */
412 else
413 jidlength = 0;
415 switch (displaymode) {
416 case DISP_CPU:
418 * The logic of picking the right header format seems reverse
419 * here because we only want to display a THR column when
420 * "thread mode" is off (and threads are not listed as
421 * separate lines).
423 prehead = smpmode ?
424 (ps.thread ? smp_header : smp_header_thr) :
425 (ps.thread ? up_header : up_header_thr);
426 snprintf(Header, sizeof(Header), prehead,
427 jidlength, ps.jail ? " JID" : "",
428 namelength, namelength, uname_field,
429 ps.wcpu ? "WCPU" : "CPU");
430 break;
431 case DISP_IO:
432 prehead = io_header;
433 snprintf(Header, sizeof(Header), prehead,
434 jidlength, ps.jail ? " JID" : "",
435 namelength, namelength, uname_field);
436 break;
438 cmdlengthdelta = strlen(Header) - 7;
439 return (Header);
442 static int swappgsin = -1;
443 static int swappgsout = -1;
444 extern struct timeval timeout;
447 void
448 get_system_info(struct system_info *si)
450 long total;
451 struct loadavg sysload;
452 int mib[2];
453 struct timeval boottime;
454 uint64_t arc_stat, arc_stat2;
455 int i, j;
456 size_t size;
458 /* get the CPU stats */
459 size = (maxid + 1) * CPUSTATES * sizeof(long);
460 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
461 err(1, "sysctlbyname kern.cp_times");
462 GETSYSCTL("kern.cp_time", cp_time);
463 GETSYSCTL("vm.loadavg", sysload);
464 GETSYSCTL("kern.lastpid", lastpid);
466 /* convert load averages to doubles */
467 for (i = 0; i < 3; i++)
468 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
470 /* convert cp_time counts to percentages */
471 for (i = j = 0; i <= maxid; i++) {
472 if ((cpumask & (1ul << i)) == 0)
473 continue;
474 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
475 &pcpu_cp_time[j * CPUSTATES],
476 &pcpu_cp_old[j * CPUSTATES],
477 &pcpu_cp_diff[j * CPUSTATES]);
478 j++;
480 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
482 /* sum memory & swap statistics */
484 static unsigned int swap_delay = 0;
485 static int swapavail = 0;
486 static int swapfree = 0;
487 static long bufspace = 0;
488 static int nspgsin, nspgsout;
490 GETSYSCTL("vfs.bufspace", bufspace);
491 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
492 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
493 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
494 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
495 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
496 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
497 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
498 /* convert memory stats to Kbytes */
499 memory_stats[0] = pagetok(memory_stats[0]);
500 memory_stats[1] = pagetok(memory_stats[1]);
501 memory_stats[2] = pagetok(memory_stats[2]);
502 memory_stats[3] = pagetok(memory_stats[3]);
503 memory_stats[4] = bufspace / 1024;
504 memory_stats[5] = pagetok(memory_stats[5]);
505 memory_stats[6] = -1;
507 /* first interval */
508 if (swappgsin < 0) {
509 swap_stats[4] = 0;
510 swap_stats[5] = 0;
513 /* compute differences between old and new swap statistic */
514 else {
515 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
516 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
519 swappgsin = nspgsin;
520 swappgsout = nspgsout;
522 /* call CPU heavy swapmode() only for changes */
523 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
524 swap_stats[3] = swapmode(&swapavail, &swapfree);
525 swap_stats[0] = swapavail;
526 swap_stats[1] = swapavail - swapfree;
527 swap_stats[2] = swapfree;
529 swap_delay = 1;
530 swap_stats[6] = -1;
533 if (arc_enabled) {
534 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
535 arc_stats[0] = arc_stat >> 10;
536 GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
537 arc_stats[1] = arc_stat >> 10;
538 GETSYSCTL("vfs.zfs.mru_size", arc_stat);
539 arc_stats[2] = arc_stat >> 10;
540 GETSYSCTL("vfs.zfs.anon_size", arc_stat);
541 arc_stats[3] = arc_stat >> 10;
542 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
543 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
544 arc_stats[4] = arc_stat + arc_stat2 >> 10;
545 GETSYSCTL("kstat.zfs.misc.arcstats.other_size", arc_stat);
546 arc_stats[5] = arc_stat >> 10;
547 si->arc = arc_stats;
550 /* set arrays and strings */
551 if (pcpu_stats) {
552 si->cpustates = pcpu_cpu_states;
553 si->ncpus = ncpus;
554 } else {
555 si->cpustates = cpu_states;
556 si->ncpus = 1;
558 si->memory = memory_stats;
559 si->swap = swap_stats;
562 if (lastpid > 0) {
563 si->last_pid = lastpid;
564 } else {
565 si->last_pid = -1;
569 * Print how long system has been up.
570 * (Found by looking getting "boottime" from the kernel)
572 mib[0] = CTL_KERN;
573 mib[1] = KERN_BOOTTIME;
574 size = sizeof(boottime);
575 if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
576 boottime.tv_sec != 0) {
577 si->boottime = boottime;
578 } else {
579 si->boottime.tv_sec = -1;
583 #define NOPROC ((void *)-1)
586 * We need to compare data from the old process entry with the new
587 * process entry.
588 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
589 * structure to cache the mapping. We also use a negative cache pointer
590 * of NOPROC to avoid duplicate lookups.
591 * XXX: this could be done when the actual processes are fetched, we do
592 * it here out of laziness.
594 const struct kinfo_proc *
595 get_old_proc(struct kinfo_proc *pp)
597 struct kinfo_proc **oldpp, *oldp;
600 * If this is the first fetch of the kinfo_procs then we don't have
601 * any previous entries.
603 if (previous_proc_count == 0)
604 return (NULL);
605 /* negative cache? */
606 if (pp->ki_udata == NOPROC)
607 return (NULL);
608 /* cached? */
609 if (pp->ki_udata != NULL)
610 return (pp->ki_udata);
612 * Not cached,
613 * 1) look up based on pid.
614 * 2) compare process start.
615 * If we fail here, then setup a negative cache entry, otherwise
616 * cache it.
618 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
619 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
620 if (oldpp == NULL) {
621 pp->ki_udata = NOPROC;
622 return (NULL);
624 oldp = *oldpp;
625 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
626 pp->ki_udata = NOPROC;
627 return (NULL);
629 pp->ki_udata = oldp;
630 return (oldp);
634 * Return the total amount of IO done in blocks in/out and faults.
635 * store the values individually in the pointers passed in.
637 long
638 get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
639 long *vcsw, long *ivcsw)
641 const struct kinfo_proc *oldp;
642 static struct kinfo_proc dummy;
643 long ret;
645 oldp = get_old_proc(pp);
646 if (oldp == NULL) {
647 bzero(&dummy, sizeof(dummy));
648 oldp = &dummy;
650 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
651 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
652 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
653 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
654 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
655 ret =
656 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
657 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
658 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
659 return (ret);
663 * If there was a previous update, use the delta in ki_runtime over
664 * the previous interval to calculate pctcpu. Otherwise, fall back
665 * to using the kernel's ki_pctcpu.
667 static double
668 proc_calc_pctcpu(struct kinfo_proc *pp)
670 const struct kinfo_proc *oldp;
672 if (previous_interval != 0) {
673 oldp = get_old_proc(pp);
674 if (oldp != NULL)
675 return ((double)(pp->ki_runtime - oldp->ki_runtime)
676 / previous_interval);
679 * If this process/thread was created during the previous
680 * interval, charge it's total runtime to the previous
681 * interval.
683 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
684 (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
685 pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
686 return ((double)pp->ki_runtime / previous_interval);
688 return (pctdouble(pp->ki_pctcpu));
692 * Return true if this process has used any CPU time since the
693 * previous update.
695 static int
696 proc_used_cpu(struct kinfo_proc *pp)
698 const struct kinfo_proc *oldp;
700 oldp = get_old_proc(pp);
701 if (oldp == NULL)
702 return (PCTCPU(pp) != 0);
703 return (pp->ki_runtime != oldp->ki_runtime ||
704 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
705 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
709 * Return the total number of block in/out and faults by a process.
711 long
712 get_io_total(struct kinfo_proc *pp)
714 long dummy;
716 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
719 static struct handle handle;
721 caddr_t
722 get_process_info(struct system_info *si, struct process_select *sel,
723 int (*compare)(const void *, const void *))
725 int i;
726 int total_procs;
727 long p_io;
728 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
729 long nsec;
730 int active_procs;
731 struct kinfo_proc **prefp;
732 struct kinfo_proc *pp;
733 struct timespec previous_proc_uptime;
735 /* these are copied out of sel for speed */
736 int show_idle;
737 int show_jid;
738 int show_self;
739 int show_system;
740 int show_uid;
741 int show_command;
742 int show_kidle;
745 * If thread state was toggled, don't cache the previous processes.
747 if (previous_thread != sel->thread)
748 nproc = 0;
749 previous_thread = sel->thread;
752 * Save the previous process info.
754 if (previous_proc_count_max < nproc) {
755 free(previous_procs);
756 previous_procs = malloc(nproc * sizeof(*previous_procs));
757 free(previous_pref);
758 previous_pref = malloc(nproc * sizeof(*previous_pref));
759 if (previous_procs == NULL || previous_pref == NULL) {
760 (void) fprintf(stderr, "top: Out of memory.\n");
761 quit(23);
763 previous_proc_count_max = nproc;
765 if (nproc) {
766 for (i = 0; i < nproc; i++)
767 previous_pref[i] = &previous_procs[i];
768 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
769 qsort(previous_pref, nproc, sizeof(*previous_pref),
770 ps.thread ? compare_tid : compare_pid);
772 previous_proc_count = nproc;
773 previous_proc_uptime = proc_uptime;
774 previous_wall_time = proc_wall_time;
775 previous_interval = 0;
777 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
778 0, &nproc);
779 (void)gettimeofday(&proc_wall_time, NULL);
780 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
781 memset(&proc_uptime, 0, sizeof(proc_uptime));
782 else if (previous_proc_uptime.tv_sec != 0 &&
783 previous_proc_uptime.tv_nsec != 0) {
784 previous_interval = (proc_uptime.tv_sec -
785 previous_proc_uptime.tv_sec) * 1000000;
786 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
787 if (nsec < 0) {
788 previous_interval -= 1000000;
789 nsec += 1000000000;
791 previous_interval += nsec / 1000;
793 if (nproc > onproc) {
794 pref = realloc(pref, sizeof(*pref) * nproc);
795 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
796 onproc = nproc;
798 if (pref == NULL || pbase == NULL || pcpu == NULL) {
799 (void) fprintf(stderr, "top: Out of memory.\n");
800 quit(23);
802 /* get a pointer to the states summary array */
803 si->procstates = process_states;
805 /* set up flags which define what we are going to select */
806 show_idle = sel->idle;
807 show_jid = sel->jid != -1;
808 show_self = sel->self == -1;
809 show_system = sel->system;
810 show_uid = sel->uid != -1;
811 show_command = sel->command != NULL;
812 show_kidle = sel->kidle;
814 /* count up process states and get pointers to interesting procs */
815 total_procs = 0;
816 active_procs = 0;
817 total_inblock = 0;
818 total_oublock = 0;
819 total_majflt = 0;
820 memset((char *)process_states, 0, sizeof(process_states));
821 prefp = pref;
822 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
824 if (pp->ki_stat == 0)
825 /* not in use */
826 continue;
828 if (!show_self && pp->ki_pid == sel->self)
829 /* skip self */
830 continue;
832 if (!show_system && (pp->ki_flag & P_SYSTEM))
833 /* skip system process */
834 continue;
836 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
837 &p_vcsw, &p_ivcsw);
838 total_inblock += p_inblock;
839 total_oublock += p_oublock;
840 total_majflt += p_majflt;
841 total_procs++;
842 process_states[pp->ki_stat]++;
844 if (pp->ki_stat == SZOMB)
845 /* skip zombies */
846 continue;
848 if (!show_kidle && pp->ki_tdflags & TDF_IDLETD)
849 /* skip kernel idle process */
850 continue;
852 PCTCPU(pp) = proc_calc_pctcpu(pp);
853 if (sel->thread && PCTCPU(pp) > 1.0)
854 PCTCPU(pp) = 1.0;
855 if (displaymode == DISP_CPU && !show_idle &&
856 (!proc_used_cpu(pp) ||
857 pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
858 /* skip idle or non-running processes */
859 continue;
861 if (displaymode == DISP_IO && !show_idle && p_io == 0)
862 /* skip processes that aren't doing I/O */
863 continue;
865 if (show_jid && pp->ki_jid != sel->jid)
866 /* skip proc. that don't belong to the selected JID */
867 continue;
869 if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
870 /* skip proc. that don't belong to the selected UID */
871 continue;
873 *prefp++ = pp;
874 active_procs++;
877 /* if requested, sort the "interesting" processes */
878 if (compare != NULL)
879 qsort(pref, active_procs, sizeof(*pref), compare);
881 /* remember active and total counts */
882 si->p_total = total_procs;
883 si->p_active = pref_len = active_procs;
885 /* pass back a handle */
886 handle.next_proc = pref;
887 handle.remaining = active_procs;
888 return ((caddr_t)&handle);
891 static char fmt[512]; /* static area where result is built */
893 char *
894 format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
896 struct kinfo_proc *pp;
897 const struct kinfo_proc *oldp;
898 long cputime;
899 double pct;
900 struct handle *hp;
901 char status[16];
902 int cpu, state;
903 struct rusage ru, *rup;
904 long p_tot, s_tot;
905 char *proc_fmt, thr_buf[6], jid_buf[TOP_JID_LEN + 1];
906 char *cmdbuf = NULL;
907 char **args;
908 const int cmdlen = 128;
910 /* find and remember the next proc structure */
911 hp = (struct handle *)handle;
912 pp = *(hp->next_proc++);
913 hp->remaining--;
915 /* get the process's command name */
916 if ((pp->ki_flag & P_INMEM) == 0) {
918 * Print swapped processes as <pname>
920 size_t len;
922 len = strlen(pp->ki_comm);
923 if (len > sizeof(pp->ki_comm) - 3)
924 len = sizeof(pp->ki_comm) - 3;
925 memmove(pp->ki_comm + 1, pp->ki_comm, len);
926 pp->ki_comm[0] = '<';
927 pp->ki_comm[len + 1] = '>';
928 pp->ki_comm[len + 2] = '\0';
932 * Convert the process's runtime from microseconds to seconds. This
933 * time includes the interrupt time although that is not wanted here.
934 * ps(1) is similarly sloppy.
936 cputime = (pp->ki_runtime + 500000) / 1000000;
938 /* calculate the base for cpu percentages */
939 pct = PCTCPU(pp);
941 /* generate "STATE" field */
942 switch (state = pp->ki_stat) {
943 case SRUN:
944 if (smpmode && pp->ki_oncpu != NOCPU)
945 sprintf(status, "CPU%d", pp->ki_oncpu);
946 else
947 strcpy(status, "RUN");
948 break;
949 case SLOCK:
950 if (pp->ki_kiflag & KI_LOCKBLOCK) {
951 sprintf(status, "*%.6s", pp->ki_lockname);
952 break;
954 /* fall through */
955 case SSLEEP:
956 if (pp->ki_wmesg != NULL) {
957 sprintf(status, "%.6s", pp->ki_wmesg);
958 break;
960 /* FALLTHROUGH */
961 default:
963 if (state >= 0 &&
964 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
965 sprintf(status, "%.6s", state_abbrev[state]);
966 else
967 sprintf(status, "?%5d", state);
968 break;
971 cmdbuf = (char *)malloc(cmdlen + 1);
972 if (cmdbuf == NULL) {
973 warn("malloc(%d)", cmdlen + 1);
974 return NULL;
977 if (!(flags & FMT_SHOWARGS)) {
978 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
979 pp->ki_tdname[0]) {
980 snprintf(cmdbuf, cmdlen, "%s{%s}", pp->ki_comm,
981 pp->ki_tdname);
982 } else {
983 snprintf(cmdbuf, cmdlen, "%s", pp->ki_comm);
985 } else {
986 if (pp->ki_flag & P_SYSTEM ||
987 pp->ki_args == NULL ||
988 (args = kvm_getargv(kd, pp, cmdlen)) == NULL ||
989 !(*args)) {
990 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
991 pp->ki_tdname[0]) {
992 snprintf(cmdbuf, cmdlen,
993 "[%s{%s}]", pp->ki_comm, pp->ki_tdname);
994 } else {
995 snprintf(cmdbuf, cmdlen,
996 "[%s]", pp->ki_comm);
998 } else {
999 char *src, *dst, *argbuf;
1000 char *cmd;
1001 size_t argbuflen;
1002 size_t len;
1004 argbuflen = cmdlen * 4;
1005 argbuf = (char *)malloc(argbuflen + 1);
1006 if (argbuf == NULL) {
1007 warn("malloc(%zu)", argbuflen + 1);
1008 free(cmdbuf);
1009 return NULL;
1012 dst = argbuf;
1014 /* Extract cmd name from argv */
1015 cmd = strrchr(*args, '/');
1016 if (cmd == NULL)
1017 cmd = *args;
1018 else
1019 cmd++;
1021 for (; (src = *args++) != NULL; ) {
1022 if (*src == '\0')
1023 continue;
1024 len = (argbuflen - (dst - argbuf) - 1) / 4;
1025 strvisx(dst, src,
1026 MIN(strlen(src), len),
1027 VIS_NL | VIS_CSTYLE);
1028 while (*dst != '\0')
1029 dst++;
1030 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
1031 *dst++ = ' '; /* add delimiting space */
1033 if (dst != argbuf && dst[-1] == ' ')
1034 dst--;
1035 *dst = '\0';
1037 if (strcmp(cmd, pp->ki_comm) != 0) {
1038 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1039 pp->ki_tdname[0])
1040 snprintf(cmdbuf, cmdlen,
1041 "%s (%s){%s}", argbuf, pp->ki_comm,
1042 pp->ki_tdname);
1043 else
1044 snprintf(cmdbuf, cmdlen,
1045 "%s (%s)", argbuf, pp->ki_comm);
1046 } else {
1047 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1048 pp->ki_tdname[0])
1049 snprintf(cmdbuf, cmdlen,
1050 "%s{%s}", argbuf, pp->ki_tdname);
1051 else
1052 strlcpy(cmdbuf, argbuf, cmdlen);
1054 free(argbuf);
1058 if (ps.jail == 0)
1059 jid_buf[0] = '\0';
1060 else
1061 snprintf(jid_buf, sizeof(jid_buf), "%*d",
1062 jidlength - 1, pp->ki_jid);
1064 if (displaymode == DISP_IO) {
1065 oldp = get_old_proc(pp);
1066 if (oldp != NULL) {
1067 ru.ru_inblock = RU(pp)->ru_inblock -
1068 RU(oldp)->ru_inblock;
1069 ru.ru_oublock = RU(pp)->ru_oublock -
1070 RU(oldp)->ru_oublock;
1071 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
1072 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
1073 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
1074 rup = &ru;
1075 } else {
1076 rup = RU(pp);
1078 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
1079 s_tot = total_inblock + total_oublock + total_majflt;
1081 snprintf(fmt, sizeof(fmt), io_Proc_format,
1082 pp->ki_pid,
1083 jidlength, jid_buf,
1084 namelength, namelength, (*get_userid)(pp->ki_ruid),
1085 rup->ru_nvcsw,
1086 rup->ru_nivcsw,
1087 rup->ru_inblock,
1088 rup->ru_oublock,
1089 rup->ru_majflt,
1090 p_tot,
1091 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
1092 screen_width > cmdlengthdelta ?
1093 screen_width - cmdlengthdelta : 0,
1094 printable(cmdbuf));
1096 free(cmdbuf);
1098 return (fmt);
1101 /* format this entry */
1102 if (smpmode) {
1103 if (state == SRUN && pp->ki_oncpu != NOCPU)
1104 cpu = pp->ki_oncpu;
1105 else
1106 cpu = pp->ki_lastcpu;
1107 } else
1108 cpu = 0;
1109 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
1110 if (ps.thread != 0)
1111 thr_buf[0] = '\0';
1112 else
1113 snprintf(thr_buf, sizeof(thr_buf), "%*d ",
1114 (int)(sizeof(thr_buf) - 2), pp->ki_numthreads);
1116 snprintf(fmt, sizeof(fmt), proc_fmt,
1117 pp->ki_pid,
1118 jidlength, jid_buf,
1119 namelength, namelength, (*get_userid)(pp->ki_ruid),
1120 thr_buf,
1121 pp->ki_pri.pri_level - PZERO,
1122 format_nice(pp),
1123 format_k2(PROCSIZE(pp)),
1124 format_k2(pagetok(pp->ki_rssize)),
1125 status,
1126 cpu,
1127 format_time(cputime),
1128 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
1129 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
1130 printable(cmdbuf));
1132 free(cmdbuf);
1134 /* return the result */
1135 return (fmt);
1138 static void
1139 getsysctl(const char *name, void *ptr, size_t len)
1141 size_t nlen = len;
1143 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1144 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1145 strerror(errno));
1146 quit(23);
1148 if (nlen != len) {
1149 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1150 name, (unsigned long)len, (unsigned long)nlen);
1151 quit(23);
1155 static const char *
1156 format_nice(const struct kinfo_proc *pp)
1158 const char *fifo, *kproc;
1159 int rtpri;
1160 static char nicebuf[4 + 1];
1162 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1163 kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
1164 switch (PRI_BASE(pp->ki_pri.pri_class)) {
1165 case PRI_ITHD:
1166 return ("-");
1167 case PRI_REALTIME:
1169 * XXX: the kernel doesn't tell us the original rtprio and
1170 * doesn't really know what it was, so to recover it we
1171 * must be more chummy with the implementation than the
1172 * implementation is with itself. pri_user gives a
1173 * constant "base" priority, but is only initialized
1174 * properly for user threads. pri_native gives what the
1175 * kernel calls the "base" priority, but it isn't constant
1176 * since it is changed by priority propagation. pri_native
1177 * also isn't properly initialized for all threads, but it
1178 * is properly initialized for kernel realtime and idletime
1179 * threads. Thus we use pri_user for the base priority of
1180 * user threads (it is always correct) and pri_native for
1181 * the base priority of kernel realtime and idletime threads
1182 * (there is nothing better, and it is usually correct).
1184 * The field width and thus the buffer are too small for
1185 * values like "kr31F", but such values shouldn't occur,
1186 * and if they do then the tailing "F" is not displayed.
1188 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1189 pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1190 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1191 kproc, rtpri, fifo);
1192 break;
1193 case PRI_TIMESHARE:
1194 if (pp->ki_flag & P_KPROC)
1195 return ("-");
1196 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1197 break;
1198 case PRI_IDLE:
1199 /* XXX: as above. */
1200 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1201 pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1202 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1203 kproc, rtpri, fifo);
1204 break;
1205 default:
1206 return ("?");
1208 return (nicebuf);
1211 /* comparison routines for qsort */
1213 static int
1214 compare_pid(const void *p1, const void *p2)
1216 const struct kinfo_proc * const *pp1 = p1;
1217 const struct kinfo_proc * const *pp2 = p2;
1219 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
1220 abort();
1222 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1225 static int
1226 compare_tid(const void *p1, const void *p2)
1228 const struct kinfo_proc * const *pp1 = p1;
1229 const struct kinfo_proc * const *pp2 = p2;
1231 if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0)
1232 abort();
1234 return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1238 * proc_compare - comparison function for "qsort"
1239 * Compares the resource consumption of two processes using five
1240 * distinct keys. The keys (in descending order of importance) are:
1241 * percent cpu, cpu ticks, state, resident set size, total virtual
1242 * memory usage. The process states are ordered as follows (from least
1243 * to most important): WAIT, zombie, sleep, stop, start, run. The
1244 * array declaration below maps a process state index into a number
1245 * that reflects this ordering.
1248 static int sorted_state[] = {
1249 0, /* not used */
1250 3, /* sleep */
1251 1, /* ABANDONED (WAIT) */
1252 6, /* run */
1253 5, /* start */
1254 2, /* zombie */
1255 4 /* stop */
1259 #define ORDERKEY_PCTCPU(a, b) do { \
1260 double diff; \
1261 if (ps.wcpu) \
1262 diff = weighted_cpu(PCTCPU((b)), (b)) - \
1263 weighted_cpu(PCTCPU((a)), (a)); \
1264 else \
1265 diff = PCTCPU((b)) - PCTCPU((a)); \
1266 if (diff != 0) \
1267 return (diff > 0 ? 1 : -1); \
1268 } while (0)
1270 #define ORDERKEY_CPTICKS(a, b) do { \
1271 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1272 if (diff != 0) \
1273 return (diff > 0 ? 1 : -1); \
1274 } while (0)
1276 #define ORDERKEY_STATE(a, b) do { \
1277 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
1278 if (diff != 0) \
1279 return (diff > 0 ? 1 : -1); \
1280 } while (0)
1282 #define ORDERKEY_PRIO(a, b) do { \
1283 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1284 if (diff != 0) \
1285 return (diff > 0 ? 1 : -1); \
1286 } while (0)
1288 #define ORDERKEY_THREADS(a, b) do { \
1289 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1290 if (diff != 0) \
1291 return (diff > 0 ? 1 : -1); \
1292 } while (0)
1294 #define ORDERKEY_RSSIZE(a, b) do { \
1295 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1296 if (diff != 0) \
1297 return (diff > 0 ? 1 : -1); \
1298 } while (0)
1300 #define ORDERKEY_MEM(a, b) do { \
1301 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1302 if (diff != 0) \
1303 return (diff > 0 ? 1 : -1); \
1304 } while (0)
1306 #define ORDERKEY_JID(a, b) do { \
1307 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1308 if (diff != 0) \
1309 return (diff > 0 ? 1 : -1); \
1310 } while (0)
1312 /* compare_cpu - the comparison function for sorting by cpu percentage */
1315 #ifdef ORDER
1316 compare_cpu(void *arg1, void *arg2)
1317 #else
1318 proc_compare(void *arg1, void *arg2)
1319 #endif
1321 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1322 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1324 ORDERKEY_PCTCPU(p1, p2);
1325 ORDERKEY_CPTICKS(p1, p2);
1326 ORDERKEY_STATE(p1, p2);
1327 ORDERKEY_PRIO(p1, p2);
1328 ORDERKEY_RSSIZE(p1, p2);
1329 ORDERKEY_MEM(p1, p2);
1331 return (0);
1334 #ifdef ORDER
1335 /* "cpu" compare routines */
1336 int compare_size(), compare_res(), compare_time(), compare_prio(),
1337 compare_threads();
1340 * "io" compare routines. Context switches aren't i/o, but are displayed
1341 * on the "io" display.
1343 int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1344 compare_vcsw(), compare_ivcsw();
1346 int (*compares[])() = {
1347 compare_cpu,
1348 compare_size,
1349 compare_res,
1350 compare_time,
1351 compare_prio,
1352 compare_threads,
1353 compare_iototal,
1354 compare_ioread,
1355 compare_iowrite,
1356 compare_iofault,
1357 compare_vcsw,
1358 compare_ivcsw,
1359 compare_jid,
1360 NULL
1363 /* compare_size - the comparison function for sorting by total memory usage */
1366 compare_size(void *arg1, void *arg2)
1368 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1369 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1371 ORDERKEY_MEM(p1, p2);
1372 ORDERKEY_RSSIZE(p1, p2);
1373 ORDERKEY_PCTCPU(p1, p2);
1374 ORDERKEY_CPTICKS(p1, p2);
1375 ORDERKEY_STATE(p1, p2);
1376 ORDERKEY_PRIO(p1, p2);
1378 return (0);
1381 /* compare_res - the comparison function for sorting by resident set size */
1384 compare_res(void *arg1, void *arg2)
1386 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1387 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1389 ORDERKEY_RSSIZE(p1, p2);
1390 ORDERKEY_MEM(p1, p2);
1391 ORDERKEY_PCTCPU(p1, p2);
1392 ORDERKEY_CPTICKS(p1, p2);
1393 ORDERKEY_STATE(p1, p2);
1394 ORDERKEY_PRIO(p1, p2);
1396 return (0);
1399 /* compare_time - the comparison function for sorting by total cpu time */
1402 compare_time(void *arg1, void *arg2)
1404 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1405 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1407 ORDERKEY_CPTICKS(p1, p2);
1408 ORDERKEY_PCTCPU(p1, p2);
1409 ORDERKEY_STATE(p1, p2);
1410 ORDERKEY_PRIO(p1, p2);
1411 ORDERKEY_RSSIZE(p1, p2);
1412 ORDERKEY_MEM(p1, p2);
1414 return (0);
1417 /* compare_prio - the comparison function for sorting by priority */
1420 compare_prio(void *arg1, void *arg2)
1422 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1423 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1425 ORDERKEY_PRIO(p1, p2);
1426 ORDERKEY_CPTICKS(p1, p2);
1427 ORDERKEY_PCTCPU(p1, p2);
1428 ORDERKEY_STATE(p1, p2);
1429 ORDERKEY_RSSIZE(p1, p2);
1430 ORDERKEY_MEM(p1, p2);
1432 return (0);
1435 /* compare_threads - the comparison function for sorting by threads */
1437 compare_threads(void *arg1, void *arg2)
1439 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1440 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1442 ORDERKEY_THREADS(p1, p2);
1443 ORDERKEY_PCTCPU(p1, p2);
1444 ORDERKEY_CPTICKS(p1, p2);
1445 ORDERKEY_STATE(p1, p2);
1446 ORDERKEY_PRIO(p1, p2);
1447 ORDERKEY_RSSIZE(p1, p2);
1448 ORDERKEY_MEM(p1, p2);
1450 return (0);
1453 /* compare_jid - the comparison function for sorting by jid */
1454 static int
1455 compare_jid(const void *arg1, const void *arg2)
1457 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1458 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1460 ORDERKEY_JID(p1, p2);
1461 ORDERKEY_PCTCPU(p1, p2);
1462 ORDERKEY_CPTICKS(p1, p2);
1463 ORDERKEY_STATE(p1, p2);
1464 ORDERKEY_PRIO(p1, p2);
1465 ORDERKEY_RSSIZE(p1, p2);
1466 ORDERKEY_MEM(p1, p2);
1468 return (0);
1470 #endif /* ORDER */
1472 /* assorted comparison functions for sorting by i/o */
1475 #ifdef ORDER
1476 compare_iototal(void *arg1, void *arg2)
1477 #else
1478 io_compare(void *arg1, void *arg2)
1479 #endif
1481 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1482 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1484 return (get_io_total(p2) - get_io_total(p1));
1487 #ifdef ORDER
1489 compare_ioread(void *arg1, void *arg2)
1491 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1492 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1493 long dummy, inp1, inp2;
1495 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1496 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1498 return (inp2 - inp1);
1502 compare_iowrite(void *arg1, void *arg2)
1504 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1505 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1506 long dummy, oup1, oup2;
1508 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1509 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1511 return (oup2 - oup1);
1515 compare_iofault(void *arg1, void *arg2)
1517 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1518 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1519 long dummy, flp1, flp2;
1521 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1522 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1524 return (flp2 - flp1);
1528 compare_vcsw(void *arg1, void *arg2)
1530 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1531 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1532 long dummy, flp1, flp2;
1534 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1535 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1537 return (flp2 - flp1);
1541 compare_ivcsw(void *arg1, void *arg2)
1543 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1544 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1545 long dummy, flp1, flp2;
1547 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1548 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1550 return (flp2 - flp1);
1552 #endif /* ORDER */
1555 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1556 * the process does not exist.
1557 * It is EXTREMELY IMPORTANT that this function work correctly.
1558 * If top runs setuid root (as in SVR4), then this function
1559 * is the only thing that stands in the way of a serious
1560 * security problem. It validates requests for the "kill"
1561 * and "renice" commands.
1565 proc_owner(int pid)
1567 int cnt;
1568 struct kinfo_proc **prefp;
1569 struct kinfo_proc *pp;
1571 prefp = pref;
1572 cnt = pref_len;
1573 while (--cnt >= 0) {
1574 pp = *prefp++;
1575 if (pp->ki_pid == (pid_t)pid)
1576 return ((int)pp->ki_ruid);
1578 return (-1);
1581 static int
1582 swapmode(int *retavail, int *retfree)
1584 int n;
1585 int pagesize = getpagesize();
1586 struct kvm_swap swapary[1];
1588 *retavail = 0;
1589 *retfree = 0;
1591 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1593 n = kvm_getswapinfo(kd, swapary, 1, 0);
1594 if (n < 0 || swapary[0].ksw_total == 0)
1595 return (0);
1597 *retavail = CONVERT(swapary[0].ksw_total);
1598 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1600 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1601 return (n);