keyserv(1): drop useless comparison.
[freebsd-src.git] / sys / net80211 / ieee80211_proto.c
blobc85aebf113706626d56b1643b5adb9c5a283a6d2
1 /*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * Copyright (c) 2012 IEEE
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
32 * IEEE 802.11 protocol support.
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h> /* XXX for ether_sprintf */
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_adhoc.h>
53 #include <net80211/ieee80211_sta.h>
54 #include <net80211/ieee80211_hostap.h>
55 #include <net80211/ieee80211_wds.h>
56 #ifdef IEEE80211_SUPPORT_MESH
57 #include <net80211/ieee80211_mesh.h>
58 #endif
59 #include <net80211/ieee80211_monitor.h>
60 #include <net80211/ieee80211_input.h>
62 /* XXX tunables */
63 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
64 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
66 const char *mgt_subtype_name[] = {
67 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
68 "probe_req", "probe_resp", "timing_adv", "reserved#7",
69 "beacon", "atim", "disassoc", "auth",
70 "deauth", "action", "action_noack", "reserved#15"
72 const char *ctl_subtype_name[] = {
73 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
74 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
75 "bar", "ba", "ps_poll", "rts",
76 "cts", "ack", "cf_end", "cf_end_ack"
78 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
79 "IBSS", /* IEEE80211_M_IBSS */
80 "STA", /* IEEE80211_M_STA */
81 "WDS", /* IEEE80211_M_WDS */
82 "AHDEMO", /* IEEE80211_M_AHDEMO */
83 "HOSTAP", /* IEEE80211_M_HOSTAP */
84 "MONITOR", /* IEEE80211_M_MONITOR */
85 "MBSS" /* IEEE80211_M_MBSS */
87 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
88 "INIT", /* IEEE80211_S_INIT */
89 "SCAN", /* IEEE80211_S_SCAN */
90 "AUTH", /* IEEE80211_S_AUTH */
91 "ASSOC", /* IEEE80211_S_ASSOC */
92 "CAC", /* IEEE80211_S_CAC */
93 "RUN", /* IEEE80211_S_RUN */
94 "CSA", /* IEEE80211_S_CSA */
95 "SLEEP", /* IEEE80211_S_SLEEP */
97 const char *ieee80211_wme_acnames[] = {
98 "WME_AC_BE",
99 "WME_AC_BK",
100 "WME_AC_VI",
101 "WME_AC_VO",
102 "WME_UPSD",
107 * Reason code descriptions were (mostly) obtained from
108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
110 const char *
111 ieee80211_reason_to_string(uint16_t reason)
113 switch (reason) {
114 case IEEE80211_REASON_UNSPECIFIED:
115 return ("unspecified");
116 case IEEE80211_REASON_AUTH_EXPIRE:
117 return ("previous authentication is expired");
118 case IEEE80211_REASON_AUTH_LEAVE:
119 return ("sending STA is leaving/has left IBSS or ESS");
120 case IEEE80211_REASON_ASSOC_EXPIRE:
121 return ("disassociated due to inactivity");
122 case IEEE80211_REASON_ASSOC_TOOMANY:
123 return ("too many associated STAs");
124 case IEEE80211_REASON_NOT_AUTHED:
125 return ("class 2 frame received from nonauthenticated STA");
126 case IEEE80211_REASON_NOT_ASSOCED:
127 return ("class 3 frame received from nonassociated STA");
128 case IEEE80211_REASON_ASSOC_LEAVE:
129 return ("sending STA is leaving/has left BSS");
130 case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 return ("STA requesting (re)association is not authenticated");
132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 return ("information in the Power Capability element is "
134 "unacceptable");
135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 return ("information in the Supported Channels element is "
137 "unacceptable");
138 case IEEE80211_REASON_IE_INVALID:
139 return ("invalid element");
140 case IEEE80211_REASON_MIC_FAILURE:
141 return ("MIC failure");
142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 return ("4-Way handshake timeout");
144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 return ("group key update timeout");
146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 return ("element in 4-Way handshake different from "
148 "(re)association request/probe response/beacon frame");
149 case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 return ("invalid group cipher");
151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 return ("invalid pairwise cipher");
153 case IEEE80211_REASON_AKMP_INVALID:
154 return ("invalid AKMP");
155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 return ("unsupported version in RSN IE");
157 case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 return ("invalid capabilities in RSN IE");
159 case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 return ("IEEE 802.1X authentication failed");
161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 return ("cipher suite rejected because of the security "
163 "policy");
164 case IEEE80211_REASON_UNSPECIFIED_QOS:
165 return ("unspecified (QoS-related)");
166 case IEEE80211_REASON_INSUFFICIENT_BW:
167 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 case IEEE80211_REASON_TOOMANY_FRAMES:
169 return ("too many frames need to be acknowledged");
170 case IEEE80211_REASON_OUTSIDE_TXOP:
171 return ("STA is transmitting outside the limits of its TXOPs");
172 case IEEE80211_REASON_LEAVING_QBSS:
173 return ("requested from peer STA (the STA is "
174 "resetting/leaving the BSS)");
175 case IEEE80211_REASON_BAD_MECHANISM:
176 return ("requested from peer STA (it does not want to use "
177 "the mechanism)");
178 case IEEE80211_REASON_SETUP_NEEDED:
179 return ("requested from peer STA (setup is required for the "
180 "used mechanism)");
181 case IEEE80211_REASON_TIMEOUT:
182 return ("requested from peer STA (timeout)");
183 case IEEE80211_REASON_PEER_LINK_CANCELED:
184 return ("SME cancels the mesh peering instance (not related "
185 "to the maximum number of peer mesh STAs)");
186 case IEEE80211_REASON_MESH_MAX_PEERS:
187 return ("maximum number of peer mesh STAs was reached");
188 case IEEE80211_REASON_MESH_CPVIOLATION:
189 return ("the received information violates the Mesh "
190 "Configuration policy configured in the mesh STA "
191 "profile");
192 case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 return ("the mesh STA has received a Mesh Peering Close "
194 "message requesting to close the mesh peering");
195 case IEEE80211_REASON_MESH_MAX_RETRIES:
196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 "Peering Open messages, without receiving a Mesh "
198 "Peering Confirm message");
199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 return ("the confirmTimer for the mesh peering instance times "
201 "out");
202 case IEEE80211_REASON_MESH_INVALID_GTK:
203 return ("the mesh STA fails to unwrap the GTK or the values "
204 "in the wrapped contents do not match");
205 case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 return ("the mesh STA receives inconsistent information about "
207 "the mesh parameters between Mesh Peering Management "
208 "frames");
209 case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 return ("the mesh STA fails the authenticated mesh peering "
211 "exchange because due to failure in selecting "
212 "pairwise/group ciphersuite");
213 case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 return ("the mesh STA does not have proxy information for "
215 "this external destination");
216 case IEEE80211_REASON_MESH_PERR_NO_FI:
217 return ("the mesh STA does not have forwarding information "
218 "for this destination");
219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 return ("the mesh STA determines that the link to the next "
221 "hop of an active path in its forwarding information "
222 "is no longer usable");
223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 return ("the MAC address of the STA already exists in the "
225 "mesh BSS");
226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 return ("the mesh STA performs channel switch to meet "
228 "regulatory requirements");
229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 return ("the mesh STA performs channel switch with "
231 "unspecified reason");
232 default:
233 return ("reserved/unknown");
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void update_wme(void *, int);
245 static void restart_vaps(void *, int);
246 static void ieee80211_newstate_cb(void *, int);
248 static int
249 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
250 const struct ieee80211_bpf_params *params)
253 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
254 m_freem(m);
255 return ENETDOWN;
258 void
259 ieee80211_proto_attach(struct ieee80211com *ic)
261 uint8_t hdrlen;
263 /* override the 802.3 setting */
264 hdrlen = ic->ic_headroom
265 + sizeof(struct ieee80211_qosframe_addr4)
266 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
267 + IEEE80211_WEP_EXTIVLEN;
268 /* XXX no way to recalculate on ifdetach */
269 if (ALIGN(hdrlen) > max_linkhdr) {
270 /* XXX sanity check... */
271 max_linkhdr = ALIGN(hdrlen);
272 max_hdr = max_linkhdr + max_protohdr;
273 max_datalen = MHLEN - max_hdr;
275 ic->ic_protmode = IEEE80211_PROT_CTSONLY;
277 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
278 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
279 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
280 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
281 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
282 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
283 TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic);
284 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
286 ic->ic_wme.wme_hipri_switch_hysteresis =
287 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
289 /* initialize management frame handlers */
290 ic->ic_send_mgmt = ieee80211_send_mgmt;
291 ic->ic_raw_xmit = null_raw_xmit;
293 ieee80211_adhoc_attach(ic);
294 ieee80211_sta_attach(ic);
295 ieee80211_wds_attach(ic);
296 ieee80211_hostap_attach(ic);
297 #ifdef IEEE80211_SUPPORT_MESH
298 ieee80211_mesh_attach(ic);
299 #endif
300 ieee80211_monitor_attach(ic);
303 void
304 ieee80211_proto_detach(struct ieee80211com *ic)
306 ieee80211_monitor_detach(ic);
307 #ifdef IEEE80211_SUPPORT_MESH
308 ieee80211_mesh_detach(ic);
309 #endif
310 ieee80211_hostap_detach(ic);
311 ieee80211_wds_detach(ic);
312 ieee80211_adhoc_detach(ic);
313 ieee80211_sta_detach(ic);
316 static void
317 null_update_beacon(struct ieee80211vap *vap, int item)
321 void
322 ieee80211_proto_vattach(struct ieee80211vap *vap)
324 struct ieee80211com *ic = vap->iv_ic;
325 struct ifnet *ifp = vap->iv_ifp;
326 int i;
328 /* override the 802.3 setting */
329 ifp->if_hdrlen = ic->ic_headroom
330 + sizeof(struct ieee80211_qosframe_addr4)
331 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
332 + IEEE80211_WEP_EXTIVLEN;
334 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
335 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
336 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
337 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
338 callout_init(&vap->iv_mgtsend, 1);
339 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
340 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342 * Install default tx rate handling: no fixed rate, lowest
343 * supported rate for mgmt and multicast frames. Default
344 * max retry count. These settings can be changed by the
345 * driver and/or user applications.
347 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
348 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
350 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
353 * Setting the management rate to MCS 0 assumes that the
354 * BSS Basic rate set is empty and the BSS Basic MCS set
355 * is not.
357 * Since we're not checking this, default to the lowest
358 * defined rate for this mode.
360 * At least one 11n AP (DLINK DIR-825) is reported to drop
361 * some MCS management traffic (eg BA response frames.)
363 * See also: 9.6.0 of the 802.11n-2009 specification.
365 #ifdef NOTYET
366 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
367 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
368 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
369 } else {
370 vap->iv_txparms[i].mgmtrate =
371 rs->rs_rates[0] & IEEE80211_RATE_VAL;
372 vap->iv_txparms[i].mcastrate =
373 rs->rs_rates[0] & IEEE80211_RATE_VAL;
375 #endif
376 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
377 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
378 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
380 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
382 vap->iv_update_beacon = null_update_beacon;
383 vap->iv_deliver_data = ieee80211_deliver_data;
385 /* attach support for operating mode */
386 ic->ic_vattach[vap->iv_opmode](vap);
389 void
390 ieee80211_proto_vdetach(struct ieee80211vap *vap)
392 #define FREEAPPIE(ie) do { \
393 if (ie != NULL) \
394 IEEE80211_FREE(ie, M_80211_NODE_IE); \
395 } while (0)
397 * Detach operating mode module.
399 if (vap->iv_opdetach != NULL)
400 vap->iv_opdetach(vap);
402 * This should not be needed as we detach when reseting
403 * the state but be conservative here since the
404 * authenticator may do things like spawn kernel threads.
406 if (vap->iv_auth->ia_detach != NULL)
407 vap->iv_auth->ia_detach(vap);
409 * Detach any ACL'ator.
411 if (vap->iv_acl != NULL)
412 vap->iv_acl->iac_detach(vap);
414 FREEAPPIE(vap->iv_appie_beacon);
415 FREEAPPIE(vap->iv_appie_probereq);
416 FREEAPPIE(vap->iv_appie_proberesp);
417 FREEAPPIE(vap->iv_appie_assocreq);
418 FREEAPPIE(vap->iv_appie_assocresp);
419 FREEAPPIE(vap->iv_appie_wpa);
420 #undef FREEAPPIE
424 * Simple-minded authenticator module support.
427 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
428 /* XXX well-known names */
429 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
430 "wlan_internal", /* IEEE80211_AUTH_NONE */
431 "wlan_internal", /* IEEE80211_AUTH_OPEN */
432 "wlan_internal", /* IEEE80211_AUTH_SHARED */
433 "wlan_xauth", /* IEEE80211_AUTH_8021X */
434 "wlan_internal", /* IEEE80211_AUTH_AUTO */
435 "wlan_xauth", /* IEEE80211_AUTH_WPA */
437 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
439 static const struct ieee80211_authenticator auth_internal = {
440 .ia_name = "wlan_internal",
441 .ia_attach = NULL,
442 .ia_detach = NULL,
443 .ia_node_join = NULL,
444 .ia_node_leave = NULL,
448 * Setup internal authenticators once; they are never unregistered.
450 static void
451 ieee80211_auth_setup(void)
453 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
454 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
455 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
457 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
459 const struct ieee80211_authenticator *
460 ieee80211_authenticator_get(int auth)
462 if (auth >= IEEE80211_AUTH_MAX)
463 return NULL;
464 if (authenticators[auth] == NULL)
465 ieee80211_load_module(auth_modnames[auth]);
466 return authenticators[auth];
469 void
470 ieee80211_authenticator_register(int type,
471 const struct ieee80211_authenticator *auth)
473 if (type >= IEEE80211_AUTH_MAX)
474 return;
475 authenticators[type] = auth;
478 void
479 ieee80211_authenticator_unregister(int type)
482 if (type >= IEEE80211_AUTH_MAX)
483 return;
484 authenticators[type] = NULL;
488 * Very simple-minded ACL module support.
490 /* XXX just one for now */
491 static const struct ieee80211_aclator *acl = NULL;
493 void
494 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
496 printf("wlan: %s acl policy registered\n", iac->iac_name);
497 acl = iac;
500 void
501 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
503 if (acl == iac)
504 acl = NULL;
505 printf("wlan: %s acl policy unregistered\n", iac->iac_name);
508 const struct ieee80211_aclator *
509 ieee80211_aclator_get(const char *name)
511 if (acl == NULL)
512 ieee80211_load_module("wlan_acl");
513 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
516 void
517 ieee80211_print_essid(const uint8_t *essid, int len)
519 const uint8_t *p;
520 int i;
522 if (len > IEEE80211_NWID_LEN)
523 len = IEEE80211_NWID_LEN;
524 /* determine printable or not */
525 for (i = 0, p = essid; i < len; i++, p++) {
526 if (*p < ' ' || *p > 0x7e)
527 break;
529 if (i == len) {
530 printf("\"");
531 for (i = 0, p = essid; i < len; i++, p++)
532 printf("%c", *p);
533 printf("\"");
534 } else {
535 printf("0x");
536 for (i = 0, p = essid; i < len; i++, p++)
537 printf("%02x", *p);
541 void
542 ieee80211_dump_pkt(struct ieee80211com *ic,
543 const uint8_t *buf, int len, int rate, int rssi)
545 const struct ieee80211_frame *wh;
546 int i;
548 wh = (const struct ieee80211_frame *)buf;
549 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
550 case IEEE80211_FC1_DIR_NODS:
551 printf("NODS %s", ether_sprintf(wh->i_addr2));
552 printf("->%s", ether_sprintf(wh->i_addr1));
553 printf("(%s)", ether_sprintf(wh->i_addr3));
554 break;
555 case IEEE80211_FC1_DIR_TODS:
556 printf("TODS %s", ether_sprintf(wh->i_addr2));
557 printf("->%s", ether_sprintf(wh->i_addr3));
558 printf("(%s)", ether_sprintf(wh->i_addr1));
559 break;
560 case IEEE80211_FC1_DIR_FROMDS:
561 printf("FRDS %s", ether_sprintf(wh->i_addr3));
562 printf("->%s", ether_sprintf(wh->i_addr1));
563 printf("(%s)", ether_sprintf(wh->i_addr2));
564 break;
565 case IEEE80211_FC1_DIR_DSTODS:
566 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
567 printf("->%s", ether_sprintf(wh->i_addr3));
568 printf("(%s", ether_sprintf(wh->i_addr2));
569 printf("->%s)", ether_sprintf(wh->i_addr1));
570 break;
572 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
573 case IEEE80211_FC0_TYPE_DATA:
574 printf(" data");
575 break;
576 case IEEE80211_FC0_TYPE_MGT:
577 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
578 break;
579 default:
580 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
581 break;
583 if (IEEE80211_QOS_HAS_SEQ(wh)) {
584 const struct ieee80211_qosframe *qwh =
585 (const struct ieee80211_qosframe *)buf;
586 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
587 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
589 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
590 int off;
592 off = ieee80211_anyhdrspace(ic, wh);
593 printf(" WEP [IV %.02x %.02x %.02x",
594 buf[off+0], buf[off+1], buf[off+2]);
595 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
596 printf(" %.02x %.02x %.02x",
597 buf[off+4], buf[off+5], buf[off+6]);
598 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
600 if (rate >= 0)
601 printf(" %dM", rate / 2);
602 if (rssi >= 0)
603 printf(" +%d", rssi);
604 printf("\n");
605 if (len > 0) {
606 for (i = 0; i < len; i++) {
607 if ((i & 1) == 0)
608 printf(" ");
609 printf("%02x", buf[i]);
611 printf("\n");
615 static __inline int
616 findrix(const struct ieee80211_rateset *rs, int r)
618 int i;
620 for (i = 0; i < rs->rs_nrates; i++)
621 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
622 return i;
623 return -1;
627 ieee80211_fix_rate(struct ieee80211_node *ni,
628 struct ieee80211_rateset *nrs, int flags)
630 struct ieee80211vap *vap = ni->ni_vap;
631 struct ieee80211com *ic = ni->ni_ic;
632 int i, j, rix, error;
633 int okrate, badrate, fixedrate, ucastrate;
634 const struct ieee80211_rateset *srs;
635 uint8_t r;
637 error = 0;
638 okrate = badrate = 0;
639 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
640 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
642 * Workaround awkwardness with fixed rate. We are called
643 * to check both the legacy rate set and the HT rate set
644 * but we must apply any legacy fixed rate check only to the
645 * legacy rate set and vice versa. We cannot tell what type
646 * of rate set we've been given (legacy or HT) but we can
647 * distinguish the fixed rate type (MCS have 0x80 set).
648 * So to deal with this the caller communicates whether to
649 * check MCS or legacy rate using the flags and we use the
650 * type of any fixed rate to avoid applying an MCS to a
651 * legacy rate and vice versa.
653 if (ucastrate & 0x80) {
654 if (flags & IEEE80211_F_DOFRATE)
655 flags &= ~IEEE80211_F_DOFRATE;
656 } else if ((ucastrate & 0x80) == 0) {
657 if (flags & IEEE80211_F_DOFMCS)
658 flags &= ~IEEE80211_F_DOFMCS;
660 /* NB: required to make MCS match below work */
661 ucastrate &= IEEE80211_RATE_VAL;
663 fixedrate = IEEE80211_FIXED_RATE_NONE;
665 * XXX we are called to process both MCS and legacy rates;
666 * we must use the appropriate basic rate set or chaos will
667 * ensue; for now callers that want MCS must supply
668 * IEEE80211_F_DOBRS; at some point we'll need to split this
669 * function so there are two variants, one for MCS and one
670 * for legacy rates.
672 if (flags & IEEE80211_F_DOBRS)
673 srs = (const struct ieee80211_rateset *)
674 ieee80211_get_suphtrates(ic, ni->ni_chan);
675 else
676 srs = ieee80211_get_suprates(ic, ni->ni_chan);
677 for (i = 0; i < nrs->rs_nrates; ) {
678 if (flags & IEEE80211_F_DOSORT) {
680 * Sort rates.
682 for (j = i + 1; j < nrs->rs_nrates; j++) {
683 if (IEEE80211_RV(nrs->rs_rates[i]) >
684 IEEE80211_RV(nrs->rs_rates[j])) {
685 r = nrs->rs_rates[i];
686 nrs->rs_rates[i] = nrs->rs_rates[j];
687 nrs->rs_rates[j] = r;
691 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
692 badrate = r;
694 * Check for fixed rate.
696 if (r == ucastrate)
697 fixedrate = r;
699 * Check against supported rates.
701 rix = findrix(srs, r);
702 if (flags & IEEE80211_F_DONEGO) {
703 if (rix < 0) {
705 * A rate in the node's rate set is not
706 * supported. If this is a basic rate and we
707 * are operating as a STA then this is an error.
708 * Otherwise we just discard/ignore the rate.
710 if ((flags & IEEE80211_F_JOIN) &&
711 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
712 error++;
713 } else if ((flags & IEEE80211_F_JOIN) == 0) {
715 * Overwrite with the supported rate
716 * value so any basic rate bit is set.
718 nrs->rs_rates[i] = srs->rs_rates[rix];
721 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
723 * Delete unacceptable rates.
725 nrs->rs_nrates--;
726 for (j = i; j < nrs->rs_nrates; j++)
727 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
728 nrs->rs_rates[j] = 0;
729 continue;
731 if (rix >= 0)
732 okrate = nrs->rs_rates[i];
733 i++;
735 if (okrate == 0 || error != 0 ||
736 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
737 fixedrate != ucastrate)) {
738 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
739 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
740 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
741 return badrate | IEEE80211_RATE_BASIC;
742 } else
743 return IEEE80211_RV(okrate);
747 * Reset 11g-related state.
749 void
750 ieee80211_reset_erp(struct ieee80211com *ic)
752 ic->ic_flags &= ~IEEE80211_F_USEPROT;
753 ic->ic_nonerpsta = 0;
754 ic->ic_longslotsta = 0;
756 * Short slot time is enabled only when operating in 11g
757 * and not in an IBSS. We must also honor whether or not
758 * the driver is capable of doing it.
760 ieee80211_set_shortslottime(ic,
761 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
762 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
763 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
764 ic->ic_opmode == IEEE80211_M_HOSTAP &&
765 (ic->ic_caps & IEEE80211_C_SHSLOT)));
767 * Set short preamble and ERP barker-preamble flags.
769 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
770 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
771 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
772 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
773 } else {
774 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
775 ic->ic_flags |= IEEE80211_F_USEBARKER;
780 * Set the short slot time state and notify the driver.
782 void
783 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
785 if (onoff)
786 ic->ic_flags |= IEEE80211_F_SHSLOT;
787 else
788 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
789 /* notify driver */
790 if (ic->ic_updateslot != NULL)
791 ic->ic_updateslot(ic);
795 * Check if the specified rate set supports ERP.
796 * NB: the rate set is assumed to be sorted.
799 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
801 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
802 int i, j;
804 if (rs->rs_nrates < nitems(rates))
805 return 0;
806 for (i = 0; i < nitems(rates); i++) {
807 for (j = 0; j < rs->rs_nrates; j++) {
808 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
809 if (rates[i] == r)
810 goto next;
811 if (r > rates[i])
812 return 0;
814 return 0;
815 next:
818 return 1;
822 * Mark the basic rates for the rate table based on the
823 * operating mode. For real 11g we mark all the 11b rates
824 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
825 * 11b rates. There's also a pseudo 11a-mode used to mark only
826 * the basic OFDM rates.
828 static void
829 setbasicrates(struct ieee80211_rateset *rs,
830 enum ieee80211_phymode mode, int add)
832 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
833 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
834 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
835 /* NB: mixed b/g */
836 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
837 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
838 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
839 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
840 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
841 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
842 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
843 /* NB: mixed b/g */
844 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
846 int i, j;
848 for (i = 0; i < rs->rs_nrates; i++) {
849 if (!add)
850 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
851 for (j = 0; j < basic[mode].rs_nrates; j++)
852 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
853 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
854 break;
860 * Set the basic rates in a rate set.
862 void
863 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
864 enum ieee80211_phymode mode)
866 setbasicrates(rs, mode, 0);
870 * Add basic rates to a rate set.
872 void
873 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
874 enum ieee80211_phymode mode)
876 setbasicrates(rs, mode, 1);
880 * WME protocol support.
882 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
883 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
884 * Draft 2.0 Test Plan (Appendix D).
886 * Static/Dynamic Turbo mode settings come from Atheros.
888 typedef struct phyParamType {
889 uint8_t aifsn;
890 uint8_t logcwmin;
891 uint8_t logcwmax;
892 uint16_t txopLimit;
893 uint8_t acm;
894 } paramType;
896 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
897 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
898 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
899 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
900 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
901 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
902 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
903 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
904 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
905 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
906 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
907 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
908 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
910 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
911 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
912 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
913 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
914 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
915 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
916 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
917 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
918 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
919 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
920 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
921 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
922 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
924 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
925 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
926 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
927 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
928 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
929 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
930 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
931 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
932 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
933 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
934 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
935 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
936 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
938 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
939 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
940 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
941 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
942 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
943 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
944 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
945 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
946 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
947 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
948 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
949 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
950 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
953 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
954 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
955 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
956 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
957 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
958 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
959 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
960 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
961 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
962 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
963 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
964 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
965 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
967 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
968 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
969 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
970 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
971 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
972 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
973 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
974 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
975 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
976 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
977 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
978 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
979 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
981 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
982 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
983 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
984 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
985 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
986 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
987 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
988 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
989 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
990 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
991 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
992 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
993 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
996 static void
997 _setifsparams(struct wmeParams *wmep, const paramType *phy)
999 wmep->wmep_aifsn = phy->aifsn;
1000 wmep->wmep_logcwmin = phy->logcwmin;
1001 wmep->wmep_logcwmax = phy->logcwmax;
1002 wmep->wmep_txopLimit = phy->txopLimit;
1005 static void
1006 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1007 struct wmeParams *wmep, const paramType *phy)
1009 wmep->wmep_acm = phy->acm;
1010 _setifsparams(wmep, phy);
1012 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1013 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1014 ieee80211_wme_acnames[ac], type,
1015 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1016 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1019 static void
1020 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1022 struct ieee80211com *ic = vap->iv_ic;
1023 struct ieee80211_wme_state *wme = &ic->ic_wme;
1024 const paramType *pPhyParam, *pBssPhyParam;
1025 struct wmeParams *wmep;
1026 enum ieee80211_phymode mode;
1027 int i;
1029 IEEE80211_LOCK_ASSERT(ic);
1031 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1032 return;
1035 * Clear the wme cap_info field so a qoscount from a previous
1036 * vap doesn't confuse later code which only parses the beacon
1037 * field and updates hardware when said field changes.
1038 * Otherwise the hardware is programmed with defaults, not what
1039 * the beacon actually announces.
1041 wme->wme_wmeChanParams.cap_info = 0;
1044 * Select mode; we can be called early in which case we
1045 * always use auto mode. We know we'll be called when
1046 * entering the RUN state with bsschan setup properly
1047 * so state will eventually get set correctly
1049 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1050 mode = ieee80211_chan2mode(ic->ic_bsschan);
1051 else
1052 mode = IEEE80211_MODE_AUTO;
1053 for (i = 0; i < WME_NUM_AC; i++) {
1054 switch (i) {
1055 case WME_AC_BK:
1056 pPhyParam = &phyParamForAC_BK[mode];
1057 pBssPhyParam = &phyParamForAC_BK[mode];
1058 break;
1059 case WME_AC_VI:
1060 pPhyParam = &phyParamForAC_VI[mode];
1061 pBssPhyParam = &bssPhyParamForAC_VI[mode];
1062 break;
1063 case WME_AC_VO:
1064 pPhyParam = &phyParamForAC_VO[mode];
1065 pBssPhyParam = &bssPhyParamForAC_VO[mode];
1066 break;
1067 case WME_AC_BE:
1068 default:
1069 pPhyParam = &phyParamForAC_BE[mode];
1070 pBssPhyParam = &bssPhyParamForAC_BE[mode];
1071 break;
1073 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1074 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1075 setwmeparams(vap, "chan", i, wmep, pPhyParam);
1076 } else {
1077 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1079 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1080 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1082 /* NB: check ic_bss to avoid NULL deref on initial attach */
1083 if (vap->iv_bss != NULL) {
1085 * Calculate aggressive mode switching threshold based
1086 * on beacon interval. This doesn't need locking since
1087 * we're only called before entering the RUN state at
1088 * which point we start sending beacon frames.
1090 wme->wme_hipri_switch_thresh =
1091 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1092 wme->wme_flags &= ~WME_F_AGGRMODE;
1093 ieee80211_wme_updateparams(vap);
1097 void
1098 ieee80211_wme_initparams(struct ieee80211vap *vap)
1100 struct ieee80211com *ic = vap->iv_ic;
1102 IEEE80211_LOCK(ic);
1103 ieee80211_wme_initparams_locked(vap);
1104 IEEE80211_UNLOCK(ic);
1108 * Update WME parameters for ourself and the BSS.
1110 void
1111 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1113 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1114 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
1115 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
1116 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
1117 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
1118 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
1119 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
1120 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
1121 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
1122 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
1123 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
1124 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1125 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1127 struct ieee80211com *ic = vap->iv_ic;
1128 struct ieee80211_wme_state *wme = &ic->ic_wme;
1129 const struct wmeParams *wmep;
1130 struct wmeParams *chanp, *bssp;
1131 enum ieee80211_phymode mode;
1132 int i;
1133 int do_aggrmode = 0;
1136 * Set up the channel access parameters for the physical
1137 * device. First populate the configured settings.
1139 for (i = 0; i < WME_NUM_AC; i++) {
1140 chanp = &wme->wme_chanParams.cap_wmeParams[i];
1141 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1142 chanp->wmep_aifsn = wmep->wmep_aifsn;
1143 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1144 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1145 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1147 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1148 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1149 chanp->wmep_aifsn = wmep->wmep_aifsn;
1150 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1151 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1152 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1156 * Select mode; we can be called early in which case we
1157 * always use auto mode. We know we'll be called when
1158 * entering the RUN state with bsschan setup properly
1159 * so state will eventually get set correctly
1161 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1162 mode = ieee80211_chan2mode(ic->ic_bsschan);
1163 else
1164 mode = IEEE80211_MODE_AUTO;
1167 * This implements aggressive mode as found in certain
1168 * vendors' AP's. When there is significant high
1169 * priority (VI/VO) traffic in the BSS throttle back BE
1170 * traffic by using conservative parameters. Otherwise
1171 * BE uses aggressive params to optimize performance of
1172 * legacy/non-QoS traffic.
1175 /* Hostap? Only if aggressive mode is enabled */
1176 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1177 (wme->wme_flags & WME_F_AGGRMODE) != 0)
1178 do_aggrmode = 1;
1181 * Station? Only if we're in a non-QoS BSS.
1183 else if ((vap->iv_opmode == IEEE80211_M_STA &&
1184 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1185 do_aggrmode = 1;
1188 * IBSS? Only if we we have WME enabled.
1190 else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1191 (vap->iv_flags & IEEE80211_F_WME))
1192 do_aggrmode = 1;
1195 * If WME is disabled on this VAP, default to aggressive mode
1196 * regardless of the configuration.
1198 if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1199 do_aggrmode = 1;
1201 /* XXX WDS? */
1203 /* XXX MBSS? */
1205 if (do_aggrmode) {
1206 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1207 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1209 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1210 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1211 aggrParam[mode].logcwmin;
1212 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1213 aggrParam[mode].logcwmax;
1214 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1215 (vap->iv_flags & IEEE80211_F_BURST) ?
1216 aggrParam[mode].txopLimit : 0;
1217 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1218 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1219 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1220 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1221 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1226 * Change the contention window based on the number of associated
1227 * stations. If the number of associated stations is 1 and
1228 * aggressive mode is enabled, lower the contention window even
1229 * further.
1231 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1232 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1233 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1234 [IEEE80211_MODE_AUTO] = 3,
1235 [IEEE80211_MODE_11A] = 3,
1236 [IEEE80211_MODE_11B] = 4,
1237 [IEEE80211_MODE_11G] = 3,
1238 [IEEE80211_MODE_FH] = 4,
1239 [IEEE80211_MODE_TURBO_A] = 3,
1240 [IEEE80211_MODE_TURBO_G] = 3,
1241 [IEEE80211_MODE_STURBO_A] = 3,
1242 [IEEE80211_MODE_HALF] = 3,
1243 [IEEE80211_MODE_QUARTER] = 3,
1244 [IEEE80211_MODE_11NA] = 3,
1245 [IEEE80211_MODE_11NG] = 3,
1247 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1248 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1250 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1251 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1252 "update %s (chan+bss) logcwmin %u\n",
1253 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1257 * Arrange for the beacon update.
1259 * XXX what about MBSS, WDS?
1261 if (vap->iv_opmode == IEEE80211_M_HOSTAP
1262 || vap->iv_opmode == IEEE80211_M_IBSS) {
1264 * Arrange for a beacon update and bump the parameter
1265 * set number so associated stations load the new values.
1267 wme->wme_bssChanParams.cap_info =
1268 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1269 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1272 /* schedule the deferred WME update */
1273 ieee80211_runtask(ic, &ic->ic_wme_task);
1275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1276 "%s: WME params updated, cap_info 0x%x\n", __func__,
1277 vap->iv_opmode == IEEE80211_M_STA ?
1278 wme->wme_wmeChanParams.cap_info :
1279 wme->wme_bssChanParams.cap_info);
1282 void
1283 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1285 struct ieee80211com *ic = vap->iv_ic;
1287 if (ic->ic_caps & IEEE80211_C_WME) {
1288 IEEE80211_LOCK(ic);
1289 ieee80211_wme_updateparams_locked(vap);
1290 IEEE80211_UNLOCK(ic);
1294 static void
1295 parent_updown(void *arg, int npending)
1297 struct ieee80211com *ic = arg;
1299 ic->ic_parent(ic);
1302 static void
1303 update_mcast(void *arg, int npending)
1305 struct ieee80211com *ic = arg;
1307 ic->ic_update_mcast(ic);
1310 static void
1311 update_promisc(void *arg, int npending)
1313 struct ieee80211com *ic = arg;
1315 ic->ic_update_promisc(ic);
1318 static void
1319 update_channel(void *arg, int npending)
1321 struct ieee80211com *ic = arg;
1323 ic->ic_set_channel(ic);
1324 ieee80211_radiotap_chan_change(ic);
1327 static void
1328 update_chw(void *arg, int npending)
1330 struct ieee80211com *ic = arg;
1333 * XXX should we defer the channel width _config_ update until now?
1335 ic->ic_update_chw(ic);
1338 static void
1339 update_wme(void *arg, int npending)
1341 struct ieee80211com *ic = arg;
1344 * XXX should we defer the WME configuration update until now?
1346 ic->ic_wme.wme_update(ic);
1349 static void
1350 restart_vaps(void *arg, int npending)
1352 struct ieee80211com *ic = arg;
1354 ieee80211_suspend_all(ic);
1355 ieee80211_resume_all(ic);
1359 * Block until the parent is in a known state. This is
1360 * used after any operations that dispatch a task (e.g.
1361 * to auto-configure the parent device up/down).
1363 void
1364 ieee80211_waitfor_parent(struct ieee80211com *ic)
1366 taskqueue_block(ic->ic_tq);
1367 ieee80211_draintask(ic, &ic->ic_parent_task);
1368 ieee80211_draintask(ic, &ic->ic_mcast_task);
1369 ieee80211_draintask(ic, &ic->ic_promisc_task);
1370 ieee80211_draintask(ic, &ic->ic_chan_task);
1371 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1372 ieee80211_draintask(ic, &ic->ic_chw_task);
1373 ieee80211_draintask(ic, &ic->ic_wme_task);
1374 taskqueue_unblock(ic->ic_tq);
1378 * Check to see whether the current channel needs reset.
1380 * Some devices don't handle being given an invalid channel
1381 * in their operating mode very well (eg wpi(4) will throw a
1382 * firmware exception.)
1384 * Return 0 if we're ok, 1 if the channel needs to be reset.
1386 * See PR kern/202502.
1388 static int
1389 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1391 struct ieee80211com *ic = vap->iv_ic;
1393 if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1394 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1395 (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1396 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1397 return (1);
1398 return (0);
1402 * Reset the curchan to a known good state.
1404 static void
1405 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1407 struct ieee80211com *ic = vap->iv_ic;
1409 ic->ic_curchan = &ic->ic_channels[0];
1413 * Start a vap running. If this is the first vap to be
1414 * set running on the underlying device then we
1415 * automatically bring the device up.
1417 void
1418 ieee80211_start_locked(struct ieee80211vap *vap)
1420 struct ifnet *ifp = vap->iv_ifp;
1421 struct ieee80211com *ic = vap->iv_ic;
1423 IEEE80211_LOCK_ASSERT(ic);
1425 IEEE80211_DPRINTF(vap,
1426 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1427 "start running, %d vaps running\n", ic->ic_nrunning);
1429 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1431 * Mark us running. Note that it's ok to do this first;
1432 * if we need to bring the parent device up we defer that
1433 * to avoid dropping the com lock. We expect the device
1434 * to respond to being marked up by calling back into us
1435 * through ieee80211_start_all at which point we'll come
1436 * back in here and complete the work.
1438 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1440 * We are not running; if this we are the first vap
1441 * to be brought up auto-up the parent if necessary.
1443 if (ic->ic_nrunning++ == 0) {
1445 /* reset the channel to a known good channel */
1446 if (ieee80211_start_check_reset_chan(vap))
1447 ieee80211_start_reset_chan(vap);
1449 IEEE80211_DPRINTF(vap,
1450 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1451 "%s: up parent %s\n", __func__, ic->ic_name);
1452 ieee80211_runtask(ic, &ic->ic_parent_task);
1453 return;
1457 * If the parent is up and running, then kick the
1458 * 802.11 state machine as appropriate.
1460 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1461 if (vap->iv_opmode == IEEE80211_M_STA) {
1462 #if 0
1463 /* XXX bypasses scan too easily; disable for now */
1465 * Try to be intelligent about clocking the state
1466 * machine. If we're currently in RUN state then
1467 * we should be able to apply any new state/parameters
1468 * simply by re-associating. Otherwise we need to
1469 * re-scan to select an appropriate ap.
1471 if (vap->iv_state >= IEEE80211_S_RUN)
1472 ieee80211_new_state_locked(vap,
1473 IEEE80211_S_ASSOC, 1);
1474 else
1475 #endif
1476 ieee80211_new_state_locked(vap,
1477 IEEE80211_S_SCAN, 0);
1478 } else {
1480 * For monitor+wds mode there's nothing to do but
1481 * start running. Otherwise if this is the first
1482 * vap to be brought up, start a scan which may be
1483 * preempted if the station is locked to a particular
1484 * channel.
1486 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1487 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1488 vap->iv_opmode == IEEE80211_M_WDS)
1489 ieee80211_new_state_locked(vap,
1490 IEEE80211_S_RUN, -1);
1491 else
1492 ieee80211_new_state_locked(vap,
1493 IEEE80211_S_SCAN, 0);
1499 * Start a single vap.
1501 void
1502 ieee80211_init(void *arg)
1504 struct ieee80211vap *vap = arg;
1506 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1507 "%s\n", __func__);
1509 IEEE80211_LOCK(vap->iv_ic);
1510 ieee80211_start_locked(vap);
1511 IEEE80211_UNLOCK(vap->iv_ic);
1515 * Start all runnable vap's on a device.
1517 void
1518 ieee80211_start_all(struct ieee80211com *ic)
1520 struct ieee80211vap *vap;
1522 IEEE80211_LOCK(ic);
1523 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1524 struct ifnet *ifp = vap->iv_ifp;
1525 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1526 ieee80211_start_locked(vap);
1528 IEEE80211_UNLOCK(ic);
1532 * Stop a vap. We force it down using the state machine
1533 * then mark it's ifnet not running. If this is the last
1534 * vap running on the underlying device then we close it
1535 * too to insure it will be properly initialized when the
1536 * next vap is brought up.
1538 void
1539 ieee80211_stop_locked(struct ieee80211vap *vap)
1541 struct ieee80211com *ic = vap->iv_ic;
1542 struct ifnet *ifp = vap->iv_ifp;
1544 IEEE80211_LOCK_ASSERT(ic);
1546 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1547 "stop running, %d vaps running\n", ic->ic_nrunning);
1549 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1550 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1551 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
1552 if (--ic->ic_nrunning == 0) {
1553 IEEE80211_DPRINTF(vap,
1554 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1555 "down parent %s\n", ic->ic_name);
1556 ieee80211_runtask(ic, &ic->ic_parent_task);
1561 void
1562 ieee80211_stop(struct ieee80211vap *vap)
1564 struct ieee80211com *ic = vap->iv_ic;
1566 IEEE80211_LOCK(ic);
1567 ieee80211_stop_locked(vap);
1568 IEEE80211_UNLOCK(ic);
1572 * Stop all vap's running on a device.
1574 void
1575 ieee80211_stop_all(struct ieee80211com *ic)
1577 struct ieee80211vap *vap;
1579 IEEE80211_LOCK(ic);
1580 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1581 struct ifnet *ifp = vap->iv_ifp;
1582 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1583 ieee80211_stop_locked(vap);
1585 IEEE80211_UNLOCK(ic);
1587 ieee80211_waitfor_parent(ic);
1591 * Stop all vap's running on a device and arrange
1592 * for those that were running to be resumed.
1594 void
1595 ieee80211_suspend_all(struct ieee80211com *ic)
1597 struct ieee80211vap *vap;
1599 IEEE80211_LOCK(ic);
1600 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1601 struct ifnet *ifp = vap->iv_ifp;
1602 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
1603 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1604 ieee80211_stop_locked(vap);
1607 IEEE80211_UNLOCK(ic);
1609 ieee80211_waitfor_parent(ic);
1613 * Start all vap's marked for resume.
1615 void
1616 ieee80211_resume_all(struct ieee80211com *ic)
1618 struct ieee80211vap *vap;
1620 IEEE80211_LOCK(ic);
1621 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1622 struct ifnet *ifp = vap->iv_ifp;
1623 if (!IFNET_IS_UP_RUNNING(ifp) &&
1624 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1625 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1626 ieee80211_start_locked(vap);
1629 IEEE80211_UNLOCK(ic);
1633 * Restart all vap's running on a device.
1635 void
1636 ieee80211_restart_all(struct ieee80211com *ic)
1639 * NB: do not use ieee80211_runtask here, we will
1640 * block & drain net80211 taskqueue.
1642 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1645 void
1646 ieee80211_beacon_miss(struct ieee80211com *ic)
1648 IEEE80211_LOCK(ic);
1649 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1650 /* Process in a taskq, the handler may reenter the driver */
1651 ieee80211_runtask(ic, &ic->ic_bmiss_task);
1653 IEEE80211_UNLOCK(ic);
1656 static void
1657 beacon_miss(void *arg, int npending)
1659 struct ieee80211com *ic = arg;
1660 struct ieee80211vap *vap;
1662 IEEE80211_LOCK(ic);
1663 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1665 * We only pass events through for sta vap's in RUN+ state;
1666 * may be too restrictive but for now this saves all the
1667 * handlers duplicating these checks.
1669 if (vap->iv_opmode == IEEE80211_M_STA &&
1670 vap->iv_state >= IEEE80211_S_RUN &&
1671 vap->iv_bmiss != NULL)
1672 vap->iv_bmiss(vap);
1674 IEEE80211_UNLOCK(ic);
1677 static void
1678 beacon_swmiss(void *arg, int npending)
1680 struct ieee80211vap *vap = arg;
1681 struct ieee80211com *ic = vap->iv_ic;
1683 IEEE80211_LOCK(ic);
1684 if (vap->iv_state >= IEEE80211_S_RUN) {
1685 /* XXX Call multiple times if npending > zero? */
1686 vap->iv_bmiss(vap);
1688 IEEE80211_UNLOCK(ic);
1692 * Software beacon miss handling. Check if any beacons
1693 * were received in the last period. If not post a
1694 * beacon miss; otherwise reset the counter.
1696 void
1697 ieee80211_swbmiss(void *arg)
1699 struct ieee80211vap *vap = arg;
1700 struct ieee80211com *ic = vap->iv_ic;
1702 IEEE80211_LOCK_ASSERT(ic);
1704 KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1705 ("wrong state %d", vap->iv_state));
1707 if (ic->ic_flags & IEEE80211_F_SCAN) {
1709 * If scanning just ignore and reset state. If we get a
1710 * bmiss after coming out of scan because we haven't had
1711 * time to receive a beacon then we should probe the AP
1712 * before posting a real bmiss (unless iv_bmiss_max has
1713 * been artifiically lowered). A cleaner solution might
1714 * be to disable the timer on scan start/end but to handle
1715 * case of multiple sta vap's we'd need to disable the
1716 * timers of all affected vap's.
1718 vap->iv_swbmiss_count = 0;
1719 } else if (vap->iv_swbmiss_count == 0) {
1720 if (vap->iv_bmiss != NULL)
1721 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1722 } else
1723 vap->iv_swbmiss_count = 0;
1724 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1725 ieee80211_swbmiss, vap);
1729 * Start an 802.11h channel switch. We record the parameters,
1730 * mark the operation pending, notify each vap through the
1731 * beacon update mechanism so it can update the beacon frame
1732 * contents, and then switch vap's to CSA state to block outbound
1733 * traffic. Devices that handle CSA directly can use the state
1734 * switch to do the right thing so long as they call
1735 * ieee80211_csa_completeswitch when it's time to complete the
1736 * channel change. Devices that depend on the net80211 layer can
1737 * use ieee80211_beacon_update to handle the countdown and the
1738 * channel switch.
1740 void
1741 ieee80211_csa_startswitch(struct ieee80211com *ic,
1742 struct ieee80211_channel *c, int mode, int count)
1744 struct ieee80211vap *vap;
1746 IEEE80211_LOCK_ASSERT(ic);
1748 ic->ic_csa_newchan = c;
1749 ic->ic_csa_mode = mode;
1750 ic->ic_csa_count = count;
1751 ic->ic_flags |= IEEE80211_F_CSAPENDING;
1752 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1753 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1754 vap->iv_opmode == IEEE80211_M_IBSS ||
1755 vap->iv_opmode == IEEE80211_M_MBSS)
1756 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1757 /* switch to CSA state to block outbound traffic */
1758 if (vap->iv_state == IEEE80211_S_RUN)
1759 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1761 ieee80211_notify_csa(ic, c, mode, count);
1765 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1766 * This is called by both the completion and cancellation functions
1767 * so each VAP is placed back in the RUN state and can thus transmit.
1769 static void
1770 csa_completeswitch(struct ieee80211com *ic)
1772 struct ieee80211vap *vap;
1774 ic->ic_csa_newchan = NULL;
1775 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1777 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1778 if (vap->iv_state == IEEE80211_S_CSA)
1779 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1783 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1784 * We clear state and move all vap's in CSA state to RUN state
1785 * so they can again transmit.
1787 * Although this may not be completely correct, update the BSS channel
1788 * for each VAP to the newly configured channel. The setcurchan sets
1789 * the current operating channel for the interface (so the radio does
1790 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1791 * reported information via ioctl.
1793 void
1794 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1796 struct ieee80211vap *vap;
1798 IEEE80211_LOCK_ASSERT(ic);
1800 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1802 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1803 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1804 if (vap->iv_state == IEEE80211_S_CSA)
1805 vap->iv_bss->ni_chan = ic->ic_curchan;
1807 csa_completeswitch(ic);
1811 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1812 * We clear state and move all vap's in CSA state to RUN state
1813 * so they can again transmit.
1815 void
1816 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1818 IEEE80211_LOCK_ASSERT(ic);
1820 csa_completeswitch(ic);
1824 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1825 * We clear state and move all vap's in CAC state to RUN state.
1827 void
1828 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1830 struct ieee80211com *ic = vap0->iv_ic;
1831 struct ieee80211vap *vap;
1833 IEEE80211_LOCK(ic);
1835 * Complete CAC state change for lead vap first; then
1836 * clock all the other vap's waiting.
1838 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1839 ("wrong state %d", vap0->iv_state));
1840 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1842 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1843 if (vap->iv_state == IEEE80211_S_CAC)
1844 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1845 IEEE80211_UNLOCK(ic);
1849 * Force all vap's other than the specified vap to the INIT state
1850 * and mark them as waiting for a scan to complete. These vaps
1851 * will be brought up when the scan completes and the scanning vap
1852 * reaches RUN state by wakeupwaiting.
1854 static void
1855 markwaiting(struct ieee80211vap *vap0)
1857 struct ieee80211com *ic = vap0->iv_ic;
1858 struct ieee80211vap *vap;
1860 IEEE80211_LOCK_ASSERT(ic);
1863 * A vap list entry can not disappear since we are running on the
1864 * taskqueue and a vap destroy will queue and drain another state
1865 * change task.
1867 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1868 if (vap == vap0)
1869 continue;
1870 if (vap->iv_state != IEEE80211_S_INIT) {
1871 /* NB: iv_newstate may drop the lock */
1872 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1873 IEEE80211_LOCK_ASSERT(ic);
1874 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1880 * Wakeup all vap's waiting for a scan to complete. This is the
1881 * companion to markwaiting (above) and is used to coordinate
1882 * multiple vaps scanning.
1883 * This is called from the state taskqueue.
1885 static void
1886 wakeupwaiting(struct ieee80211vap *vap0)
1888 struct ieee80211com *ic = vap0->iv_ic;
1889 struct ieee80211vap *vap;
1891 IEEE80211_LOCK_ASSERT(ic);
1894 * A vap list entry can not disappear since we are running on the
1895 * taskqueue and a vap destroy will queue and drain another state
1896 * change task.
1898 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1899 if (vap == vap0)
1900 continue;
1901 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1902 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1903 /* NB: sta's cannot go INIT->RUN */
1904 /* NB: iv_newstate may drop the lock */
1905 vap->iv_newstate(vap,
1906 vap->iv_opmode == IEEE80211_M_STA ?
1907 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1908 IEEE80211_LOCK_ASSERT(ic);
1914 * Handle post state change work common to all operating modes.
1916 static void
1917 ieee80211_newstate_cb(void *xvap, int npending)
1919 struct ieee80211vap *vap = xvap;
1920 struct ieee80211com *ic = vap->iv_ic;
1921 enum ieee80211_state nstate, ostate;
1922 int arg, rc;
1924 IEEE80211_LOCK(ic);
1925 nstate = vap->iv_nstate;
1926 arg = vap->iv_nstate_arg;
1928 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1930 * We have been requested to drop back to the INIT before
1931 * proceeding to the new state.
1933 /* Deny any state changes while we are here. */
1934 vap->iv_nstate = IEEE80211_S_INIT;
1935 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1936 "%s: %s -> %s arg %d\n", __func__,
1937 ieee80211_state_name[vap->iv_state],
1938 ieee80211_state_name[vap->iv_nstate], arg);
1939 vap->iv_newstate(vap, vap->iv_nstate, 0);
1940 IEEE80211_LOCK_ASSERT(ic);
1941 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1942 IEEE80211_FEXT_STATEWAIT);
1943 /* enqueue new state transition after cancel_scan() task */
1944 ieee80211_new_state_locked(vap, nstate, arg);
1945 goto done;
1948 ostate = vap->iv_state;
1949 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1951 * SCAN was forced; e.g. on beacon miss. Force other running
1952 * vap's to INIT state and mark them as waiting for the scan to
1953 * complete. This insures they don't interfere with our
1954 * scanning. Since we are single threaded the vaps can not
1955 * transition again while we are executing.
1957 * XXX not always right, assumes ap follows sta
1959 markwaiting(vap);
1961 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1962 "%s: %s -> %s arg %d\n", __func__,
1963 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1965 rc = vap->iv_newstate(vap, nstate, arg);
1966 IEEE80211_LOCK_ASSERT(ic);
1967 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1968 if (rc != 0) {
1969 /* State transition failed */
1970 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1971 KASSERT(nstate != IEEE80211_S_INIT,
1972 ("INIT state change failed"));
1973 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1974 "%s: %s returned error %d\n", __func__,
1975 ieee80211_state_name[nstate], rc);
1976 goto done;
1979 /* No actual transition, skip post processing */
1980 if (ostate == nstate)
1981 goto done;
1983 if (nstate == IEEE80211_S_RUN) {
1985 * OACTIVE may be set on the vap if the upper layer
1986 * tried to transmit (e.g. IPv6 NDP) before we reach
1987 * RUN state. Clear it and restart xmit.
1989 * Note this can also happen as a result of SLEEP->RUN
1990 * (i.e. coming out of power save mode).
1992 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1995 * XXX TODO Kick-start a VAP queue - this should be a method!
1998 /* bring up any vaps waiting on us */
1999 wakeupwaiting(vap);
2000 } else if (nstate == IEEE80211_S_INIT) {
2002 * Flush the scan cache if we did the last scan (XXX?)
2003 * and flush any frames on send queues from this vap.
2004 * Note the mgt q is used only for legacy drivers and
2005 * will go away shortly.
2007 ieee80211_scan_flush(vap);
2010 * XXX TODO: ic/vap queue flush
2013 done:
2014 IEEE80211_UNLOCK(ic);
2018 * Public interface for initiating a state machine change.
2019 * This routine single-threads the request and coordinates
2020 * the scheduling of multiple vaps for the purpose of selecting
2021 * an operating channel. Specifically the following scenarios
2022 * are handled:
2023 * o only one vap can be selecting a channel so on transition to
2024 * SCAN state if another vap is already scanning then
2025 * mark the caller for later processing and return without
2026 * doing anything (XXX? expectations by caller of synchronous operation)
2027 * o only one vap can be doing CAC of a channel so on transition to
2028 * CAC state if another vap is already scanning for radar then
2029 * mark the caller for later processing and return without
2030 * doing anything (XXX? expectations by caller of synchronous operation)
2031 * o if another vap is already running when a request is made
2032 * to SCAN then an operating channel has been chosen; bypass
2033 * the scan and just join the channel
2035 * Note that the state change call is done through the iv_newstate
2036 * method pointer so any driver routine gets invoked. The driver
2037 * will normally call back into operating mode-specific
2038 * ieee80211_newstate routines (below) unless it needs to completely
2039 * bypass the state machine (e.g. because the firmware has it's
2040 * own idea how things should work). Bypassing the net80211 layer
2041 * is usually a mistake and indicates lack of proper integration
2042 * with the net80211 layer.
2045 ieee80211_new_state_locked(struct ieee80211vap *vap,
2046 enum ieee80211_state nstate, int arg)
2048 struct ieee80211com *ic = vap->iv_ic;
2049 struct ieee80211vap *vp;
2050 enum ieee80211_state ostate;
2051 int nrunning, nscanning;
2053 IEEE80211_LOCK_ASSERT(ic);
2055 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2056 if (vap->iv_nstate == IEEE80211_S_INIT ||
2057 ((vap->iv_state == IEEE80211_S_INIT ||
2058 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2059 vap->iv_nstate == IEEE80211_S_SCAN &&
2060 nstate > IEEE80211_S_SCAN)) {
2062 * XXX The vap is being stopped/started,
2063 * do not allow any other state changes
2064 * until this is completed.
2066 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2067 "%s: %s -> %s (%s) transition discarded\n",
2068 __func__,
2069 ieee80211_state_name[vap->iv_state],
2070 ieee80211_state_name[nstate],
2071 ieee80211_state_name[vap->iv_nstate]);
2072 return -1;
2073 } else if (vap->iv_state != vap->iv_nstate) {
2074 #if 0
2075 /* Warn if the previous state hasn't completed. */
2076 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2077 "%s: pending %s -> %s transition lost\n", __func__,
2078 ieee80211_state_name[vap->iv_state],
2079 ieee80211_state_name[vap->iv_nstate]);
2080 #else
2081 /* XXX temporarily enable to identify issues */
2082 if_printf(vap->iv_ifp,
2083 "%s: pending %s -> %s transition lost\n",
2084 __func__, ieee80211_state_name[vap->iv_state],
2085 ieee80211_state_name[vap->iv_nstate]);
2086 #endif
2090 nrunning = nscanning = 0;
2091 /* XXX can track this state instead of calculating */
2092 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2093 if (vp != vap) {
2094 if (vp->iv_state >= IEEE80211_S_RUN)
2095 nrunning++;
2096 /* XXX doesn't handle bg scan */
2097 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2098 else if (vp->iv_state > IEEE80211_S_INIT)
2099 nscanning++;
2102 ostate = vap->iv_state;
2103 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2104 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2105 ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2106 nrunning, nscanning);
2107 switch (nstate) {
2108 case IEEE80211_S_SCAN:
2109 if (ostate == IEEE80211_S_INIT) {
2111 * INIT -> SCAN happens on initial bringup.
2113 KASSERT(!(nscanning && nrunning),
2114 ("%d scanning and %d running", nscanning, nrunning));
2115 if (nscanning) {
2117 * Someone is scanning, defer our state
2118 * change until the work has completed.
2120 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2121 "%s: defer %s -> %s\n",
2122 __func__, ieee80211_state_name[ostate],
2123 ieee80211_state_name[nstate]);
2124 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2125 return 0;
2127 if (nrunning) {
2129 * Someone is operating; just join the channel
2130 * they have chosen.
2132 /* XXX kill arg? */
2133 /* XXX check each opmode, adhoc? */
2134 if (vap->iv_opmode == IEEE80211_M_STA)
2135 nstate = IEEE80211_S_SCAN;
2136 else
2137 nstate = IEEE80211_S_RUN;
2138 #ifdef IEEE80211_DEBUG
2139 if (nstate != IEEE80211_S_SCAN) {
2140 IEEE80211_DPRINTF(vap,
2141 IEEE80211_MSG_STATE,
2142 "%s: override, now %s -> %s\n",
2143 __func__,
2144 ieee80211_state_name[ostate],
2145 ieee80211_state_name[nstate]);
2147 #endif
2150 break;
2151 case IEEE80211_S_RUN:
2152 if (vap->iv_opmode == IEEE80211_M_WDS &&
2153 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2154 nscanning) {
2156 * Legacy WDS with someone else scanning; don't
2157 * go online until that completes as we should
2158 * follow the other vap to the channel they choose.
2160 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2161 "%s: defer %s -> %s (legacy WDS)\n", __func__,
2162 ieee80211_state_name[ostate],
2163 ieee80211_state_name[nstate]);
2164 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2165 return 0;
2167 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2168 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2169 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2170 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2172 * This is a DFS channel, transition to CAC state
2173 * instead of RUN. This allows us to initiate
2174 * Channel Availability Check (CAC) as specified
2175 * by 11h/DFS.
2177 nstate = IEEE80211_S_CAC;
2178 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2179 "%s: override %s -> %s (DFS)\n", __func__,
2180 ieee80211_state_name[ostate],
2181 ieee80211_state_name[nstate]);
2183 break;
2184 case IEEE80211_S_INIT:
2185 /* cancel any scan in progress */
2186 ieee80211_cancel_scan(vap);
2187 if (ostate == IEEE80211_S_INIT ) {
2188 /* XXX don't believe this */
2189 /* INIT -> INIT. nothing to do */
2190 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2192 /* fall thru... */
2193 default:
2194 break;
2196 /* defer the state change to a thread */
2197 vap->iv_nstate = nstate;
2198 vap->iv_nstate_arg = arg;
2199 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2200 ieee80211_runtask(ic, &vap->iv_nstate_task);
2201 return EINPROGRESS;
2205 ieee80211_new_state(struct ieee80211vap *vap,
2206 enum ieee80211_state nstate, int arg)
2208 struct ieee80211com *ic = vap->iv_ic;
2209 int rc;
2211 IEEE80211_LOCK(ic);
2212 rc = ieee80211_new_state_locked(vap, nstate, arg);
2213 IEEE80211_UNLOCK(ic);
2214 return rc;