2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * Copyright (c) 2012 IEEE
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
32 * IEEE 802.11 protocol support.
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h> /* XXX for ether_sprintf */
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_adhoc.h>
53 #include <net80211/ieee80211_sta.h>
54 #include <net80211/ieee80211_hostap.h>
55 #include <net80211/ieee80211_wds.h>
56 #ifdef IEEE80211_SUPPORT_MESH
57 #include <net80211/ieee80211_mesh.h>
59 #include <net80211/ieee80211_monitor.h>
60 #include <net80211/ieee80211_input.h>
63 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
64 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
66 const char *mgt_subtype_name
[] = {
67 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
68 "probe_req", "probe_resp", "timing_adv", "reserved#7",
69 "beacon", "atim", "disassoc", "auth",
70 "deauth", "action", "action_noack", "reserved#15"
72 const char *ctl_subtype_name
[] = {
73 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
74 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
75 "bar", "ba", "ps_poll", "rts",
76 "cts", "ack", "cf_end", "cf_end_ack"
78 const char *ieee80211_opmode_name
[IEEE80211_OPMODE_MAX
] = {
79 "IBSS", /* IEEE80211_M_IBSS */
80 "STA", /* IEEE80211_M_STA */
81 "WDS", /* IEEE80211_M_WDS */
82 "AHDEMO", /* IEEE80211_M_AHDEMO */
83 "HOSTAP", /* IEEE80211_M_HOSTAP */
84 "MONITOR", /* IEEE80211_M_MONITOR */
85 "MBSS" /* IEEE80211_M_MBSS */
87 const char *ieee80211_state_name
[IEEE80211_S_MAX
] = {
88 "INIT", /* IEEE80211_S_INIT */
89 "SCAN", /* IEEE80211_S_SCAN */
90 "AUTH", /* IEEE80211_S_AUTH */
91 "ASSOC", /* IEEE80211_S_ASSOC */
92 "CAC", /* IEEE80211_S_CAC */
93 "RUN", /* IEEE80211_S_RUN */
94 "CSA", /* IEEE80211_S_CSA */
95 "SLEEP", /* IEEE80211_S_SLEEP */
97 const char *ieee80211_wme_acnames
[] = {
107 * Reason code descriptions were (mostly) obtained from
108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
111 ieee80211_reason_to_string(uint16_t reason
)
114 case IEEE80211_REASON_UNSPECIFIED
:
115 return ("unspecified");
116 case IEEE80211_REASON_AUTH_EXPIRE
:
117 return ("previous authentication is expired");
118 case IEEE80211_REASON_AUTH_LEAVE
:
119 return ("sending STA is leaving/has left IBSS or ESS");
120 case IEEE80211_REASON_ASSOC_EXPIRE
:
121 return ("disassociated due to inactivity");
122 case IEEE80211_REASON_ASSOC_TOOMANY
:
123 return ("too many associated STAs");
124 case IEEE80211_REASON_NOT_AUTHED
:
125 return ("class 2 frame received from nonauthenticated STA");
126 case IEEE80211_REASON_NOT_ASSOCED
:
127 return ("class 3 frame received from nonassociated STA");
128 case IEEE80211_REASON_ASSOC_LEAVE
:
129 return ("sending STA is leaving/has left BSS");
130 case IEEE80211_REASON_ASSOC_NOT_AUTHED
:
131 return ("STA requesting (re)association is not authenticated");
132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD
:
133 return ("information in the Power Capability element is "
135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD
:
136 return ("information in the Supported Channels element is "
138 case IEEE80211_REASON_IE_INVALID
:
139 return ("invalid element");
140 case IEEE80211_REASON_MIC_FAILURE
:
141 return ("MIC failure");
142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT
:
143 return ("4-Way handshake timeout");
144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT
:
145 return ("group key update timeout");
146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS
:
147 return ("element in 4-Way handshake different from "
148 "(re)association request/probe response/beacon frame");
149 case IEEE80211_REASON_GROUP_CIPHER_INVALID
:
150 return ("invalid group cipher");
151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID
:
152 return ("invalid pairwise cipher");
153 case IEEE80211_REASON_AKMP_INVALID
:
154 return ("invalid AKMP");
155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION
:
156 return ("unsupported version in RSN IE");
157 case IEEE80211_REASON_INVALID_RSN_IE_CAP
:
158 return ("invalid capabilities in RSN IE");
159 case IEEE80211_REASON_802_1X_AUTH_FAILED
:
160 return ("IEEE 802.1X authentication failed");
161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED
:
162 return ("cipher suite rejected because of the security "
164 case IEEE80211_REASON_UNSPECIFIED_QOS
:
165 return ("unspecified (QoS-related)");
166 case IEEE80211_REASON_INSUFFICIENT_BW
:
167 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 case IEEE80211_REASON_TOOMANY_FRAMES
:
169 return ("too many frames need to be acknowledged");
170 case IEEE80211_REASON_OUTSIDE_TXOP
:
171 return ("STA is transmitting outside the limits of its TXOPs");
172 case IEEE80211_REASON_LEAVING_QBSS
:
173 return ("requested from peer STA (the STA is "
174 "resetting/leaving the BSS)");
175 case IEEE80211_REASON_BAD_MECHANISM
:
176 return ("requested from peer STA (it does not want to use "
178 case IEEE80211_REASON_SETUP_NEEDED
:
179 return ("requested from peer STA (setup is required for the "
181 case IEEE80211_REASON_TIMEOUT
:
182 return ("requested from peer STA (timeout)");
183 case IEEE80211_REASON_PEER_LINK_CANCELED
:
184 return ("SME cancels the mesh peering instance (not related "
185 "to the maximum number of peer mesh STAs)");
186 case IEEE80211_REASON_MESH_MAX_PEERS
:
187 return ("maximum number of peer mesh STAs was reached");
188 case IEEE80211_REASON_MESH_CPVIOLATION
:
189 return ("the received information violates the Mesh "
190 "Configuration policy configured in the mesh STA "
192 case IEEE80211_REASON_MESH_CLOSE_RCVD
:
193 return ("the mesh STA has received a Mesh Peering Close "
194 "message requesting to close the mesh peering");
195 case IEEE80211_REASON_MESH_MAX_RETRIES
:
196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 "Peering Open messages, without receiving a Mesh "
198 "Peering Confirm message");
199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT
:
200 return ("the confirmTimer for the mesh peering instance times "
202 case IEEE80211_REASON_MESH_INVALID_GTK
:
203 return ("the mesh STA fails to unwrap the GTK or the values "
204 "in the wrapped contents do not match");
205 case IEEE80211_REASON_MESH_INCONS_PARAMS
:
206 return ("the mesh STA receives inconsistent information about "
207 "the mesh parameters between Mesh Peering Management "
209 case IEEE80211_REASON_MESH_INVALID_SECURITY
:
210 return ("the mesh STA fails the authenticated mesh peering "
211 "exchange because due to failure in selecting "
212 "pairwise/group ciphersuite");
213 case IEEE80211_REASON_MESH_PERR_NO_PROXY
:
214 return ("the mesh STA does not have proxy information for "
215 "this external destination");
216 case IEEE80211_REASON_MESH_PERR_NO_FI
:
217 return ("the mesh STA does not have forwarding information "
218 "for this destination");
219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH
:
220 return ("the mesh STA determines that the link to the next "
221 "hop of an active path in its forwarding information "
222 "is no longer usable");
223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS
:
224 return ("the MAC address of the STA already exists in the "
226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG
:
227 return ("the mesh STA performs channel switch to meet "
228 "regulatory requirements");
229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC
:
230 return ("the mesh STA performs channel switch with "
231 "unspecified reason");
233 return ("reserved/unknown");
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void update_wme(void *, int);
245 static void restart_vaps(void *, int);
246 static void ieee80211_newstate_cb(void *, int);
249 null_raw_xmit(struct ieee80211_node
*ni
, struct mbuf
*m
,
250 const struct ieee80211_bpf_params
*params
)
253 ic_printf(ni
->ni_ic
, "missing ic_raw_xmit callback, drop frame\n");
259 ieee80211_proto_attach(struct ieee80211com
*ic
)
263 /* override the 802.3 setting */
264 hdrlen
= ic
->ic_headroom
265 + sizeof(struct ieee80211_qosframe_addr4
)
266 + IEEE80211_WEP_IVLEN
+ IEEE80211_WEP_KIDLEN
267 + IEEE80211_WEP_EXTIVLEN
;
268 /* XXX no way to recalculate on ifdetach */
269 if (ALIGN(hdrlen
) > max_linkhdr
) {
270 /* XXX sanity check... */
271 max_linkhdr
= ALIGN(hdrlen
);
272 max_hdr
= max_linkhdr
+ max_protohdr
;
273 max_datalen
= MHLEN
- max_hdr
;
275 ic
->ic_protmode
= IEEE80211_PROT_CTSONLY
;
277 TASK_INIT(&ic
->ic_parent_task
, 0, parent_updown
, ic
);
278 TASK_INIT(&ic
->ic_mcast_task
, 0, update_mcast
, ic
);
279 TASK_INIT(&ic
->ic_promisc_task
, 0, update_promisc
, ic
);
280 TASK_INIT(&ic
->ic_chan_task
, 0, update_channel
, ic
);
281 TASK_INIT(&ic
->ic_bmiss_task
, 0, beacon_miss
, ic
);
282 TASK_INIT(&ic
->ic_chw_task
, 0, update_chw
, ic
);
283 TASK_INIT(&ic
->ic_wme_task
, 0, update_wme
, ic
);
284 TASK_INIT(&ic
->ic_restart_task
, 0, restart_vaps
, ic
);
286 ic
->ic_wme
.wme_hipri_switch_hysteresis
=
287 AGGRESSIVE_MODE_SWITCH_HYSTERESIS
;
289 /* initialize management frame handlers */
290 ic
->ic_send_mgmt
= ieee80211_send_mgmt
;
291 ic
->ic_raw_xmit
= null_raw_xmit
;
293 ieee80211_adhoc_attach(ic
);
294 ieee80211_sta_attach(ic
);
295 ieee80211_wds_attach(ic
);
296 ieee80211_hostap_attach(ic
);
297 #ifdef IEEE80211_SUPPORT_MESH
298 ieee80211_mesh_attach(ic
);
300 ieee80211_monitor_attach(ic
);
304 ieee80211_proto_detach(struct ieee80211com
*ic
)
306 ieee80211_monitor_detach(ic
);
307 #ifdef IEEE80211_SUPPORT_MESH
308 ieee80211_mesh_detach(ic
);
310 ieee80211_hostap_detach(ic
);
311 ieee80211_wds_detach(ic
);
312 ieee80211_adhoc_detach(ic
);
313 ieee80211_sta_detach(ic
);
317 null_update_beacon(struct ieee80211vap
*vap
, int item
)
322 ieee80211_proto_vattach(struct ieee80211vap
*vap
)
324 struct ieee80211com
*ic
= vap
->iv_ic
;
325 struct ifnet
*ifp
= vap
->iv_ifp
;
328 /* override the 802.3 setting */
329 ifp
->if_hdrlen
= ic
->ic_headroom
330 + sizeof(struct ieee80211_qosframe_addr4
)
331 + IEEE80211_WEP_IVLEN
+ IEEE80211_WEP_KIDLEN
332 + IEEE80211_WEP_EXTIVLEN
;
334 vap
->iv_rtsthreshold
= IEEE80211_RTS_DEFAULT
;
335 vap
->iv_fragthreshold
= IEEE80211_FRAG_DEFAULT
;
336 vap
->iv_bmiss_max
= IEEE80211_BMISS_MAX
;
337 callout_init_mtx(&vap
->iv_swbmiss
, IEEE80211_LOCK_OBJ(ic
), 0);
338 callout_init(&vap
->iv_mgtsend
, 1);
339 TASK_INIT(&vap
->iv_nstate_task
, 0, ieee80211_newstate_cb
, vap
);
340 TASK_INIT(&vap
->iv_swbmiss_task
, 0, beacon_swmiss
, vap
);
342 * Install default tx rate handling: no fixed rate, lowest
343 * supported rate for mgmt and multicast frames. Default
344 * max retry count. These settings can be changed by the
345 * driver and/or user applications.
347 for (i
= IEEE80211_MODE_11A
; i
< IEEE80211_MODE_MAX
; i
++) {
348 const struct ieee80211_rateset
*rs
= &ic
->ic_sup_rates
[i
];
350 vap
->iv_txparms
[i
].ucastrate
= IEEE80211_FIXED_RATE_NONE
;
353 * Setting the management rate to MCS 0 assumes that the
354 * BSS Basic rate set is empty and the BSS Basic MCS set
357 * Since we're not checking this, default to the lowest
358 * defined rate for this mode.
360 * At least one 11n AP (DLINK DIR-825) is reported to drop
361 * some MCS management traffic (eg BA response frames.)
363 * See also: 9.6.0 of the 802.11n-2009 specification.
366 if (i
== IEEE80211_MODE_11NA
|| i
== IEEE80211_MODE_11NG
) {
367 vap
->iv_txparms
[i
].mgmtrate
= 0 | IEEE80211_RATE_MCS
;
368 vap
->iv_txparms
[i
].mcastrate
= 0 | IEEE80211_RATE_MCS
;
370 vap
->iv_txparms
[i
].mgmtrate
=
371 rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
372 vap
->iv_txparms
[i
].mcastrate
=
373 rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
376 vap
->iv_txparms
[i
].mgmtrate
= rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
377 vap
->iv_txparms
[i
].mcastrate
= rs
->rs_rates
[0] & IEEE80211_RATE_VAL
;
378 vap
->iv_txparms
[i
].maxretry
= IEEE80211_TXMAX_DEFAULT
;
380 vap
->iv_roaming
= IEEE80211_ROAMING_AUTO
;
382 vap
->iv_update_beacon
= null_update_beacon
;
383 vap
->iv_deliver_data
= ieee80211_deliver_data
;
385 /* attach support for operating mode */
386 ic
->ic_vattach
[vap
->iv_opmode
](vap
);
390 ieee80211_proto_vdetach(struct ieee80211vap
*vap
)
392 #define FREEAPPIE(ie) do { \
394 IEEE80211_FREE(ie, M_80211_NODE_IE); \
397 * Detach operating mode module.
399 if (vap
->iv_opdetach
!= NULL
)
400 vap
->iv_opdetach(vap
);
402 * This should not be needed as we detach when reseting
403 * the state but be conservative here since the
404 * authenticator may do things like spawn kernel threads.
406 if (vap
->iv_auth
->ia_detach
!= NULL
)
407 vap
->iv_auth
->ia_detach(vap
);
409 * Detach any ACL'ator.
411 if (vap
->iv_acl
!= NULL
)
412 vap
->iv_acl
->iac_detach(vap
);
414 FREEAPPIE(vap
->iv_appie_beacon
);
415 FREEAPPIE(vap
->iv_appie_probereq
);
416 FREEAPPIE(vap
->iv_appie_proberesp
);
417 FREEAPPIE(vap
->iv_appie_assocreq
);
418 FREEAPPIE(vap
->iv_appie_assocresp
);
419 FREEAPPIE(vap
->iv_appie_wpa
);
424 * Simple-minded authenticator module support.
427 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
428 /* XXX well-known names */
429 static const char *auth_modnames
[IEEE80211_AUTH_MAX
] = {
430 "wlan_internal", /* IEEE80211_AUTH_NONE */
431 "wlan_internal", /* IEEE80211_AUTH_OPEN */
432 "wlan_internal", /* IEEE80211_AUTH_SHARED */
433 "wlan_xauth", /* IEEE80211_AUTH_8021X */
434 "wlan_internal", /* IEEE80211_AUTH_AUTO */
435 "wlan_xauth", /* IEEE80211_AUTH_WPA */
437 static const struct ieee80211_authenticator
*authenticators
[IEEE80211_AUTH_MAX
];
439 static const struct ieee80211_authenticator auth_internal
= {
440 .ia_name
= "wlan_internal",
443 .ia_node_join
= NULL
,
444 .ia_node_leave
= NULL
,
448 * Setup internal authenticators once; they are never unregistered.
451 ieee80211_auth_setup(void)
453 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN
, &auth_internal
);
454 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED
, &auth_internal
);
455 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO
, &auth_internal
);
457 SYSINIT(wlan_auth
, SI_SUB_DRIVERS
, SI_ORDER_FIRST
, ieee80211_auth_setup
, NULL
);
459 const struct ieee80211_authenticator
*
460 ieee80211_authenticator_get(int auth
)
462 if (auth
>= IEEE80211_AUTH_MAX
)
464 if (authenticators
[auth
] == NULL
)
465 ieee80211_load_module(auth_modnames
[auth
]);
466 return authenticators
[auth
];
470 ieee80211_authenticator_register(int type
,
471 const struct ieee80211_authenticator
*auth
)
473 if (type
>= IEEE80211_AUTH_MAX
)
475 authenticators
[type
] = auth
;
479 ieee80211_authenticator_unregister(int type
)
482 if (type
>= IEEE80211_AUTH_MAX
)
484 authenticators
[type
] = NULL
;
488 * Very simple-minded ACL module support.
490 /* XXX just one for now */
491 static const struct ieee80211_aclator
*acl
= NULL
;
494 ieee80211_aclator_register(const struct ieee80211_aclator
*iac
)
496 printf("wlan: %s acl policy registered\n", iac
->iac_name
);
501 ieee80211_aclator_unregister(const struct ieee80211_aclator
*iac
)
505 printf("wlan: %s acl policy unregistered\n", iac
->iac_name
);
508 const struct ieee80211_aclator
*
509 ieee80211_aclator_get(const char *name
)
512 ieee80211_load_module("wlan_acl");
513 return acl
!= NULL
&& strcmp(acl
->iac_name
, name
) == 0 ? acl
: NULL
;
517 ieee80211_print_essid(const uint8_t *essid
, int len
)
522 if (len
> IEEE80211_NWID_LEN
)
523 len
= IEEE80211_NWID_LEN
;
524 /* determine printable or not */
525 for (i
= 0, p
= essid
; i
< len
; i
++, p
++) {
526 if (*p
< ' ' || *p
> 0x7e)
531 for (i
= 0, p
= essid
; i
< len
; i
++, p
++)
536 for (i
= 0, p
= essid
; i
< len
; i
++, p
++)
542 ieee80211_dump_pkt(struct ieee80211com
*ic
,
543 const uint8_t *buf
, int len
, int rate
, int rssi
)
545 const struct ieee80211_frame
*wh
;
548 wh
= (const struct ieee80211_frame
*)buf
;
549 switch (wh
->i_fc
[1] & IEEE80211_FC1_DIR_MASK
) {
550 case IEEE80211_FC1_DIR_NODS
:
551 printf("NODS %s", ether_sprintf(wh
->i_addr2
));
552 printf("->%s", ether_sprintf(wh
->i_addr1
));
553 printf("(%s)", ether_sprintf(wh
->i_addr3
));
555 case IEEE80211_FC1_DIR_TODS
:
556 printf("TODS %s", ether_sprintf(wh
->i_addr2
));
557 printf("->%s", ether_sprintf(wh
->i_addr3
));
558 printf("(%s)", ether_sprintf(wh
->i_addr1
));
560 case IEEE80211_FC1_DIR_FROMDS
:
561 printf("FRDS %s", ether_sprintf(wh
->i_addr3
));
562 printf("->%s", ether_sprintf(wh
->i_addr1
));
563 printf("(%s)", ether_sprintf(wh
->i_addr2
));
565 case IEEE80211_FC1_DIR_DSTODS
:
566 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh
[1]));
567 printf("->%s", ether_sprintf(wh
->i_addr3
));
568 printf("(%s", ether_sprintf(wh
->i_addr2
));
569 printf("->%s)", ether_sprintf(wh
->i_addr1
));
572 switch (wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
) {
573 case IEEE80211_FC0_TYPE_DATA
:
576 case IEEE80211_FC0_TYPE_MGT
:
577 printf(" %s", ieee80211_mgt_subtype_name(wh
->i_fc
[0]));
580 printf(" type#%d", wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
);
583 if (IEEE80211_QOS_HAS_SEQ(wh
)) {
584 const struct ieee80211_qosframe
*qwh
=
585 (const struct ieee80211_qosframe
*)buf
;
586 printf(" QoS [TID %u%s]", qwh
->i_qos
[0] & IEEE80211_QOS_TID
,
587 qwh
->i_qos
[0] & IEEE80211_QOS_ACKPOLICY
? " ACM" : "");
589 if (wh
->i_fc
[1] & IEEE80211_FC1_PROTECTED
) {
592 off
= ieee80211_anyhdrspace(ic
, wh
);
593 printf(" WEP [IV %.02x %.02x %.02x",
594 buf
[off
+0], buf
[off
+1], buf
[off
+2]);
595 if (buf
[off
+IEEE80211_WEP_IVLEN
] & IEEE80211_WEP_EXTIV
)
596 printf(" %.02x %.02x %.02x",
597 buf
[off
+4], buf
[off
+5], buf
[off
+6]);
598 printf(" KID %u]", buf
[off
+IEEE80211_WEP_IVLEN
] >> 6);
601 printf(" %dM", rate
/ 2);
603 printf(" +%d", rssi
);
606 for (i
= 0; i
< len
; i
++) {
609 printf("%02x", buf
[i
]);
616 findrix(const struct ieee80211_rateset
*rs
, int r
)
620 for (i
= 0; i
< rs
->rs_nrates
; i
++)
621 if ((rs
->rs_rates
[i
] & IEEE80211_RATE_VAL
) == r
)
627 ieee80211_fix_rate(struct ieee80211_node
*ni
,
628 struct ieee80211_rateset
*nrs
, int flags
)
630 struct ieee80211vap
*vap
= ni
->ni_vap
;
631 struct ieee80211com
*ic
= ni
->ni_ic
;
632 int i
, j
, rix
, error
;
633 int okrate
, badrate
, fixedrate
, ucastrate
;
634 const struct ieee80211_rateset
*srs
;
638 okrate
= badrate
= 0;
639 ucastrate
= vap
->iv_txparms
[ieee80211_chan2mode(ni
->ni_chan
)].ucastrate
;
640 if (ucastrate
!= IEEE80211_FIXED_RATE_NONE
) {
642 * Workaround awkwardness with fixed rate. We are called
643 * to check both the legacy rate set and the HT rate set
644 * but we must apply any legacy fixed rate check only to the
645 * legacy rate set and vice versa. We cannot tell what type
646 * of rate set we've been given (legacy or HT) but we can
647 * distinguish the fixed rate type (MCS have 0x80 set).
648 * So to deal with this the caller communicates whether to
649 * check MCS or legacy rate using the flags and we use the
650 * type of any fixed rate to avoid applying an MCS to a
651 * legacy rate and vice versa.
653 if (ucastrate
& 0x80) {
654 if (flags
& IEEE80211_F_DOFRATE
)
655 flags
&= ~IEEE80211_F_DOFRATE
;
656 } else if ((ucastrate
& 0x80) == 0) {
657 if (flags
& IEEE80211_F_DOFMCS
)
658 flags
&= ~IEEE80211_F_DOFMCS
;
660 /* NB: required to make MCS match below work */
661 ucastrate
&= IEEE80211_RATE_VAL
;
663 fixedrate
= IEEE80211_FIXED_RATE_NONE
;
665 * XXX we are called to process both MCS and legacy rates;
666 * we must use the appropriate basic rate set or chaos will
667 * ensue; for now callers that want MCS must supply
668 * IEEE80211_F_DOBRS; at some point we'll need to split this
669 * function so there are two variants, one for MCS and one
672 if (flags
& IEEE80211_F_DOBRS
)
673 srs
= (const struct ieee80211_rateset
*)
674 ieee80211_get_suphtrates(ic
, ni
->ni_chan
);
676 srs
= ieee80211_get_suprates(ic
, ni
->ni_chan
);
677 for (i
= 0; i
< nrs
->rs_nrates
; ) {
678 if (flags
& IEEE80211_F_DOSORT
) {
682 for (j
= i
+ 1; j
< nrs
->rs_nrates
; j
++) {
683 if (IEEE80211_RV(nrs
->rs_rates
[i
]) >
684 IEEE80211_RV(nrs
->rs_rates
[j
])) {
685 r
= nrs
->rs_rates
[i
];
686 nrs
->rs_rates
[i
] = nrs
->rs_rates
[j
];
687 nrs
->rs_rates
[j
] = r
;
691 r
= nrs
->rs_rates
[i
] & IEEE80211_RATE_VAL
;
694 * Check for fixed rate.
699 * Check against supported rates.
701 rix
= findrix(srs
, r
);
702 if (flags
& IEEE80211_F_DONEGO
) {
705 * A rate in the node's rate set is not
706 * supported. If this is a basic rate and we
707 * are operating as a STA then this is an error.
708 * Otherwise we just discard/ignore the rate.
710 if ((flags
& IEEE80211_F_JOIN
) &&
711 (nrs
->rs_rates
[i
] & IEEE80211_RATE_BASIC
))
713 } else if ((flags
& IEEE80211_F_JOIN
) == 0) {
715 * Overwrite with the supported rate
716 * value so any basic rate bit is set.
718 nrs
->rs_rates
[i
] = srs
->rs_rates
[rix
];
721 if ((flags
& IEEE80211_F_DODEL
) && rix
< 0) {
723 * Delete unacceptable rates.
726 for (j
= i
; j
< nrs
->rs_nrates
; j
++)
727 nrs
->rs_rates
[j
] = nrs
->rs_rates
[j
+ 1];
728 nrs
->rs_rates
[j
] = 0;
732 okrate
= nrs
->rs_rates
[i
];
735 if (okrate
== 0 || error
!= 0 ||
736 ((flags
& (IEEE80211_F_DOFRATE
|IEEE80211_F_DOFMCS
)) &&
737 fixedrate
!= ucastrate
)) {
738 IEEE80211_NOTE(vap
, IEEE80211_MSG_XRATE
| IEEE80211_MSG_11N
, ni
,
739 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
740 "ucastrate %x\n", __func__
, fixedrate
, ucastrate
, flags
);
741 return badrate
| IEEE80211_RATE_BASIC
;
743 return IEEE80211_RV(okrate
);
747 * Reset 11g-related state.
750 ieee80211_reset_erp(struct ieee80211com
*ic
)
752 ic
->ic_flags
&= ~IEEE80211_F_USEPROT
;
753 ic
->ic_nonerpsta
= 0;
754 ic
->ic_longslotsta
= 0;
756 * Short slot time is enabled only when operating in 11g
757 * and not in an IBSS. We must also honor whether or not
758 * the driver is capable of doing it.
760 ieee80211_set_shortslottime(ic
,
761 IEEE80211_IS_CHAN_A(ic
->ic_curchan
) ||
762 IEEE80211_IS_CHAN_HT(ic
->ic_curchan
) ||
763 (IEEE80211_IS_CHAN_ANYG(ic
->ic_curchan
) &&
764 ic
->ic_opmode
== IEEE80211_M_HOSTAP
&&
765 (ic
->ic_caps
& IEEE80211_C_SHSLOT
)));
767 * Set short preamble and ERP barker-preamble flags.
769 if (IEEE80211_IS_CHAN_A(ic
->ic_curchan
) ||
770 (ic
->ic_caps
& IEEE80211_C_SHPREAMBLE
)) {
771 ic
->ic_flags
|= IEEE80211_F_SHPREAMBLE
;
772 ic
->ic_flags
&= ~IEEE80211_F_USEBARKER
;
774 ic
->ic_flags
&= ~IEEE80211_F_SHPREAMBLE
;
775 ic
->ic_flags
|= IEEE80211_F_USEBARKER
;
780 * Set the short slot time state and notify the driver.
783 ieee80211_set_shortslottime(struct ieee80211com
*ic
, int onoff
)
786 ic
->ic_flags
|= IEEE80211_F_SHSLOT
;
788 ic
->ic_flags
&= ~IEEE80211_F_SHSLOT
;
790 if (ic
->ic_updateslot
!= NULL
)
791 ic
->ic_updateslot(ic
);
795 * Check if the specified rate set supports ERP.
796 * NB: the rate set is assumed to be sorted.
799 ieee80211_iserp_rateset(const struct ieee80211_rateset
*rs
)
801 static const int rates
[] = { 2, 4, 11, 22, 12, 24, 48 };
804 if (rs
->rs_nrates
< nitems(rates
))
806 for (i
= 0; i
< nitems(rates
); i
++) {
807 for (j
= 0; j
< rs
->rs_nrates
; j
++) {
808 int r
= rs
->rs_rates
[j
] & IEEE80211_RATE_VAL
;
822 * Mark the basic rates for the rate table based on the
823 * operating mode. For real 11g we mark all the 11b rates
824 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
825 * 11b rates. There's also a pseudo 11a-mode used to mark only
826 * the basic OFDM rates.
829 setbasicrates(struct ieee80211_rateset
*rs
,
830 enum ieee80211_phymode mode
, int add
)
832 static const struct ieee80211_rateset basic
[IEEE80211_MODE_MAX
] = {
833 [IEEE80211_MODE_11A
] = { 3, { 12, 24, 48 } },
834 [IEEE80211_MODE_11B
] = { 2, { 2, 4 } },
836 [IEEE80211_MODE_11G
] = { 4, { 2, 4, 11, 22 } },
837 [IEEE80211_MODE_TURBO_A
] = { 3, { 12, 24, 48 } },
838 [IEEE80211_MODE_TURBO_G
] = { 4, { 2, 4, 11, 22 } },
839 [IEEE80211_MODE_STURBO_A
] = { 3, { 12, 24, 48 } },
840 [IEEE80211_MODE_HALF
] = { 3, { 6, 12, 24 } },
841 [IEEE80211_MODE_QUARTER
] = { 3, { 3, 6, 12 } },
842 [IEEE80211_MODE_11NA
] = { 3, { 12, 24, 48 } },
844 [IEEE80211_MODE_11NG
] = { 4, { 2, 4, 11, 22 } },
848 for (i
= 0; i
< rs
->rs_nrates
; i
++) {
850 rs
->rs_rates
[i
] &= IEEE80211_RATE_VAL
;
851 for (j
= 0; j
< basic
[mode
].rs_nrates
; j
++)
852 if (basic
[mode
].rs_rates
[j
] == rs
->rs_rates
[i
]) {
853 rs
->rs_rates
[i
] |= IEEE80211_RATE_BASIC
;
860 * Set the basic rates in a rate set.
863 ieee80211_setbasicrates(struct ieee80211_rateset
*rs
,
864 enum ieee80211_phymode mode
)
866 setbasicrates(rs
, mode
, 0);
870 * Add basic rates to a rate set.
873 ieee80211_addbasicrates(struct ieee80211_rateset
*rs
,
874 enum ieee80211_phymode mode
)
876 setbasicrates(rs
, mode
, 1);
880 * WME protocol support.
882 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
883 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
884 * Draft 2.0 Test Plan (Appendix D).
886 * Static/Dynamic Turbo mode settings come from Atheros.
888 typedef struct phyParamType
{
896 static const struct phyParamType phyParamForAC_BE
[IEEE80211_MODE_MAX
] = {
897 [IEEE80211_MODE_AUTO
] = { 3, 4, 6, 0, 0 },
898 [IEEE80211_MODE_11A
] = { 3, 4, 6, 0, 0 },
899 [IEEE80211_MODE_11B
] = { 3, 4, 6, 0, 0 },
900 [IEEE80211_MODE_11G
] = { 3, 4, 6, 0, 0 },
901 [IEEE80211_MODE_FH
] = { 3, 4, 6, 0, 0 },
902 [IEEE80211_MODE_TURBO_A
]= { 2, 3, 5, 0, 0 },
903 [IEEE80211_MODE_TURBO_G
]= { 2, 3, 5, 0, 0 },
904 [IEEE80211_MODE_STURBO_A
]={ 2, 3, 5, 0, 0 },
905 [IEEE80211_MODE_HALF
] = { 3, 4, 6, 0, 0 },
906 [IEEE80211_MODE_QUARTER
]= { 3, 4, 6, 0, 0 },
907 [IEEE80211_MODE_11NA
] = { 3, 4, 6, 0, 0 },
908 [IEEE80211_MODE_11NG
] = { 3, 4, 6, 0, 0 },
910 static const struct phyParamType phyParamForAC_BK
[IEEE80211_MODE_MAX
] = {
911 [IEEE80211_MODE_AUTO
] = { 7, 4, 10, 0, 0 },
912 [IEEE80211_MODE_11A
] = { 7, 4, 10, 0, 0 },
913 [IEEE80211_MODE_11B
] = { 7, 4, 10, 0, 0 },
914 [IEEE80211_MODE_11G
] = { 7, 4, 10, 0, 0 },
915 [IEEE80211_MODE_FH
] = { 7, 4, 10, 0, 0 },
916 [IEEE80211_MODE_TURBO_A
]= { 7, 3, 10, 0, 0 },
917 [IEEE80211_MODE_TURBO_G
]= { 7, 3, 10, 0, 0 },
918 [IEEE80211_MODE_STURBO_A
]={ 7, 3, 10, 0, 0 },
919 [IEEE80211_MODE_HALF
] = { 7, 4, 10, 0, 0 },
920 [IEEE80211_MODE_QUARTER
]= { 7, 4, 10, 0, 0 },
921 [IEEE80211_MODE_11NA
] = { 7, 4, 10, 0, 0 },
922 [IEEE80211_MODE_11NG
] = { 7, 4, 10, 0, 0 },
924 static const struct phyParamType phyParamForAC_VI
[IEEE80211_MODE_MAX
] = {
925 [IEEE80211_MODE_AUTO
] = { 1, 3, 4, 94, 0 },
926 [IEEE80211_MODE_11A
] = { 1, 3, 4, 94, 0 },
927 [IEEE80211_MODE_11B
] = { 1, 3, 4, 188, 0 },
928 [IEEE80211_MODE_11G
] = { 1, 3, 4, 94, 0 },
929 [IEEE80211_MODE_FH
] = { 1, 3, 4, 188, 0 },
930 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 3, 94, 0 },
931 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 3, 94, 0 },
932 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 3, 94, 0 },
933 [IEEE80211_MODE_HALF
] = { 1, 3, 4, 94, 0 },
934 [IEEE80211_MODE_QUARTER
]= { 1, 3, 4, 94, 0 },
935 [IEEE80211_MODE_11NA
] = { 1, 3, 4, 94, 0 },
936 [IEEE80211_MODE_11NG
] = { 1, 3, 4, 94, 0 },
938 static const struct phyParamType phyParamForAC_VO
[IEEE80211_MODE_MAX
] = {
939 [IEEE80211_MODE_AUTO
] = { 1, 2, 3, 47, 0 },
940 [IEEE80211_MODE_11A
] = { 1, 2, 3, 47, 0 },
941 [IEEE80211_MODE_11B
] = { 1, 2, 3, 102, 0 },
942 [IEEE80211_MODE_11G
] = { 1, 2, 3, 47, 0 },
943 [IEEE80211_MODE_FH
] = { 1, 2, 3, 102, 0 },
944 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 2, 47, 0 },
945 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 2, 47, 0 },
946 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 2, 47, 0 },
947 [IEEE80211_MODE_HALF
] = { 1, 2, 3, 47, 0 },
948 [IEEE80211_MODE_QUARTER
]= { 1, 2, 3, 47, 0 },
949 [IEEE80211_MODE_11NA
] = { 1, 2, 3, 47, 0 },
950 [IEEE80211_MODE_11NG
] = { 1, 2, 3, 47, 0 },
953 static const struct phyParamType bssPhyParamForAC_BE
[IEEE80211_MODE_MAX
] = {
954 [IEEE80211_MODE_AUTO
] = { 3, 4, 10, 0, 0 },
955 [IEEE80211_MODE_11A
] = { 3, 4, 10, 0, 0 },
956 [IEEE80211_MODE_11B
] = { 3, 4, 10, 0, 0 },
957 [IEEE80211_MODE_11G
] = { 3, 4, 10, 0, 0 },
958 [IEEE80211_MODE_FH
] = { 3, 4, 10, 0, 0 },
959 [IEEE80211_MODE_TURBO_A
]= { 2, 3, 10, 0, 0 },
960 [IEEE80211_MODE_TURBO_G
]= { 2, 3, 10, 0, 0 },
961 [IEEE80211_MODE_STURBO_A
]={ 2, 3, 10, 0, 0 },
962 [IEEE80211_MODE_HALF
] = { 3, 4, 10, 0, 0 },
963 [IEEE80211_MODE_QUARTER
]= { 3, 4, 10, 0, 0 },
964 [IEEE80211_MODE_11NA
] = { 3, 4, 10, 0, 0 },
965 [IEEE80211_MODE_11NG
] = { 3, 4, 10, 0, 0 },
967 static const struct phyParamType bssPhyParamForAC_VI
[IEEE80211_MODE_MAX
] = {
968 [IEEE80211_MODE_AUTO
] = { 2, 3, 4, 94, 0 },
969 [IEEE80211_MODE_11A
] = { 2, 3, 4, 94, 0 },
970 [IEEE80211_MODE_11B
] = { 2, 3, 4, 188, 0 },
971 [IEEE80211_MODE_11G
] = { 2, 3, 4, 94, 0 },
972 [IEEE80211_MODE_FH
] = { 2, 3, 4, 188, 0 },
973 [IEEE80211_MODE_TURBO_A
]= { 2, 2, 3, 94, 0 },
974 [IEEE80211_MODE_TURBO_G
]= { 2, 2, 3, 94, 0 },
975 [IEEE80211_MODE_STURBO_A
]={ 2, 2, 3, 94, 0 },
976 [IEEE80211_MODE_HALF
] = { 2, 3, 4, 94, 0 },
977 [IEEE80211_MODE_QUARTER
]= { 2, 3, 4, 94, 0 },
978 [IEEE80211_MODE_11NA
] = { 2, 3, 4, 94, 0 },
979 [IEEE80211_MODE_11NG
] = { 2, 3, 4, 94, 0 },
981 static const struct phyParamType bssPhyParamForAC_VO
[IEEE80211_MODE_MAX
] = {
982 [IEEE80211_MODE_AUTO
] = { 2, 2, 3, 47, 0 },
983 [IEEE80211_MODE_11A
] = { 2, 2, 3, 47, 0 },
984 [IEEE80211_MODE_11B
] = { 2, 2, 3, 102, 0 },
985 [IEEE80211_MODE_11G
] = { 2, 2, 3, 47, 0 },
986 [IEEE80211_MODE_FH
] = { 2, 2, 3, 102, 0 },
987 [IEEE80211_MODE_TURBO_A
]= { 1, 2, 2, 47, 0 },
988 [IEEE80211_MODE_TURBO_G
]= { 1, 2, 2, 47, 0 },
989 [IEEE80211_MODE_STURBO_A
]={ 1, 2, 2, 47, 0 },
990 [IEEE80211_MODE_HALF
] = { 2, 2, 3, 47, 0 },
991 [IEEE80211_MODE_QUARTER
]= { 2, 2, 3, 47, 0 },
992 [IEEE80211_MODE_11NA
] = { 2, 2, 3, 47, 0 },
993 [IEEE80211_MODE_11NG
] = { 2, 2, 3, 47, 0 },
997 _setifsparams(struct wmeParams
*wmep
, const paramType
*phy
)
999 wmep
->wmep_aifsn
= phy
->aifsn
;
1000 wmep
->wmep_logcwmin
= phy
->logcwmin
;
1001 wmep
->wmep_logcwmax
= phy
->logcwmax
;
1002 wmep
->wmep_txopLimit
= phy
->txopLimit
;
1006 setwmeparams(struct ieee80211vap
*vap
, const char *type
, int ac
,
1007 struct wmeParams
*wmep
, const paramType
*phy
)
1009 wmep
->wmep_acm
= phy
->acm
;
1010 _setifsparams(wmep
, phy
);
1012 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1013 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1014 ieee80211_wme_acnames
[ac
], type
,
1015 wmep
->wmep_acm
, wmep
->wmep_aifsn
, wmep
->wmep_logcwmin
,
1016 wmep
->wmep_logcwmax
, wmep
->wmep_txopLimit
);
1020 ieee80211_wme_initparams_locked(struct ieee80211vap
*vap
)
1022 struct ieee80211com
*ic
= vap
->iv_ic
;
1023 struct ieee80211_wme_state
*wme
= &ic
->ic_wme
;
1024 const paramType
*pPhyParam
, *pBssPhyParam
;
1025 struct wmeParams
*wmep
;
1026 enum ieee80211_phymode mode
;
1029 IEEE80211_LOCK_ASSERT(ic
);
1031 if ((ic
->ic_caps
& IEEE80211_C_WME
) == 0 || ic
->ic_nrunning
> 1)
1035 * Clear the wme cap_info field so a qoscount from a previous
1036 * vap doesn't confuse later code which only parses the beacon
1037 * field and updates hardware when said field changes.
1038 * Otherwise the hardware is programmed with defaults, not what
1039 * the beacon actually announces.
1041 wme
->wme_wmeChanParams
.cap_info
= 0;
1044 * Select mode; we can be called early in which case we
1045 * always use auto mode. We know we'll be called when
1046 * entering the RUN state with bsschan setup properly
1047 * so state will eventually get set correctly
1049 if (ic
->ic_bsschan
!= IEEE80211_CHAN_ANYC
)
1050 mode
= ieee80211_chan2mode(ic
->ic_bsschan
);
1052 mode
= IEEE80211_MODE_AUTO
;
1053 for (i
= 0; i
< WME_NUM_AC
; i
++) {
1056 pPhyParam
= &phyParamForAC_BK
[mode
];
1057 pBssPhyParam
= &phyParamForAC_BK
[mode
];
1060 pPhyParam
= &phyParamForAC_VI
[mode
];
1061 pBssPhyParam
= &bssPhyParamForAC_VI
[mode
];
1064 pPhyParam
= &phyParamForAC_VO
[mode
];
1065 pBssPhyParam
= &bssPhyParamForAC_VO
[mode
];
1069 pPhyParam
= &phyParamForAC_BE
[mode
];
1070 pBssPhyParam
= &bssPhyParamForAC_BE
[mode
];
1073 wmep
= &wme
->wme_wmeChanParams
.cap_wmeParams
[i
];
1074 if (ic
->ic_opmode
== IEEE80211_M_HOSTAP
) {
1075 setwmeparams(vap
, "chan", i
, wmep
, pPhyParam
);
1077 setwmeparams(vap
, "chan", i
, wmep
, pBssPhyParam
);
1079 wmep
= &wme
->wme_wmeBssChanParams
.cap_wmeParams
[i
];
1080 setwmeparams(vap
, "bss ", i
, wmep
, pBssPhyParam
);
1082 /* NB: check ic_bss to avoid NULL deref on initial attach */
1083 if (vap
->iv_bss
!= NULL
) {
1085 * Calculate aggressive mode switching threshold based
1086 * on beacon interval. This doesn't need locking since
1087 * we're only called before entering the RUN state at
1088 * which point we start sending beacon frames.
1090 wme
->wme_hipri_switch_thresh
=
1091 (HIGH_PRI_SWITCH_THRESH
* vap
->iv_bss
->ni_intval
) / 100;
1092 wme
->wme_flags
&= ~WME_F_AGGRMODE
;
1093 ieee80211_wme_updateparams(vap
);
1098 ieee80211_wme_initparams(struct ieee80211vap
*vap
)
1100 struct ieee80211com
*ic
= vap
->iv_ic
;
1103 ieee80211_wme_initparams_locked(vap
);
1104 IEEE80211_UNLOCK(ic
);
1108 * Update WME parameters for ourself and the BSS.
1111 ieee80211_wme_updateparams_locked(struct ieee80211vap
*vap
)
1113 static const paramType aggrParam
[IEEE80211_MODE_MAX
] = {
1114 [IEEE80211_MODE_AUTO
] = { 2, 4, 10, 64, 0 },
1115 [IEEE80211_MODE_11A
] = { 2, 4, 10, 64, 0 },
1116 [IEEE80211_MODE_11B
] = { 2, 5, 10, 64, 0 },
1117 [IEEE80211_MODE_11G
] = { 2, 4, 10, 64, 0 },
1118 [IEEE80211_MODE_FH
] = { 2, 5, 10, 64, 0 },
1119 [IEEE80211_MODE_TURBO_A
] = { 1, 3, 10, 64, 0 },
1120 [IEEE80211_MODE_TURBO_G
] = { 1, 3, 10, 64, 0 },
1121 [IEEE80211_MODE_STURBO_A
] = { 1, 3, 10, 64, 0 },
1122 [IEEE80211_MODE_HALF
] = { 2, 4, 10, 64, 0 },
1123 [IEEE80211_MODE_QUARTER
] = { 2, 4, 10, 64, 0 },
1124 [IEEE80211_MODE_11NA
] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1125 [IEEE80211_MODE_11NG
] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1127 struct ieee80211com
*ic
= vap
->iv_ic
;
1128 struct ieee80211_wme_state
*wme
= &ic
->ic_wme
;
1129 const struct wmeParams
*wmep
;
1130 struct wmeParams
*chanp
, *bssp
;
1131 enum ieee80211_phymode mode
;
1133 int do_aggrmode
= 0;
1136 * Set up the channel access parameters for the physical
1137 * device. First populate the configured settings.
1139 for (i
= 0; i
< WME_NUM_AC
; i
++) {
1140 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[i
];
1141 wmep
= &wme
->wme_wmeChanParams
.cap_wmeParams
[i
];
1142 chanp
->wmep_aifsn
= wmep
->wmep_aifsn
;
1143 chanp
->wmep_logcwmin
= wmep
->wmep_logcwmin
;
1144 chanp
->wmep_logcwmax
= wmep
->wmep_logcwmax
;
1145 chanp
->wmep_txopLimit
= wmep
->wmep_txopLimit
;
1147 chanp
= &wme
->wme_bssChanParams
.cap_wmeParams
[i
];
1148 wmep
= &wme
->wme_wmeBssChanParams
.cap_wmeParams
[i
];
1149 chanp
->wmep_aifsn
= wmep
->wmep_aifsn
;
1150 chanp
->wmep_logcwmin
= wmep
->wmep_logcwmin
;
1151 chanp
->wmep_logcwmax
= wmep
->wmep_logcwmax
;
1152 chanp
->wmep_txopLimit
= wmep
->wmep_txopLimit
;
1156 * Select mode; we can be called early in which case we
1157 * always use auto mode. We know we'll be called when
1158 * entering the RUN state with bsschan setup properly
1159 * so state will eventually get set correctly
1161 if (ic
->ic_bsschan
!= IEEE80211_CHAN_ANYC
)
1162 mode
= ieee80211_chan2mode(ic
->ic_bsschan
);
1164 mode
= IEEE80211_MODE_AUTO
;
1167 * This implements aggressive mode as found in certain
1168 * vendors' AP's. When there is significant high
1169 * priority (VI/VO) traffic in the BSS throttle back BE
1170 * traffic by using conservative parameters. Otherwise
1171 * BE uses aggressive params to optimize performance of
1172 * legacy/non-QoS traffic.
1175 /* Hostap? Only if aggressive mode is enabled */
1176 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1177 (wme
->wme_flags
& WME_F_AGGRMODE
) != 0)
1181 * Station? Only if we're in a non-QoS BSS.
1183 else if ((vap
->iv_opmode
== IEEE80211_M_STA
&&
1184 (vap
->iv_bss
->ni_flags
& IEEE80211_NODE_QOS
) == 0))
1188 * IBSS? Only if we we have WME enabled.
1190 else if ((vap
->iv_opmode
== IEEE80211_M_IBSS
) &&
1191 (vap
->iv_flags
& IEEE80211_F_WME
))
1195 * If WME is disabled on this VAP, default to aggressive mode
1196 * regardless of the configuration.
1198 if ((vap
->iv_flags
& IEEE80211_F_WME
) == 0)
1206 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[WME_AC_BE
];
1207 bssp
= &wme
->wme_bssChanParams
.cap_wmeParams
[WME_AC_BE
];
1209 chanp
->wmep_aifsn
= bssp
->wmep_aifsn
= aggrParam
[mode
].aifsn
;
1210 chanp
->wmep_logcwmin
= bssp
->wmep_logcwmin
=
1211 aggrParam
[mode
].logcwmin
;
1212 chanp
->wmep_logcwmax
= bssp
->wmep_logcwmax
=
1213 aggrParam
[mode
].logcwmax
;
1214 chanp
->wmep_txopLimit
= bssp
->wmep_txopLimit
=
1215 (vap
->iv_flags
& IEEE80211_F_BURST
) ?
1216 aggrParam
[mode
].txopLimit
: 0;
1217 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1218 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1219 "logcwmax %u txop %u]\n", ieee80211_wme_acnames
[WME_AC_BE
],
1220 chanp
->wmep_acm
, chanp
->wmep_aifsn
, chanp
->wmep_logcwmin
,
1221 chanp
->wmep_logcwmax
, chanp
->wmep_txopLimit
);
1226 * Change the contention window based on the number of associated
1227 * stations. If the number of associated stations is 1 and
1228 * aggressive mode is enabled, lower the contention window even
1231 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1232 ic
->ic_sta_assoc
< 2 && (wme
->wme_flags
& WME_F_AGGRMODE
) != 0) {
1233 static const uint8_t logCwMin
[IEEE80211_MODE_MAX
] = {
1234 [IEEE80211_MODE_AUTO
] = 3,
1235 [IEEE80211_MODE_11A
] = 3,
1236 [IEEE80211_MODE_11B
] = 4,
1237 [IEEE80211_MODE_11G
] = 3,
1238 [IEEE80211_MODE_FH
] = 4,
1239 [IEEE80211_MODE_TURBO_A
] = 3,
1240 [IEEE80211_MODE_TURBO_G
] = 3,
1241 [IEEE80211_MODE_STURBO_A
] = 3,
1242 [IEEE80211_MODE_HALF
] = 3,
1243 [IEEE80211_MODE_QUARTER
] = 3,
1244 [IEEE80211_MODE_11NA
] = 3,
1245 [IEEE80211_MODE_11NG
] = 3,
1247 chanp
= &wme
->wme_chanParams
.cap_wmeParams
[WME_AC_BE
];
1248 bssp
= &wme
->wme_bssChanParams
.cap_wmeParams
[WME_AC_BE
];
1250 chanp
->wmep_logcwmin
= bssp
->wmep_logcwmin
= logCwMin
[mode
];
1251 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1252 "update %s (chan+bss) logcwmin %u\n",
1253 ieee80211_wme_acnames
[WME_AC_BE
], chanp
->wmep_logcwmin
);
1257 * Arrange for the beacon update.
1259 * XXX what about MBSS, WDS?
1261 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
1262 || vap
->iv_opmode
== IEEE80211_M_IBSS
) {
1264 * Arrange for a beacon update and bump the parameter
1265 * set number so associated stations load the new values.
1267 wme
->wme_bssChanParams
.cap_info
=
1268 (wme
->wme_bssChanParams
.cap_info
+1) & WME_QOSINFO_COUNT
;
1269 ieee80211_beacon_notify(vap
, IEEE80211_BEACON_WME
);
1272 /* schedule the deferred WME update */
1273 ieee80211_runtask(ic
, &ic
->ic_wme_task
);
1275 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_WME
,
1276 "%s: WME params updated, cap_info 0x%x\n", __func__
,
1277 vap
->iv_opmode
== IEEE80211_M_STA
?
1278 wme
->wme_wmeChanParams
.cap_info
:
1279 wme
->wme_bssChanParams
.cap_info
);
1283 ieee80211_wme_updateparams(struct ieee80211vap
*vap
)
1285 struct ieee80211com
*ic
= vap
->iv_ic
;
1287 if (ic
->ic_caps
& IEEE80211_C_WME
) {
1289 ieee80211_wme_updateparams_locked(vap
);
1290 IEEE80211_UNLOCK(ic
);
1295 parent_updown(void *arg
, int npending
)
1297 struct ieee80211com
*ic
= arg
;
1303 update_mcast(void *arg
, int npending
)
1305 struct ieee80211com
*ic
= arg
;
1307 ic
->ic_update_mcast(ic
);
1311 update_promisc(void *arg
, int npending
)
1313 struct ieee80211com
*ic
= arg
;
1315 ic
->ic_update_promisc(ic
);
1319 update_channel(void *arg
, int npending
)
1321 struct ieee80211com
*ic
= arg
;
1323 ic
->ic_set_channel(ic
);
1324 ieee80211_radiotap_chan_change(ic
);
1328 update_chw(void *arg
, int npending
)
1330 struct ieee80211com
*ic
= arg
;
1333 * XXX should we defer the channel width _config_ update until now?
1335 ic
->ic_update_chw(ic
);
1339 update_wme(void *arg
, int npending
)
1341 struct ieee80211com
*ic
= arg
;
1344 * XXX should we defer the WME configuration update until now?
1346 ic
->ic_wme
.wme_update(ic
);
1350 restart_vaps(void *arg
, int npending
)
1352 struct ieee80211com
*ic
= arg
;
1354 ieee80211_suspend_all(ic
);
1355 ieee80211_resume_all(ic
);
1359 * Block until the parent is in a known state. This is
1360 * used after any operations that dispatch a task (e.g.
1361 * to auto-configure the parent device up/down).
1364 ieee80211_waitfor_parent(struct ieee80211com
*ic
)
1366 taskqueue_block(ic
->ic_tq
);
1367 ieee80211_draintask(ic
, &ic
->ic_parent_task
);
1368 ieee80211_draintask(ic
, &ic
->ic_mcast_task
);
1369 ieee80211_draintask(ic
, &ic
->ic_promisc_task
);
1370 ieee80211_draintask(ic
, &ic
->ic_chan_task
);
1371 ieee80211_draintask(ic
, &ic
->ic_bmiss_task
);
1372 ieee80211_draintask(ic
, &ic
->ic_chw_task
);
1373 ieee80211_draintask(ic
, &ic
->ic_wme_task
);
1374 taskqueue_unblock(ic
->ic_tq
);
1378 * Check to see whether the current channel needs reset.
1380 * Some devices don't handle being given an invalid channel
1381 * in their operating mode very well (eg wpi(4) will throw a
1382 * firmware exception.)
1384 * Return 0 if we're ok, 1 if the channel needs to be reset.
1386 * See PR kern/202502.
1389 ieee80211_start_check_reset_chan(struct ieee80211vap
*vap
)
1391 struct ieee80211com
*ic
= vap
->iv_ic
;
1393 if ((vap
->iv_opmode
== IEEE80211_M_IBSS
&&
1394 IEEE80211_IS_CHAN_NOADHOC(ic
->ic_curchan
)) ||
1395 (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
1396 IEEE80211_IS_CHAN_NOHOSTAP(ic
->ic_curchan
)))
1402 * Reset the curchan to a known good state.
1405 ieee80211_start_reset_chan(struct ieee80211vap
*vap
)
1407 struct ieee80211com
*ic
= vap
->iv_ic
;
1409 ic
->ic_curchan
= &ic
->ic_channels
[0];
1413 * Start a vap running. If this is the first vap to be
1414 * set running on the underlying device then we
1415 * automatically bring the device up.
1418 ieee80211_start_locked(struct ieee80211vap
*vap
)
1420 struct ifnet
*ifp
= vap
->iv_ifp
;
1421 struct ieee80211com
*ic
= vap
->iv_ic
;
1423 IEEE80211_LOCK_ASSERT(ic
);
1425 IEEE80211_DPRINTF(vap
,
1426 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1427 "start running, %d vaps running\n", ic
->ic_nrunning
);
1429 if ((ifp
->if_drv_flags
& IFF_DRV_RUNNING
) == 0) {
1431 * Mark us running. Note that it's ok to do this first;
1432 * if we need to bring the parent device up we defer that
1433 * to avoid dropping the com lock. We expect the device
1434 * to respond to being marked up by calling back into us
1435 * through ieee80211_start_all at which point we'll come
1436 * back in here and complete the work.
1438 ifp
->if_drv_flags
|= IFF_DRV_RUNNING
;
1440 * We are not running; if this we are the first vap
1441 * to be brought up auto-up the parent if necessary.
1443 if (ic
->ic_nrunning
++ == 0) {
1445 /* reset the channel to a known good channel */
1446 if (ieee80211_start_check_reset_chan(vap
))
1447 ieee80211_start_reset_chan(vap
);
1449 IEEE80211_DPRINTF(vap
,
1450 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1451 "%s: up parent %s\n", __func__
, ic
->ic_name
);
1452 ieee80211_runtask(ic
, &ic
->ic_parent_task
);
1457 * If the parent is up and running, then kick the
1458 * 802.11 state machine as appropriate.
1460 if (vap
->iv_roaming
!= IEEE80211_ROAMING_MANUAL
) {
1461 if (vap
->iv_opmode
== IEEE80211_M_STA
) {
1463 /* XXX bypasses scan too easily; disable for now */
1465 * Try to be intelligent about clocking the state
1466 * machine. If we're currently in RUN state then
1467 * we should be able to apply any new state/parameters
1468 * simply by re-associating. Otherwise we need to
1469 * re-scan to select an appropriate ap.
1471 if (vap
->iv_state
>= IEEE80211_S_RUN
)
1472 ieee80211_new_state_locked(vap
,
1473 IEEE80211_S_ASSOC
, 1);
1476 ieee80211_new_state_locked(vap
,
1477 IEEE80211_S_SCAN
, 0);
1480 * For monitor+wds mode there's nothing to do but
1481 * start running. Otherwise if this is the first
1482 * vap to be brought up, start a scan which may be
1483 * preempted if the station is locked to a particular
1486 vap
->iv_flags_ext
|= IEEE80211_FEXT_REINIT
;
1487 if (vap
->iv_opmode
== IEEE80211_M_MONITOR
||
1488 vap
->iv_opmode
== IEEE80211_M_WDS
)
1489 ieee80211_new_state_locked(vap
,
1490 IEEE80211_S_RUN
, -1);
1492 ieee80211_new_state_locked(vap
,
1493 IEEE80211_S_SCAN
, 0);
1499 * Start a single vap.
1502 ieee80211_init(void *arg
)
1504 struct ieee80211vap
*vap
= arg
;
1506 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1509 IEEE80211_LOCK(vap
->iv_ic
);
1510 ieee80211_start_locked(vap
);
1511 IEEE80211_UNLOCK(vap
->iv_ic
);
1515 * Start all runnable vap's on a device.
1518 ieee80211_start_all(struct ieee80211com
*ic
)
1520 struct ieee80211vap
*vap
;
1523 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1524 struct ifnet
*ifp
= vap
->iv_ifp
;
1525 if (IFNET_IS_UP_RUNNING(ifp
)) /* NB: avoid recursion */
1526 ieee80211_start_locked(vap
);
1528 IEEE80211_UNLOCK(ic
);
1532 * Stop a vap. We force it down using the state machine
1533 * then mark it's ifnet not running. If this is the last
1534 * vap running on the underlying device then we close it
1535 * too to insure it will be properly initialized when the
1536 * next vap is brought up.
1539 ieee80211_stop_locked(struct ieee80211vap
*vap
)
1541 struct ieee80211com
*ic
= vap
->iv_ic
;
1542 struct ifnet
*ifp
= vap
->iv_ifp
;
1544 IEEE80211_LOCK_ASSERT(ic
);
1546 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1547 "stop running, %d vaps running\n", ic
->ic_nrunning
);
1549 ieee80211_new_state_locked(vap
, IEEE80211_S_INIT
, -1);
1550 if (ifp
->if_drv_flags
& IFF_DRV_RUNNING
) {
1551 ifp
->if_drv_flags
&= ~IFF_DRV_RUNNING
; /* mark us stopped */
1552 if (--ic
->ic_nrunning
== 0) {
1553 IEEE80211_DPRINTF(vap
,
1554 IEEE80211_MSG_STATE
| IEEE80211_MSG_DEBUG
,
1555 "down parent %s\n", ic
->ic_name
);
1556 ieee80211_runtask(ic
, &ic
->ic_parent_task
);
1562 ieee80211_stop(struct ieee80211vap
*vap
)
1564 struct ieee80211com
*ic
= vap
->iv_ic
;
1567 ieee80211_stop_locked(vap
);
1568 IEEE80211_UNLOCK(ic
);
1572 * Stop all vap's running on a device.
1575 ieee80211_stop_all(struct ieee80211com
*ic
)
1577 struct ieee80211vap
*vap
;
1580 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1581 struct ifnet
*ifp
= vap
->iv_ifp
;
1582 if (IFNET_IS_UP_RUNNING(ifp
)) /* NB: avoid recursion */
1583 ieee80211_stop_locked(vap
);
1585 IEEE80211_UNLOCK(ic
);
1587 ieee80211_waitfor_parent(ic
);
1591 * Stop all vap's running on a device and arrange
1592 * for those that were running to be resumed.
1595 ieee80211_suspend_all(struct ieee80211com
*ic
)
1597 struct ieee80211vap
*vap
;
1600 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1601 struct ifnet
*ifp
= vap
->iv_ifp
;
1602 if (IFNET_IS_UP_RUNNING(ifp
)) { /* NB: avoid recursion */
1603 vap
->iv_flags_ext
|= IEEE80211_FEXT_RESUME
;
1604 ieee80211_stop_locked(vap
);
1607 IEEE80211_UNLOCK(ic
);
1609 ieee80211_waitfor_parent(ic
);
1613 * Start all vap's marked for resume.
1616 ieee80211_resume_all(struct ieee80211com
*ic
)
1618 struct ieee80211vap
*vap
;
1621 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1622 struct ifnet
*ifp
= vap
->iv_ifp
;
1623 if (!IFNET_IS_UP_RUNNING(ifp
) &&
1624 (vap
->iv_flags_ext
& IEEE80211_FEXT_RESUME
)) {
1625 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_RESUME
;
1626 ieee80211_start_locked(vap
);
1629 IEEE80211_UNLOCK(ic
);
1633 * Restart all vap's running on a device.
1636 ieee80211_restart_all(struct ieee80211com
*ic
)
1639 * NB: do not use ieee80211_runtask here, we will
1640 * block & drain net80211 taskqueue.
1642 taskqueue_enqueue(taskqueue_thread
, &ic
->ic_restart_task
);
1646 ieee80211_beacon_miss(struct ieee80211com
*ic
)
1649 if ((ic
->ic_flags
& IEEE80211_F_SCAN
) == 0) {
1650 /* Process in a taskq, the handler may reenter the driver */
1651 ieee80211_runtask(ic
, &ic
->ic_bmiss_task
);
1653 IEEE80211_UNLOCK(ic
);
1657 beacon_miss(void *arg
, int npending
)
1659 struct ieee80211com
*ic
= arg
;
1660 struct ieee80211vap
*vap
;
1663 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1665 * We only pass events through for sta vap's in RUN+ state;
1666 * may be too restrictive but for now this saves all the
1667 * handlers duplicating these checks.
1669 if (vap
->iv_opmode
== IEEE80211_M_STA
&&
1670 vap
->iv_state
>= IEEE80211_S_RUN
&&
1671 vap
->iv_bmiss
!= NULL
)
1674 IEEE80211_UNLOCK(ic
);
1678 beacon_swmiss(void *arg
, int npending
)
1680 struct ieee80211vap
*vap
= arg
;
1681 struct ieee80211com
*ic
= vap
->iv_ic
;
1684 if (vap
->iv_state
>= IEEE80211_S_RUN
) {
1685 /* XXX Call multiple times if npending > zero? */
1688 IEEE80211_UNLOCK(ic
);
1692 * Software beacon miss handling. Check if any beacons
1693 * were received in the last period. If not post a
1694 * beacon miss; otherwise reset the counter.
1697 ieee80211_swbmiss(void *arg
)
1699 struct ieee80211vap
*vap
= arg
;
1700 struct ieee80211com
*ic
= vap
->iv_ic
;
1702 IEEE80211_LOCK_ASSERT(ic
);
1704 KASSERT(vap
->iv_state
>= IEEE80211_S_RUN
,
1705 ("wrong state %d", vap
->iv_state
));
1707 if (ic
->ic_flags
& IEEE80211_F_SCAN
) {
1709 * If scanning just ignore and reset state. If we get a
1710 * bmiss after coming out of scan because we haven't had
1711 * time to receive a beacon then we should probe the AP
1712 * before posting a real bmiss (unless iv_bmiss_max has
1713 * been artifiically lowered). A cleaner solution might
1714 * be to disable the timer on scan start/end but to handle
1715 * case of multiple sta vap's we'd need to disable the
1716 * timers of all affected vap's.
1718 vap
->iv_swbmiss_count
= 0;
1719 } else if (vap
->iv_swbmiss_count
== 0) {
1720 if (vap
->iv_bmiss
!= NULL
)
1721 ieee80211_runtask(ic
, &vap
->iv_swbmiss_task
);
1723 vap
->iv_swbmiss_count
= 0;
1724 callout_reset(&vap
->iv_swbmiss
, vap
->iv_swbmiss_period
,
1725 ieee80211_swbmiss
, vap
);
1729 * Start an 802.11h channel switch. We record the parameters,
1730 * mark the operation pending, notify each vap through the
1731 * beacon update mechanism so it can update the beacon frame
1732 * contents, and then switch vap's to CSA state to block outbound
1733 * traffic. Devices that handle CSA directly can use the state
1734 * switch to do the right thing so long as they call
1735 * ieee80211_csa_completeswitch when it's time to complete the
1736 * channel change. Devices that depend on the net80211 layer can
1737 * use ieee80211_beacon_update to handle the countdown and the
1741 ieee80211_csa_startswitch(struct ieee80211com
*ic
,
1742 struct ieee80211_channel
*c
, int mode
, int count
)
1744 struct ieee80211vap
*vap
;
1746 IEEE80211_LOCK_ASSERT(ic
);
1748 ic
->ic_csa_newchan
= c
;
1749 ic
->ic_csa_mode
= mode
;
1750 ic
->ic_csa_count
= count
;
1751 ic
->ic_flags
|= IEEE80211_F_CSAPENDING
;
1752 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1753 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
||
1754 vap
->iv_opmode
== IEEE80211_M_IBSS
||
1755 vap
->iv_opmode
== IEEE80211_M_MBSS
)
1756 ieee80211_beacon_notify(vap
, IEEE80211_BEACON_CSA
);
1757 /* switch to CSA state to block outbound traffic */
1758 if (vap
->iv_state
== IEEE80211_S_RUN
)
1759 ieee80211_new_state_locked(vap
, IEEE80211_S_CSA
, 0);
1761 ieee80211_notify_csa(ic
, c
, mode
, count
);
1765 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1766 * This is called by both the completion and cancellation functions
1767 * so each VAP is placed back in the RUN state and can thus transmit.
1770 csa_completeswitch(struct ieee80211com
*ic
)
1772 struct ieee80211vap
*vap
;
1774 ic
->ic_csa_newchan
= NULL
;
1775 ic
->ic_flags
&= ~IEEE80211_F_CSAPENDING
;
1777 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
)
1778 if (vap
->iv_state
== IEEE80211_S_CSA
)
1779 ieee80211_new_state_locked(vap
, IEEE80211_S_RUN
, 0);
1783 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1784 * We clear state and move all vap's in CSA state to RUN state
1785 * so they can again transmit.
1787 * Although this may not be completely correct, update the BSS channel
1788 * for each VAP to the newly configured channel. The setcurchan sets
1789 * the current operating channel for the interface (so the radio does
1790 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1791 * reported information via ioctl.
1794 ieee80211_csa_completeswitch(struct ieee80211com
*ic
)
1796 struct ieee80211vap
*vap
;
1798 IEEE80211_LOCK_ASSERT(ic
);
1800 KASSERT(ic
->ic_flags
& IEEE80211_F_CSAPENDING
, ("csa not pending"));
1802 ieee80211_setcurchan(ic
, ic
->ic_csa_newchan
);
1803 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
)
1804 if (vap
->iv_state
== IEEE80211_S_CSA
)
1805 vap
->iv_bss
->ni_chan
= ic
->ic_curchan
;
1807 csa_completeswitch(ic
);
1811 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1812 * We clear state and move all vap's in CSA state to RUN state
1813 * so they can again transmit.
1816 ieee80211_csa_cancelswitch(struct ieee80211com
*ic
)
1818 IEEE80211_LOCK_ASSERT(ic
);
1820 csa_completeswitch(ic
);
1824 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1825 * We clear state and move all vap's in CAC state to RUN state.
1828 ieee80211_cac_completeswitch(struct ieee80211vap
*vap0
)
1830 struct ieee80211com
*ic
= vap0
->iv_ic
;
1831 struct ieee80211vap
*vap
;
1835 * Complete CAC state change for lead vap first; then
1836 * clock all the other vap's waiting.
1838 KASSERT(vap0
->iv_state
== IEEE80211_S_CAC
,
1839 ("wrong state %d", vap0
->iv_state
));
1840 ieee80211_new_state_locked(vap0
, IEEE80211_S_RUN
, 0);
1842 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
)
1843 if (vap
->iv_state
== IEEE80211_S_CAC
)
1844 ieee80211_new_state_locked(vap
, IEEE80211_S_RUN
, 0);
1845 IEEE80211_UNLOCK(ic
);
1849 * Force all vap's other than the specified vap to the INIT state
1850 * and mark them as waiting for a scan to complete. These vaps
1851 * will be brought up when the scan completes and the scanning vap
1852 * reaches RUN state by wakeupwaiting.
1855 markwaiting(struct ieee80211vap
*vap0
)
1857 struct ieee80211com
*ic
= vap0
->iv_ic
;
1858 struct ieee80211vap
*vap
;
1860 IEEE80211_LOCK_ASSERT(ic
);
1863 * A vap list entry can not disappear since we are running on the
1864 * taskqueue and a vap destroy will queue and drain another state
1867 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1870 if (vap
->iv_state
!= IEEE80211_S_INIT
) {
1871 /* NB: iv_newstate may drop the lock */
1872 vap
->iv_newstate(vap
, IEEE80211_S_INIT
, 0);
1873 IEEE80211_LOCK_ASSERT(ic
);
1874 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
1880 * Wakeup all vap's waiting for a scan to complete. This is the
1881 * companion to markwaiting (above) and is used to coordinate
1882 * multiple vaps scanning.
1883 * This is called from the state taskqueue.
1886 wakeupwaiting(struct ieee80211vap
*vap0
)
1888 struct ieee80211com
*ic
= vap0
->iv_ic
;
1889 struct ieee80211vap
*vap
;
1891 IEEE80211_LOCK_ASSERT(ic
);
1894 * A vap list entry can not disappear since we are running on the
1895 * taskqueue and a vap destroy will queue and drain another state
1898 TAILQ_FOREACH(vap
, &ic
->ic_vaps
, iv_next
) {
1901 if (vap
->iv_flags_ext
& IEEE80211_FEXT_SCANWAIT
) {
1902 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_SCANWAIT
;
1903 /* NB: sta's cannot go INIT->RUN */
1904 /* NB: iv_newstate may drop the lock */
1905 vap
->iv_newstate(vap
,
1906 vap
->iv_opmode
== IEEE80211_M_STA
?
1907 IEEE80211_S_SCAN
: IEEE80211_S_RUN
, 0);
1908 IEEE80211_LOCK_ASSERT(ic
);
1914 * Handle post state change work common to all operating modes.
1917 ieee80211_newstate_cb(void *xvap
, int npending
)
1919 struct ieee80211vap
*vap
= xvap
;
1920 struct ieee80211com
*ic
= vap
->iv_ic
;
1921 enum ieee80211_state nstate
, ostate
;
1925 nstate
= vap
->iv_nstate
;
1926 arg
= vap
->iv_nstate_arg
;
1928 if (vap
->iv_flags_ext
& IEEE80211_FEXT_REINIT
) {
1930 * We have been requested to drop back to the INIT before
1931 * proceeding to the new state.
1933 /* Deny any state changes while we are here. */
1934 vap
->iv_nstate
= IEEE80211_S_INIT
;
1935 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1936 "%s: %s -> %s arg %d\n", __func__
,
1937 ieee80211_state_name
[vap
->iv_state
],
1938 ieee80211_state_name
[vap
->iv_nstate
], arg
);
1939 vap
->iv_newstate(vap
, vap
->iv_nstate
, 0);
1940 IEEE80211_LOCK_ASSERT(ic
);
1941 vap
->iv_flags_ext
&= ~(IEEE80211_FEXT_REINIT
|
1942 IEEE80211_FEXT_STATEWAIT
);
1943 /* enqueue new state transition after cancel_scan() task */
1944 ieee80211_new_state_locked(vap
, nstate
, arg
);
1948 ostate
= vap
->iv_state
;
1949 if (nstate
== IEEE80211_S_SCAN
&& ostate
!= IEEE80211_S_INIT
) {
1951 * SCAN was forced; e.g. on beacon miss. Force other running
1952 * vap's to INIT state and mark them as waiting for the scan to
1953 * complete. This insures they don't interfere with our
1954 * scanning. Since we are single threaded the vaps can not
1955 * transition again while we are executing.
1957 * XXX not always right, assumes ap follows sta
1961 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1962 "%s: %s -> %s arg %d\n", __func__
,
1963 ieee80211_state_name
[ostate
], ieee80211_state_name
[nstate
], arg
);
1965 rc
= vap
->iv_newstate(vap
, nstate
, arg
);
1966 IEEE80211_LOCK_ASSERT(ic
);
1967 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_STATEWAIT
;
1969 /* State transition failed */
1970 KASSERT(rc
!= EINPROGRESS
, ("iv_newstate was deferred"));
1971 KASSERT(nstate
!= IEEE80211_S_INIT
,
1972 ("INIT state change failed"));
1973 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
1974 "%s: %s returned error %d\n", __func__
,
1975 ieee80211_state_name
[nstate
], rc
);
1979 /* No actual transition, skip post processing */
1980 if (ostate
== nstate
)
1983 if (nstate
== IEEE80211_S_RUN
) {
1985 * OACTIVE may be set on the vap if the upper layer
1986 * tried to transmit (e.g. IPv6 NDP) before we reach
1987 * RUN state. Clear it and restart xmit.
1989 * Note this can also happen as a result of SLEEP->RUN
1990 * (i.e. coming out of power save mode).
1992 vap
->iv_ifp
->if_drv_flags
&= ~IFF_DRV_OACTIVE
;
1995 * XXX TODO Kick-start a VAP queue - this should be a method!
1998 /* bring up any vaps waiting on us */
2000 } else if (nstate
== IEEE80211_S_INIT
) {
2002 * Flush the scan cache if we did the last scan (XXX?)
2003 * and flush any frames on send queues from this vap.
2004 * Note the mgt q is used only for legacy drivers and
2005 * will go away shortly.
2007 ieee80211_scan_flush(vap
);
2010 * XXX TODO: ic/vap queue flush
2014 IEEE80211_UNLOCK(ic
);
2018 * Public interface for initiating a state machine change.
2019 * This routine single-threads the request and coordinates
2020 * the scheduling of multiple vaps for the purpose of selecting
2021 * an operating channel. Specifically the following scenarios
2023 * o only one vap can be selecting a channel so on transition to
2024 * SCAN state if another vap is already scanning then
2025 * mark the caller for later processing and return without
2026 * doing anything (XXX? expectations by caller of synchronous operation)
2027 * o only one vap can be doing CAC of a channel so on transition to
2028 * CAC state if another vap is already scanning for radar then
2029 * mark the caller for later processing and return without
2030 * doing anything (XXX? expectations by caller of synchronous operation)
2031 * o if another vap is already running when a request is made
2032 * to SCAN then an operating channel has been chosen; bypass
2033 * the scan and just join the channel
2035 * Note that the state change call is done through the iv_newstate
2036 * method pointer so any driver routine gets invoked. The driver
2037 * will normally call back into operating mode-specific
2038 * ieee80211_newstate routines (below) unless it needs to completely
2039 * bypass the state machine (e.g. because the firmware has it's
2040 * own idea how things should work). Bypassing the net80211 layer
2041 * is usually a mistake and indicates lack of proper integration
2042 * with the net80211 layer.
2045 ieee80211_new_state_locked(struct ieee80211vap
*vap
,
2046 enum ieee80211_state nstate
, int arg
)
2048 struct ieee80211com
*ic
= vap
->iv_ic
;
2049 struct ieee80211vap
*vp
;
2050 enum ieee80211_state ostate
;
2051 int nrunning
, nscanning
;
2053 IEEE80211_LOCK_ASSERT(ic
);
2055 if (vap
->iv_flags_ext
& IEEE80211_FEXT_STATEWAIT
) {
2056 if (vap
->iv_nstate
== IEEE80211_S_INIT
||
2057 ((vap
->iv_state
== IEEE80211_S_INIT
||
2058 (vap
->iv_flags_ext
& IEEE80211_FEXT_REINIT
)) &&
2059 vap
->iv_nstate
== IEEE80211_S_SCAN
&&
2060 nstate
> IEEE80211_S_SCAN
)) {
2062 * XXX The vap is being stopped/started,
2063 * do not allow any other state changes
2064 * until this is completed.
2066 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2067 "%s: %s -> %s (%s) transition discarded\n",
2069 ieee80211_state_name
[vap
->iv_state
],
2070 ieee80211_state_name
[nstate
],
2071 ieee80211_state_name
[vap
->iv_nstate
]);
2073 } else if (vap
->iv_state
!= vap
->iv_nstate
) {
2075 /* Warn if the previous state hasn't completed. */
2076 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2077 "%s: pending %s -> %s transition lost\n", __func__
,
2078 ieee80211_state_name
[vap
->iv_state
],
2079 ieee80211_state_name
[vap
->iv_nstate
]);
2081 /* XXX temporarily enable to identify issues */
2082 if_printf(vap
->iv_ifp
,
2083 "%s: pending %s -> %s transition lost\n",
2084 __func__
, ieee80211_state_name
[vap
->iv_state
],
2085 ieee80211_state_name
[vap
->iv_nstate
]);
2090 nrunning
= nscanning
= 0;
2091 /* XXX can track this state instead of calculating */
2092 TAILQ_FOREACH(vp
, &ic
->ic_vaps
, iv_next
) {
2094 if (vp
->iv_state
>= IEEE80211_S_RUN
)
2096 /* XXX doesn't handle bg scan */
2097 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2098 else if (vp
->iv_state
> IEEE80211_S_INIT
)
2102 ostate
= vap
->iv_state
;
2103 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2104 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__
,
2105 ieee80211_state_name
[ostate
], ieee80211_state_name
[nstate
],
2106 nrunning
, nscanning
);
2108 case IEEE80211_S_SCAN
:
2109 if (ostate
== IEEE80211_S_INIT
) {
2111 * INIT -> SCAN happens on initial bringup.
2113 KASSERT(!(nscanning
&& nrunning
),
2114 ("%d scanning and %d running", nscanning
, nrunning
));
2117 * Someone is scanning, defer our state
2118 * change until the work has completed.
2120 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2121 "%s: defer %s -> %s\n",
2122 __func__
, ieee80211_state_name
[ostate
],
2123 ieee80211_state_name
[nstate
]);
2124 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
2129 * Someone is operating; just join the channel
2133 /* XXX check each opmode, adhoc? */
2134 if (vap
->iv_opmode
== IEEE80211_M_STA
)
2135 nstate
= IEEE80211_S_SCAN
;
2137 nstate
= IEEE80211_S_RUN
;
2138 #ifdef IEEE80211_DEBUG
2139 if (nstate
!= IEEE80211_S_SCAN
) {
2140 IEEE80211_DPRINTF(vap
,
2141 IEEE80211_MSG_STATE
,
2142 "%s: override, now %s -> %s\n",
2144 ieee80211_state_name
[ostate
],
2145 ieee80211_state_name
[nstate
]);
2151 case IEEE80211_S_RUN
:
2152 if (vap
->iv_opmode
== IEEE80211_M_WDS
&&
2153 (vap
->iv_flags_ext
& IEEE80211_FEXT_WDSLEGACY
) &&
2156 * Legacy WDS with someone else scanning; don't
2157 * go online until that completes as we should
2158 * follow the other vap to the channel they choose.
2160 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2161 "%s: defer %s -> %s (legacy WDS)\n", __func__
,
2162 ieee80211_state_name
[ostate
],
2163 ieee80211_state_name
[nstate
]);
2164 vap
->iv_flags_ext
|= IEEE80211_FEXT_SCANWAIT
;
2167 if (vap
->iv_opmode
== IEEE80211_M_HOSTAP
&&
2168 IEEE80211_IS_CHAN_DFS(ic
->ic_bsschan
) &&
2169 (vap
->iv_flags_ext
& IEEE80211_FEXT_DFS
) &&
2170 !IEEE80211_IS_CHAN_CACDONE(ic
->ic_bsschan
)) {
2172 * This is a DFS channel, transition to CAC state
2173 * instead of RUN. This allows us to initiate
2174 * Channel Availability Check (CAC) as specified
2177 nstate
= IEEE80211_S_CAC
;
2178 IEEE80211_DPRINTF(vap
, IEEE80211_MSG_STATE
,
2179 "%s: override %s -> %s (DFS)\n", __func__
,
2180 ieee80211_state_name
[ostate
],
2181 ieee80211_state_name
[nstate
]);
2184 case IEEE80211_S_INIT
:
2185 /* cancel any scan in progress */
2186 ieee80211_cancel_scan(vap
);
2187 if (ostate
== IEEE80211_S_INIT
) {
2188 /* XXX don't believe this */
2189 /* INIT -> INIT. nothing to do */
2190 vap
->iv_flags_ext
&= ~IEEE80211_FEXT_SCANWAIT
;
2196 /* defer the state change to a thread */
2197 vap
->iv_nstate
= nstate
;
2198 vap
->iv_nstate_arg
= arg
;
2199 vap
->iv_flags_ext
|= IEEE80211_FEXT_STATEWAIT
;
2200 ieee80211_runtask(ic
, &vap
->iv_nstate_task
);
2205 ieee80211_new_state(struct ieee80211vap
*vap
,
2206 enum ieee80211_state nstate
, int arg
)
2208 struct ieee80211com
*ic
= vap
->iv_ic
;
2212 rc
= ieee80211_new_state_locked(vap
, nstate
, arg
);
2213 IEEE80211_UNLOCK(ic
);