cxgbe/t4_tom: Read the chip's DDP page sizes and save them in a
[freebsd-src.git] / sys / kern / subr_witness.c
bloba6786350ab7d1c400a9a1f970920a08caa9c6060
1 /*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
36 * Implementation of the `witness' lock verifier. Originally implemented for
37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
42 * Main Entry: witness
43 * Pronunciation: 'wit-n&s
44 * Function: noun
45 * Etymology: Middle English witnesse, from Old English witnes knowledge,
46 * testimony, witness, from 2wit
47 * Date: before 12th century
48 * 1 : attestation of a fact or event : TESTIMONY
49 * 2 : one that gives evidence; specifically : one who testifies in
50 * a cause or before a judicial tribunal
51 * 3 : one asked to be present at a transaction so as to be able to
52 * testify to its having taken place
53 * 4 : one who has personal knowledge of something
54 * 5 a : something serving as evidence or proof : SIGN
55 * b : public affirmation by word or example of usually
56 * religious faith or conviction <the heroic witness to divine
57 * life -- Pilot>
58 * 6 capitalized : a member of the Jehovah's Witnesses
62 * Special rules concerning Giant and lock orders:
64 * 1) Giant must be acquired before any other mutexes. Stated another way,
65 * no other mutex may be held when Giant is acquired.
67 * 2) Giant must be released when blocking on a sleepable lock.
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl(). Basically, when a thread sleeps, it must release
71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule
72 * 2).
74 * 3) Giant may be acquired before or after sleepable locks.
76 * This rule is also not quite as obvious. Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock. The second
79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose
80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1
81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and
82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute. Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/syslog.h>
110 #include <sys/systm.h>
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
116 #include <machine/stdarg.h>
118 #if !defined(DDB) && !defined(STACK)
119 #error "DDB or STACK options are required for WITNESS"
120 #endif
122 /* Note that these traces do not work with KTR_ALQ. */
123 #if 0
124 #define KTR_WITNESS KTR_SUBSYS
125 #else
126 #define KTR_WITNESS 0
127 #endif
129 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */
130 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */
131 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */
133 /* Define this to check for blessed mutexes */
134 #undef BLESSING
136 #ifndef WITNESS_COUNT
137 #define WITNESS_COUNT 1536
138 #endif
139 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */
140 #define WITNESS_PENDLIST (1024 + MAXCPU)
142 /* Allocate 256 KB of stack data space */
143 #define WITNESS_LO_DATA_COUNT 2048
145 /* Prime, gives load factor of ~2 at full load */
146 #define WITNESS_LO_HASH_SIZE 1021
149 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should
151 * probably be safe for the most part, but it's still a SWAG.
153 #define LOCK_NCHILDREN 5
154 #define LOCK_CHILDCOUNT 2048
156 #define MAX_W_NAME 64
158 #define FULLGRAPH_SBUF_SIZE 512
161 * These flags go in the witness relationship matrix and describe the
162 * relationship between any two struct witness objects.
164 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */
165 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */
166 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */
167 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */
168 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */
169 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define WITNESS_RELATED_MASK \
172 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been
174 * observed. */
175 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */
176 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */
177 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */
179 /* Descendant to ancestor flags */
180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
182 /* Ancestor to descendant flags */
183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
185 #define WITNESS_INDEX_ASSERT(i) \
186 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
191 * Lock instances. A lock instance is the data associated with a lock while
192 * it is held by witness. For example, a lock instance will hold the
193 * recursion count of a lock. Lock instances are held in lists. Spin locks
194 * are held in a per-cpu list while sleep locks are held in per-thread list.
196 struct lock_instance {
197 struct lock_object *li_lock;
198 const char *li_file;
199 int li_line;
200 u_int li_flags;
204 * A simple list type used to build the list of locks held by a thread
205 * or CPU. We can't simply embed the list in struct lock_object since a
206 * lock may be held by more than one thread if it is a shared lock. Locks
207 * are added to the head of the list, so we fill up each list entry from
208 * "the back" logically. To ease some of the arithmetic, we actually fill
209 * in each list entry the normal way (children[0] then children[1], etc.) but
210 * when we traverse the list we read children[count-1] as the first entry
211 * down to children[0] as the final entry.
213 struct lock_list_entry {
214 struct lock_list_entry *ll_next;
215 struct lock_instance ll_children[LOCK_NCHILDREN];
216 u_int ll_count;
220 * The main witness structure. One of these per named lock type in the system
221 * (for example, "vnode interlock").
223 struct witness {
224 char w_name[MAX_W_NAME];
225 uint32_t w_index; /* Index in the relationship matrix */
226 struct lock_class *w_class;
227 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */
228 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */
229 struct witness *w_hash_next; /* Linked list in hash buckets. */
230 const char *w_file; /* File where last acquired */
231 uint32_t w_line; /* Line where last acquired */
232 uint32_t w_refcount;
233 uint16_t w_num_ancestors; /* direct/indirect
234 * ancestor count */
235 uint16_t w_num_descendants; /* direct/indirect
236 * descendant count */
237 int16_t w_ddb_level;
238 unsigned w_displayed:1;
239 unsigned w_reversed:1;
242 STAILQ_HEAD(witness_list, witness);
245 * The witness hash table. Keys are witness names (const char *), elements are
246 * witness objects (struct witness *).
248 struct witness_hash {
249 struct witness *wh_array[WITNESS_HASH_SIZE];
250 uint32_t wh_size;
251 uint32_t wh_count;
255 * Key type for the lock order data hash table.
257 struct witness_lock_order_key {
258 uint16_t from;
259 uint16_t to;
262 struct witness_lock_order_data {
263 struct stack wlod_stack;
264 struct witness_lock_order_key wlod_key;
265 struct witness_lock_order_data *wlod_next;
269 * The witness lock order data hash table. Keys are witness index tuples
270 * (struct witness_lock_order_key), elements are lock order data objects
271 * (struct witness_lock_order_data).
273 struct witness_lock_order_hash {
274 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE];
275 u_int wloh_size;
276 u_int wloh_count;
279 #ifdef BLESSING
280 struct witness_blessed {
281 const char *b_lock1;
282 const char *b_lock2;
284 #endif
286 struct witness_pendhelp {
287 const char *wh_type;
288 struct lock_object *wh_lock;
291 struct witness_order_list_entry {
292 const char *w_name;
293 struct lock_class *w_class;
297 * Returns 0 if one of the locks is a spin lock and the other is not.
298 * Returns 1 otherwise.
300 static __inline int
301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
304 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
308 static __inline int
309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310 const struct witness_lock_order_key *b)
313 return (a->from == b->from && a->to == b->to);
316 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask,
317 const char *fname);
318 static void adopt(struct witness *parent, struct witness *child);
319 #ifdef BLESSING
320 static int blessed(struct witness *, struct witness *);
321 #endif
322 static void depart(struct witness *w);
323 static struct witness *enroll(const char *description,
324 struct lock_class *lock_class);
325 static struct lock_instance *find_instance(struct lock_list_entry *list,
326 const struct lock_object *lock);
327 static int isitmychild(struct witness *parent, struct witness *child);
328 static int isitmydescendant(struct witness *parent, struct witness *child);
329 static void itismychild(struct witness *parent, struct witness *child);
330 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335 #ifdef DDB
336 static void witness_ddb_compute_levels(void);
337 static void witness_ddb_display(int(*)(const char *fmt, ...));
338 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339 struct witness *, int indent);
340 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341 struct witness_list *list);
342 static void witness_ddb_level_descendants(struct witness *parent, int l);
343 static void witness_ddb_list(struct thread *td);
344 #endif
345 static void witness_debugger(int cond, const char *msg);
346 static void witness_free(struct witness *m);
347 static struct witness *witness_get(void);
348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
349 static struct witness *witness_hash_get(const char *key);
350 static void witness_hash_put(struct witness *w);
351 static void witness_init_hash_tables(void);
352 static void witness_increment_graph_generation(void);
353 static void witness_lock_list_free(struct lock_list_entry *lle);
354 static struct lock_list_entry *witness_lock_list_get(void);
355 static int witness_lock_order_add(struct witness *parent,
356 struct witness *child);
357 static int witness_lock_order_check(struct witness *parent,
358 struct witness *child);
359 static struct witness_lock_order_data *witness_lock_order_get(
360 struct witness *parent,
361 struct witness *child);
362 static void witness_list_lock(struct lock_instance *instance,
363 int (*prnt)(const char *fmt, ...));
364 static int witness_output(const char *fmt, ...) __printflike(1, 2);
365 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366 static void witness_setflag(struct lock_object *lock, int flag, int set);
368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369 "Witness Locking");
372 * If set to 0, lock order checking is disabled. If set to -1,
373 * witness is completely disabled. Otherwise witness performs full
374 * lock order checking for all locks. At runtime, lock order checking
375 * may be toggled. However, witness cannot be reenabled once it is
376 * completely disabled.
378 static int witness_watch = 1;
379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380 sysctl_debug_witness_watch, "I", "witness is watching lock operations");
382 #ifdef KDB
384 * When KDB is enabled and witness_kdb is 1, it will cause the system
385 * to drop into kdebug() when:
386 * - a lock hierarchy violation occurs
387 * - locks are held when going to sleep.
389 #ifdef WITNESS_KDB
390 int witness_kdb = 1;
391 #else
392 int witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
397 #if defined(DDB) || defined(KDB)
399 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400 * to print a stack trace:
401 * - a lock hierarchy violation occurs
402 * - locks are held when going to sleep.
404 int witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
408 #ifdef WITNESS_SKIPSPIN
409 int witness_skipspin = 1;
410 #else
411 int witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
415 int badstack_sbuf_size;
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
419 &witness_count, 0, "");
422 * Output channel for witness messages. By default we print to the console.
424 enum witness_channel {
425 WITNESS_CONSOLE,
426 WITNESS_LOG,
427 WITNESS_NONE,
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432 CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433 "Output channel for warnings");
436 * Call this to print out the relations between locks.
438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
442 * Call this to print out the witness faulty stacks.
444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
447 static struct mtx w_mtx;
449 /* w_list */
450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
453 /* w_typelist */
454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
457 /* lock list */
458 static struct lock_list_entry *w_lock_list_free = NULL;
459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460 static u_int pending_cnt;
462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466 "");
468 static struct witness *w_data;
469 static uint8_t **w_rmatrix;
470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471 static struct witness_hash w_hash; /* The witness hash table. */
473 /* The lock order data hash */
474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475 static struct witness_lock_order_data *w_lofree = NULL;
476 static struct witness_lock_order_hash w_lohash;
477 static int w_max_used_index = 0;
478 static unsigned int w_generation = 0;
479 static const char w_notrunning[] = "Witness not running\n";
480 static const char w_stillcold[] = "Witness is still cold\n";
483 static struct witness_order_list_entry order_lists[] = {
485 * sx locks
487 { "proctree", &lock_class_sx },
488 { "allproc", &lock_class_sx },
489 { "allprison", &lock_class_sx },
490 { NULL, NULL },
492 * Various mutexes
494 { "Giant", &lock_class_mtx_sleep },
495 { "pipe mutex", &lock_class_mtx_sleep },
496 { "sigio lock", &lock_class_mtx_sleep },
497 { "process group", &lock_class_mtx_sleep },
498 { "process lock", &lock_class_mtx_sleep },
499 { "session", &lock_class_mtx_sleep },
500 { "uidinfo hash", &lock_class_rw },
501 #ifdef HWPMC_HOOKS
502 { "pmc-sleep", &lock_class_mtx_sleep },
503 #endif
504 { "time lock", &lock_class_mtx_sleep },
505 { NULL, NULL },
507 * umtx
509 { "umtx lock", &lock_class_mtx_sleep },
510 { NULL, NULL },
512 * Sockets
514 { "accept", &lock_class_mtx_sleep },
515 { "so_snd", &lock_class_mtx_sleep },
516 { "so_rcv", &lock_class_mtx_sleep },
517 { "sellck", &lock_class_mtx_sleep },
518 { NULL, NULL },
520 * Routing
522 { "so_rcv", &lock_class_mtx_sleep },
523 { "radix node head", &lock_class_rw },
524 { "rtentry", &lock_class_mtx_sleep },
525 { "ifaddr", &lock_class_mtx_sleep },
526 { NULL, NULL },
528 * IPv4 multicast:
529 * protocol locks before interface locks, after UDP locks.
531 { "udpinp", &lock_class_rw },
532 { "in_multi_mtx", &lock_class_mtx_sleep },
533 { "igmp_mtx", &lock_class_mtx_sleep },
534 { "if_addr_lock", &lock_class_rw },
535 { NULL, NULL },
537 * IPv6 multicast:
538 * protocol locks before interface locks, after UDP locks.
540 { "udpinp", &lock_class_rw },
541 { "in6_multi_mtx", &lock_class_mtx_sleep },
542 { "mld_mtx", &lock_class_mtx_sleep },
543 { "if_addr_lock", &lock_class_rw },
544 { NULL, NULL },
546 * UNIX Domain Sockets
548 { "unp_link_rwlock", &lock_class_rw },
549 { "unp_list_lock", &lock_class_mtx_sleep },
550 { "unp", &lock_class_mtx_sleep },
551 { "so_snd", &lock_class_mtx_sleep },
552 { NULL, NULL },
554 * UDP/IP
556 { "udp", &lock_class_rw },
557 { "udpinp", &lock_class_rw },
558 { "so_snd", &lock_class_mtx_sleep },
559 { NULL, NULL },
561 * TCP/IP
563 { "tcp", &lock_class_rw },
564 { "tcpinp", &lock_class_rw },
565 { "so_snd", &lock_class_mtx_sleep },
566 { NULL, NULL },
568 * BPF
570 { "bpf global lock", &lock_class_mtx_sleep },
571 { "bpf interface lock", &lock_class_rw },
572 { "bpf cdev lock", &lock_class_mtx_sleep },
573 { NULL, NULL },
575 * NFS server
577 { "nfsd_mtx", &lock_class_mtx_sleep },
578 { "so_snd", &lock_class_mtx_sleep },
579 { NULL, NULL },
582 * IEEE 802.11
584 { "802.11 com lock", &lock_class_mtx_sleep},
585 { NULL, NULL },
587 * Network drivers
589 { "network driver", &lock_class_mtx_sleep},
590 { NULL, NULL },
593 * Netgraph
595 { "ng_node", &lock_class_mtx_sleep },
596 { "ng_worklist", &lock_class_mtx_sleep },
597 { NULL, NULL },
599 * CDEV
601 { "vm map (system)", &lock_class_mtx_sleep },
602 { "vm page queue", &lock_class_mtx_sleep },
603 { "vnode interlock", &lock_class_mtx_sleep },
604 { "cdev", &lock_class_mtx_sleep },
605 { NULL, NULL },
607 * VM
609 { "vm map (user)", &lock_class_sx },
610 { "vm object", &lock_class_rw },
611 { "vm page", &lock_class_mtx_sleep },
612 { "vm page queue", &lock_class_mtx_sleep },
613 { "pmap pv global", &lock_class_rw },
614 { "pmap", &lock_class_mtx_sleep },
615 { "pmap pv list", &lock_class_rw },
616 { "vm page free queue", &lock_class_mtx_sleep },
617 { NULL, NULL },
619 * kqueue/VFS interaction
621 { "kqueue", &lock_class_mtx_sleep },
622 { "struct mount mtx", &lock_class_mtx_sleep },
623 { "vnode interlock", &lock_class_mtx_sleep },
624 { NULL, NULL },
626 * ZFS locking
628 { "dn->dn_mtx", &lock_class_sx },
629 { "dr->dt.di.dr_mtx", &lock_class_sx },
630 { "db->db_mtx", &lock_class_sx },
631 { NULL, NULL },
633 * spin locks
635 #ifdef SMP
636 { "ap boot", &lock_class_mtx_spin },
637 #endif
638 { "rm.mutex_mtx", &lock_class_mtx_spin },
639 { "sio", &lock_class_mtx_spin },
640 { "scrlock", &lock_class_mtx_spin },
641 #ifdef __i386__
642 { "cy", &lock_class_mtx_spin },
643 #endif
644 #ifdef __sparc64__
645 { "pcib_mtx", &lock_class_mtx_spin },
646 { "rtc_mtx", &lock_class_mtx_spin },
647 #endif
648 { "scc_hwmtx", &lock_class_mtx_spin },
649 { "uart_hwmtx", &lock_class_mtx_spin },
650 { "fast_taskqueue", &lock_class_mtx_spin },
651 { "intr table", &lock_class_mtx_spin },
652 #ifdef HWPMC_HOOKS
653 { "pmc-per-proc", &lock_class_mtx_spin },
654 #endif
655 { "process slock", &lock_class_mtx_spin },
656 { "sleepq chain", &lock_class_mtx_spin },
657 { "rm_spinlock", &lock_class_mtx_spin },
658 { "turnstile chain", &lock_class_mtx_spin },
659 { "turnstile lock", &lock_class_mtx_spin },
660 { "sched lock", &lock_class_mtx_spin },
661 { "td_contested", &lock_class_mtx_spin },
662 { "callout", &lock_class_mtx_spin },
663 { "entropy harvest mutex", &lock_class_mtx_spin },
664 { "syscons video lock", &lock_class_mtx_spin },
665 #ifdef SMP
666 { "smp rendezvous", &lock_class_mtx_spin },
667 #endif
668 #ifdef __powerpc__
669 { "tlb0", &lock_class_mtx_spin },
670 #endif
672 * leaf locks
674 { "intrcnt", &lock_class_mtx_spin },
675 { "icu", &lock_class_mtx_spin },
676 #if defined(SMP) && defined(__sparc64__)
677 { "ipi", &lock_class_mtx_spin },
678 #endif
679 #ifdef __i386__
680 { "allpmaps", &lock_class_mtx_spin },
681 { "descriptor tables", &lock_class_mtx_spin },
682 #endif
683 { "clk", &lock_class_mtx_spin },
684 { "cpuset", &lock_class_mtx_spin },
685 { "mprof lock", &lock_class_mtx_spin },
686 { "zombie lock", &lock_class_mtx_spin },
687 { "ALD Queue", &lock_class_mtx_spin },
688 #if defined(__i386__) || defined(__amd64__)
689 { "pcicfg", &lock_class_mtx_spin },
690 { "NDIS thread lock", &lock_class_mtx_spin },
691 #endif
692 { "tw_osl_io_lock", &lock_class_mtx_spin },
693 { "tw_osl_q_lock", &lock_class_mtx_spin },
694 { "tw_cl_io_lock", &lock_class_mtx_spin },
695 { "tw_cl_intr_lock", &lock_class_mtx_spin },
696 { "tw_cl_gen_lock", &lock_class_mtx_spin },
697 #ifdef HWPMC_HOOKS
698 { "pmc-leaf", &lock_class_mtx_spin },
699 #endif
700 { "blocked lock", &lock_class_mtx_spin },
701 { NULL, NULL },
702 { NULL, NULL }
705 #ifdef BLESSING
707 * Pairs of locks which have been blessed
708 * Don't complain about order problems with blessed locks
710 static struct witness_blessed blessed_list[] = {
712 #endif
715 * This global is set to 0 once it becomes safe to use the witness code.
717 static int witness_cold = 1;
720 * This global is set to 1 once the static lock orders have been enrolled
721 * so that a warning can be issued for any spin locks enrolled later.
723 static int witness_spin_warn = 0;
725 /* Trim useless garbage from filenames. */
726 static const char *
727 fixup_filename(const char *file)
730 if (file == NULL)
731 return (NULL);
732 while (strncmp(file, "../", 3) == 0)
733 file += 3;
734 return (file);
738 * The WITNESS-enabled diagnostic code. Note that the witness code does
739 * assume that the early boot is single-threaded at least until after this
740 * routine is completed.
742 static void
743 witness_initialize(void *dummy __unused)
745 struct lock_object *lock;
746 struct witness_order_list_entry *order;
747 struct witness *w, *w1;
748 int i;
750 w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
751 M_WAITOK | M_ZERO);
753 w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
754 M_WITNESS, M_WAITOK | M_ZERO);
756 for (i = 0; i < witness_count + 1; i++) {
757 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
758 (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
760 badstack_sbuf_size = witness_count * 256;
763 * We have to release Giant before initializing its witness
764 * structure so that WITNESS doesn't get confused.
766 mtx_unlock(&Giant);
767 mtx_assert(&Giant, MA_NOTOWNED);
769 CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
770 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
771 MTX_NOWITNESS | MTX_NOPROFILE);
772 for (i = witness_count - 1; i >= 0; i--) {
773 w = &w_data[i];
774 memset(w, 0, sizeof(*w));
775 w_data[i].w_index = i; /* Witness index never changes. */
776 witness_free(w);
778 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
779 ("%s: Invalid list of free witness objects", __func__));
781 /* Witness with index 0 is not used to aid in debugging. */
782 STAILQ_REMOVE_HEAD(&w_free, w_list);
783 w_free_cnt--;
785 for (i = 0; i < witness_count; i++) {
786 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
787 (witness_count + 1));
790 for (i = 0; i < LOCK_CHILDCOUNT; i++)
791 witness_lock_list_free(&w_locklistdata[i]);
792 witness_init_hash_tables();
794 /* First add in all the specified order lists. */
795 for (order = order_lists; order->w_name != NULL; order++) {
796 w = enroll(order->w_name, order->w_class);
797 if (w == NULL)
798 continue;
799 w->w_file = "order list";
800 for (order++; order->w_name != NULL; order++) {
801 w1 = enroll(order->w_name, order->w_class);
802 if (w1 == NULL)
803 continue;
804 w1->w_file = "order list";
805 itismychild(w, w1);
806 w = w1;
809 witness_spin_warn = 1;
811 /* Iterate through all locks and add them to witness. */
812 for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
813 lock = pending_locks[i].wh_lock;
814 KASSERT(lock->lo_flags & LO_WITNESS,
815 ("%s: lock %s is on pending list but not LO_WITNESS",
816 __func__, lock->lo_name));
817 lock->lo_witness = enroll(pending_locks[i].wh_type,
818 LOCK_CLASS(lock));
821 /* Mark the witness code as being ready for use. */
822 witness_cold = 0;
824 mtx_lock(&Giant);
826 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
827 NULL);
829 void
830 witness_init(struct lock_object *lock, const char *type)
832 struct lock_class *class;
834 /* Various sanity checks. */
835 class = LOCK_CLASS(lock);
836 if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
837 (class->lc_flags & LC_RECURSABLE) == 0)
838 kassert_panic("%s: lock (%s) %s can not be recursable",
839 __func__, class->lc_name, lock->lo_name);
840 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
841 (class->lc_flags & LC_SLEEPABLE) == 0)
842 kassert_panic("%s: lock (%s) %s can not be sleepable",
843 __func__, class->lc_name, lock->lo_name);
844 if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
845 (class->lc_flags & LC_UPGRADABLE) == 0)
846 kassert_panic("%s: lock (%s) %s can not be upgradable",
847 __func__, class->lc_name, lock->lo_name);
850 * If we shouldn't watch this lock, then just clear lo_witness.
851 * Otherwise, if witness_cold is set, then it is too early to
852 * enroll this lock, so defer it to witness_initialize() by adding
853 * it to the pending_locks list. If it is not too early, then enroll
854 * the lock now.
856 if (witness_watch < 1 || panicstr != NULL ||
857 (lock->lo_flags & LO_WITNESS) == 0)
858 lock->lo_witness = NULL;
859 else if (witness_cold) {
860 pending_locks[pending_cnt].wh_lock = lock;
861 pending_locks[pending_cnt++].wh_type = type;
862 if (pending_cnt > WITNESS_PENDLIST)
863 panic("%s: pending locks list is too small, "
864 "increase WITNESS_PENDLIST\n",
865 __func__);
866 } else
867 lock->lo_witness = enroll(type, class);
870 void
871 witness_destroy(struct lock_object *lock)
873 struct lock_class *class;
874 struct witness *w;
876 class = LOCK_CLASS(lock);
878 if (witness_cold)
879 panic("lock (%s) %s destroyed while witness_cold",
880 class->lc_name, lock->lo_name);
882 /* XXX: need to verify that no one holds the lock */
883 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
884 return;
885 w = lock->lo_witness;
887 mtx_lock_spin(&w_mtx);
888 MPASS(w->w_refcount > 0);
889 w->w_refcount--;
891 if (w->w_refcount == 0)
892 depart(w);
893 mtx_unlock_spin(&w_mtx);
896 #ifdef DDB
897 static void
898 witness_ddb_compute_levels(void)
900 struct witness *w;
903 * First clear all levels.
905 STAILQ_FOREACH(w, &w_all, w_list)
906 w->w_ddb_level = -1;
909 * Look for locks with no parents and level all their descendants.
911 STAILQ_FOREACH(w, &w_all, w_list) {
913 /* If the witness has ancestors (is not a root), skip it. */
914 if (w->w_num_ancestors > 0)
915 continue;
916 witness_ddb_level_descendants(w, 0);
920 static void
921 witness_ddb_level_descendants(struct witness *w, int l)
923 int i;
925 if (w->w_ddb_level >= l)
926 return;
928 w->w_ddb_level = l;
929 l++;
931 for (i = 1; i <= w_max_used_index; i++) {
932 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
933 witness_ddb_level_descendants(&w_data[i], l);
937 static void
938 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
939 struct witness *w, int indent)
941 int i;
943 for (i = 0; i < indent; i++)
944 prnt(" ");
945 prnt("%s (type: %s, depth: %d, active refs: %d)",
946 w->w_name, w->w_class->lc_name,
947 w->w_ddb_level, w->w_refcount);
948 if (w->w_displayed) {
949 prnt(" -- (already displayed)\n");
950 return;
952 w->w_displayed = 1;
953 if (w->w_file != NULL && w->w_line != 0)
954 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
955 w->w_line);
956 else
957 prnt(" -- never acquired\n");
958 indent++;
959 WITNESS_INDEX_ASSERT(w->w_index);
960 for (i = 1; i <= w_max_used_index; i++) {
961 if (db_pager_quit)
962 return;
963 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
964 witness_ddb_display_descendants(prnt, &w_data[i],
965 indent);
969 static void
970 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
971 struct witness_list *list)
973 struct witness *w;
975 STAILQ_FOREACH(w, list, w_typelist) {
976 if (w->w_file == NULL || w->w_ddb_level > 0)
977 continue;
979 /* This lock has no anscestors - display its descendants. */
980 witness_ddb_display_descendants(prnt, w, 0);
981 if (db_pager_quit)
982 return;
986 static void
987 witness_ddb_display(int(*prnt)(const char *fmt, ...))
989 struct witness *w;
991 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
992 witness_ddb_compute_levels();
994 /* Clear all the displayed flags. */
995 STAILQ_FOREACH(w, &w_all, w_list)
996 w->w_displayed = 0;
999 * First, handle sleep locks which have been acquired at least
1000 * once.
1002 prnt("Sleep locks:\n");
1003 witness_ddb_display_list(prnt, &w_sleep);
1004 if (db_pager_quit)
1005 return;
1008 * Now do spin locks which have been acquired at least once.
1010 prnt("\nSpin locks:\n");
1011 witness_ddb_display_list(prnt, &w_spin);
1012 if (db_pager_quit)
1013 return;
1016 * Finally, any locks which have not been acquired yet.
1018 prnt("\nLocks which were never acquired:\n");
1019 STAILQ_FOREACH(w, &w_all, w_list) {
1020 if (w->w_file != NULL || w->w_refcount == 0)
1021 continue;
1022 prnt("%s (type: %s, depth: %d)\n", w->w_name,
1023 w->w_class->lc_name, w->w_ddb_level);
1024 if (db_pager_quit)
1025 return;
1028 #endif /* DDB */
1031 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1034 if (witness_watch == -1 || panicstr != NULL)
1035 return (0);
1037 /* Require locks that witness knows about. */
1038 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1039 lock2->lo_witness == NULL)
1040 return (EINVAL);
1042 mtx_assert(&w_mtx, MA_NOTOWNED);
1043 mtx_lock_spin(&w_mtx);
1046 * If we already have either an explicit or implied lock order that
1047 * is the other way around, then return an error.
1049 if (witness_watch &&
1050 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1051 mtx_unlock_spin(&w_mtx);
1052 return (EDOOFUS);
1055 /* Try to add the new order. */
1056 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1057 lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1058 itismychild(lock1->lo_witness, lock2->lo_witness);
1059 mtx_unlock_spin(&w_mtx);
1060 return (0);
1063 void
1064 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1065 int line, struct lock_object *interlock)
1067 struct lock_list_entry *lock_list, *lle;
1068 struct lock_instance *lock1, *lock2, *plock;
1069 struct lock_class *class, *iclass;
1070 struct witness *w, *w1;
1071 struct thread *td;
1072 int i, j;
1074 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1075 panicstr != NULL)
1076 return;
1078 w = lock->lo_witness;
1079 class = LOCK_CLASS(lock);
1080 td = curthread;
1082 if (class->lc_flags & LC_SLEEPLOCK) {
1085 * Since spin locks include a critical section, this check
1086 * implicitly enforces a lock order of all sleep locks before
1087 * all spin locks.
1089 if (td->td_critnest != 0 && !kdb_active)
1090 kassert_panic("acquiring blockable sleep lock with "
1091 "spinlock or critical section held (%s) %s @ %s:%d",
1092 class->lc_name, lock->lo_name,
1093 fixup_filename(file), line);
1096 * If this is the first lock acquired then just return as
1097 * no order checking is needed.
1099 lock_list = td->td_sleeplocks;
1100 if (lock_list == NULL || lock_list->ll_count == 0)
1101 return;
1102 } else {
1105 * If this is the first lock, just return as no order
1106 * checking is needed. Avoid problems with thread
1107 * migration pinning the thread while checking if
1108 * spinlocks are held. If at least one spinlock is held
1109 * the thread is in a safe path and it is allowed to
1110 * unpin it.
1112 sched_pin();
1113 lock_list = PCPU_GET(spinlocks);
1114 if (lock_list == NULL || lock_list->ll_count == 0) {
1115 sched_unpin();
1116 return;
1118 sched_unpin();
1122 * Check to see if we are recursing on a lock we already own. If
1123 * so, make sure that we don't mismatch exclusive and shared lock
1124 * acquires.
1126 lock1 = find_instance(lock_list, lock);
1127 if (lock1 != NULL) {
1128 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1129 (flags & LOP_EXCLUSIVE) == 0) {
1130 witness_output("shared lock of (%s) %s @ %s:%d\n",
1131 class->lc_name, lock->lo_name,
1132 fixup_filename(file), line);
1133 witness_output("while exclusively locked from %s:%d\n",
1134 fixup_filename(lock1->li_file), lock1->li_line);
1135 kassert_panic("excl->share");
1137 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1138 (flags & LOP_EXCLUSIVE) != 0) {
1139 witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1140 class->lc_name, lock->lo_name,
1141 fixup_filename(file), line);
1142 witness_output("while share locked from %s:%d\n",
1143 fixup_filename(lock1->li_file), lock1->li_line);
1144 kassert_panic("share->excl");
1146 return;
1149 /* Warn if the interlock is not locked exactly once. */
1150 if (interlock != NULL) {
1151 iclass = LOCK_CLASS(interlock);
1152 lock1 = find_instance(lock_list, interlock);
1153 if (lock1 == NULL)
1154 kassert_panic("interlock (%s) %s not locked @ %s:%d",
1155 iclass->lc_name, interlock->lo_name,
1156 fixup_filename(file), line);
1157 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1158 kassert_panic("interlock (%s) %s recursed @ %s:%d",
1159 iclass->lc_name, interlock->lo_name,
1160 fixup_filename(file), line);
1164 * Find the previously acquired lock, but ignore interlocks.
1166 plock = &lock_list->ll_children[lock_list->ll_count - 1];
1167 if (interlock != NULL && plock->li_lock == interlock) {
1168 if (lock_list->ll_count > 1)
1169 plock =
1170 &lock_list->ll_children[lock_list->ll_count - 2];
1171 else {
1172 lle = lock_list->ll_next;
1175 * The interlock is the only lock we hold, so
1176 * simply return.
1178 if (lle == NULL)
1179 return;
1180 plock = &lle->ll_children[lle->ll_count - 1];
1185 * Try to perform most checks without a lock. If this succeeds we
1186 * can skip acquiring the lock and return success. Otherwise we redo
1187 * the check with the lock held to handle races with concurrent updates.
1189 w1 = plock->li_lock->lo_witness;
1190 if (witness_lock_order_check(w1, w))
1191 return;
1193 mtx_lock_spin(&w_mtx);
1194 if (witness_lock_order_check(w1, w)) {
1195 mtx_unlock_spin(&w_mtx);
1196 return;
1198 witness_lock_order_add(w1, w);
1201 * Check for duplicate locks of the same type. Note that we only
1202 * have to check for this on the last lock we just acquired. Any
1203 * other cases will be caught as lock order violations.
1205 if (w1 == w) {
1206 i = w->w_index;
1207 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1208 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1209 w_rmatrix[i][i] |= WITNESS_REVERSAL;
1210 w->w_reversed = 1;
1211 mtx_unlock_spin(&w_mtx);
1212 witness_output(
1213 "acquiring duplicate lock of same type: \"%s\"\n",
1214 w->w_name);
1215 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1216 fixup_filename(plock->li_file), plock->li_line);
1217 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1218 fixup_filename(file), line);
1219 witness_debugger(1, __func__);
1220 } else
1221 mtx_unlock_spin(&w_mtx);
1222 return;
1224 mtx_assert(&w_mtx, MA_OWNED);
1227 * If we know that the lock we are acquiring comes after
1228 * the lock we most recently acquired in the lock order tree,
1229 * then there is no need for any further checks.
1231 if (isitmychild(w1, w))
1232 goto out;
1234 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1235 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1237 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1238 lock1 = &lle->ll_children[i];
1241 * Ignore the interlock.
1243 if (interlock == lock1->li_lock)
1244 continue;
1247 * If this lock doesn't undergo witness checking,
1248 * then skip it.
1250 w1 = lock1->li_lock->lo_witness;
1251 if (w1 == NULL) {
1252 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1253 ("lock missing witness structure"));
1254 continue;
1258 * If we are locking Giant and this is a sleepable
1259 * lock, then skip it.
1261 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1262 lock == &Giant.lock_object)
1263 continue;
1266 * If we are locking a sleepable lock and this lock
1267 * is Giant, then skip it.
1269 if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1270 lock1->li_lock == &Giant.lock_object)
1271 continue;
1274 * If we are locking a sleepable lock and this lock
1275 * isn't sleepable, we want to treat it as a lock
1276 * order violation to enfore a general lock order of
1277 * sleepable locks before non-sleepable locks.
1279 if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1280 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1281 goto reversal;
1284 * If we are locking Giant and this is a non-sleepable
1285 * lock, then treat it as a reversal.
1287 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1288 lock == &Giant.lock_object)
1289 goto reversal;
1292 * Check the lock order hierarchy for a reveresal.
1294 if (!isitmydescendant(w, w1))
1295 continue;
1296 reversal:
1299 * We have a lock order violation, check to see if it
1300 * is allowed or has already been yelled about.
1302 #ifdef BLESSING
1305 * If the lock order is blessed, just bail. We don't
1306 * look for other lock order violations though, which
1307 * may be a bug.
1309 if (blessed(w, w1))
1310 goto out;
1311 #endif
1313 /* Bail if this violation is known */
1314 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1315 goto out;
1317 /* Record this as a violation */
1318 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1319 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1320 w->w_reversed = w1->w_reversed = 1;
1321 witness_increment_graph_generation();
1322 mtx_unlock_spin(&w_mtx);
1324 #ifdef WITNESS_NO_VNODE
1326 * There are known LORs between VNODE locks. They are
1327 * not an indication of a bug. VNODE locks are flagged
1328 * as such (LO_IS_VNODE) and we don't yell if the LOR
1329 * is between 2 VNODE locks.
1331 if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1332 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1333 return;
1334 #endif
1337 * Ok, yell about it.
1339 if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1340 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1341 witness_output(
1342 "lock order reversal: (sleepable after non-sleepable)\n");
1343 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1344 && lock == &Giant.lock_object)
1345 witness_output(
1346 "lock order reversal: (Giant after non-sleepable)\n");
1347 else
1348 witness_output("lock order reversal:\n");
1351 * Try to locate an earlier lock with
1352 * witness w in our list.
1354 do {
1355 lock2 = &lle->ll_children[i];
1356 MPASS(lock2->li_lock != NULL);
1357 if (lock2->li_lock->lo_witness == w)
1358 break;
1359 if (i == 0 && lle->ll_next != NULL) {
1360 lle = lle->ll_next;
1361 i = lle->ll_count - 1;
1362 MPASS(i >= 0 && i < LOCK_NCHILDREN);
1363 } else
1364 i--;
1365 } while (i >= 0);
1366 if (i < 0) {
1367 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1368 lock1->li_lock, lock1->li_lock->lo_name,
1369 w1->w_name, fixup_filename(lock1->li_file),
1370 lock1->li_line);
1371 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1372 lock->lo_name, w->w_name,
1373 fixup_filename(file), line);
1374 } else {
1375 witness_output(" 1st %p %s (%s) @ %s:%d\n",
1376 lock2->li_lock, lock2->li_lock->lo_name,
1377 lock2->li_lock->lo_witness->w_name,
1378 fixup_filename(lock2->li_file),
1379 lock2->li_line);
1380 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1381 lock1->li_lock, lock1->li_lock->lo_name,
1382 w1->w_name, fixup_filename(lock1->li_file),
1383 lock1->li_line);
1384 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1385 lock->lo_name, w->w_name,
1386 fixup_filename(file), line);
1388 witness_debugger(1, __func__);
1389 return;
1394 * If requested, build a new lock order. However, don't build a new
1395 * relationship between a sleepable lock and Giant if it is in the
1396 * wrong direction. The correct lock order is that sleepable locks
1397 * always come before Giant.
1399 if (flags & LOP_NEWORDER &&
1400 !(plock->li_lock == &Giant.lock_object &&
1401 (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1402 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1403 w->w_name, plock->li_lock->lo_witness->w_name);
1404 itismychild(plock->li_lock->lo_witness, w);
1406 out:
1407 mtx_unlock_spin(&w_mtx);
1410 void
1411 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1413 struct lock_list_entry **lock_list, *lle;
1414 struct lock_instance *instance;
1415 struct witness *w;
1416 struct thread *td;
1418 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1419 panicstr != NULL)
1420 return;
1421 w = lock->lo_witness;
1422 td = curthread;
1424 /* Determine lock list for this lock. */
1425 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1426 lock_list = &td->td_sleeplocks;
1427 else
1428 lock_list = PCPU_PTR(spinlocks);
1430 /* Check to see if we are recursing on a lock we already own. */
1431 instance = find_instance(*lock_list, lock);
1432 if (instance != NULL) {
1433 instance->li_flags++;
1434 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1435 td->td_proc->p_pid, lock->lo_name,
1436 instance->li_flags & LI_RECURSEMASK);
1437 instance->li_file = file;
1438 instance->li_line = line;
1439 return;
1442 /* Update per-witness last file and line acquire. */
1443 w->w_file = file;
1444 w->w_line = line;
1446 /* Find the next open lock instance in the list and fill it. */
1447 lle = *lock_list;
1448 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1449 lle = witness_lock_list_get();
1450 if (lle == NULL)
1451 return;
1452 lle->ll_next = *lock_list;
1453 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1454 td->td_proc->p_pid, lle);
1455 *lock_list = lle;
1457 instance = &lle->ll_children[lle->ll_count++];
1458 instance->li_lock = lock;
1459 instance->li_line = line;
1460 instance->li_file = file;
1461 if ((flags & LOP_EXCLUSIVE) != 0)
1462 instance->li_flags = LI_EXCLUSIVE;
1463 else
1464 instance->li_flags = 0;
1465 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1466 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1469 void
1470 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1472 struct lock_instance *instance;
1473 struct lock_class *class;
1475 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1476 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1477 return;
1478 class = LOCK_CLASS(lock);
1479 if (witness_watch) {
1480 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1481 kassert_panic(
1482 "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1483 class->lc_name, lock->lo_name,
1484 fixup_filename(file), line);
1485 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1486 kassert_panic(
1487 "upgrade of non-sleep lock (%s) %s @ %s:%d",
1488 class->lc_name, lock->lo_name,
1489 fixup_filename(file), line);
1491 instance = find_instance(curthread->td_sleeplocks, lock);
1492 if (instance == NULL) {
1493 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1494 class->lc_name, lock->lo_name,
1495 fixup_filename(file), line);
1496 return;
1498 if (witness_watch) {
1499 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1500 kassert_panic(
1501 "upgrade of exclusive lock (%s) %s @ %s:%d",
1502 class->lc_name, lock->lo_name,
1503 fixup_filename(file), line);
1504 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1505 kassert_panic(
1506 "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1507 class->lc_name, lock->lo_name,
1508 instance->li_flags & LI_RECURSEMASK,
1509 fixup_filename(file), line);
1511 instance->li_flags |= LI_EXCLUSIVE;
1514 void
1515 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1516 int line)
1518 struct lock_instance *instance;
1519 struct lock_class *class;
1521 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1522 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1523 return;
1524 class = LOCK_CLASS(lock);
1525 if (witness_watch) {
1526 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1527 kassert_panic(
1528 "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1529 class->lc_name, lock->lo_name,
1530 fixup_filename(file), line);
1531 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1532 kassert_panic(
1533 "downgrade of non-sleep lock (%s) %s @ %s:%d",
1534 class->lc_name, lock->lo_name,
1535 fixup_filename(file), line);
1537 instance = find_instance(curthread->td_sleeplocks, lock);
1538 if (instance == NULL) {
1539 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1540 class->lc_name, lock->lo_name,
1541 fixup_filename(file), line);
1542 return;
1544 if (witness_watch) {
1545 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1546 kassert_panic(
1547 "downgrade of shared lock (%s) %s @ %s:%d",
1548 class->lc_name, lock->lo_name,
1549 fixup_filename(file), line);
1550 if ((instance->li_flags & LI_RECURSEMASK) != 0)
1551 kassert_panic(
1552 "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1553 class->lc_name, lock->lo_name,
1554 instance->li_flags & LI_RECURSEMASK,
1555 fixup_filename(file), line);
1557 instance->li_flags &= ~LI_EXCLUSIVE;
1560 void
1561 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1563 struct lock_list_entry **lock_list, *lle;
1564 struct lock_instance *instance;
1565 struct lock_class *class;
1566 struct thread *td;
1567 register_t s;
1568 int i, j;
1570 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1571 return;
1572 td = curthread;
1573 class = LOCK_CLASS(lock);
1575 /* Find lock instance associated with this lock. */
1576 if (class->lc_flags & LC_SLEEPLOCK)
1577 lock_list = &td->td_sleeplocks;
1578 else
1579 lock_list = PCPU_PTR(spinlocks);
1580 lle = *lock_list;
1581 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1582 for (i = 0; i < (*lock_list)->ll_count; i++) {
1583 instance = &(*lock_list)->ll_children[i];
1584 if (instance->li_lock == lock)
1585 goto found;
1589 * When disabling WITNESS through witness_watch we could end up in
1590 * having registered locks in the td_sleeplocks queue.
1591 * We have to make sure we flush these queues, so just search for
1592 * eventual register locks and remove them.
1594 if (witness_watch > 0) {
1595 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1596 lock->lo_name, fixup_filename(file), line);
1597 return;
1598 } else {
1599 return;
1601 found:
1603 /* First, check for shared/exclusive mismatches. */
1604 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1605 (flags & LOP_EXCLUSIVE) == 0) {
1606 witness_output("shared unlock of (%s) %s @ %s:%d\n",
1607 class->lc_name, lock->lo_name, fixup_filename(file), line);
1608 witness_output("while exclusively locked from %s:%d\n",
1609 fixup_filename(instance->li_file), instance->li_line);
1610 kassert_panic("excl->ushare");
1612 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1613 (flags & LOP_EXCLUSIVE) != 0) {
1614 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1615 class->lc_name, lock->lo_name, fixup_filename(file), line);
1616 witness_output("while share locked from %s:%d\n",
1617 fixup_filename(instance->li_file),
1618 instance->li_line);
1619 kassert_panic("share->uexcl");
1621 /* If we are recursed, unrecurse. */
1622 if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1623 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1624 td->td_proc->p_pid, instance->li_lock->lo_name,
1625 instance->li_flags);
1626 instance->li_flags--;
1627 return;
1629 /* The lock is now being dropped, check for NORELEASE flag */
1630 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1631 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1632 class->lc_name, lock->lo_name, fixup_filename(file), line);
1633 kassert_panic("lock marked norelease");
1636 /* Otherwise, remove this item from the list. */
1637 s = intr_disable();
1638 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1639 td->td_proc->p_pid, instance->li_lock->lo_name,
1640 (*lock_list)->ll_count - 1);
1641 for (j = i; j < (*lock_list)->ll_count - 1; j++)
1642 (*lock_list)->ll_children[j] =
1643 (*lock_list)->ll_children[j + 1];
1644 (*lock_list)->ll_count--;
1645 intr_restore(s);
1648 * In order to reduce contention on w_mtx, we want to keep always an
1649 * head object into lists so that frequent allocation from the
1650 * free witness pool (and subsequent locking) is avoided.
1651 * In order to maintain the current code simple, when the head
1652 * object is totally unloaded it means also that we do not have
1653 * further objects in the list, so the list ownership needs to be
1654 * hand over to another object if the current head needs to be freed.
1656 if ((*lock_list)->ll_count == 0) {
1657 if (*lock_list == lle) {
1658 if (lle->ll_next == NULL)
1659 return;
1660 } else
1661 lle = *lock_list;
1662 *lock_list = lle->ll_next;
1663 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1664 td->td_proc->p_pid, lle);
1665 witness_lock_list_free(lle);
1669 void
1670 witness_thread_exit(struct thread *td)
1672 struct lock_list_entry *lle;
1673 int i, n;
1675 lle = td->td_sleeplocks;
1676 if (lle == NULL || panicstr != NULL)
1677 return;
1678 if (lle->ll_count != 0) {
1679 for (n = 0; lle != NULL; lle = lle->ll_next)
1680 for (i = lle->ll_count - 1; i >= 0; i--) {
1681 if (n == 0)
1682 witness_output(
1683 "Thread %p exiting with the following locks held:\n", td);
1684 n++;
1685 witness_list_lock(&lle->ll_children[i],
1686 witness_output);
1689 kassert_panic(
1690 "Thread %p cannot exit while holding sleeplocks\n", td);
1692 witness_lock_list_free(lle);
1696 * Warn if any locks other than 'lock' are held. Flags can be passed in to
1697 * exempt Giant and sleepable locks from the checks as well. If any
1698 * non-exempt locks are held, then a supplied message is printed to the
1699 * output channel along with a list of the offending locks. If indicated in the
1700 * flags then a failure results in a panic as well.
1703 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1705 struct lock_list_entry *lock_list, *lle;
1706 struct lock_instance *lock1;
1707 struct thread *td;
1708 va_list ap;
1709 int i, n;
1711 if (witness_cold || witness_watch < 1 || panicstr != NULL)
1712 return (0);
1713 n = 0;
1714 td = curthread;
1715 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1716 for (i = lle->ll_count - 1; i >= 0; i--) {
1717 lock1 = &lle->ll_children[i];
1718 if (lock1->li_lock == lock)
1719 continue;
1720 if (flags & WARN_GIANTOK &&
1721 lock1->li_lock == &Giant.lock_object)
1722 continue;
1723 if (flags & WARN_SLEEPOK &&
1724 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1725 continue;
1726 if (n == 0) {
1727 va_start(ap, fmt);
1728 witness_voutput(fmt, ap);
1729 va_end(ap);
1730 witness_output(
1731 " with the following %slocks held:\n",
1732 (flags & WARN_SLEEPOK) != 0 ?
1733 "non-sleepable " : "");
1735 n++;
1736 witness_list_lock(lock1, witness_output);
1740 * Pin the thread in order to avoid problems with thread migration.
1741 * Once that all verifies are passed about spinlocks ownership,
1742 * the thread is in a safe path and it can be unpinned.
1744 sched_pin();
1745 lock_list = PCPU_GET(spinlocks);
1746 if (lock_list != NULL && lock_list->ll_count != 0) {
1747 sched_unpin();
1750 * We should only have one spinlock and as long as
1751 * the flags cannot match for this locks class,
1752 * check if the first spinlock is the one curthread
1753 * should hold.
1755 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1756 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1757 lock1->li_lock == lock && n == 0)
1758 return (0);
1760 va_start(ap, fmt);
1761 witness_voutput(fmt, ap);
1762 va_end(ap);
1763 witness_output(" with the following %slocks held:\n",
1764 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : "");
1765 n += witness_list_locks(&lock_list, witness_output);
1766 } else
1767 sched_unpin();
1768 if (flags & WARN_PANIC && n)
1769 kassert_panic("%s", __func__);
1770 else
1771 witness_debugger(n, __func__);
1772 return (n);
1775 const char *
1776 witness_file(struct lock_object *lock)
1778 struct witness *w;
1780 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1781 return ("?");
1782 w = lock->lo_witness;
1783 return (w->w_file);
1787 witness_line(struct lock_object *lock)
1789 struct witness *w;
1791 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1792 return (0);
1793 w = lock->lo_witness;
1794 return (w->w_line);
1797 static struct witness *
1798 enroll(const char *description, struct lock_class *lock_class)
1800 struct witness *w;
1801 struct witness_list *typelist;
1803 MPASS(description != NULL);
1805 if (witness_watch == -1 || panicstr != NULL)
1806 return (NULL);
1807 if ((lock_class->lc_flags & LC_SPINLOCK)) {
1808 if (witness_skipspin)
1809 return (NULL);
1810 else
1811 typelist = &w_spin;
1812 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1813 typelist = &w_sleep;
1814 } else {
1815 kassert_panic("lock class %s is not sleep or spin",
1816 lock_class->lc_name);
1817 return (NULL);
1820 mtx_lock_spin(&w_mtx);
1821 w = witness_hash_get(description);
1822 if (w)
1823 goto found;
1824 if ((w = witness_get()) == NULL)
1825 return (NULL);
1826 MPASS(strlen(description) < MAX_W_NAME);
1827 strcpy(w->w_name, description);
1828 w->w_class = lock_class;
1829 w->w_refcount = 1;
1830 STAILQ_INSERT_HEAD(&w_all, w, w_list);
1831 if (lock_class->lc_flags & LC_SPINLOCK) {
1832 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1833 w_spin_cnt++;
1834 } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1835 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1836 w_sleep_cnt++;
1839 /* Insert new witness into the hash */
1840 witness_hash_put(w);
1841 witness_increment_graph_generation();
1842 mtx_unlock_spin(&w_mtx);
1843 return (w);
1844 found:
1845 w->w_refcount++;
1846 mtx_unlock_spin(&w_mtx);
1847 if (lock_class != w->w_class)
1848 kassert_panic(
1849 "lock (%s) %s does not match earlier (%s) lock",
1850 description, lock_class->lc_name,
1851 w->w_class->lc_name);
1852 return (w);
1855 static void
1856 depart(struct witness *w)
1858 struct witness_list *list;
1860 MPASS(w->w_refcount == 0);
1861 if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1862 list = &w_sleep;
1863 w_sleep_cnt--;
1864 } else {
1865 list = &w_spin;
1866 w_spin_cnt--;
1869 * Set file to NULL as it may point into a loadable module.
1871 w->w_file = NULL;
1872 w->w_line = 0;
1873 witness_increment_graph_generation();
1877 static void
1878 adopt(struct witness *parent, struct witness *child)
1880 int pi, ci, i, j;
1882 if (witness_cold == 0)
1883 mtx_assert(&w_mtx, MA_OWNED);
1885 /* If the relationship is already known, there's no work to be done. */
1886 if (isitmychild(parent, child))
1887 return;
1889 /* When the structure of the graph changes, bump up the generation. */
1890 witness_increment_graph_generation();
1893 * The hard part ... create the direct relationship, then propagate all
1894 * indirect relationships.
1896 pi = parent->w_index;
1897 ci = child->w_index;
1898 WITNESS_INDEX_ASSERT(pi);
1899 WITNESS_INDEX_ASSERT(ci);
1900 MPASS(pi != ci);
1901 w_rmatrix[pi][ci] |= WITNESS_PARENT;
1902 w_rmatrix[ci][pi] |= WITNESS_CHILD;
1905 * If parent was not already an ancestor of child,
1906 * then we increment the descendant and ancestor counters.
1908 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1909 parent->w_num_descendants++;
1910 child->w_num_ancestors++;
1914 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1915 * an ancestor of 'pi' during this loop.
1917 for (i = 1; i <= w_max_used_index; i++) {
1918 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1919 (i != pi))
1920 continue;
1922 /* Find each descendant of 'i' and mark it as a descendant. */
1923 for (j = 1; j <= w_max_used_index; j++) {
1926 * Skip children that are already marked as
1927 * descendants of 'i'.
1929 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1930 continue;
1933 * We are only interested in descendants of 'ci'. Note
1934 * that 'ci' itself is counted as a descendant of 'ci'.
1936 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1937 (j != ci))
1938 continue;
1939 w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1940 w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1941 w_data[i].w_num_descendants++;
1942 w_data[j].w_num_ancestors++;
1945 * Make sure we aren't marking a node as both an
1946 * ancestor and descendant. We should have caught
1947 * this as a lock order reversal earlier.
1949 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1950 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1951 printf("witness rmatrix paradox! [%d][%d]=%d "
1952 "both ancestor and descendant\n",
1953 i, j, w_rmatrix[i][j]);
1954 kdb_backtrace();
1955 printf("Witness disabled.\n");
1956 witness_watch = -1;
1958 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1959 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1960 printf("witness rmatrix paradox! [%d][%d]=%d "
1961 "both ancestor and descendant\n",
1962 j, i, w_rmatrix[j][i]);
1963 kdb_backtrace();
1964 printf("Witness disabled.\n");
1965 witness_watch = -1;
1971 static void
1972 itismychild(struct witness *parent, struct witness *child)
1974 int unlocked;
1976 MPASS(child != NULL && parent != NULL);
1977 if (witness_cold == 0)
1978 mtx_assert(&w_mtx, MA_OWNED);
1980 if (!witness_lock_type_equal(parent, child)) {
1981 if (witness_cold == 0) {
1982 unlocked = 1;
1983 mtx_unlock_spin(&w_mtx);
1984 } else {
1985 unlocked = 0;
1987 kassert_panic(
1988 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1989 "the same lock type", __func__, parent->w_name,
1990 parent->w_class->lc_name, child->w_name,
1991 child->w_class->lc_name);
1992 if (unlocked)
1993 mtx_lock_spin(&w_mtx);
1995 adopt(parent, child);
1999 * Generic code for the isitmy*() functions. The rmask parameter is the
2000 * expected relationship of w1 to w2.
2002 static int
2003 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2005 unsigned char r1, r2;
2006 int i1, i2;
2008 i1 = w1->w_index;
2009 i2 = w2->w_index;
2010 WITNESS_INDEX_ASSERT(i1);
2011 WITNESS_INDEX_ASSERT(i2);
2012 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2013 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2015 /* The flags on one better be the inverse of the flags on the other */
2016 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2017 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2018 /* Don't squawk if we're potentially racing with an update. */
2019 if (!mtx_owned(&w_mtx))
2020 return (0);
2021 printf("%s: rmatrix mismatch between %s (index %d) and %s "
2022 "(index %d): w_rmatrix[%d][%d] == %hhx but "
2023 "w_rmatrix[%d][%d] == %hhx\n",
2024 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2025 i2, i1, r2);
2026 kdb_backtrace();
2027 printf("Witness disabled.\n");
2028 witness_watch = -1;
2030 return (r1 & rmask);
2034 * Checks if @child is a direct child of @parent.
2036 static int
2037 isitmychild(struct witness *parent, struct witness *child)
2040 return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2044 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2046 static int
2047 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2050 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2051 __func__));
2054 #ifdef BLESSING
2055 static int
2056 blessed(struct witness *w1, struct witness *w2)
2058 int i;
2059 struct witness_blessed *b;
2061 for (i = 0; i < nitems(blessed_list); i++) {
2062 b = &blessed_list[i];
2063 if (strcmp(w1->w_name, b->b_lock1) == 0) {
2064 if (strcmp(w2->w_name, b->b_lock2) == 0)
2065 return (1);
2066 continue;
2068 if (strcmp(w1->w_name, b->b_lock2) == 0)
2069 if (strcmp(w2->w_name, b->b_lock1) == 0)
2070 return (1);
2072 return (0);
2074 #endif
2076 static struct witness *
2077 witness_get(void)
2079 struct witness *w;
2080 int index;
2082 if (witness_cold == 0)
2083 mtx_assert(&w_mtx, MA_OWNED);
2085 if (witness_watch == -1) {
2086 mtx_unlock_spin(&w_mtx);
2087 return (NULL);
2089 if (STAILQ_EMPTY(&w_free)) {
2090 witness_watch = -1;
2091 mtx_unlock_spin(&w_mtx);
2092 printf("WITNESS: unable to allocate a new witness object\n");
2093 return (NULL);
2095 w = STAILQ_FIRST(&w_free);
2096 STAILQ_REMOVE_HEAD(&w_free, w_list);
2097 w_free_cnt--;
2098 index = w->w_index;
2099 MPASS(index > 0 && index == w_max_used_index+1 &&
2100 index < witness_count);
2101 bzero(w, sizeof(*w));
2102 w->w_index = index;
2103 if (index > w_max_used_index)
2104 w_max_used_index = index;
2105 return (w);
2108 static void
2109 witness_free(struct witness *w)
2112 STAILQ_INSERT_HEAD(&w_free, w, w_list);
2113 w_free_cnt++;
2116 static struct lock_list_entry *
2117 witness_lock_list_get(void)
2119 struct lock_list_entry *lle;
2121 if (witness_watch == -1)
2122 return (NULL);
2123 mtx_lock_spin(&w_mtx);
2124 lle = w_lock_list_free;
2125 if (lle == NULL) {
2126 witness_watch = -1;
2127 mtx_unlock_spin(&w_mtx);
2128 printf("%s: witness exhausted\n", __func__);
2129 return (NULL);
2131 w_lock_list_free = lle->ll_next;
2132 mtx_unlock_spin(&w_mtx);
2133 bzero(lle, sizeof(*lle));
2134 return (lle);
2137 static void
2138 witness_lock_list_free(struct lock_list_entry *lle)
2141 mtx_lock_spin(&w_mtx);
2142 lle->ll_next = w_lock_list_free;
2143 w_lock_list_free = lle;
2144 mtx_unlock_spin(&w_mtx);
2147 static struct lock_instance *
2148 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2150 struct lock_list_entry *lle;
2151 struct lock_instance *instance;
2152 int i;
2154 for (lle = list; lle != NULL; lle = lle->ll_next)
2155 for (i = lle->ll_count - 1; i >= 0; i--) {
2156 instance = &lle->ll_children[i];
2157 if (instance->li_lock == lock)
2158 return (instance);
2160 return (NULL);
2163 static void
2164 witness_list_lock(struct lock_instance *instance,
2165 int (*prnt)(const char *fmt, ...))
2167 struct lock_object *lock;
2169 lock = instance->li_lock;
2170 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2171 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2172 if (lock->lo_witness->w_name != lock->lo_name)
2173 prnt(" (%s)", lock->lo_witness->w_name);
2174 prnt(" r = %d (%p) locked @ %s:%d\n",
2175 instance->li_flags & LI_RECURSEMASK, lock,
2176 fixup_filename(instance->li_file), instance->li_line);
2179 static int
2180 witness_output(const char *fmt, ...)
2182 va_list ap;
2183 int ret;
2185 va_start(ap, fmt);
2186 ret = witness_voutput(fmt, ap);
2187 va_end(ap);
2188 return (ret);
2191 static int
2192 witness_voutput(const char *fmt, va_list ap)
2194 int ret;
2196 ret = 0;
2197 switch (witness_channel) {
2198 case WITNESS_CONSOLE:
2199 ret = vprintf(fmt, ap);
2200 break;
2201 case WITNESS_LOG:
2202 vlog(LOG_NOTICE, fmt, ap);
2203 break;
2204 case WITNESS_NONE:
2205 break;
2207 return (ret);
2210 #ifdef DDB
2211 static int
2212 witness_thread_has_locks(struct thread *td)
2215 if (td->td_sleeplocks == NULL)
2216 return (0);
2217 return (td->td_sleeplocks->ll_count != 0);
2220 static int
2221 witness_proc_has_locks(struct proc *p)
2223 struct thread *td;
2225 FOREACH_THREAD_IN_PROC(p, td) {
2226 if (witness_thread_has_locks(td))
2227 return (1);
2229 return (0);
2231 #endif
2234 witness_list_locks(struct lock_list_entry **lock_list,
2235 int (*prnt)(const char *fmt, ...))
2237 struct lock_list_entry *lle;
2238 int i, nheld;
2240 nheld = 0;
2241 for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2242 for (i = lle->ll_count - 1; i >= 0; i--) {
2243 witness_list_lock(&lle->ll_children[i], prnt);
2244 nheld++;
2246 return (nheld);
2250 * This is a bit risky at best. We call this function when we have timed
2251 * out acquiring a spin lock, and we assume that the other CPU is stuck
2252 * with this lock held. So, we go groveling around in the other CPU's
2253 * per-cpu data to try to find the lock instance for this spin lock to
2254 * see when it was last acquired.
2256 void
2257 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2258 int (*prnt)(const char *fmt, ...))
2260 struct lock_instance *instance;
2261 struct pcpu *pc;
2263 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2264 return;
2265 pc = pcpu_find(owner->td_oncpu);
2266 instance = find_instance(pc->pc_spinlocks, lock);
2267 if (instance != NULL)
2268 witness_list_lock(instance, prnt);
2271 void
2272 witness_save(struct lock_object *lock, const char **filep, int *linep)
2274 struct lock_list_entry *lock_list;
2275 struct lock_instance *instance;
2276 struct lock_class *class;
2279 * This function is used independently in locking code to deal with
2280 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2281 * is gone.
2283 if (SCHEDULER_STOPPED())
2284 return;
2285 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2286 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2287 return;
2288 class = LOCK_CLASS(lock);
2289 if (class->lc_flags & LC_SLEEPLOCK)
2290 lock_list = curthread->td_sleeplocks;
2291 else {
2292 if (witness_skipspin)
2293 return;
2294 lock_list = PCPU_GET(spinlocks);
2296 instance = find_instance(lock_list, lock);
2297 if (instance == NULL) {
2298 kassert_panic("%s: lock (%s) %s not locked", __func__,
2299 class->lc_name, lock->lo_name);
2300 return;
2302 *filep = instance->li_file;
2303 *linep = instance->li_line;
2306 void
2307 witness_restore(struct lock_object *lock, const char *file, int line)
2309 struct lock_list_entry *lock_list;
2310 struct lock_instance *instance;
2311 struct lock_class *class;
2314 * This function is used independently in locking code to deal with
2315 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2316 * is gone.
2318 if (SCHEDULER_STOPPED())
2319 return;
2320 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2321 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2322 return;
2323 class = LOCK_CLASS(lock);
2324 if (class->lc_flags & LC_SLEEPLOCK)
2325 lock_list = curthread->td_sleeplocks;
2326 else {
2327 if (witness_skipspin)
2328 return;
2329 lock_list = PCPU_GET(spinlocks);
2331 instance = find_instance(lock_list, lock);
2332 if (instance == NULL)
2333 kassert_panic("%s: lock (%s) %s not locked", __func__,
2334 class->lc_name, lock->lo_name);
2335 lock->lo_witness->w_file = file;
2336 lock->lo_witness->w_line = line;
2337 if (instance == NULL)
2338 return;
2339 instance->li_file = file;
2340 instance->li_line = line;
2343 void
2344 witness_assert(const struct lock_object *lock, int flags, const char *file,
2345 int line)
2347 #ifdef INVARIANT_SUPPORT
2348 struct lock_instance *instance;
2349 struct lock_class *class;
2351 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2352 return;
2353 class = LOCK_CLASS(lock);
2354 if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2355 instance = find_instance(curthread->td_sleeplocks, lock);
2356 else if ((class->lc_flags & LC_SPINLOCK) != 0)
2357 instance = find_instance(PCPU_GET(spinlocks), lock);
2358 else {
2359 kassert_panic("Lock (%s) %s is not sleep or spin!",
2360 class->lc_name, lock->lo_name);
2361 return;
2363 switch (flags) {
2364 case LA_UNLOCKED:
2365 if (instance != NULL)
2366 kassert_panic("Lock (%s) %s locked @ %s:%d.",
2367 class->lc_name, lock->lo_name,
2368 fixup_filename(file), line);
2369 break;
2370 case LA_LOCKED:
2371 case LA_LOCKED | LA_RECURSED:
2372 case LA_LOCKED | LA_NOTRECURSED:
2373 case LA_SLOCKED:
2374 case LA_SLOCKED | LA_RECURSED:
2375 case LA_SLOCKED | LA_NOTRECURSED:
2376 case LA_XLOCKED:
2377 case LA_XLOCKED | LA_RECURSED:
2378 case LA_XLOCKED | LA_NOTRECURSED:
2379 if (instance == NULL) {
2380 kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2381 class->lc_name, lock->lo_name,
2382 fixup_filename(file), line);
2383 break;
2385 if ((flags & LA_XLOCKED) != 0 &&
2386 (instance->li_flags & LI_EXCLUSIVE) == 0)
2387 kassert_panic(
2388 "Lock (%s) %s not exclusively locked @ %s:%d.",
2389 class->lc_name, lock->lo_name,
2390 fixup_filename(file), line);
2391 if ((flags & LA_SLOCKED) != 0 &&
2392 (instance->li_flags & LI_EXCLUSIVE) != 0)
2393 kassert_panic(
2394 "Lock (%s) %s exclusively locked @ %s:%d.",
2395 class->lc_name, lock->lo_name,
2396 fixup_filename(file), line);
2397 if ((flags & LA_RECURSED) != 0 &&
2398 (instance->li_flags & LI_RECURSEMASK) == 0)
2399 kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2400 class->lc_name, lock->lo_name,
2401 fixup_filename(file), line);
2402 if ((flags & LA_NOTRECURSED) != 0 &&
2403 (instance->li_flags & LI_RECURSEMASK) != 0)
2404 kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2405 class->lc_name, lock->lo_name,
2406 fixup_filename(file), line);
2407 break;
2408 default:
2409 kassert_panic("Invalid lock assertion at %s:%d.",
2410 fixup_filename(file), line);
2413 #endif /* INVARIANT_SUPPORT */
2416 static void
2417 witness_setflag(struct lock_object *lock, int flag, int set)
2419 struct lock_list_entry *lock_list;
2420 struct lock_instance *instance;
2421 struct lock_class *class;
2423 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2424 return;
2425 class = LOCK_CLASS(lock);
2426 if (class->lc_flags & LC_SLEEPLOCK)
2427 lock_list = curthread->td_sleeplocks;
2428 else {
2429 if (witness_skipspin)
2430 return;
2431 lock_list = PCPU_GET(spinlocks);
2433 instance = find_instance(lock_list, lock);
2434 if (instance == NULL) {
2435 kassert_panic("%s: lock (%s) %s not locked", __func__,
2436 class->lc_name, lock->lo_name);
2437 return;
2440 if (set)
2441 instance->li_flags |= flag;
2442 else
2443 instance->li_flags &= ~flag;
2446 void
2447 witness_norelease(struct lock_object *lock)
2450 witness_setflag(lock, LI_NORELEASE, 1);
2453 void
2454 witness_releaseok(struct lock_object *lock)
2457 witness_setflag(lock, LI_NORELEASE, 0);
2460 #ifdef DDB
2461 static void
2462 witness_ddb_list(struct thread *td)
2465 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2466 KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2468 if (witness_watch < 1)
2469 return;
2471 witness_list_locks(&td->td_sleeplocks, db_printf);
2474 * We only handle spinlocks if td == curthread. This is somewhat broken
2475 * if td is currently executing on some other CPU and holds spin locks
2476 * as we won't display those locks. If we had a MI way of getting
2477 * the per-cpu data for a given cpu then we could use
2478 * td->td_oncpu to get the list of spinlocks for this thread
2479 * and "fix" this.
2481 * That still wouldn't really fix this unless we locked the scheduler
2482 * lock or stopped the other CPU to make sure it wasn't changing the
2483 * list out from under us. It is probably best to just not try to
2484 * handle threads on other CPU's for now.
2486 if (td == curthread && PCPU_GET(spinlocks) != NULL)
2487 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2490 DB_SHOW_COMMAND(locks, db_witness_list)
2492 struct thread *td;
2494 if (have_addr)
2495 td = db_lookup_thread(addr, true);
2496 else
2497 td = kdb_thread;
2498 witness_ddb_list(td);
2501 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2503 struct thread *td;
2504 struct proc *p;
2507 * It would be nice to list only threads and processes that actually
2508 * held sleep locks, but that information is currently not exported
2509 * by WITNESS.
2511 FOREACH_PROC_IN_SYSTEM(p) {
2512 if (!witness_proc_has_locks(p))
2513 continue;
2514 FOREACH_THREAD_IN_PROC(p, td) {
2515 if (!witness_thread_has_locks(td))
2516 continue;
2517 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2518 p->p_comm, td, td->td_tid);
2519 witness_ddb_list(td);
2520 if (db_pager_quit)
2521 return;
2525 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2527 DB_SHOW_COMMAND(witness, db_witness_display)
2530 witness_ddb_display(db_printf);
2532 #endif
2534 static int
2535 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2537 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2538 struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2539 struct sbuf *sb;
2540 u_int w_rmatrix1, w_rmatrix2;
2541 int error, generation, i, j;
2543 tmp_data1 = NULL;
2544 tmp_data2 = NULL;
2545 tmp_w1 = NULL;
2546 tmp_w2 = NULL;
2547 if (witness_watch < 1) {
2548 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2549 return (error);
2551 if (witness_cold) {
2552 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2553 return (error);
2555 error = 0;
2556 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2557 if (sb == NULL)
2558 return (ENOMEM);
2560 /* Allocate and init temporary storage space. */
2561 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2562 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2563 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2564 M_WAITOK | M_ZERO);
2565 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2566 M_WAITOK | M_ZERO);
2567 stack_zero(&tmp_data1->wlod_stack);
2568 stack_zero(&tmp_data2->wlod_stack);
2570 restart:
2571 mtx_lock_spin(&w_mtx);
2572 generation = w_generation;
2573 mtx_unlock_spin(&w_mtx);
2574 sbuf_printf(sb, "Number of known direct relationships is %d\n",
2575 w_lohash.wloh_count);
2576 for (i = 1; i < w_max_used_index; i++) {
2577 mtx_lock_spin(&w_mtx);
2578 if (generation != w_generation) {
2579 mtx_unlock_spin(&w_mtx);
2581 /* The graph has changed, try again. */
2582 req->oldidx = 0;
2583 sbuf_clear(sb);
2584 goto restart;
2587 w1 = &w_data[i];
2588 if (w1->w_reversed == 0) {
2589 mtx_unlock_spin(&w_mtx);
2590 continue;
2593 /* Copy w1 locally so we can release the spin lock. */
2594 *tmp_w1 = *w1;
2595 mtx_unlock_spin(&w_mtx);
2597 if (tmp_w1->w_reversed == 0)
2598 continue;
2599 for (j = 1; j < w_max_used_index; j++) {
2600 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2601 continue;
2603 mtx_lock_spin(&w_mtx);
2604 if (generation != w_generation) {
2605 mtx_unlock_spin(&w_mtx);
2607 /* The graph has changed, try again. */
2608 req->oldidx = 0;
2609 sbuf_clear(sb);
2610 goto restart;
2613 w2 = &w_data[j];
2614 data1 = witness_lock_order_get(w1, w2);
2615 data2 = witness_lock_order_get(w2, w1);
2618 * Copy information locally so we can release the
2619 * spin lock.
2621 *tmp_w2 = *w2;
2622 w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2623 w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2625 if (data1) {
2626 stack_zero(&tmp_data1->wlod_stack);
2627 stack_copy(&data1->wlod_stack,
2628 &tmp_data1->wlod_stack);
2630 if (data2 && data2 != data1) {
2631 stack_zero(&tmp_data2->wlod_stack);
2632 stack_copy(&data2->wlod_stack,
2633 &tmp_data2->wlod_stack);
2635 mtx_unlock_spin(&w_mtx);
2637 sbuf_printf(sb,
2638 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2639 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2640 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2641 if (data1) {
2642 sbuf_printf(sb,
2643 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2644 tmp_w1->w_name, tmp_w1->w_class->lc_name,
2645 tmp_w2->w_name, tmp_w2->w_class->lc_name);
2646 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2647 sbuf_printf(sb, "\n");
2649 if (data2 && data2 != data1) {
2650 sbuf_printf(sb,
2651 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2652 tmp_w2->w_name, tmp_w2->w_class->lc_name,
2653 tmp_w1->w_name, tmp_w1->w_class->lc_name);
2654 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2655 sbuf_printf(sb, "\n");
2659 mtx_lock_spin(&w_mtx);
2660 if (generation != w_generation) {
2661 mtx_unlock_spin(&w_mtx);
2664 * The graph changed while we were printing stack data,
2665 * try again.
2667 req->oldidx = 0;
2668 sbuf_clear(sb);
2669 goto restart;
2671 mtx_unlock_spin(&w_mtx);
2673 /* Free temporary storage space. */
2674 free(tmp_data1, M_TEMP);
2675 free(tmp_data2, M_TEMP);
2676 free(tmp_w1, M_TEMP);
2677 free(tmp_w2, M_TEMP);
2679 sbuf_finish(sb);
2680 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2681 sbuf_delete(sb);
2683 return (error);
2686 static int
2687 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2689 static const struct {
2690 enum witness_channel channel;
2691 const char *name;
2692 } channels[] = {
2693 { WITNESS_CONSOLE, "console" },
2694 { WITNESS_LOG, "log" },
2695 { WITNESS_NONE, "none" },
2697 char buf[16];
2698 u_int i;
2699 int error;
2701 buf[0] = '\0';
2702 for (i = 0; i < nitems(channels); i++)
2703 if (witness_channel == channels[i].channel) {
2704 snprintf(buf, sizeof(buf), "%s", channels[i].name);
2705 break;
2708 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2709 if (error != 0 || req->newptr == NULL)
2710 return (error);
2712 error = EINVAL;
2713 for (i = 0; i < nitems(channels); i++)
2714 if (strcmp(channels[i].name, buf) == 0) {
2715 witness_channel = channels[i].channel;
2716 error = 0;
2717 break;
2719 return (error);
2722 static int
2723 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2725 struct witness *w;
2726 struct sbuf *sb;
2727 int error;
2729 if (witness_watch < 1) {
2730 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2731 return (error);
2733 if (witness_cold) {
2734 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2735 return (error);
2737 error = 0;
2739 error = sysctl_wire_old_buffer(req, 0);
2740 if (error != 0)
2741 return (error);
2742 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2743 if (sb == NULL)
2744 return (ENOMEM);
2745 sbuf_printf(sb, "\n");
2747 mtx_lock_spin(&w_mtx);
2748 STAILQ_FOREACH(w, &w_all, w_list)
2749 w->w_displayed = 0;
2750 STAILQ_FOREACH(w, &w_all, w_list)
2751 witness_add_fullgraph(sb, w);
2752 mtx_unlock_spin(&w_mtx);
2755 * Close the sbuf and return to userland.
2757 error = sbuf_finish(sb);
2758 sbuf_delete(sb);
2760 return (error);
2763 static int
2764 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2766 int error, value;
2768 value = witness_watch;
2769 error = sysctl_handle_int(oidp, &value, 0, req);
2770 if (error != 0 || req->newptr == NULL)
2771 return (error);
2772 if (value > 1 || value < -1 ||
2773 (witness_watch == -1 && value != witness_watch))
2774 return (EINVAL);
2775 witness_watch = value;
2776 return (0);
2779 static void
2780 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2782 int i;
2784 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2785 return;
2786 w->w_displayed = 1;
2788 WITNESS_INDEX_ASSERT(w->w_index);
2789 for (i = 1; i <= w_max_used_index; i++) {
2790 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2791 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2792 w_data[i].w_name);
2793 witness_add_fullgraph(sb, &w_data[i]);
2799 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2800 * interprets the key as a string and reads until the null
2801 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2802 * hash value computed from the key.
2804 static uint32_t
2805 witness_hash_djb2(const uint8_t *key, uint32_t size)
2807 unsigned int hash = 5381;
2808 int i;
2810 /* hash = hash * 33 + key[i] */
2811 if (size)
2812 for (i = 0; i < size; i++)
2813 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2814 else
2815 for (i = 0; key[i] != 0; i++)
2816 hash = ((hash << 5) + hash) + (unsigned int)key[i];
2818 return (hash);
2823 * Initializes the two witness hash tables. Called exactly once from
2824 * witness_initialize().
2826 static void
2827 witness_init_hash_tables(void)
2829 int i;
2831 MPASS(witness_cold);
2833 /* Initialize the hash tables. */
2834 for (i = 0; i < WITNESS_HASH_SIZE; i++)
2835 w_hash.wh_array[i] = NULL;
2837 w_hash.wh_size = WITNESS_HASH_SIZE;
2838 w_hash.wh_count = 0;
2840 /* Initialize the lock order data hash. */
2841 w_lofree = NULL;
2842 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2843 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2844 w_lodata[i].wlod_next = w_lofree;
2845 w_lofree = &w_lodata[i];
2847 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2848 w_lohash.wloh_count = 0;
2849 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2850 w_lohash.wloh_array[i] = NULL;
2853 static struct witness *
2854 witness_hash_get(const char *key)
2856 struct witness *w;
2857 uint32_t hash;
2859 MPASS(key != NULL);
2860 if (witness_cold == 0)
2861 mtx_assert(&w_mtx, MA_OWNED);
2862 hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2863 w = w_hash.wh_array[hash];
2864 while (w != NULL) {
2865 if (strcmp(w->w_name, key) == 0)
2866 goto out;
2867 w = w->w_hash_next;
2870 out:
2871 return (w);
2874 static void
2875 witness_hash_put(struct witness *w)
2877 uint32_t hash;
2879 MPASS(w != NULL);
2880 MPASS(w->w_name != NULL);
2881 if (witness_cold == 0)
2882 mtx_assert(&w_mtx, MA_OWNED);
2883 KASSERT(witness_hash_get(w->w_name) == NULL,
2884 ("%s: trying to add a hash entry that already exists!", __func__));
2885 KASSERT(w->w_hash_next == NULL,
2886 ("%s: w->w_hash_next != NULL", __func__));
2888 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2889 w->w_hash_next = w_hash.wh_array[hash];
2890 w_hash.wh_array[hash] = w;
2891 w_hash.wh_count++;
2895 static struct witness_lock_order_data *
2896 witness_lock_order_get(struct witness *parent, struct witness *child)
2898 struct witness_lock_order_data *data = NULL;
2899 struct witness_lock_order_key key;
2900 unsigned int hash;
2902 MPASS(parent != NULL && child != NULL);
2903 key.from = parent->w_index;
2904 key.to = child->w_index;
2905 WITNESS_INDEX_ASSERT(key.from);
2906 WITNESS_INDEX_ASSERT(key.to);
2907 if ((w_rmatrix[parent->w_index][child->w_index]
2908 & WITNESS_LOCK_ORDER_KNOWN) == 0)
2909 goto out;
2911 hash = witness_hash_djb2((const char*)&key,
2912 sizeof(key)) % w_lohash.wloh_size;
2913 data = w_lohash.wloh_array[hash];
2914 while (data != NULL) {
2915 if (witness_lock_order_key_equal(&data->wlod_key, &key))
2916 break;
2917 data = data->wlod_next;
2920 out:
2921 return (data);
2925 * Verify that parent and child have a known relationship, are not the same,
2926 * and child is actually a child of parent. This is done without w_mtx
2927 * to avoid contention in the common case.
2929 static int
2930 witness_lock_order_check(struct witness *parent, struct witness *child)
2933 if (parent != child &&
2934 w_rmatrix[parent->w_index][child->w_index]
2935 & WITNESS_LOCK_ORDER_KNOWN &&
2936 isitmychild(parent, child))
2937 return (1);
2939 return (0);
2942 static int
2943 witness_lock_order_add(struct witness *parent, struct witness *child)
2945 struct witness_lock_order_data *data = NULL;
2946 struct witness_lock_order_key key;
2947 unsigned int hash;
2949 MPASS(parent != NULL && child != NULL);
2950 key.from = parent->w_index;
2951 key.to = child->w_index;
2952 WITNESS_INDEX_ASSERT(key.from);
2953 WITNESS_INDEX_ASSERT(key.to);
2954 if (w_rmatrix[parent->w_index][child->w_index]
2955 & WITNESS_LOCK_ORDER_KNOWN)
2956 return (1);
2958 hash = witness_hash_djb2((const char*)&key,
2959 sizeof(key)) % w_lohash.wloh_size;
2960 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2961 data = w_lofree;
2962 if (data == NULL)
2963 return (0);
2964 w_lofree = data->wlod_next;
2965 data->wlod_next = w_lohash.wloh_array[hash];
2966 data->wlod_key = key;
2967 w_lohash.wloh_array[hash] = data;
2968 w_lohash.wloh_count++;
2969 stack_zero(&data->wlod_stack);
2970 stack_save(&data->wlod_stack);
2971 return (1);
2974 /* Call this whenever the structure of the witness graph changes. */
2975 static void
2976 witness_increment_graph_generation(void)
2979 if (witness_cold == 0)
2980 mtx_assert(&w_mtx, MA_OWNED);
2981 w_generation++;
2984 static int
2985 witness_output_drain(void *arg __unused, const char *data, int len)
2988 witness_output("%.*s", len, data);
2989 return (len);
2992 static void
2993 witness_debugger(int cond, const char *msg)
2995 char buf[32];
2996 struct sbuf sb;
2997 struct stack st;
2999 if (!cond)
3000 return;
3002 if (witness_trace) {
3003 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3004 sbuf_set_drain(&sb, witness_output_drain, NULL);
3006 stack_zero(&st);
3007 stack_save(&st);
3008 witness_output("stack backtrace:\n");
3009 stack_sbuf_print_ddb(&sb, &st);
3011 sbuf_finish(&sb);
3014 #ifdef KDB
3015 if (witness_kdb)
3016 kdb_enter(KDB_WHY_WITNESS, msg);
3017 #endif