cxgbe/t4_tom: Read the chip's DDP page sizes and save them in a
[freebsd-src.git] / sbin / newfs / mkfs.c
blobb7369784993570fc04baceb405b9d739fcba4e03
1 /*
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program.
11 * Copyright (c) 1980, 1989, 1993
12 * The Regents of the University of California. All rights reserved.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
71 * make file system for cylinder-group style file systems
73 #define UMASK 0755
74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
76 static struct csum *fscs;
77 #define sblock disk.d_fs
78 #define acg disk.d_cg
80 union dinode {
81 struct ufs1_dinode dp1;
82 struct ufs2_dinode dp2;
84 #define DIP(dp, field) \
85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86 (dp)->dp1.field : (dp)->dp2.field)
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static u_int32_t newfs_random(void);
103 static int
104 do_sbwrite(struct uufsd *disk)
106 if (!disk->d_sblock)
107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109 disk->d_sblock) * disk->d_bsize)));
112 void
113 mkfs(struct partition *pp, char *fsys)
115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116 long i, j, csfrags;
117 uint cg;
118 time_t utime;
119 quad_t sizepb;
120 int width;
121 ino_t maxinum;
122 int minfragsperinode; /* minimum ratio of frags to inodes */
123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */
124 union {
125 struct fs fdummy;
126 char cdummy[SBLOCKSIZE];
127 } dummy;
128 #define fsdummy dummy.fdummy
129 #define chdummy dummy.cdummy
132 * Our blocks == sector size, and the version of UFS we are using is
133 * specified by Oflag.
135 disk.d_bsize = sectorsize;
136 disk.d_ufs = Oflag;
137 if (Rflag)
138 utime = 1000000000;
139 else
140 time(&utime);
141 sblock.fs_old_flags = FS_FLAGS_UPDATED;
142 sblock.fs_flags = 0;
143 if (Uflag)
144 sblock.fs_flags |= FS_DOSOFTDEP;
145 if (Lflag)
146 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
147 if (Jflag)
148 sblock.fs_flags |= FS_GJOURNAL;
149 if (lflag)
150 sblock.fs_flags |= FS_MULTILABEL;
151 if (tflag)
152 sblock.fs_flags |= FS_TRIM;
154 * Validate the given file system size.
155 * Verify that its last block can actually be accessed.
156 * Convert to file system fragment sized units.
158 if (fssize <= 0) {
159 printf("preposterous size %jd\n", (intmax_t)fssize);
160 exit(13);
162 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
163 (char *)&sblock);
165 * collect and verify the file system density info
167 sblock.fs_avgfilesize = avgfilesize;
168 sblock.fs_avgfpdir = avgfilesperdir;
169 if (sblock.fs_avgfilesize <= 0)
170 printf("illegal expected average file size %d\n",
171 sblock.fs_avgfilesize), exit(14);
172 if (sblock.fs_avgfpdir <= 0)
173 printf("illegal expected number of files per directory %d\n",
174 sblock.fs_avgfpdir), exit(15);
176 restart:
178 * collect and verify the block and fragment sizes
180 sblock.fs_bsize = bsize;
181 sblock.fs_fsize = fsize;
182 if (!POWEROF2(sblock.fs_bsize)) {
183 printf("block size must be a power of 2, not %d\n",
184 sblock.fs_bsize);
185 exit(16);
187 if (!POWEROF2(sblock.fs_fsize)) {
188 printf("fragment size must be a power of 2, not %d\n",
189 sblock.fs_fsize);
190 exit(17);
192 if (sblock.fs_fsize < sectorsize) {
193 printf("increasing fragment size from %d to sector size (%d)\n",
194 sblock.fs_fsize, sectorsize);
195 sblock.fs_fsize = sectorsize;
197 if (sblock.fs_bsize > MAXBSIZE) {
198 printf("decreasing block size from %d to maximum (%d)\n",
199 sblock.fs_bsize, MAXBSIZE);
200 sblock.fs_bsize = MAXBSIZE;
202 if (sblock.fs_bsize < MINBSIZE) {
203 printf("increasing block size from %d to minimum (%d)\n",
204 sblock.fs_bsize, MINBSIZE);
205 sblock.fs_bsize = MINBSIZE;
207 if (sblock.fs_fsize > MAXBSIZE) {
208 printf("decreasing fragment size from %d to maximum (%d)\n",
209 sblock.fs_fsize, MAXBSIZE);
210 sblock.fs_fsize = MAXBSIZE;
212 if (sblock.fs_bsize < sblock.fs_fsize) {
213 printf("increasing block size from %d to fragment size (%d)\n",
214 sblock.fs_bsize, sblock.fs_fsize);
215 sblock.fs_bsize = sblock.fs_fsize;
217 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
218 printf(
219 "increasing fragment size from %d to block size / %d (%d)\n",
220 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
221 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
223 if (maxbsize == 0)
224 maxbsize = bsize;
225 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
226 sblock.fs_maxbsize = sblock.fs_bsize;
227 printf("Extent size set to %d\n", sblock.fs_maxbsize);
228 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
229 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
230 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
231 } else {
232 sblock.fs_maxbsize = maxbsize;
235 * Maxcontig sets the default for the maximum number of blocks
236 * that may be allocated sequentially. With file system clustering
237 * it is possible to allocate contiguous blocks up to the maximum
238 * transfer size permitted by the controller or buffering.
240 if (maxcontig == 0)
241 maxcontig = MAX(1, MAXPHYS / bsize);
242 sblock.fs_maxcontig = maxcontig;
243 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
244 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
245 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
247 if (sblock.fs_maxcontig > 1)
248 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
249 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
250 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
251 sblock.fs_qbmask = ~sblock.fs_bmask;
252 sblock.fs_qfmask = ~sblock.fs_fmask;
253 sblock.fs_bshift = ilog2(sblock.fs_bsize);
254 sblock.fs_fshift = ilog2(sblock.fs_fsize);
255 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
256 sblock.fs_fragshift = ilog2(sblock.fs_frag);
257 if (sblock.fs_frag > MAXFRAG) {
258 printf("fragment size %d is still too small (can't happen)\n",
259 sblock.fs_bsize / MAXFRAG);
260 exit(21);
262 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
263 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
264 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
267 * Before the filesystem is finally initialized, mark it
268 * as incompletely initialized.
270 sblock.fs_magic = FS_BAD_MAGIC;
272 if (Oflag == 1) {
273 sblock.fs_sblockloc = SBLOCK_UFS1;
274 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
275 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
276 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
277 sizeof(ufs1_daddr_t));
278 sblock.fs_old_inodefmt = FS_44INODEFMT;
279 sblock.fs_old_cgoffset = 0;
280 sblock.fs_old_cgmask = 0xffffffff;
281 sblock.fs_old_size = sblock.fs_size;
282 sblock.fs_old_rotdelay = 0;
283 sblock.fs_old_rps = 60;
284 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
285 sblock.fs_old_cpg = 1;
286 sblock.fs_old_interleave = 1;
287 sblock.fs_old_trackskew = 0;
288 sblock.fs_old_cpc = 0;
289 sblock.fs_old_postblformat = 1;
290 sblock.fs_old_nrpos = 1;
291 } else {
292 sblock.fs_sblockloc = SBLOCK_UFS2;
293 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
295 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
296 sizeof(ufs2_daddr_t));
298 sblock.fs_sblkno =
299 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
300 sblock.fs_frag);
301 sblock.fs_cblkno = sblock.fs_sblkno +
302 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
303 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
304 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
305 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
306 sizepb *= NINDIR(&sblock);
307 sblock.fs_maxfilesize += sizepb;
311 * It's impossible to create a snapshot in case that fs_maxfilesize
312 * is smaller than the fssize.
314 if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
315 warnx("WARNING: You will be unable to create snapshots on this "
316 "file system. Correct by using a larger blocksize.");
320 * Calculate the number of blocks to put into each cylinder group.
322 * This algorithm selects the number of blocks per cylinder
323 * group. The first goal is to have at least enough data blocks
324 * in each cylinder group to meet the density requirement. Once
325 * this goal is achieved we try to expand to have at least
326 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
327 * pack as many blocks into each cylinder group map as will fit.
329 * We start by calculating the smallest number of blocks that we
330 * can put into each cylinder group. If this is too big, we reduce
331 * the density until it fits.
333 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
334 minfragsperinode = 1 + fssize / maxinum;
335 if (density == 0) {
336 density = MAX(NFPI, minfragsperinode) * fsize;
337 } else if (density < minfragsperinode * fsize) {
338 origdensity = density;
339 density = minfragsperinode * fsize;
340 fprintf(stderr, "density increased from %d to %d\n",
341 origdensity, density);
343 origdensity = density;
344 for (;;) {
345 fragsperinode = MAX(numfrags(&sblock, density), 1);
346 if (fragsperinode < minfragsperinode) {
347 bsize <<= 1;
348 fsize <<= 1;
349 printf("Block size too small for a file system %s %d\n",
350 "of this size. Increasing blocksize to", bsize);
351 goto restart;
353 minfpg = fragsperinode * INOPB(&sblock);
354 if (minfpg > sblock.fs_size)
355 minfpg = sblock.fs_size;
356 sblock.fs_ipg = INOPB(&sblock);
357 sblock.fs_fpg = roundup(sblock.fs_iblkno +
358 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
359 if (sblock.fs_fpg < minfpg)
360 sblock.fs_fpg = minfpg;
361 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
362 INOPB(&sblock));
363 sblock.fs_fpg = roundup(sblock.fs_iblkno +
364 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
365 if (sblock.fs_fpg < minfpg)
366 sblock.fs_fpg = minfpg;
367 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
368 INOPB(&sblock));
369 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
370 break;
371 density -= sblock.fs_fsize;
373 if (density != origdensity)
374 printf("density reduced from %d to %d\n", origdensity, density);
376 * Start packing more blocks into the cylinder group until
377 * it cannot grow any larger, the number of cylinder groups
378 * drops below MINCYLGRPS, or we reach the size requested.
379 * For UFS1 inodes per cylinder group are stored in an int16_t
380 * so fs_ipg is limited to 2^15 - 1.
382 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
383 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
384 INOPB(&sblock));
385 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
386 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
387 break;
388 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
389 continue;
390 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
391 break;
393 sblock.fs_fpg -= sblock.fs_frag;
394 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
395 INOPB(&sblock));
396 break;
399 * Check to be sure that the last cylinder group has enough blocks
400 * to be viable. If it is too small, reduce the number of blocks
401 * per cylinder group which will have the effect of moving more
402 * blocks into the last cylinder group.
404 optimalfpg = sblock.fs_fpg;
405 for (;;) {
406 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
407 lastminfpg = roundup(sblock.fs_iblkno +
408 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
409 if (sblock.fs_size < lastminfpg) {
410 printf("Filesystem size %jd < minimum size of %d\n",
411 (intmax_t)sblock.fs_size, lastminfpg);
412 exit(28);
414 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
415 sblock.fs_size % sblock.fs_fpg == 0)
416 break;
417 sblock.fs_fpg -= sblock.fs_frag;
418 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
419 INOPB(&sblock));
421 if (optimalfpg != sblock.fs_fpg)
422 printf("Reduced frags per cylinder group from %d to %d %s\n",
423 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
424 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
425 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
426 if (Oflag == 1) {
427 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
428 sblock.fs_old_nsect = sblock.fs_old_spc;
429 sblock.fs_old_npsect = sblock.fs_old_spc;
430 sblock.fs_old_ncyl = sblock.fs_ncg;
433 * fill in remaining fields of the super block
435 sblock.fs_csaddr = cgdmin(&sblock, 0);
436 sblock.fs_cssize =
437 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
438 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
439 if (fscs == NULL)
440 errx(31, "calloc failed");
441 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
442 if (sblock.fs_sbsize > SBLOCKSIZE)
443 sblock.fs_sbsize = SBLOCKSIZE;
444 sblock.fs_minfree = minfree;
445 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
446 sblock.fs_metaspace = blknum(&sblock, metaspace);
447 else if (metaspace != -1)
448 /* reserve half of minfree for metadata blocks */
449 sblock.fs_metaspace = blknum(&sblock,
450 (sblock.fs_fpg * minfree) / 200);
451 if (maxbpg == 0)
452 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
453 else
454 sblock.fs_maxbpg = maxbpg;
455 sblock.fs_optim = opt;
456 sblock.fs_cgrotor = 0;
457 sblock.fs_pendingblocks = 0;
458 sblock.fs_pendinginodes = 0;
459 sblock.fs_fmod = 0;
460 sblock.fs_ronly = 0;
461 sblock.fs_state = 0;
462 sblock.fs_clean = 1;
463 sblock.fs_id[0] = (long)utime;
464 sblock.fs_id[1] = newfs_random();
465 sblock.fs_fsmnt[0] = '\0';
466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
469 sblock.fs_cstotal.cs_nbfree =
470 fragstoblks(&sblock, sblock.fs_dsize) -
471 howmany(csfrags, sblock.fs_frag);
472 sblock.fs_cstotal.cs_nffree =
473 fragnum(&sblock, sblock.fs_size) +
474 (fragnum(&sblock, csfrags) > 0 ?
475 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
476 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
477 sblock.fs_cstotal.cs_ndir = 0;
478 sblock.fs_dsize -= csfrags;
479 sblock.fs_time = utime;
480 if (Oflag == 1) {
481 sblock.fs_old_time = utime;
482 sblock.fs_old_dsize = sblock.fs_dsize;
483 sblock.fs_old_csaddr = sblock.fs_csaddr;
484 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
485 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
486 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
487 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
491 * Dump out summary information about file system.
493 # define B2MBFACTOR (1 / (1024.0 * 1024.0))
494 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
495 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
496 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
497 sblock.fs_fsize);
498 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
499 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
500 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
501 if (sblock.fs_flags & FS_DOSOFTDEP)
502 printf("\twith soft updates\n");
503 # undef B2MBFACTOR
505 if (Eflag && !Nflag) {
506 printf("Erasing sectors [%jd...%jd]\n",
507 sblock.fs_sblockloc / disk.d_bsize,
508 fsbtodb(&sblock, sblock.fs_size) - 1);
509 berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
510 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
513 * Wipe out old UFS1 superblock(s) if necessary.
515 if (!Nflag && Oflag != 1) {
516 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
517 if (i == -1)
518 err(1, "can't read old UFS1 superblock: %s", disk.d_error);
520 if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
521 fsdummy.fs_magic = 0;
522 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
523 chdummy, SBLOCKSIZE);
524 for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
525 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
526 break;
527 bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
528 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
532 if (!Nflag)
533 do_sbwrite(&disk);
534 if (Xflag == 1) {
535 printf("** Exiting on Xflag 1\n");
536 exit(0);
538 if (Xflag == 2)
539 printf("** Leaving BAD MAGIC on Xflag 2\n");
540 else
541 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
544 * Now build the cylinders group blocks and
545 * then print out indices of cylinder groups.
547 printf("super-block backups (for fsck_ffs -b #) at:\n");
548 i = 0;
549 width = charsperline();
551 * allocate space for superblock, cylinder group map, and
552 * two sets of inode blocks.
554 if (sblock.fs_bsize < SBLOCKSIZE)
555 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
556 else
557 iobufsize = 4 * sblock.fs_bsize;
558 if ((iobuf = calloc(1, iobufsize)) == 0) {
559 printf("Cannot allocate I/O buffer\n");
560 exit(38);
563 * Make a copy of the superblock into the buffer that we will be
564 * writing out in each cylinder group.
566 bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
567 for (cg = 0; cg < sblock.fs_ncg; cg++) {
568 initcg(cg, utime);
569 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
570 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
571 cg < (sblock.fs_ncg-1) ? "," : "");
572 if (j < 0)
573 tmpbuf[j = 0] = '\0';
574 if (i + j >= width) {
575 printf("\n");
576 i = 0;
578 i += j;
579 printf("%s", tmpbuf);
580 fflush(stdout);
582 printf("\n");
583 if (Nflag)
584 exit(0);
586 * Now construct the initial file system,
587 * then write out the super-block.
589 fsinit(utime);
590 if (Oflag == 1) {
591 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
592 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
593 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
594 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
596 if (Xflag == 3) {
597 printf("** Exiting on Xflag 3\n");
598 exit(0);
600 if (!Nflag) {
601 do_sbwrite(&disk);
603 * For UFS1 filesystems with a blocksize of 64K, the first
604 * alternate superblock resides at the location used for
605 * the default UFS2 superblock. As there is a valid
606 * superblock at this location, the boot code will use
607 * it as its first choice. Thus we have to ensure that
608 * all of its statistcs on usage are correct.
610 if (Oflag == 1 && sblock.fs_bsize == 65536)
611 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
612 sblock.fs_bsize, (char *)&sblock);
614 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
615 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
616 MIN(sblock.fs_cssize - i, sblock.fs_bsize),
617 ((char *)fscs) + i);
619 * Update information about this partition in pack
620 * label, to that it may be updated on disk.
622 if (pp != NULL) {
623 pp->p_fstype = FS_BSDFFS;
624 pp->p_fsize = sblock.fs_fsize;
625 pp->p_frag = sblock.fs_frag;
626 pp->p_cpg = sblock.fs_fpg;
631 * Initialize a cylinder group.
633 void
634 initcg(int cylno, time_t utime)
636 long blkno, start;
637 uint i, j, d, dlower, dupper;
638 ufs2_daddr_t cbase, dmax;
639 struct ufs1_dinode *dp1;
640 struct ufs2_dinode *dp2;
641 struct csum *cs;
644 * Determine block bounds for cylinder group.
645 * Allow space for super block summary information in first
646 * cylinder group.
648 cbase = cgbase(&sblock, cylno);
649 dmax = cbase + sblock.fs_fpg;
650 if (dmax > sblock.fs_size)
651 dmax = sblock.fs_size;
652 dlower = cgsblock(&sblock, cylno) - cbase;
653 dupper = cgdmin(&sblock, cylno) - cbase;
654 if (cylno == 0)
655 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
656 cs = &fscs[cylno];
657 memset(&acg, 0, sblock.fs_cgsize);
658 acg.cg_time = utime;
659 acg.cg_magic = CG_MAGIC;
660 acg.cg_cgx = cylno;
661 acg.cg_niblk = sblock.fs_ipg;
662 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
663 acg.cg_ndblk = dmax - cbase;
664 if (sblock.fs_contigsumsize > 0)
665 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
666 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
667 if (Oflag == 2) {
668 acg.cg_iusedoff = start;
669 } else {
670 acg.cg_old_ncyl = sblock.fs_old_cpg;
671 acg.cg_old_time = acg.cg_time;
672 acg.cg_time = 0;
673 acg.cg_old_niblk = acg.cg_niblk;
674 acg.cg_niblk = 0;
675 acg.cg_initediblk = 0;
676 acg.cg_old_btotoff = start;
677 acg.cg_old_boff = acg.cg_old_btotoff +
678 sblock.fs_old_cpg * sizeof(int32_t);
679 acg.cg_iusedoff = acg.cg_old_boff +
680 sblock.fs_old_cpg * sizeof(u_int16_t);
682 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
683 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
684 if (sblock.fs_contigsumsize > 0) {
685 acg.cg_clustersumoff =
686 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
687 acg.cg_clustersumoff -= sizeof(u_int32_t);
688 acg.cg_clusteroff = acg.cg_clustersumoff +
689 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
690 acg.cg_nextfreeoff = acg.cg_clusteroff +
691 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
693 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
694 printf("Panic: cylinder group too big\n");
695 exit(37);
697 acg.cg_cs.cs_nifree += sblock.fs_ipg;
698 if (cylno == 0)
699 for (i = 0; i < (long)ROOTINO; i++) {
700 setbit(cg_inosused(&acg), i);
701 acg.cg_cs.cs_nifree--;
703 if (cylno > 0) {
705 * In cylno 0, beginning space is reserved
706 * for boot and super blocks.
708 for (d = 0; d < dlower; d += sblock.fs_frag) {
709 blkno = d / sblock.fs_frag;
710 setblock(&sblock, cg_blksfree(&acg), blkno);
711 if (sblock.fs_contigsumsize > 0)
712 setbit(cg_clustersfree(&acg), blkno);
713 acg.cg_cs.cs_nbfree++;
716 if ((i = dupper % sblock.fs_frag)) {
717 acg.cg_frsum[sblock.fs_frag - i]++;
718 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
719 setbit(cg_blksfree(&acg), dupper);
720 acg.cg_cs.cs_nffree++;
723 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
724 d += sblock.fs_frag) {
725 blkno = d / sblock.fs_frag;
726 setblock(&sblock, cg_blksfree(&acg), blkno);
727 if (sblock.fs_contigsumsize > 0)
728 setbit(cg_clustersfree(&acg), blkno);
729 acg.cg_cs.cs_nbfree++;
731 if (d < acg.cg_ndblk) {
732 acg.cg_frsum[acg.cg_ndblk - d]++;
733 for (; d < acg.cg_ndblk; d++) {
734 setbit(cg_blksfree(&acg), d);
735 acg.cg_cs.cs_nffree++;
738 if (sblock.fs_contigsumsize > 0) {
739 int32_t *sump = cg_clustersum(&acg);
740 u_char *mapp = cg_clustersfree(&acg);
741 int map = *mapp++;
742 int bit = 1;
743 int run = 0;
745 for (i = 0; i < acg.cg_nclusterblks; i++) {
746 if ((map & bit) != 0)
747 run++;
748 else if (run != 0) {
749 if (run > sblock.fs_contigsumsize)
750 run = sblock.fs_contigsumsize;
751 sump[run]++;
752 run = 0;
754 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
755 bit <<= 1;
756 else {
757 map = *mapp++;
758 bit = 1;
761 if (run != 0) {
762 if (run > sblock.fs_contigsumsize)
763 run = sblock.fs_contigsumsize;
764 sump[run]++;
767 *cs = acg.cg_cs;
769 * Write out the duplicate super block, the cylinder group map
770 * and two blocks worth of inodes in a single write.
772 start = MAX(sblock.fs_bsize, SBLOCKSIZE);
773 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
774 start += sblock.fs_bsize;
775 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
776 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
777 for (i = 0; i < acg.cg_initediblk; i++) {
778 if (sblock.fs_magic == FS_UFS1_MAGIC) {
779 dp1->di_gen = newfs_random();
780 dp1++;
781 } else {
782 dp2->di_gen = newfs_random();
783 dp2++;
786 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
788 * For the old file system, we have to initialize all the inodes.
790 if (Oflag == 1) {
791 for (i = 2 * sblock.fs_frag;
792 i < sblock.fs_ipg / INOPF(&sblock);
793 i += sblock.fs_frag) {
794 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
795 for (j = 0; j < INOPB(&sblock); j++) {
796 dp1->di_gen = newfs_random();
797 dp1++;
799 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
800 sblock.fs_bsize, &iobuf[start]);
806 * initialize the file system
808 #define ROOTLINKCNT 3
810 static struct direct root_dir[] = {
811 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
812 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
813 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
816 #define SNAPLINKCNT 2
818 static struct direct snap_dir[] = {
819 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
820 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
823 void
824 fsinit(time_t utime)
826 union dinode node;
827 struct group *grp;
828 gid_t gid;
829 int entries;
831 memset(&node, 0, sizeof node);
832 if ((grp = getgrnam("operator")) != NULL) {
833 gid = grp->gr_gid;
834 } else {
835 warnx("Cannot retrieve operator gid, using gid 0.");
836 gid = 0;
838 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
839 if (sblock.fs_magic == FS_UFS1_MAGIC) {
841 * initialize the node
843 node.dp1.di_atime = utime;
844 node.dp1.di_mtime = utime;
845 node.dp1.di_ctime = utime;
847 * create the root directory
849 node.dp1.di_mode = IFDIR | UMASK;
850 node.dp1.di_nlink = entries;
851 node.dp1.di_size = makedir(root_dir, entries);
852 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
853 node.dp1.di_blocks =
854 btodb(fragroundup(&sblock, node.dp1.di_size));
855 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
856 iobuf);
857 iput(&node, ROOTINO);
858 if (!nflag) {
860 * create the .snap directory
862 node.dp1.di_mode |= 020;
863 node.dp1.di_gid = gid;
864 node.dp1.di_nlink = SNAPLINKCNT;
865 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
866 node.dp1.di_db[0] =
867 alloc(sblock.fs_fsize, node.dp1.di_mode);
868 node.dp1.di_blocks =
869 btodb(fragroundup(&sblock, node.dp1.di_size));
870 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
871 sblock.fs_fsize, iobuf);
872 iput(&node, ROOTINO + 1);
874 } else {
876 * initialize the node
878 node.dp2.di_atime = utime;
879 node.dp2.di_mtime = utime;
880 node.dp2.di_ctime = utime;
881 node.dp2.di_birthtime = utime;
883 * create the root directory
885 node.dp2.di_mode = IFDIR | UMASK;
886 node.dp2.di_nlink = entries;
887 node.dp2.di_size = makedir(root_dir, entries);
888 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
889 node.dp2.di_blocks =
890 btodb(fragroundup(&sblock, node.dp2.di_size));
891 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
892 iobuf);
893 iput(&node, ROOTINO);
894 if (!nflag) {
896 * create the .snap directory
898 node.dp2.di_mode |= 020;
899 node.dp2.di_gid = gid;
900 node.dp2.di_nlink = SNAPLINKCNT;
901 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
902 node.dp2.di_db[0] =
903 alloc(sblock.fs_fsize, node.dp2.di_mode);
904 node.dp2.di_blocks =
905 btodb(fragroundup(&sblock, node.dp2.di_size));
906 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
907 sblock.fs_fsize, iobuf);
908 iput(&node, ROOTINO + 1);
914 * construct a set of directory entries in "iobuf".
915 * return size of directory.
918 makedir(struct direct *protodir, int entries)
920 char *cp;
921 int i, spcleft;
923 spcleft = DIRBLKSIZ;
924 memset(iobuf, 0, DIRBLKSIZ);
925 for (cp = iobuf, i = 0; i < entries - 1; i++) {
926 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
927 memmove(cp, &protodir[i], protodir[i].d_reclen);
928 cp += protodir[i].d_reclen;
929 spcleft -= protodir[i].d_reclen;
931 protodir[i].d_reclen = spcleft;
932 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
933 return (DIRBLKSIZ);
937 * allocate a block or frag
939 ufs2_daddr_t
940 alloc(int size, int mode)
942 int i, blkno, frag;
943 uint d;
945 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
946 sblock.fs_cgsize);
947 if (acg.cg_magic != CG_MAGIC) {
948 printf("cg 0: bad magic number\n");
949 exit(38);
951 if (acg.cg_cs.cs_nbfree == 0) {
952 printf("first cylinder group ran out of space\n");
953 exit(39);
955 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
956 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
957 goto goth;
958 printf("internal error: can't find block in cyl 0\n");
959 exit(40);
960 goth:
961 blkno = fragstoblks(&sblock, d);
962 clrblock(&sblock, cg_blksfree(&acg), blkno);
963 if (sblock.fs_contigsumsize > 0)
964 clrbit(cg_clustersfree(&acg), blkno);
965 acg.cg_cs.cs_nbfree--;
966 sblock.fs_cstotal.cs_nbfree--;
967 fscs[0].cs_nbfree--;
968 if (mode & IFDIR) {
969 acg.cg_cs.cs_ndir++;
970 sblock.fs_cstotal.cs_ndir++;
971 fscs[0].cs_ndir++;
973 if (size != sblock.fs_bsize) {
974 frag = howmany(size, sblock.fs_fsize);
975 fscs[0].cs_nffree += sblock.fs_frag - frag;
976 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
977 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
978 acg.cg_frsum[sblock.fs_frag - frag]++;
979 for (i = frag; i < sblock.fs_frag; i++)
980 setbit(cg_blksfree(&acg), d + i);
982 /* XXX cgwrite(&disk, 0)??? */
983 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
984 (char *)&acg);
985 return ((ufs2_daddr_t)d);
989 * Allocate an inode on the disk
991 void
992 iput(union dinode *ip, ino_t ino)
994 ufs2_daddr_t d;
996 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
997 sblock.fs_cgsize);
998 if (acg.cg_magic != CG_MAGIC) {
999 printf("cg 0: bad magic number\n");
1000 exit(31);
1002 acg.cg_cs.cs_nifree--;
1003 setbit(cg_inosused(&acg), ino);
1004 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1005 (char *)&acg);
1006 sblock.fs_cstotal.cs_nifree--;
1007 fscs[0].cs_nifree--;
1008 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1009 printf("fsinit: inode value out of range (%ju).\n",
1010 (uintmax_t)ino);
1011 exit(32);
1013 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1014 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1015 if (sblock.fs_magic == FS_UFS1_MAGIC)
1016 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1017 ip->dp1;
1018 else
1019 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1020 ip->dp2;
1021 wtfs(d, sblock.fs_bsize, (char *)iobuf);
1025 * possibly write to disk
1027 static void
1028 wtfs(ufs2_daddr_t bno, int size, char *bf)
1030 if (Nflag)
1031 return;
1032 if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1033 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1037 * check if a block is available
1039 static int
1040 isblock(struct fs *fs, unsigned char *cp, int h)
1042 unsigned char mask;
1044 switch (fs->fs_frag) {
1045 case 8:
1046 return (cp[h] == 0xff);
1047 case 4:
1048 mask = 0x0f << ((h & 0x1) << 2);
1049 return ((cp[h >> 1] & mask) == mask);
1050 case 2:
1051 mask = 0x03 << ((h & 0x3) << 1);
1052 return ((cp[h >> 2] & mask) == mask);
1053 case 1:
1054 mask = 0x01 << (h & 0x7);
1055 return ((cp[h >> 3] & mask) == mask);
1056 default:
1057 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1058 return (0);
1063 * take a block out of the map
1065 static void
1066 clrblock(struct fs *fs, unsigned char *cp, int h)
1068 switch ((fs)->fs_frag) {
1069 case 8:
1070 cp[h] = 0;
1071 return;
1072 case 4:
1073 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1074 return;
1075 case 2:
1076 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1077 return;
1078 case 1:
1079 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1080 return;
1081 default:
1082 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1083 return;
1088 * put a block into the map
1090 static void
1091 setblock(struct fs *fs, unsigned char *cp, int h)
1093 switch (fs->fs_frag) {
1094 case 8:
1095 cp[h] = 0xff;
1096 return;
1097 case 4:
1098 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1099 return;
1100 case 2:
1101 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1102 return;
1103 case 1:
1104 cp[h >> 3] |= (0x01 << (h & 0x7));
1105 return;
1106 default:
1107 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1108 return;
1113 * Determine the number of characters in a
1114 * single line.
1117 static int
1118 charsperline(void)
1120 int columns;
1121 char *cp;
1122 struct winsize ws;
1124 columns = 0;
1125 if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1126 columns = ws.ws_col;
1127 if (columns == 0 && (cp = getenv("COLUMNS")))
1128 columns = atoi(cp);
1129 if (columns == 0)
1130 columns = 80; /* last resort */
1131 return (columns);
1134 static int
1135 ilog2(int val)
1137 u_int n;
1139 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1140 if (1 << n == val)
1141 return (n);
1142 errx(1, "ilog2: %d is not a power of 2\n", val);
1146 * For the regression test, return predictable random values.
1147 * Otherwise use a true random number generator.
1149 static u_int32_t
1150 newfs_random(void)
1152 static int nextnum = 1;
1154 if (Rflag)
1155 return (nextnum++);
1156 return (arc4random());