Regen after r293450
[freebsd-src.git] / sys / kern / subr_rman.c
blob310bd5e521ec184ecb25f69c908c918acef0ee9b
1 /*-
2 * Copyright 1998 Massachusetts Institute of Technology
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
31 * The kernel resource manager. This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly. Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
40 * There are two sorts of resources managed by this code. The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order. Most of the resources
44 * are of this type, as it is the most familiar. The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance). The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share. RMAN_GAUGE is not
50 * implemented yet.
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices. That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
58 #include "opt_ddb.h"
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h> /* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space). That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
88 struct resource_i {
89 struct resource r_r;
90 TAILQ_ENTRY(resource_i) r_link;
91 LIST_ENTRY(resource_i) r_sharelink;
92 LIST_HEAD(, resource_i) *r_sharehead;
93 u_long r_start; /* index of the first entry in this resource */
94 u_long r_end; /* index of the last entry (inclusive) */
95 u_int r_flags;
96 void *r_virtual; /* virtual address of this resource */
97 struct device *r_dev; /* device which has allocated this resource */
98 struct rman *r_rm; /* resource manager from whence this came */
99 int r_rid; /* optional rid for this resource. */
102 static int rman_debug = 0;
103 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
104 &rman_debug, 0, "rman debug");
106 #define DPRINTF(params) if (rman_debug) printf params
108 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110 struct rman_head rman_head;
111 static struct mtx rman_mtx; /* mutex to protect rman_head */
112 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
114 static __inline struct resource_i *
115 int_alloc_resource(int malloc_flag)
117 struct resource_i *r;
119 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
120 if (r != NULL) {
121 r->r_r.__r_i = r;
123 return (r);
127 rman_init(struct rman *rm)
129 static int once = 0;
131 if (once == 0) {
132 once = 1;
133 TAILQ_INIT(&rman_head);
134 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
137 if (rm->rm_start == 0 && rm->rm_end == 0)
138 rm->rm_end = ~0ul;
139 if (rm->rm_type == RMAN_UNINIT)
140 panic("rman_init");
141 if (rm->rm_type == RMAN_GAUGE)
142 panic("implement RMAN_GAUGE");
144 TAILQ_INIT(&rm->rm_list);
145 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
146 if (rm->rm_mtx == NULL)
147 return ENOMEM;
148 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
150 mtx_lock(&rman_mtx);
151 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
152 mtx_unlock(&rman_mtx);
153 return 0;
157 rman_manage_region(struct rman *rm, u_long start, u_long end)
159 struct resource_i *r, *s, *t;
160 int rv = 0;
162 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
163 rm->rm_descr, start, end));
164 if (start < rm->rm_start || end > rm->rm_end)
165 return EINVAL;
166 r = int_alloc_resource(M_NOWAIT);
167 if (r == NULL)
168 return ENOMEM;
169 r->r_start = start;
170 r->r_end = end;
171 r->r_rm = rm;
173 mtx_lock(rm->rm_mtx);
175 /* Skip entries before us. */
176 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
177 if (s->r_end == ULONG_MAX)
178 break;
179 if (s->r_end + 1 >= r->r_start)
180 break;
183 /* If we ran off the end of the list, insert at the tail. */
184 if (s == NULL) {
185 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
186 } else {
187 /* Check for any overlap with the current region. */
188 if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
189 rv = EBUSY;
190 goto out;
193 /* Check for any overlap with the next region. */
194 t = TAILQ_NEXT(s, r_link);
195 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
196 rv = EBUSY;
197 goto out;
201 * See if this region can be merged with the next region. If
202 * not, clear the pointer.
204 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
205 t = NULL;
207 /* See if we can merge with the current region. */
208 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
209 /* Can we merge all 3 regions? */
210 if (t != NULL) {
211 s->r_end = t->r_end;
212 TAILQ_REMOVE(&rm->rm_list, t, r_link);
213 free(r, M_RMAN);
214 free(t, M_RMAN);
215 } else {
216 s->r_end = r->r_end;
217 free(r, M_RMAN);
219 } else if (t != NULL) {
220 /* Can we merge with just the next region? */
221 t->r_start = r->r_start;
222 free(r, M_RMAN);
223 } else if (s->r_end < r->r_start) {
224 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
225 } else {
226 TAILQ_INSERT_BEFORE(s, r, r_link);
229 out:
230 mtx_unlock(rm->rm_mtx);
231 return rv;
235 rman_init_from_resource(struct rman *rm, struct resource *r)
237 int rv;
239 if ((rv = rman_init(rm)) != 0)
240 return (rv);
241 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
245 rman_fini(struct rman *rm)
247 struct resource_i *r;
249 mtx_lock(rm->rm_mtx);
250 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
251 if (r->r_flags & RF_ALLOCATED) {
252 mtx_unlock(rm->rm_mtx);
253 return EBUSY;
258 * There really should only be one of these if we are in this
259 * state and the code is working properly, but it can't hurt.
261 while (!TAILQ_EMPTY(&rm->rm_list)) {
262 r = TAILQ_FIRST(&rm->rm_list);
263 TAILQ_REMOVE(&rm->rm_list, r, r_link);
264 free(r, M_RMAN);
266 mtx_unlock(rm->rm_mtx);
267 mtx_lock(&rman_mtx);
268 TAILQ_REMOVE(&rman_head, rm, rm_link);
269 mtx_unlock(&rman_mtx);
270 mtx_destroy(rm->rm_mtx);
271 free(rm->rm_mtx, M_RMAN);
273 return 0;
277 rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
279 struct resource_i *r;
281 mtx_lock(rm->rm_mtx);
282 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
283 if (!(r->r_flags & RF_ALLOCATED)) {
284 *start = r->r_start;
285 *end = r->r_end;
286 mtx_unlock(rm->rm_mtx);
287 return (0);
290 mtx_unlock(rm->rm_mtx);
291 return (ENOENT);
295 rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
297 struct resource_i *r;
299 mtx_lock(rm->rm_mtx);
300 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
301 if (!(r->r_flags & RF_ALLOCATED)) {
302 *start = r->r_start;
303 *end = r->r_end;
304 mtx_unlock(rm->rm_mtx);
305 return (0);
308 mtx_unlock(rm->rm_mtx);
309 return (ENOENT);
312 /* Shrink or extend one or both ends of an allocated resource. */
314 rman_adjust_resource(struct resource *rr, u_long start, u_long end)
316 struct resource_i *r, *s, *t, *new;
317 struct rman *rm;
319 /* Not supported for shared resources. */
320 r = rr->__r_i;
321 if (r->r_flags & RF_SHAREABLE)
322 return (EINVAL);
325 * This does not support wholesale moving of a resource. At
326 * least part of the desired new range must overlap with the
327 * existing resource.
329 if (end < r->r_start || r->r_end < start)
330 return (EINVAL);
333 * Find the two resource regions immediately adjacent to the
334 * allocated resource.
336 rm = r->r_rm;
337 mtx_lock(rm->rm_mtx);
338 #ifdef INVARIANTS
339 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
340 if (s == r)
341 break;
343 if (s == NULL)
344 panic("resource not in list");
345 #endif
346 s = TAILQ_PREV(r, resource_head, r_link);
347 t = TAILQ_NEXT(r, r_link);
348 KASSERT(s == NULL || s->r_end + 1 == r->r_start,
349 ("prev resource mismatch"));
350 KASSERT(t == NULL || r->r_end + 1 == t->r_start,
351 ("next resource mismatch"));
354 * See if the changes are permitted. Shrinking is always allowed,
355 * but growing requires sufficient room in the adjacent region.
357 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
358 s->r_start > start)) {
359 mtx_unlock(rm->rm_mtx);
360 return (EBUSY);
362 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
363 t->r_end < end)) {
364 mtx_unlock(rm->rm_mtx);
365 return (EBUSY);
369 * While holding the lock, grow either end of the resource as
370 * needed and shrink either end if the shrinking does not require
371 * allocating a new resource. We can safely drop the lock and then
372 * insert a new range to handle the shrinking case afterwards.
374 if (start < r->r_start ||
375 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
376 KASSERT(s->r_flags == 0, ("prev is busy"));
377 r->r_start = start;
378 if (s->r_start == start) {
379 TAILQ_REMOVE(&rm->rm_list, s, r_link);
380 free(s, M_RMAN);
381 } else
382 s->r_end = start - 1;
384 if (end > r->r_end ||
385 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
386 KASSERT(t->r_flags == 0, ("next is busy"));
387 r->r_end = end;
388 if (t->r_end == end) {
389 TAILQ_REMOVE(&rm->rm_list, t, r_link);
390 free(t, M_RMAN);
391 } else
392 t->r_start = end + 1;
394 mtx_unlock(rm->rm_mtx);
397 * Handle the shrinking cases that require allocating a new
398 * resource to hold the newly-free region. We have to recheck
399 * if we still need this new region after acquiring the lock.
401 if (start > r->r_start) {
402 new = int_alloc_resource(M_WAITOK);
403 new->r_start = r->r_start;
404 new->r_end = start - 1;
405 new->r_rm = rm;
406 mtx_lock(rm->rm_mtx);
407 r->r_start = start;
408 s = TAILQ_PREV(r, resource_head, r_link);
409 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
410 s->r_end = start - 1;
411 free(new, M_RMAN);
412 } else
413 TAILQ_INSERT_BEFORE(r, new, r_link);
414 mtx_unlock(rm->rm_mtx);
416 if (end < r->r_end) {
417 new = int_alloc_resource(M_WAITOK);
418 new->r_start = end + 1;
419 new->r_end = r->r_end;
420 new->r_rm = rm;
421 mtx_lock(rm->rm_mtx);
422 r->r_end = end;
423 t = TAILQ_NEXT(r, r_link);
424 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
425 t->r_start = end + 1;
426 free(new, M_RMAN);
427 } else
428 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
429 mtx_unlock(rm->rm_mtx);
431 return (0);
434 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE))
436 struct resource *
437 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
438 u_long count, u_long bound, u_int flags,
439 struct device *dev)
441 u_int new_rflags;
442 struct resource_i *r, *s, *rv;
443 u_long rstart, rend, amask, bmask;
445 rv = NULL;
447 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
448 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
449 count, flags,
450 dev == NULL ? "<null>" : device_get_nameunit(dev)));
451 KASSERT((flags & RF_FIRSTSHARE) == 0,
452 ("invalid flags %#x", flags));
453 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
455 mtx_lock(rm->rm_mtx);
457 for (r = TAILQ_FIRST(&rm->rm_list);
458 r && r->r_end < start + count - 1;
459 r = TAILQ_NEXT(r, r_link))
462 if (r == NULL) {
463 DPRINTF(("could not find a region\n"));
464 goto out;
467 amask = (1ul << RF_ALIGNMENT(flags)) - 1;
468 KASSERT(start <= ULONG_MAX - amask,
469 ("start (%#lx) + amask (%#lx) would wrap around", start, amask));
471 /* If bound is 0, bmask will also be 0 */
472 bmask = ~(bound - 1);
474 * First try to find an acceptable totally-unshared region.
476 for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
477 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
479 * The resource list is sorted, so there is no point in
480 * searching further once r_start is too large.
482 if (s->r_start > end - (count - 1)) {
483 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
484 s->r_start, end));
485 break;
487 if (s->r_start > ULONG_MAX - amask) {
488 DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n",
489 s->r_start, amask));
490 break;
492 if (s->r_flags & RF_ALLOCATED) {
493 DPRINTF(("region is allocated\n"));
494 continue;
496 rstart = ulmax(s->r_start, start);
498 * Try to find a region by adjusting to boundary and alignment
499 * until both conditions are satisfied. This is not an optimal
500 * algorithm, but in most cases it isn't really bad, either.
502 do {
503 rstart = (rstart + amask) & ~amask;
504 if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
505 rstart += bound - (rstart & ~bmask);
506 } while ((rstart & amask) != 0 && rstart < end &&
507 rstart < s->r_end);
508 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
509 if (rstart > rend) {
510 DPRINTF(("adjusted start exceeds end\n"));
511 continue;
513 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
514 rstart, rend, (rend - rstart + 1), count));
516 if ((rend - rstart + 1) >= count) {
517 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
518 rstart, rend, (rend - rstart + 1)));
519 if ((s->r_end - s->r_start + 1) == count) {
520 DPRINTF(("candidate region is entire chunk\n"));
521 rv = s;
522 rv->r_flags = new_rflags;
523 rv->r_dev = dev;
524 goto out;
528 * If s->r_start < rstart and
529 * s->r_end > rstart + count - 1, then
530 * we need to split the region into three pieces
531 * (the middle one will get returned to the user).
532 * Otherwise, we are allocating at either the
533 * beginning or the end of s, so we only need to
534 * split it in two. The first case requires
535 * two new allocations; the second requires but one.
537 rv = int_alloc_resource(M_NOWAIT);
538 if (rv == NULL)
539 goto out;
540 rv->r_start = rstart;
541 rv->r_end = rstart + count - 1;
542 rv->r_flags = new_rflags;
543 rv->r_dev = dev;
544 rv->r_rm = rm;
546 if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
547 DPRINTF(("splitting region in three parts: "
548 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
549 s->r_start, rv->r_start - 1,
550 rv->r_start, rv->r_end,
551 rv->r_end + 1, s->r_end));
553 * We are allocating in the middle.
555 r = int_alloc_resource(M_NOWAIT);
556 if (r == NULL) {
557 free(rv, M_RMAN);
558 rv = NULL;
559 goto out;
561 r->r_start = rv->r_end + 1;
562 r->r_end = s->r_end;
563 r->r_flags = s->r_flags;
564 r->r_rm = rm;
565 s->r_end = rv->r_start - 1;
566 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
567 r_link);
568 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
569 r_link);
570 } else if (s->r_start == rv->r_start) {
571 DPRINTF(("allocating from the beginning\n"));
573 * We are allocating at the beginning.
575 s->r_start = rv->r_end + 1;
576 TAILQ_INSERT_BEFORE(s, rv, r_link);
577 } else {
578 DPRINTF(("allocating at the end\n"));
580 * We are allocating at the end.
582 s->r_end = rv->r_start - 1;
583 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
584 r_link);
586 goto out;
591 * Now find an acceptable shared region, if the client's requirements
592 * allow sharing. By our implementation restriction, a candidate
593 * region must match exactly by both size and sharing type in order
594 * to be considered compatible with the client's request. (The
595 * former restriction could probably be lifted without too much
596 * additional work, but this does not seem warranted.)
598 DPRINTF(("no unshared regions found\n"));
599 if ((flags & RF_SHAREABLE) == 0)
600 goto out;
602 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
603 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
604 s->r_start >= start &&
605 (s->r_end - s->r_start + 1) == count &&
606 (s->r_start & amask) == 0 &&
607 ((s->r_start ^ s->r_end) & bmask) == 0) {
608 rv = int_alloc_resource(M_NOWAIT);
609 if (rv == NULL)
610 goto out;
611 rv->r_start = s->r_start;
612 rv->r_end = s->r_end;
613 rv->r_flags = new_rflags;
614 rv->r_dev = dev;
615 rv->r_rm = rm;
616 if (s->r_sharehead == NULL) {
617 s->r_sharehead = malloc(sizeof *s->r_sharehead,
618 M_RMAN, M_NOWAIT | M_ZERO);
619 if (s->r_sharehead == NULL) {
620 free(rv, M_RMAN);
621 rv = NULL;
622 goto out;
624 LIST_INIT(s->r_sharehead);
625 LIST_INSERT_HEAD(s->r_sharehead, s,
626 r_sharelink);
627 s->r_flags |= RF_FIRSTSHARE;
629 rv->r_sharehead = s->r_sharehead;
630 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
631 goto out;
635 * We couldn't find anything.
638 out:
639 mtx_unlock(rm->rm_mtx);
640 return (rv == NULL ? NULL : &rv->r_r);
643 struct resource *
644 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
645 u_int flags, struct device *dev)
648 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
649 dev));
653 rman_activate_resource(struct resource *re)
655 struct resource_i *r;
656 struct rman *rm;
658 r = re->__r_i;
659 rm = r->r_rm;
660 mtx_lock(rm->rm_mtx);
661 r->r_flags |= RF_ACTIVE;
662 mtx_unlock(rm->rm_mtx);
663 return 0;
667 rman_deactivate_resource(struct resource *r)
669 struct rman *rm;
671 rm = r->__r_i->r_rm;
672 mtx_lock(rm->rm_mtx);
673 r->__r_i->r_flags &= ~RF_ACTIVE;
674 mtx_unlock(rm->rm_mtx);
675 return 0;
678 static int
679 int_rman_release_resource(struct rman *rm, struct resource_i *r)
681 struct resource_i *s, *t;
683 if (r->r_flags & RF_ACTIVE)
684 r->r_flags &= ~RF_ACTIVE;
687 * Check for a sharing list first. If there is one, then we don't
688 * have to think as hard.
690 if (r->r_sharehead) {
692 * If a sharing list exists, then we know there are at
693 * least two sharers.
695 * If we are in the main circleq, appoint someone else.
697 LIST_REMOVE(r, r_sharelink);
698 s = LIST_FIRST(r->r_sharehead);
699 if (r->r_flags & RF_FIRSTSHARE) {
700 s->r_flags |= RF_FIRSTSHARE;
701 TAILQ_INSERT_BEFORE(r, s, r_link);
702 TAILQ_REMOVE(&rm->rm_list, r, r_link);
706 * Make sure that the sharing list goes away completely
707 * if the resource is no longer being shared at all.
709 if (LIST_NEXT(s, r_sharelink) == NULL) {
710 free(s->r_sharehead, M_RMAN);
711 s->r_sharehead = NULL;
712 s->r_flags &= ~RF_FIRSTSHARE;
714 goto out;
718 * Look at the adjacent resources in the list and see if our
719 * segment can be merged with any of them. If either of the
720 * resources is allocated or is not exactly adjacent then they
721 * cannot be merged with our segment.
723 s = TAILQ_PREV(r, resource_head, r_link);
724 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
725 s->r_end + 1 != r->r_start))
726 s = NULL;
727 t = TAILQ_NEXT(r, r_link);
728 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
729 r->r_end + 1 != t->r_start))
730 t = NULL;
732 if (s != NULL && t != NULL) {
734 * Merge all three segments.
736 s->r_end = t->r_end;
737 TAILQ_REMOVE(&rm->rm_list, r, r_link);
738 TAILQ_REMOVE(&rm->rm_list, t, r_link);
739 free(t, M_RMAN);
740 } else if (s != NULL) {
742 * Merge previous segment with ours.
744 s->r_end = r->r_end;
745 TAILQ_REMOVE(&rm->rm_list, r, r_link);
746 } else if (t != NULL) {
748 * Merge next segment with ours.
750 t->r_start = r->r_start;
751 TAILQ_REMOVE(&rm->rm_list, r, r_link);
752 } else {
754 * At this point, we know there is nothing we
755 * can potentially merge with, because on each
756 * side, there is either nothing there or what is
757 * there is still allocated. In that case, we don't
758 * want to remove r from the list; we simply want to
759 * change it to an unallocated region and return
760 * without freeing anything.
762 r->r_flags &= ~RF_ALLOCATED;
763 r->r_dev = NULL;
764 return 0;
767 out:
768 free(r, M_RMAN);
769 return 0;
773 rman_release_resource(struct resource *re)
775 int rv;
776 struct resource_i *r;
777 struct rman *rm;
779 r = re->__r_i;
780 rm = r->r_rm;
781 mtx_lock(rm->rm_mtx);
782 rv = int_rman_release_resource(rm, r);
783 mtx_unlock(rm->rm_mtx);
784 return (rv);
787 uint32_t
788 rman_make_alignment_flags(uint32_t size)
790 int i;
793 * Find the hightest bit set, and add one if more than one bit
794 * set. We're effectively computing the ceil(log2(size)) here.
796 for (i = 31; i > 0; i--)
797 if ((1 << i) & size)
798 break;
799 if (~(1 << i) & size)
800 i++;
802 return(RF_ALIGNMENT_LOG2(i));
805 void
806 rman_set_start(struct resource *r, u_long start)
809 r->__r_i->r_start = start;
812 u_long
813 rman_get_start(struct resource *r)
816 return (r->__r_i->r_start);
819 void
820 rman_set_end(struct resource *r, u_long end)
823 r->__r_i->r_end = end;
826 u_long
827 rman_get_end(struct resource *r)
830 return (r->__r_i->r_end);
833 u_long
834 rman_get_size(struct resource *r)
837 return (r->__r_i->r_end - r->__r_i->r_start + 1);
840 u_int
841 rman_get_flags(struct resource *r)
844 return (r->__r_i->r_flags);
847 void
848 rman_set_virtual(struct resource *r, void *v)
851 r->__r_i->r_virtual = v;
854 void *
855 rman_get_virtual(struct resource *r)
858 return (r->__r_i->r_virtual);
861 void
862 rman_set_bustag(struct resource *r, bus_space_tag_t t)
865 r->r_bustag = t;
868 bus_space_tag_t
869 rman_get_bustag(struct resource *r)
872 return (r->r_bustag);
875 void
876 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
879 r->r_bushandle = h;
882 bus_space_handle_t
883 rman_get_bushandle(struct resource *r)
886 return (r->r_bushandle);
889 void
890 rman_set_rid(struct resource *r, int rid)
893 r->__r_i->r_rid = rid;
897 rman_get_rid(struct resource *r)
900 return (r->__r_i->r_rid);
903 void
904 rman_set_device(struct resource *r, struct device *dev)
907 r->__r_i->r_dev = dev;
910 struct device *
911 rman_get_device(struct resource *r)
914 return (r->__r_i->r_dev);
918 rman_is_region_manager(struct resource *r, struct rman *rm)
921 return (r->__r_i->r_rm == rm);
925 * Sysctl interface for scanning the resource lists.
927 * We take two input parameters; the index into the list of resource
928 * managers, and the resource offset into the list.
930 static int
931 sysctl_rman(SYSCTL_HANDLER_ARGS)
933 int *name = (int *)arg1;
934 u_int namelen = arg2;
935 int rman_idx, res_idx;
936 struct rman *rm;
937 struct resource_i *res;
938 struct resource_i *sres;
939 struct u_rman urm;
940 struct u_resource ures;
941 int error;
943 if (namelen != 3)
944 return (EINVAL);
946 if (bus_data_generation_check(name[0]))
947 return (EINVAL);
948 rman_idx = name[1];
949 res_idx = name[2];
952 * Find the indexed resource manager
954 mtx_lock(&rman_mtx);
955 TAILQ_FOREACH(rm, &rman_head, rm_link) {
956 if (rman_idx-- == 0)
957 break;
959 mtx_unlock(&rman_mtx);
960 if (rm == NULL)
961 return (ENOENT);
964 * If the resource index is -1, we want details on the
965 * resource manager.
967 if (res_idx == -1) {
968 bzero(&urm, sizeof(urm));
969 urm.rm_handle = (uintptr_t)rm;
970 if (rm->rm_descr != NULL)
971 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
972 urm.rm_start = rm->rm_start;
973 urm.rm_size = rm->rm_end - rm->rm_start + 1;
974 urm.rm_type = rm->rm_type;
976 error = SYSCTL_OUT(req, &urm, sizeof(urm));
977 return (error);
981 * Find the indexed resource and return it.
983 mtx_lock(rm->rm_mtx);
984 TAILQ_FOREACH(res, &rm->rm_list, r_link) {
985 if (res->r_sharehead != NULL) {
986 LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
987 if (res_idx-- == 0) {
988 res = sres;
989 goto found;
992 else if (res_idx-- == 0)
993 goto found;
995 mtx_unlock(rm->rm_mtx);
996 return (ENOENT);
998 found:
999 bzero(&ures, sizeof(ures));
1000 ures.r_handle = (uintptr_t)res;
1001 ures.r_parent = (uintptr_t)res->r_rm;
1002 ures.r_device = (uintptr_t)res->r_dev;
1003 if (res->r_dev != NULL) {
1004 if (device_get_name(res->r_dev) != NULL) {
1005 snprintf(ures.r_devname, RM_TEXTLEN,
1006 "%s%d",
1007 device_get_name(res->r_dev),
1008 device_get_unit(res->r_dev));
1009 } else {
1010 strlcpy(ures.r_devname, "nomatch",
1011 RM_TEXTLEN);
1013 } else {
1014 ures.r_devname[0] = '\0';
1016 ures.r_start = res->r_start;
1017 ures.r_size = res->r_end - res->r_start + 1;
1018 ures.r_flags = res->r_flags;
1020 mtx_unlock(rm->rm_mtx);
1021 error = SYSCTL_OUT(req, &ures, sizeof(ures));
1022 return (error);
1025 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1026 "kernel resource manager");
1028 #ifdef DDB
1029 static void
1030 dump_rman_header(struct rman *rm)
1033 if (db_pager_quit)
1034 return;
1035 db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1036 rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1039 static void
1040 dump_rman(struct rman *rm)
1042 struct resource_i *r;
1043 const char *devname;
1045 if (db_pager_quit)
1046 return;
1047 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1048 if (r->r_dev != NULL) {
1049 devname = device_get_nameunit(r->r_dev);
1050 if (devname == NULL)
1051 devname = "nomatch";
1052 } else
1053 devname = NULL;
1054 db_printf(" 0x%lx-0x%lx (RID=%d) ",
1055 r->r_start, r->r_end, r->r_rid);
1056 if (devname != NULL)
1057 db_printf("(%s)\n", devname);
1058 else
1059 db_printf("----\n");
1060 if (db_pager_quit)
1061 return;
1065 DB_SHOW_COMMAND(rman, db_show_rman)
1068 if (have_addr) {
1069 dump_rman_header((struct rman *)addr);
1070 dump_rman((struct rman *)addr);
1074 DB_SHOW_COMMAND(rmans, db_show_rmans)
1076 struct rman *rm;
1078 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1079 dump_rman_header(rm);
1083 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1085 struct rman *rm;
1087 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1088 dump_rman_header(rm);
1089 dump_rman(rm);
1092 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1093 #endif