Regen after r293450
[freebsd-src.git] / sys / kern / kern_ntptime.c
blob82062064dc8d86c961a1a07d1bb4cb6a6f2ab347
1 /*-
2 ***********************************************************************
3 * *
4 * Copyright (c) David L. Mills 1993-2001 *
5 * *
6 * Permission to use, copy, modify, and distribute this software and *
7 * its documentation for any purpose and without fee is hereby *
8 * granted, provided that the above copyright notice appears in all *
9 * copies and that both the copyright notice and this permission *
10 * notice appear in supporting documentation, and that the name *
11 * University of Delaware not be used in advertising or publicity *
12 * pertaining to distribution of the software without specific, *
13 * written prior permission. The University of Delaware makes no *
14 * representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied *
16 * warranty. *
17 * *
18 **********************************************************************/
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
36 #include "opt_ntp.h"
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
59 * Single-precision macros for 64-bit machines
61 typedef int64_t l_fp;
62 #define L_ADD(v, u) ((v) += (u))
63 #define L_SUB(v, u) ((v) -= (u))
64 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
65 #define L_NEG(v) ((v) = -(v))
66 #define L_RSHIFT(v, n) \
67 do { \
68 if ((v) < 0) \
69 (v) = -(-(v) >> (n)); \
70 else \
71 (v) = (v) >> (n); \
72 } while (0)
73 #define L_MPY(v, a) ((v) *= (a))
74 #define L_CLR(v) ((v) = 0)
75 #define L_ISNEG(v) ((v) < 0)
76 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
77 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 * Generic NTP kernel interface
82 * These routines constitute the Network Time Protocol (NTP) interfaces
83 * for user and daemon application programs. The ntp_gettime() routine
84 * provides the time, maximum error (synch distance) and estimated error
85 * (dispersion) to client user application programs. The ntp_adjtime()
86 * routine is used by the NTP daemon to adjust the system clock to an
87 * externally derived time. The time offset and related variables set by
88 * this routine are used by other routines in this module to adjust the
89 * phase and frequency of the clock discipline loop which controls the
90 * system clock.
92 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93 * defined), the time at each tick interrupt is derived directly from
94 * the kernel time variable. When the kernel time is reckoned in
95 * microseconds, (NTP_NANO undefined), the time is derived from the
96 * kernel time variable together with a variable representing the
97 * leftover nanoseconds at the last tick interrupt. In either case, the
98 * current nanosecond time is reckoned from these values plus an
99 * interpolated value derived by the clock routines in another
100 * architecture-specific module. The interpolation can use either a
101 * dedicated counter or a processor cycle counter (PCC) implemented in
102 * some architectures.
104 * Note that all routines must run at priority splclock or higher.
107 * Phase/frequency-lock loop (PLL/FLL) definitions
109 * The nanosecond clock discipline uses two variable types, time
110 * variables and frequency variables. Both types are represented as 64-
111 * bit fixed-point quantities with the decimal point between two 32-bit
112 * halves. On a 32-bit machine, each half is represented as a single
113 * word and mathematical operations are done using multiple-precision
114 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115 * used.
117 * A time variable is a signed 64-bit fixed-point number in ns and
118 * fraction. It represents the remaining time offset to be amortized
119 * over succeeding tick interrupts. The maximum time offset is about
120 * 0.5 s and the resolution is about 2.3e-10 ns.
122 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 * |s s s| ns |
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * | fraction |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130 * A frequency variable is a signed 64-bit fixed-point number in ns/s
131 * and fraction. It represents the ns and fraction to be added to the
132 * kernel time variable at each second. The maximum frequency offset is
133 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
135 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138 * |s s s s s s s s s s s s s| ns/s |
139 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 * | fraction |
141 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 * The following variables establish the state of the PLL/FLL and the
145 * residual time and frequency offset of the local clock.
147 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
148 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
150 static int time_state = TIME_OK; /* clock state */
151 int time_status = STA_UNSYNC; /* clock status bits */
152 static long time_tai; /* TAI offset (s) */
153 static long time_monitor; /* last time offset scaled (ns) */
154 static long time_constant; /* poll interval (shift) (s) */
155 static long time_precision = 1; /* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime; /* uptime at last adjustment (s) */
159 static l_fp time_offset; /* time offset (ns) */
160 static l_fp time_freq; /* frequency offset (ns/s) */
161 static l_fp time_adj; /* tick adjust (ns/s) */
163 static int64_t time_adjtime; /* correction from adjtime(2) (usec) */
165 #ifdef PPS_SYNC
167 * The following variables are used when a pulse-per-second (PPS) signal
168 * is available and connected via a modem control lead. They establish
169 * the engineering parameters of the clock discipline loop when
170 * controlled by the PPS signal.
172 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
173 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
174 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
175 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
176 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
177 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
178 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
180 static struct timespec pps_tf[3]; /* phase median filter */
181 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
182 static long pps_fcount; /* frequency accumulator */
183 static long pps_jitter; /* nominal jitter (ns) */
184 static long pps_stabil; /* nominal stability (scaled ns/s) */
185 static long pps_lastsec; /* time at last calibration (s) */
186 static int pps_valid; /* signal watchdog counter */
187 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
188 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
189 static int pps_intcnt; /* wander counter */
192 * PPS signal quality monitors
194 static long pps_calcnt; /* calibration intervals */
195 static long pps_jitcnt; /* jitter limit exceeded */
196 static long pps_stbcnt; /* stability limit exceeded */
197 static long pps_errcnt; /* calibration errors */
198 #endif /* PPS_SYNC */
200 * End of phase/frequency-lock loop (PLL/FLL) definitions
203 static void ntp_init(void);
204 static void hardupdate(long offset);
205 static void ntp_gettime1(struct ntptimeval *ntvp);
206 static int ntp_is_time_error(void);
208 static int
209 ntp_is_time_error(void)
212 * Status word error decode. If any of these conditions occur,
213 * an error is returned, instead of the status word. Most
214 * applications will care only about the fact the system clock
215 * may not be trusted, not about the details.
217 * Hardware or software error
219 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
222 * PPS signal lost when either time or frequency synchronization
223 * requested
225 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
226 !(time_status & STA_PPSSIGNAL)) ||
229 * PPS jitter exceeded when time synchronization requested
231 (time_status & STA_PPSTIME &&
232 time_status & STA_PPSJITTER) ||
235 * PPS wander exceeded or calibration error when frequency
236 * synchronization requested
238 (time_status & STA_PPSFREQ &&
239 time_status & (STA_PPSWANDER | STA_PPSERROR)))
240 return (1);
242 return (0);
245 static void
246 ntp_gettime1(struct ntptimeval *ntvp)
248 struct timespec atv; /* nanosecond time */
250 GIANT_REQUIRED;
252 nanotime(&atv);
253 ntvp->time.tv_sec = atv.tv_sec;
254 ntvp->time.tv_nsec = atv.tv_nsec;
255 ntvp->maxerror = time_maxerror;
256 ntvp->esterror = time_esterror;
257 ntvp->tai = time_tai;
258 ntvp->time_state = time_state;
260 if (ntp_is_time_error())
261 ntvp->time_state = TIME_ERROR;
265 * ntp_gettime() - NTP user application interface
267 * See the timex.h header file for synopsis and API description. Note that
268 * the TAI offset is returned in the ntvtimeval.tai structure member.
270 #ifndef _SYS_SYSPROTO_H_
271 struct ntp_gettime_args {
272 struct ntptimeval *ntvp;
274 #endif
275 /* ARGSUSED */
277 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
279 struct ntptimeval ntv;
281 mtx_lock(&Giant);
282 ntp_gettime1(&ntv);
283 mtx_unlock(&Giant);
285 td->td_retval[0] = ntv.time_state;
286 return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
289 static int
290 ntp_sysctl(SYSCTL_HANDLER_ARGS)
292 struct ntptimeval ntv; /* temporary structure */
294 ntp_gettime1(&ntv);
296 return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
299 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
300 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
301 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
303 #ifdef PPS_SYNC
304 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
305 &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
306 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
307 &pps_shift, 0, "Interval duration (sec) (shift)");
308 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
309 &time_monitor, 0, "Last time offset scaled (ns)");
311 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD,
312 &pps_freq, sizeof(pps_freq), "I", "Scaled frequency offset (ns/sec)");
313 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD,
314 &time_freq, sizeof(time_freq), "I", "Frequency offset (ns/sec)");
315 #endif
318 * ntp_adjtime() - NTP daemon application interface
320 * See the timex.h header file for synopsis and API description. Note that
321 * the timex.constant structure member has a dual purpose to set the time
322 * constant and to set the TAI offset.
324 #ifndef _SYS_SYSPROTO_H_
325 struct ntp_adjtime_args {
326 struct timex *tp;
328 #endif
331 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
333 struct timex ntv; /* temporary structure */
334 long freq; /* frequency ns/s) */
335 int modes; /* mode bits from structure */
336 int s; /* caller priority */
337 int error;
339 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
340 if (error)
341 return(error);
344 * Update selected clock variables - only the superuser can
345 * change anything. Note that there is no error checking here on
346 * the assumption the superuser should know what it is doing.
347 * Note that either the time constant or TAI offset are loaded
348 * from the ntv.constant member, depending on the mode bits. If
349 * the STA_PLL bit in the status word is cleared, the state and
350 * status words are reset to the initial values at boot.
352 mtx_lock(&Giant);
353 modes = ntv.modes;
354 if (modes)
355 error = priv_check(td, PRIV_NTP_ADJTIME);
356 if (error)
357 goto done2;
358 s = splclock();
359 if (modes & MOD_MAXERROR)
360 time_maxerror = ntv.maxerror;
361 if (modes & MOD_ESTERROR)
362 time_esterror = ntv.esterror;
363 if (modes & MOD_STATUS) {
364 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
365 time_state = TIME_OK;
366 time_status = STA_UNSYNC;
367 #ifdef PPS_SYNC
368 pps_shift = PPS_FAVG;
369 #endif /* PPS_SYNC */
371 time_status &= STA_RONLY;
372 time_status |= ntv.status & ~STA_RONLY;
374 if (modes & MOD_TIMECONST) {
375 if (ntv.constant < 0)
376 time_constant = 0;
377 else if (ntv.constant > MAXTC)
378 time_constant = MAXTC;
379 else
380 time_constant = ntv.constant;
382 if (modes & MOD_TAI) {
383 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
384 time_tai = ntv.constant;
386 #ifdef PPS_SYNC
387 if (modes & MOD_PPSMAX) {
388 if (ntv.shift < PPS_FAVG)
389 pps_shiftmax = PPS_FAVG;
390 else if (ntv.shift > PPS_FAVGMAX)
391 pps_shiftmax = PPS_FAVGMAX;
392 else
393 pps_shiftmax = ntv.shift;
395 #endif /* PPS_SYNC */
396 if (modes & MOD_NANO)
397 time_status |= STA_NANO;
398 if (modes & MOD_MICRO)
399 time_status &= ~STA_NANO;
400 if (modes & MOD_CLKB)
401 time_status |= STA_CLK;
402 if (modes & MOD_CLKA)
403 time_status &= ~STA_CLK;
404 if (modes & MOD_FREQUENCY) {
405 freq = (ntv.freq * 1000LL) >> 16;
406 if (freq > MAXFREQ)
407 L_LINT(time_freq, MAXFREQ);
408 else if (freq < -MAXFREQ)
409 L_LINT(time_freq, -MAXFREQ);
410 else {
412 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
413 * time_freq is [ns/s * 2^32]
415 time_freq = ntv.freq * 1000LL * 65536LL;
417 #ifdef PPS_SYNC
418 pps_freq = time_freq;
419 #endif /* PPS_SYNC */
421 if (modes & MOD_OFFSET) {
422 if (time_status & STA_NANO)
423 hardupdate(ntv.offset);
424 else
425 hardupdate(ntv.offset * 1000);
429 * Retrieve all clock variables. Note that the TAI offset is
430 * returned only by ntp_gettime();
432 if (time_status & STA_NANO)
433 ntv.offset = L_GINT(time_offset);
434 else
435 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
436 ntv.freq = L_GINT((time_freq / 1000LL) << 16);
437 ntv.maxerror = time_maxerror;
438 ntv.esterror = time_esterror;
439 ntv.status = time_status;
440 ntv.constant = time_constant;
441 if (time_status & STA_NANO)
442 ntv.precision = time_precision;
443 else
444 ntv.precision = time_precision / 1000;
445 ntv.tolerance = MAXFREQ * SCALE_PPM;
446 #ifdef PPS_SYNC
447 ntv.shift = pps_shift;
448 ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
449 if (time_status & STA_NANO)
450 ntv.jitter = pps_jitter;
451 else
452 ntv.jitter = pps_jitter / 1000;
453 ntv.stabil = pps_stabil;
454 ntv.calcnt = pps_calcnt;
455 ntv.errcnt = pps_errcnt;
456 ntv.jitcnt = pps_jitcnt;
457 ntv.stbcnt = pps_stbcnt;
458 #endif /* PPS_SYNC */
459 splx(s);
461 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
462 if (error)
463 goto done2;
465 if (ntp_is_time_error())
466 td->td_retval[0] = TIME_ERROR;
467 else
468 td->td_retval[0] = time_state;
470 done2:
471 mtx_unlock(&Giant);
472 return (error);
476 * second_overflow() - called after ntp_tick_adjust()
478 * This routine is ordinarily called immediately following the above
479 * routine ntp_tick_adjust(). While these two routines are normally
480 * combined, they are separated here only for the purposes of
481 * simulation.
483 void
484 ntp_update_second(int64_t *adjustment, time_t *newsec)
486 int tickrate;
487 l_fp ftemp; /* 32/64-bit temporary */
490 * On rollover of the second both the nanosecond and microsecond
491 * clocks are updated and the state machine cranked as
492 * necessary. The phase adjustment to be used for the next
493 * second is calculated and the maximum error is increased by
494 * the tolerance.
496 time_maxerror += MAXFREQ / 1000;
499 * Leap second processing. If in leap-insert state at
500 * the end of the day, the system clock is set back one
501 * second; if in leap-delete state, the system clock is
502 * set ahead one second. The nano_time() routine or
503 * external clock driver will insure that reported time
504 * is always monotonic.
506 switch (time_state) {
509 * No warning.
511 case TIME_OK:
512 if (time_status & STA_INS)
513 time_state = TIME_INS;
514 else if (time_status & STA_DEL)
515 time_state = TIME_DEL;
516 break;
519 * Insert second 23:59:60 following second
520 * 23:59:59.
522 case TIME_INS:
523 if (!(time_status & STA_INS))
524 time_state = TIME_OK;
525 else if ((*newsec) % 86400 == 0) {
526 (*newsec)--;
527 time_state = TIME_OOP;
528 time_tai++;
530 break;
533 * Delete second 23:59:59.
535 case TIME_DEL:
536 if (!(time_status & STA_DEL))
537 time_state = TIME_OK;
538 else if (((*newsec) + 1) % 86400 == 0) {
539 (*newsec)++;
540 time_tai--;
541 time_state = TIME_WAIT;
543 break;
546 * Insert second in progress.
548 case TIME_OOP:
549 time_state = TIME_WAIT;
550 break;
553 * Wait for status bits to clear.
555 case TIME_WAIT:
556 if (!(time_status & (STA_INS | STA_DEL)))
557 time_state = TIME_OK;
561 * Compute the total time adjustment for the next second
562 * in ns. The offset is reduced by a factor depending on
563 * whether the PPS signal is operating. Note that the
564 * value is in effect scaled by the clock frequency,
565 * since the adjustment is added at each tick interrupt.
567 ftemp = time_offset;
568 #ifdef PPS_SYNC
569 /* XXX even if PPS signal dies we should finish adjustment ? */
570 if (time_status & STA_PPSTIME && time_status &
571 STA_PPSSIGNAL)
572 L_RSHIFT(ftemp, pps_shift);
573 else
574 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
575 #else
576 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
577 #endif /* PPS_SYNC */
578 time_adj = ftemp;
579 L_SUB(time_offset, ftemp);
580 L_ADD(time_adj, time_freq);
583 * Apply any correction from adjtime(2). If more than one second
584 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
585 * until the last second is slewed the final < 500 usecs.
587 if (time_adjtime != 0) {
588 if (time_adjtime > 1000000)
589 tickrate = 5000;
590 else if (time_adjtime < -1000000)
591 tickrate = -5000;
592 else if (time_adjtime > 500)
593 tickrate = 500;
594 else if (time_adjtime < -500)
595 tickrate = -500;
596 else
597 tickrate = time_adjtime;
598 time_adjtime -= tickrate;
599 L_LINT(ftemp, tickrate * 1000);
600 L_ADD(time_adj, ftemp);
602 *adjustment = time_adj;
604 #ifdef PPS_SYNC
605 if (pps_valid > 0)
606 pps_valid--;
607 else
608 time_status &= ~STA_PPSSIGNAL;
609 #endif /* PPS_SYNC */
613 * ntp_init() - initialize variables and structures
615 * This routine must be called after the kernel variables hz and tick
616 * are set or changed and before the next tick interrupt. In this
617 * particular implementation, these values are assumed set elsewhere in
618 * the kernel. The design allows the clock frequency and tick interval
619 * to be changed while the system is running. So, this routine should
620 * probably be integrated with the code that does that.
622 static void
623 ntp_init()
627 * The following variables are initialized only at startup. Only
628 * those structures not cleared by the compiler need to be
629 * initialized, and these only in the simulator. In the actual
630 * kernel, any nonzero values here will quickly evaporate.
632 L_CLR(time_offset);
633 L_CLR(time_freq);
634 #ifdef PPS_SYNC
635 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
636 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
637 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
638 pps_fcount = 0;
639 L_CLR(pps_freq);
640 #endif /* PPS_SYNC */
643 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
646 * hardupdate() - local clock update
648 * This routine is called by ntp_adjtime() to update the local clock
649 * phase and frequency. The implementation is of an adaptive-parameter,
650 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
651 * time and frequency offset estimates for each call. If the kernel PPS
652 * discipline code is configured (PPS_SYNC), the PPS signal itself
653 * determines the new time offset, instead of the calling argument.
654 * Presumably, calls to ntp_adjtime() occur only when the caller
655 * believes the local clock is valid within some bound (+-128 ms with
656 * NTP). If the caller's time is far different than the PPS time, an
657 * argument will ensue, and it's not clear who will lose.
659 * For uncompensated quartz crystal oscillators and nominal update
660 * intervals less than 256 s, operation should be in phase-lock mode,
661 * where the loop is disciplined to phase. For update intervals greater
662 * than 1024 s, operation should be in frequency-lock mode, where the
663 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
664 * is selected by the STA_MODE status bit.
666 static void
667 hardupdate(offset)
668 long offset; /* clock offset (ns) */
670 long mtemp;
671 l_fp ftemp;
674 * Select how the phase is to be controlled and from which
675 * source. If the PPS signal is present and enabled to
676 * discipline the time, the PPS offset is used; otherwise, the
677 * argument offset is used.
679 if (!(time_status & STA_PLL))
680 return;
681 if (!(time_status & STA_PPSTIME && time_status &
682 STA_PPSSIGNAL)) {
683 if (offset > MAXPHASE)
684 time_monitor = MAXPHASE;
685 else if (offset < -MAXPHASE)
686 time_monitor = -MAXPHASE;
687 else
688 time_monitor = offset;
689 L_LINT(time_offset, time_monitor);
693 * Select how the frequency is to be controlled and in which
694 * mode (PLL or FLL). If the PPS signal is present and enabled
695 * to discipline the frequency, the PPS frequency is used;
696 * otherwise, the argument offset is used to compute it.
698 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
699 time_reftime = time_uptime;
700 return;
702 if (time_status & STA_FREQHOLD || time_reftime == 0)
703 time_reftime = time_uptime;
704 mtemp = time_uptime - time_reftime;
705 L_LINT(ftemp, time_monitor);
706 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
707 L_MPY(ftemp, mtemp);
708 L_ADD(time_freq, ftemp);
709 time_status &= ~STA_MODE;
710 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
711 MAXSEC)) {
712 L_LINT(ftemp, (time_monitor << 4) / mtemp);
713 L_RSHIFT(ftemp, SHIFT_FLL + 4);
714 L_ADD(time_freq, ftemp);
715 time_status |= STA_MODE;
717 time_reftime = time_uptime;
718 if (L_GINT(time_freq) > MAXFREQ)
719 L_LINT(time_freq, MAXFREQ);
720 else if (L_GINT(time_freq) < -MAXFREQ)
721 L_LINT(time_freq, -MAXFREQ);
724 #ifdef PPS_SYNC
726 * hardpps() - discipline CPU clock oscillator to external PPS signal
728 * This routine is called at each PPS interrupt in order to discipline
729 * the CPU clock oscillator to the PPS signal. There are two independent
730 * first-order feedback loops, one for the phase, the other for the
731 * frequency. The phase loop measures and grooms the PPS phase offset
732 * and leaves it in a handy spot for the seconds overflow routine. The
733 * frequency loop averages successive PPS phase differences and
734 * calculates the PPS frequency offset, which is also processed by the
735 * seconds overflow routine. The code requires the caller to capture the
736 * time and architecture-dependent hardware counter values in
737 * nanoseconds at the on-time PPS signal transition.
739 * Note that, on some Unix systems this routine runs at an interrupt
740 * priority level higher than the timer interrupt routine hardclock().
741 * Therefore, the variables used are distinct from the hardclock()
742 * variables, except for the actual time and frequency variables, which
743 * are determined by this routine and updated atomically.
745 void
746 hardpps(tsp, nsec)
747 struct timespec *tsp; /* time at PPS */
748 long nsec; /* hardware counter at PPS */
750 long u_sec, u_nsec, v_nsec; /* temps */
751 l_fp ftemp;
754 * The signal is first processed by a range gate and frequency
755 * discriminator. The range gate rejects noise spikes outside
756 * the range +-500 us. The frequency discriminator rejects input
757 * signals with apparent frequency outside the range 1 +-500
758 * PPM. If two hits occur in the same second, we ignore the
759 * later hit; if not and a hit occurs outside the range gate,
760 * keep the later hit for later comparison, but do not process
761 * it.
763 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
764 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
765 pps_valid = PPS_VALID;
766 u_sec = tsp->tv_sec;
767 u_nsec = tsp->tv_nsec;
768 if (u_nsec >= (NANOSECOND >> 1)) {
769 u_nsec -= NANOSECOND;
770 u_sec++;
772 v_nsec = u_nsec - pps_tf[0].tv_nsec;
773 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
774 MAXFREQ)
775 return;
776 pps_tf[2] = pps_tf[1];
777 pps_tf[1] = pps_tf[0];
778 pps_tf[0].tv_sec = u_sec;
779 pps_tf[0].tv_nsec = u_nsec;
782 * Compute the difference between the current and previous
783 * counter values. If the difference exceeds 0.5 s, assume it
784 * has wrapped around, so correct 1.0 s. If the result exceeds
785 * the tick interval, the sample point has crossed a tick
786 * boundary during the last second, so correct the tick. Very
787 * intricate.
789 u_nsec = nsec;
790 if (u_nsec > (NANOSECOND >> 1))
791 u_nsec -= NANOSECOND;
792 else if (u_nsec < -(NANOSECOND >> 1))
793 u_nsec += NANOSECOND;
794 pps_fcount += u_nsec;
795 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
796 return;
797 time_status &= ~STA_PPSJITTER;
800 * A three-stage median filter is used to help denoise the PPS
801 * time. The median sample becomes the time offset estimate; the
802 * difference between the other two samples becomes the time
803 * dispersion (jitter) estimate.
805 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
806 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
807 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
808 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
809 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
810 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
811 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
812 } else {
813 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
814 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
816 } else {
817 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
818 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
819 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
820 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
821 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
822 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
823 } else {
824 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
825 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
830 * Nominal jitter is due to PPS signal noise and interrupt
831 * latency. If it exceeds the popcorn threshold, the sample is
832 * discarded. otherwise, if so enabled, the time offset is
833 * updated. We can tolerate a modest loss of data here without
834 * much degrading time accuracy.
836 * The measurements being checked here were made with the system
837 * timecounter, so the popcorn threshold is not allowed to fall below
838 * the number of nanoseconds in two ticks of the timecounter. For a
839 * timecounter running faster than 1 GHz the lower bound is 2ns, just
840 * to avoid a nonsensical threshold of zero.
842 if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
843 2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
844 time_status |= STA_PPSJITTER;
845 pps_jitcnt++;
846 } else if (time_status & STA_PPSTIME) {
847 time_monitor = -v_nsec;
848 L_LINT(time_offset, time_monitor);
850 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
851 u_sec = pps_tf[0].tv_sec - pps_lastsec;
852 if (u_sec < (1 << pps_shift))
853 return;
856 * At the end of the calibration interval the difference between
857 * the first and last counter values becomes the scaled
858 * frequency. It will later be divided by the length of the
859 * interval to determine the frequency update. If the frequency
860 * exceeds a sanity threshold, or if the actual calibration
861 * interval is not equal to the expected length, the data are
862 * discarded. We can tolerate a modest loss of data here without
863 * much degrading frequency accuracy.
865 pps_calcnt++;
866 v_nsec = -pps_fcount;
867 pps_lastsec = pps_tf[0].tv_sec;
868 pps_fcount = 0;
869 u_nsec = MAXFREQ << pps_shift;
870 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
871 pps_shift)) {
872 time_status |= STA_PPSERROR;
873 pps_errcnt++;
874 return;
878 * Here the raw frequency offset and wander (stability) is
879 * calculated. If the wander is less than the wander threshold
880 * for four consecutive averaging intervals, the interval is
881 * doubled; if it is greater than the threshold for four
882 * consecutive intervals, the interval is halved. The scaled
883 * frequency offset is converted to frequency offset. The
884 * stability metric is calculated as the average of recent
885 * frequency changes, but is used only for performance
886 * monitoring.
888 L_LINT(ftemp, v_nsec);
889 L_RSHIFT(ftemp, pps_shift);
890 L_SUB(ftemp, pps_freq);
891 u_nsec = L_GINT(ftemp);
892 if (u_nsec > PPS_MAXWANDER) {
893 L_LINT(ftemp, PPS_MAXWANDER);
894 pps_intcnt--;
895 time_status |= STA_PPSWANDER;
896 pps_stbcnt++;
897 } else if (u_nsec < -PPS_MAXWANDER) {
898 L_LINT(ftemp, -PPS_MAXWANDER);
899 pps_intcnt--;
900 time_status |= STA_PPSWANDER;
901 pps_stbcnt++;
902 } else {
903 pps_intcnt++;
905 if (pps_intcnt >= 4) {
906 pps_intcnt = 4;
907 if (pps_shift < pps_shiftmax) {
908 pps_shift++;
909 pps_intcnt = 0;
911 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
912 pps_intcnt = -4;
913 if (pps_shift > PPS_FAVG) {
914 pps_shift--;
915 pps_intcnt = 0;
918 if (u_nsec < 0)
919 u_nsec = -u_nsec;
920 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
923 * The PPS frequency is recalculated and clamped to the maximum
924 * MAXFREQ. If enabled, the system clock frequency is updated as
925 * well.
927 L_ADD(pps_freq, ftemp);
928 u_nsec = L_GINT(pps_freq);
929 if (u_nsec > MAXFREQ)
930 L_LINT(pps_freq, MAXFREQ);
931 else if (u_nsec < -MAXFREQ)
932 L_LINT(pps_freq, -MAXFREQ);
933 if (time_status & STA_PPSFREQ)
934 time_freq = pps_freq;
936 #endif /* PPS_SYNC */
938 #ifndef _SYS_SYSPROTO_H_
939 struct adjtime_args {
940 struct timeval *delta;
941 struct timeval *olddelta;
943 #endif
944 /* ARGSUSED */
946 sys_adjtime(struct thread *td, struct adjtime_args *uap)
948 struct timeval delta, olddelta, *deltap;
949 int error;
951 if (uap->delta) {
952 error = copyin(uap->delta, &delta, sizeof(delta));
953 if (error)
954 return (error);
955 deltap = &delta;
956 } else
957 deltap = NULL;
958 error = kern_adjtime(td, deltap, &olddelta);
959 if (uap->olddelta && error == 0)
960 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
961 return (error);
965 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
967 struct timeval atv;
968 int error;
970 mtx_lock(&Giant);
971 if (olddelta) {
972 atv.tv_sec = time_adjtime / 1000000;
973 atv.tv_usec = time_adjtime % 1000000;
974 if (atv.tv_usec < 0) {
975 atv.tv_usec += 1000000;
976 atv.tv_sec--;
978 *olddelta = atv;
980 if (delta) {
981 if ((error = priv_check(td, PRIV_ADJTIME))) {
982 mtx_unlock(&Giant);
983 return (error);
985 time_adjtime = (int64_t)delta->tv_sec * 1000000 +
986 delta->tv_usec;
988 mtx_unlock(&Giant);
989 return (0);
992 static struct callout resettodr_callout;
993 static int resettodr_period = 1800;
995 static void
996 periodic_resettodr(void *arg __unused)
999 if (!ntp_is_time_error()) {
1000 mtx_lock(&Giant);
1001 resettodr();
1002 mtx_unlock(&Giant);
1004 if (resettodr_period > 0)
1005 callout_schedule(&resettodr_callout, resettodr_period * hz);
1008 static void
1009 shutdown_resettodr(void *arg __unused, int howto __unused)
1012 callout_drain(&resettodr_callout);
1013 if (resettodr_period > 0 && !ntp_is_time_error()) {
1014 mtx_lock(&Giant);
1015 resettodr();
1016 mtx_unlock(&Giant);
1020 static int
1021 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1023 int error;
1025 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1026 if (error || !req->newptr)
1027 return (error);
1028 if (cold)
1029 goto done;
1030 if (resettodr_period == 0)
1031 callout_stop(&resettodr_callout);
1032 else
1033 callout_reset(&resettodr_callout, resettodr_period * hz,
1034 periodic_resettodr, NULL);
1035 done:
1036 return (0);
1039 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RWTUN,
1040 &resettodr_period, 1800, sysctl_resettodr_period, "I",
1041 "Save system time to RTC with this period (in seconds)");
1043 static void
1044 start_periodic_resettodr(void *arg __unused)
1047 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1048 SHUTDOWN_PRI_FIRST);
1049 callout_init(&resettodr_callout, 1);
1050 if (resettodr_period == 0)
1051 return;
1052 callout_reset(&resettodr_callout, resettodr_period * hz,
1053 periodic_resettodr, NULL);
1056 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1057 start_periodic_resettodr, NULL);