Add missing src.conf(5) descriptions for tool chain components
[freebsd-src.git] / sys / kern / kern_lockf.c
blob91eae09cc6e692034dffa974b19e4d99c745cc12
1 /*-
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 /*-
28 * Copyright (c) 1982, 1986, 1989, 1993
29 * The Regents of the University of California. All rights reserved.
31 * This code is derived from software contributed to Berkeley by
32 * Scooter Morris at Genentech Inc.
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
58 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
64 #include "opt_debug_lockf.h"
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
89 static int lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF 0x1
102 #define OTHERS 0x2
103 static void lf_init(void *);
104 static int lf_hash_owner(caddr_t, struct flock *, int);
105 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106 int);
107 static struct lockf_entry *
108 lf_alloc_lock(struct lock_owner *);
109 static int lf_free_lock(struct lockf_entry *);
110 static int lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115 lf_alloc_edge(void);
116 static void lf_alloc_vertex(struct lockf_entry *);
117 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void lf_remove_edge(struct lockf_edge *);
119 static void lf_remove_outgoing(struct lockf_entry *);
120 static void lf_remove_incoming(struct lockf_entry *);
121 static int lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124 int);
125 static struct lockf_entry *
126 lf_getblock(struct lockf *, struct lockf_entry *);
127 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void lf_update_dependancies(struct lockf *, struct lockf_entry *,
131 int all, struct lockf_entry_list *);
132 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133 struct lockf_entry_list*);
134 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135 struct lockf_entry_list*);
136 static int lf_setlock(struct lockf *, struct lockf_entry *,
137 struct vnode *, void **cookiep);
138 static int lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void lf_split(struct lockf *, struct lockf_entry *,
140 struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143 struct owner_vertex_list *path);
144 static void graph_check(struct owner_graph *g, int checkorder);
145 static void graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int graph_delta_forward(struct owner_graph *g,
148 struct owner_vertex *x, struct owner_vertex *y,
149 struct owner_vertex_list *delta);
150 static int graph_delta_backward(struct owner_graph *g,
151 struct owner_vertex *x, struct owner_vertex *y,
152 struct owner_vertex_list *delta);
153 static int graph_add_indices(int *indices, int n,
154 struct owner_vertex_list *set);
155 static int graph_assign_indices(struct owner_graph *g, int *indices,
156 int nextunused, struct owner_vertex_list *set);
157 static int graph_add_edge(struct owner_graph *g,
158 struct owner_vertex *x, struct owner_vertex *y);
159 static void graph_remove_edge(struct owner_graph *g,
160 struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162 struct lock_owner *lo);
163 static void graph_free_vertex(struct owner_graph *g,
164 struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void lf_print(char *, struct lockf_entry *);
168 static void lf_printlist(char *, struct lockf_entry *);
169 static void lf_print_owner(struct lock_owner *);
170 #endif
173 * This structure is used to keep track of both local and remote lock
174 * owners. The lf_owner field of the struct lockf_entry points back at
175 * the lock owner structure. Each possible lock owner (local proc for
176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177 * pair for remote locks) is represented by a unique instance of
178 * struct lock_owner.
180 * If a lock owner has a lock that blocks some other lock or a lock
181 * that is waiting for some other lock, it also has a vertex in the
182 * owner_graph below.
184 * Locks:
185 * (s) locked by state->ls_lock
186 * (S) locked by lf_lock_states_lock
187 * (l) locked by lf_lock_owners_lock
188 * (g) locked by lf_owner_graph_lock
189 * (c) const until freeing
191 #define LOCK_OWNER_HASH_SIZE 256
193 struct lock_owner {
194 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195 int lo_refs; /* (l) Number of locks referring to this */
196 int lo_flags; /* (c) Flags passwd to lf_advlock */
197 caddr_t lo_id; /* (c) Id value passed to lf_advlock */
198 pid_t lo_pid; /* (c) Process Id of the lock owner */
199 int lo_sysid; /* (c) System Id of the lock owner */
200 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
203 LIST_HEAD(lock_owner_list, lock_owner);
205 static struct sx lf_lock_states_lock;
206 static struct lockf_list lf_lock_states; /* (S) */
207 static struct sx lf_lock_owners_lock;
208 static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
211 * Structures for deadlock detection.
213 * We have two types of directed graph, the first is the set of locks,
214 * both active and pending on a vnode. Within this graph, active locks
215 * are terminal nodes in the graph (i.e. have no out-going
216 * edges). Pending locks have out-going edges to each blocking active
217 * lock that prevents the lock from being granted and also to each
218 * older pending lock that would block them if it was active. The
219 * graph for each vnode is naturally acyclic; new edges are only ever
220 * added to or from new nodes (either new pending locks which only add
221 * out-going edges or new active locks which only add in-coming edges)
222 * therefore they cannot create loops in the lock graph.
224 * The second graph is a global graph of lock owners. Each lock owner
225 * is a vertex in that graph and an edge is added to the graph
226 * whenever an edge is added to a vnode graph, with end points
227 * corresponding to owner of the new pending lock and the owner of the
228 * lock upon which it waits. In order to prevent deadlock, we only add
229 * an edge to this graph if the new edge would not create a cycle.
231 * The lock owner graph is topologically sorted, i.e. if a node has
232 * any outgoing edges, then it has an order strictly less than any
233 * node to which it has an outgoing edge. We preserve this ordering
234 * (and detect cycles) on edge insertion using Algorithm PK from the
235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237 * No. 1.7)
239 struct owner_vertex;
241 struct owner_edge {
242 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */
244 int e_refs; /* (g) number of times added */
245 struct owner_vertex *e_from; /* (c) out-going from here */
246 struct owner_vertex *e_to; /* (c) in-coming to here */
248 LIST_HEAD(owner_edge_list, owner_edge);
250 struct owner_vertex {
251 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252 uint32_t v_gen; /* (g) workspace for edge insertion */
253 int v_order; /* (g) order of vertex in graph */
254 struct owner_edge_list v_outedges;/* (g) list of out-edges */
255 struct owner_edge_list v_inedges; /* (g) list of in-edges */
256 struct lock_owner *v_owner; /* (c) corresponding lock owner */
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
260 struct owner_graph {
261 struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262 int g_size; /* (g) number of vertices */
263 int g_space; /* (g) space allocated for vertices */
264 int *g_indexbuf; /* (g) workspace for loop detection */
265 uint32_t g_gen; /* (g) increment when re-ordering */
268 static struct sx lf_owner_graph_lock;
269 static struct owner_graph lf_owner_graph;
272 * Initialise various structures and locks.
274 static void
275 lf_init(void *dummy)
277 int i;
279 sx_init(&lf_lock_states_lock, "lock states lock");
280 LIST_INIT(&lf_lock_states);
282 sx_init(&lf_lock_owners_lock, "lock owners lock");
283 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284 LIST_INIT(&lf_lock_owners[i]);
286 sx_init(&lf_owner_graph_lock, "owner graph lock");
287 graph_init(&lf_owner_graph);
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
292 * Generate a hash value for a lock owner.
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
297 uint32_t h;
299 if (flags & F_REMOTE) {
300 h = HASHSTEP(0, fl->l_pid);
301 h = HASHSTEP(h, fl->l_sysid);
302 } else if (flags & F_FLOCK) {
303 h = ((uintptr_t) id) >> 7;
304 } else {
305 struct proc *p = (struct proc *) id;
306 h = HASHSTEP(0, p->p_pid);
307 h = HASHSTEP(h, 0);
310 return (h % LOCK_OWNER_HASH_SIZE);
314 * Return true if a lock owner matches the details passed to
315 * lf_advlock.
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319 int flags)
321 if (flags & F_REMOTE) {
322 return lo->lo_pid == fl->l_pid
323 && lo->lo_sysid == fl->l_sysid;
324 } else {
325 return lo->lo_id == id;
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
332 struct lockf_entry *lf;
334 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
336 #ifdef LOCKF_DEBUG
337 if (lockf_debug & 4)
338 printf("Allocated lock %p\n", lf);
339 #endif
340 if (lo) {
341 sx_xlock(&lf_lock_owners_lock);
342 lo->lo_refs++;
343 sx_xunlock(&lf_lock_owners_lock);
344 lf->lf_owner = lo;
347 return (lf);
350 static int
351 lf_free_lock(struct lockf_entry *lock)
354 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355 if (--lock->lf_refs > 0)
356 return (0);
358 * Adjust the lock_owner reference count and
359 * reclaim the entry if this is the last lock
360 * for that owner.
362 struct lock_owner *lo = lock->lf_owner;
363 if (lo) {
364 KASSERT(LIST_EMPTY(&lock->lf_outedges),
365 ("freeing lock with dependancies"));
366 KASSERT(LIST_EMPTY(&lock->lf_inedges),
367 ("freeing lock with dependants"));
368 sx_xlock(&lf_lock_owners_lock);
369 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370 lo->lo_refs--;
371 if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373 if (lockf_debug & 1)
374 printf("lf_free_lock: freeing lock owner %p\n",
375 lo);
376 #endif
377 if (lo->lo_vertex) {
378 sx_xlock(&lf_owner_graph_lock);
379 graph_free_vertex(&lf_owner_graph,
380 lo->lo_vertex);
381 sx_xunlock(&lf_owner_graph_lock);
383 LIST_REMOVE(lo, lo_link);
384 free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386 if (lockf_debug & 4)
387 printf("Freed lock owner %p\n", lo);
388 #endif
390 sx_unlock(&lf_lock_owners_lock);
392 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393 vrele(lock->lf_vnode);
394 lock->lf_vnode = NULL;
396 #ifdef LOCKF_DEBUG
397 if (lockf_debug & 4)
398 printf("Freed lock %p\n", lock);
399 #endif
400 free(lock, M_LOCKF);
401 return (1);
405 * Advisory record locking support
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409 u_quad_t size)
411 struct lockf *state, *freestate = NULL;
412 struct flock *fl = ap->a_fl;
413 struct lockf_entry *lock;
414 struct vnode *vp = ap->a_vp;
415 caddr_t id = ap->a_id;
416 int flags = ap->a_flags;
417 int hash;
418 struct lock_owner *lo;
419 off_t start, end, oadd;
420 int error;
423 * Handle the F_UNLKSYS case first - no need to mess about
424 * creating a lock owner for this one.
426 if (ap->a_op == F_UNLCKSYS) {
427 lf_clearremotesys(fl->l_sysid);
428 return (0);
432 * Convert the flock structure into a start and end.
434 switch (fl->l_whence) {
436 case SEEK_SET:
437 case SEEK_CUR:
439 * Caller is responsible for adding any necessary offset
440 * when SEEK_CUR is used.
442 start = fl->l_start;
443 break;
445 case SEEK_END:
446 if (size > OFF_MAX ||
447 (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448 return (EOVERFLOW);
449 start = size + fl->l_start;
450 break;
452 default:
453 return (EINVAL);
455 if (start < 0)
456 return (EINVAL);
457 if (fl->l_len < 0) {
458 if (start == 0)
459 return (EINVAL);
460 end = start - 1;
461 start += fl->l_len;
462 if (start < 0)
463 return (EINVAL);
464 } else if (fl->l_len == 0) {
465 end = OFF_MAX;
466 } else {
467 oadd = fl->l_len - 1;
468 if (oadd > OFF_MAX - start)
469 return (EOVERFLOW);
470 end = start + oadd;
473 retry_setlock:
476 * Avoid the common case of unlocking when inode has no locks.
478 VI_LOCK(vp);
479 if ((*statep) == NULL) {
480 if (ap->a_op != F_SETLK) {
481 fl->l_type = F_UNLCK;
482 VI_UNLOCK(vp);
483 return (0);
486 VI_UNLOCK(vp);
489 * Map our arguments to an existing lock owner or create one
490 * if this is the first time we have seen this owner.
492 hash = lf_hash_owner(id, fl, flags);
493 sx_xlock(&lf_lock_owners_lock);
494 LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495 if (lf_owner_matches(lo, id, fl, flags))
496 break;
497 if (!lo) {
499 * We initialise the lock with a reference
500 * count which matches the new lockf_entry
501 * structure created below.
503 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504 M_WAITOK|M_ZERO);
505 #ifdef LOCKF_DEBUG
506 if (lockf_debug & 4)
507 printf("Allocated lock owner %p\n", lo);
508 #endif
510 lo->lo_refs = 1;
511 lo->lo_flags = flags;
512 lo->lo_id = id;
513 if (flags & F_REMOTE) {
514 lo->lo_pid = fl->l_pid;
515 lo->lo_sysid = fl->l_sysid;
516 } else if (flags & F_FLOCK) {
517 lo->lo_pid = -1;
518 lo->lo_sysid = 0;
519 } else {
520 struct proc *p = (struct proc *) id;
521 lo->lo_pid = p->p_pid;
522 lo->lo_sysid = 0;
524 lo->lo_vertex = NULL;
526 #ifdef LOCKF_DEBUG
527 if (lockf_debug & 1) {
528 printf("lf_advlockasync: new lock owner %p ", lo);
529 lf_print_owner(lo);
530 printf("\n");
532 #endif
534 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535 } else {
537 * We have seen this lock owner before, increase its
538 * reference count to account for the new lockf_entry
539 * structure we create below.
541 lo->lo_refs++;
543 sx_xunlock(&lf_lock_owners_lock);
546 * Create the lockf structure. We initialise the lf_owner
547 * field here instead of in lf_alloc_lock() to avoid paying
548 * the lf_lock_owners_lock tax twice.
550 lock = lf_alloc_lock(NULL);
551 lock->lf_refs = 1;
552 lock->lf_start = start;
553 lock->lf_end = end;
554 lock->lf_owner = lo;
555 lock->lf_vnode = vp;
556 if (flags & F_REMOTE) {
558 * For remote locks, the caller may release its ref to
559 * the vnode at any time - we have to ref it here to
560 * prevent it from being recycled unexpectedly.
562 vref(vp);
566 * XXX The problem is that VTOI is ufs specific, so it will
567 * break LOCKF_DEBUG for all other FS's other than UFS because
568 * it casts the vnode->data ptr to struct inode *.
570 /* lock->lf_inode = VTOI(ap->a_vp); */
571 lock->lf_inode = (struct inode *)0;
572 lock->lf_type = fl->l_type;
573 LIST_INIT(&lock->lf_outedges);
574 LIST_INIT(&lock->lf_inedges);
575 lock->lf_async_task = ap->a_task;
576 lock->lf_flags = ap->a_flags;
579 * Do the requested operation. First find our state structure
580 * and create a new one if necessary - the caller's *statep
581 * variable and the state's ls_threads count is protected by
582 * the vnode interlock.
584 VI_LOCK(vp);
585 if (vp->v_iflag & VI_DOOMED) {
586 VI_UNLOCK(vp);
587 lf_free_lock(lock);
588 return (ENOENT);
592 * Allocate a state structure if necessary.
594 state = *statep;
595 if (state == NULL) {
596 struct lockf *ls;
598 VI_UNLOCK(vp);
600 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601 sx_init(&ls->ls_lock, "ls_lock");
602 LIST_INIT(&ls->ls_active);
603 LIST_INIT(&ls->ls_pending);
604 ls->ls_threads = 1;
606 sx_xlock(&lf_lock_states_lock);
607 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608 sx_xunlock(&lf_lock_states_lock);
611 * Cope if we lost a race with some other thread while
612 * trying to allocate memory.
614 VI_LOCK(vp);
615 if (vp->v_iflag & VI_DOOMED) {
616 VI_UNLOCK(vp);
617 sx_xlock(&lf_lock_states_lock);
618 LIST_REMOVE(ls, ls_link);
619 sx_xunlock(&lf_lock_states_lock);
620 sx_destroy(&ls->ls_lock);
621 free(ls, M_LOCKF);
622 lf_free_lock(lock);
623 return (ENOENT);
625 if ((*statep) == NULL) {
626 state = *statep = ls;
627 VI_UNLOCK(vp);
628 } else {
629 state = *statep;
630 state->ls_threads++;
631 VI_UNLOCK(vp);
633 sx_xlock(&lf_lock_states_lock);
634 LIST_REMOVE(ls, ls_link);
635 sx_xunlock(&lf_lock_states_lock);
636 sx_destroy(&ls->ls_lock);
637 free(ls, M_LOCKF);
639 } else {
640 state->ls_threads++;
641 VI_UNLOCK(vp);
644 sx_xlock(&state->ls_lock);
646 * Recheck the doomed vnode after state->ls_lock is
647 * locked. lf_purgelocks() requires that no new threads add
648 * pending locks when vnode is marked by VI_DOOMED flag.
650 VI_LOCK(vp);
651 if (vp->v_iflag & VI_DOOMED) {
652 state->ls_threads--;
653 wakeup(state);
654 VI_UNLOCK(vp);
655 sx_xunlock(&state->ls_lock);
656 lf_free_lock(lock);
657 return (ENOENT);
659 VI_UNLOCK(vp);
661 switch (ap->a_op) {
662 case F_SETLK:
663 error = lf_setlock(state, lock, vp, ap->a_cookiep);
664 break;
666 case F_UNLCK:
667 error = lf_clearlock(state, lock);
668 lf_free_lock(lock);
669 break;
671 case F_GETLK:
672 error = lf_getlock(state, lock, fl);
673 lf_free_lock(lock);
674 break;
676 case F_CANCEL:
677 if (ap->a_cookiep)
678 error = lf_cancel(state, lock, *ap->a_cookiep);
679 else
680 error = EINVAL;
681 lf_free_lock(lock);
682 break;
684 default:
685 lf_free_lock(lock);
686 error = EINVAL;
687 break;
690 #ifdef INVARIANTS
692 * Check for some can't happen stuff. In this case, the active
693 * lock list becoming disordered or containing mutually
694 * blocking locks. We also check the pending list for locks
695 * which should be active (i.e. have no out-going edges).
697 LIST_FOREACH(lock, &state->ls_active, lf_link) {
698 struct lockf_entry *lf;
699 if (LIST_NEXT(lock, lf_link))
700 KASSERT((lock->lf_start
701 <= LIST_NEXT(lock, lf_link)->lf_start),
702 ("locks disordered"));
703 LIST_FOREACH(lf, &state->ls_active, lf_link) {
704 if (lock == lf)
705 break;
706 KASSERT(!lf_blocks(lock, lf),
707 ("two conflicting active locks"));
708 if (lock->lf_owner == lf->lf_owner)
709 KASSERT(!lf_overlaps(lock, lf),
710 ("two overlapping locks from same owner"));
713 LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715 ("pending lock which should be active"));
717 #endif
718 sx_xunlock(&state->ls_lock);
721 * If we have removed the last active lock on the vnode and
722 * this is the last thread that was in-progress, we can free
723 * the state structure. We update the caller's pointer inside
724 * the vnode interlock but call free outside.
726 * XXX alternatively, keep the state structure around until
727 * the filesystem recycles - requires a callback from the
728 * filesystem.
730 VI_LOCK(vp);
732 state->ls_threads--;
733 wakeup(state);
734 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735 KASSERT(LIST_EMPTY(&state->ls_pending),
736 ("freeing state with pending locks"));
737 freestate = state;
738 *statep = NULL;
741 VI_UNLOCK(vp);
743 if (freestate != NULL) {
744 sx_xlock(&lf_lock_states_lock);
745 LIST_REMOVE(freestate, ls_link);
746 sx_xunlock(&lf_lock_states_lock);
747 sx_destroy(&freestate->ls_lock);
748 free(freestate, M_LOCKF);
749 freestate = NULL;
752 if (error == EDOOFUS) {
753 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
754 goto retry_setlock;
756 return (error);
760 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
762 struct vop_advlockasync_args a;
764 a.a_vp = ap->a_vp;
765 a.a_id = ap->a_id;
766 a.a_op = ap->a_op;
767 a.a_fl = ap->a_fl;
768 a.a_flags = ap->a_flags;
769 a.a_task = NULL;
770 a.a_cookiep = NULL;
772 return (lf_advlockasync(&a, statep, size));
775 void
776 lf_purgelocks(struct vnode *vp, struct lockf **statep)
778 struct lockf *state;
779 struct lockf_entry *lock, *nlock;
782 * For this to work correctly, the caller must ensure that no
783 * other threads enter the locking system for this vnode,
784 * e.g. by checking VI_DOOMED. We wake up any threads that are
785 * sleeping waiting for locks on this vnode and then free all
786 * the remaining locks.
788 VI_LOCK(vp);
789 KASSERT(vp->v_iflag & VI_DOOMED,
790 ("lf_purgelocks: vp %p has not vgone yet", vp));
791 state = *statep;
792 if (state) {
793 *statep = NULL;
794 state->ls_threads++;
795 VI_UNLOCK(vp);
797 sx_xlock(&state->ls_lock);
798 sx_xlock(&lf_owner_graph_lock);
799 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
800 LIST_REMOVE(lock, lf_link);
801 lf_remove_outgoing(lock);
802 lf_remove_incoming(lock);
805 * If its an async lock, we can just free it
806 * here, otherwise we let the sleeping thread
807 * free it.
809 if (lock->lf_async_task) {
810 lf_free_lock(lock);
811 } else {
812 lock->lf_flags |= F_INTR;
813 wakeup(lock);
816 sx_xunlock(&lf_owner_graph_lock);
817 sx_xunlock(&state->ls_lock);
820 * Wait for all other threads, sleeping and otherwise
821 * to leave.
823 VI_LOCK(vp);
824 while (state->ls_threads > 1)
825 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
826 VI_UNLOCK(vp);
829 * We can just free all the active locks since they
830 * will have no dependancies (we removed them all
831 * above). We don't need to bother locking since we
832 * are the last thread using this state structure.
834 KASSERT(LIST_EMPTY(&state->ls_pending),
835 ("lock pending for %p", state));
836 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
837 LIST_REMOVE(lock, lf_link);
838 lf_free_lock(lock);
840 sx_xlock(&lf_lock_states_lock);
841 LIST_REMOVE(state, ls_link);
842 sx_xunlock(&lf_lock_states_lock);
843 sx_destroy(&state->ls_lock);
844 free(state, M_LOCKF);
845 } else {
846 VI_UNLOCK(vp);
851 * Return non-zero if locks 'x' and 'y' overlap.
853 static int
854 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
857 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
861 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
863 static int
864 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
867 return x->lf_owner != y->lf_owner
868 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
869 && lf_overlaps(x, y);
873 * Allocate a lock edge from the free list
875 static struct lockf_edge *
876 lf_alloc_edge(void)
879 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
883 * Free a lock edge.
885 static void
886 lf_free_edge(struct lockf_edge *e)
889 free(e, M_LOCKF);
894 * Ensure that the lock's owner has a corresponding vertex in the
895 * owner graph.
897 static void
898 lf_alloc_vertex(struct lockf_entry *lock)
900 struct owner_graph *g = &lf_owner_graph;
902 if (!lock->lf_owner->lo_vertex)
903 lock->lf_owner->lo_vertex =
904 graph_alloc_vertex(g, lock->lf_owner);
908 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
909 * the new edge would cause a cycle in the owner graph.
911 static int
912 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
914 struct owner_graph *g = &lf_owner_graph;
915 struct lockf_edge *e;
916 int error;
918 #ifdef INVARIANTS
919 LIST_FOREACH(e, &x->lf_outedges, le_outlink)
920 KASSERT(e->le_to != y, ("adding lock edge twice"));
921 #endif
924 * Make sure the two owners have entries in the owner graph.
926 lf_alloc_vertex(x);
927 lf_alloc_vertex(y);
929 error = graph_add_edge(g, x->lf_owner->lo_vertex,
930 y->lf_owner->lo_vertex);
931 if (error)
932 return (error);
934 e = lf_alloc_edge();
935 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
936 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
937 e->le_from = x;
938 e->le_to = y;
940 return (0);
944 * Remove an edge from the lock graph.
946 static void
947 lf_remove_edge(struct lockf_edge *e)
949 struct owner_graph *g = &lf_owner_graph;
950 struct lockf_entry *x = e->le_from;
951 struct lockf_entry *y = e->le_to;
953 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
954 LIST_REMOVE(e, le_outlink);
955 LIST_REMOVE(e, le_inlink);
956 e->le_from = NULL;
957 e->le_to = NULL;
958 lf_free_edge(e);
962 * Remove all out-going edges from lock x.
964 static void
965 lf_remove_outgoing(struct lockf_entry *x)
967 struct lockf_edge *e;
969 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
970 lf_remove_edge(e);
975 * Remove all in-coming edges from lock x.
977 static void
978 lf_remove_incoming(struct lockf_entry *x)
980 struct lockf_edge *e;
982 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
983 lf_remove_edge(e);
988 * Walk the list of locks for the file and create an out-going edge
989 * from lock to each blocking lock.
991 static int
992 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
994 struct lockf_entry *overlap;
995 int error;
997 LIST_FOREACH(overlap, &state->ls_active, lf_link) {
999 * We may assume that the active list is sorted by
1000 * lf_start.
1002 if (overlap->lf_start > lock->lf_end)
1003 break;
1004 if (!lf_blocks(lock, overlap))
1005 continue;
1008 * We've found a blocking lock. Add the corresponding
1009 * edge to the graphs and see if it would cause a
1010 * deadlock.
1012 error = lf_add_edge(lock, overlap);
1015 * The only error that lf_add_edge returns is EDEADLK.
1016 * Remove any edges we added and return the error.
1018 if (error) {
1019 lf_remove_outgoing(lock);
1020 return (error);
1025 * We also need to add edges to sleeping locks that block
1026 * us. This ensures that lf_wakeup_lock cannot grant two
1027 * mutually blocking locks simultaneously and also enforces a
1028 * 'first come, first served' fairness model. Note that this
1029 * only happens if we are blocked by at least one active lock
1030 * due to the call to lf_getblock in lf_setlock below.
1032 LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1033 if (!lf_blocks(lock, overlap))
1034 continue;
1036 * We've found a blocking lock. Add the corresponding
1037 * edge to the graphs and see if it would cause a
1038 * deadlock.
1040 error = lf_add_edge(lock, overlap);
1043 * The only error that lf_add_edge returns is EDEADLK.
1044 * Remove any edges we added and return the error.
1046 if (error) {
1047 lf_remove_outgoing(lock);
1048 return (error);
1052 return (0);
1056 * Walk the list of pending locks for the file and create an in-coming
1057 * edge from lock to each blocking lock.
1059 static int
1060 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1062 struct lockf_entry *overlap;
1063 int error;
1065 LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1066 if (!lf_blocks(lock, overlap))
1067 continue;
1070 * We've found a blocking lock. Add the corresponding
1071 * edge to the graphs and see if it would cause a
1072 * deadlock.
1074 error = lf_add_edge(overlap, lock);
1077 * The only error that lf_add_edge returns is EDEADLK.
1078 * Remove any edges we added and return the error.
1080 if (error) {
1081 lf_remove_incoming(lock);
1082 return (error);
1085 return (0);
1089 * Insert lock into the active list, keeping list entries ordered by
1090 * increasing values of lf_start.
1092 static void
1093 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1095 struct lockf_entry *lf, *lfprev;
1097 if (LIST_EMPTY(&state->ls_active)) {
1098 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1099 return;
1102 lfprev = NULL;
1103 LIST_FOREACH(lf, &state->ls_active, lf_link) {
1104 if (lf->lf_start > lock->lf_start) {
1105 LIST_INSERT_BEFORE(lf, lock, lf_link);
1106 return;
1108 lfprev = lf;
1110 LIST_INSERT_AFTER(lfprev, lock, lf_link);
1114 * Wake up a sleeping lock and remove it from the pending list now
1115 * that all its dependancies have been resolved. The caller should
1116 * arrange for the lock to be added to the active list, adjusting any
1117 * existing locks for the same owner as needed.
1119 static void
1120 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1124 * Remove from ls_pending list and wake up the caller
1125 * or start the async notification, as appropriate.
1127 LIST_REMOVE(wakelock, lf_link);
1128 #ifdef LOCKF_DEBUG
1129 if (lockf_debug & 1)
1130 lf_print("lf_wakeup_lock: awakening", wakelock);
1131 #endif /* LOCKF_DEBUG */
1132 if (wakelock->lf_async_task) {
1133 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1134 } else {
1135 wakeup(wakelock);
1140 * Re-check all dependant locks and remove edges to locks that we no
1141 * longer block. If 'all' is non-zero, the lock has been removed and
1142 * we must remove all the dependancies, otherwise it has simply been
1143 * reduced but remains active. Any pending locks which have been been
1144 * unblocked are added to 'granted'
1146 static void
1147 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1148 struct lockf_entry_list *granted)
1150 struct lockf_edge *e, *ne;
1151 struct lockf_entry *deplock;
1153 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1154 deplock = e->le_from;
1155 if (all || !lf_blocks(lock, deplock)) {
1156 sx_xlock(&lf_owner_graph_lock);
1157 lf_remove_edge(e);
1158 sx_xunlock(&lf_owner_graph_lock);
1159 if (LIST_EMPTY(&deplock->lf_outedges)) {
1160 lf_wakeup_lock(state, deplock);
1161 LIST_INSERT_HEAD(granted, deplock, lf_link);
1168 * Set the start of an existing active lock, updating dependancies and
1169 * adding any newly woken locks to 'granted'.
1171 static void
1172 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1173 struct lockf_entry_list *granted)
1176 KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1177 lock->lf_start = new_start;
1178 LIST_REMOVE(lock, lf_link);
1179 lf_insert_lock(state, lock);
1180 lf_update_dependancies(state, lock, FALSE, granted);
1184 * Set the end of an existing active lock, updating dependancies and
1185 * adding any newly woken locks to 'granted'.
1187 static void
1188 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1189 struct lockf_entry_list *granted)
1192 KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1193 lock->lf_end = new_end;
1194 lf_update_dependancies(state, lock, FALSE, granted);
1198 * Add a lock to the active list, updating or removing any current
1199 * locks owned by the same owner and processing any pending locks that
1200 * become unblocked as a result. This code is also used for unlock
1201 * since the logic for updating existing locks is identical.
1203 * As a result of processing the new lock, we may unblock existing
1204 * pending locks as a result of downgrading/unlocking. We simply
1205 * activate the newly granted locks by looping.
1207 * Since the new lock already has its dependancies set up, we always
1208 * add it to the list (unless its an unlock request). This may
1209 * fragment the lock list in some pathological cases but its probably
1210 * not a real problem.
1212 static void
1213 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1215 struct lockf_entry *overlap, *lf;
1216 struct lockf_entry_list granted;
1217 int ovcase;
1219 LIST_INIT(&granted);
1220 LIST_INSERT_HEAD(&granted, lock, lf_link);
1222 while (!LIST_EMPTY(&granted)) {
1223 lock = LIST_FIRST(&granted);
1224 LIST_REMOVE(lock, lf_link);
1227 * Skip over locks owned by other processes. Handle
1228 * any locks that overlap and are owned by ourselves.
1230 overlap = LIST_FIRST(&state->ls_active);
1231 for (;;) {
1232 ovcase = lf_findoverlap(&overlap, lock, SELF);
1234 #ifdef LOCKF_DEBUG
1235 if (ovcase && (lockf_debug & 2)) {
1236 printf("lf_setlock: overlap %d", ovcase);
1237 lf_print("", overlap);
1239 #endif
1241 * Six cases:
1242 * 0) no overlap
1243 * 1) overlap == lock
1244 * 2) overlap contains lock
1245 * 3) lock contains overlap
1246 * 4) overlap starts before lock
1247 * 5) overlap ends after lock
1249 switch (ovcase) {
1250 case 0: /* no overlap */
1251 break;
1253 case 1: /* overlap == lock */
1255 * We have already setup the
1256 * dependants for the new lock, taking
1257 * into account a possible downgrade
1258 * or unlock. Remove the old lock.
1260 LIST_REMOVE(overlap, lf_link);
1261 lf_update_dependancies(state, overlap, TRUE,
1262 &granted);
1263 lf_free_lock(overlap);
1264 break;
1266 case 2: /* overlap contains lock */
1268 * Just split the existing lock.
1270 lf_split(state, overlap, lock, &granted);
1271 break;
1273 case 3: /* lock contains overlap */
1275 * Delete the overlap and advance to
1276 * the next entry in the list.
1278 lf = LIST_NEXT(overlap, lf_link);
1279 LIST_REMOVE(overlap, lf_link);
1280 lf_update_dependancies(state, overlap, TRUE,
1281 &granted);
1282 lf_free_lock(overlap);
1283 overlap = lf;
1284 continue;
1286 case 4: /* overlap starts before lock */
1288 * Just update the overlap end and
1289 * move on.
1291 lf_set_end(state, overlap, lock->lf_start - 1,
1292 &granted);
1293 overlap = LIST_NEXT(overlap, lf_link);
1294 continue;
1296 case 5: /* overlap ends after lock */
1298 * Change the start of overlap and
1299 * re-insert.
1301 lf_set_start(state, overlap, lock->lf_end + 1,
1302 &granted);
1303 break;
1305 break;
1307 #ifdef LOCKF_DEBUG
1308 if (lockf_debug & 1) {
1309 if (lock->lf_type != F_UNLCK)
1310 lf_print("lf_activate_lock: activated", lock);
1311 else
1312 lf_print("lf_activate_lock: unlocked", lock);
1313 lf_printlist("lf_activate_lock", lock);
1315 #endif /* LOCKF_DEBUG */
1316 if (lock->lf_type != F_UNLCK)
1317 lf_insert_lock(state, lock);
1322 * Cancel a pending lock request, either as a result of a signal or a
1323 * cancel request for an async lock.
1325 static void
1326 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1328 struct lockf_entry_list granted;
1331 * Note it is theoretically possible that cancelling this lock
1332 * may allow some other pending lock to become
1333 * active. Consider this case:
1335 * Owner Action Result Dependancies
1337 * A: lock [0..0] succeeds
1338 * B: lock [2..2] succeeds
1339 * C: lock [1..2] blocked C->B
1340 * D: lock [0..1] blocked C->B,D->A,D->C
1341 * A: unlock [0..0] C->B,D->C
1342 * C: cancel [1..2]
1345 LIST_REMOVE(lock, lf_link);
1348 * Removing out-going edges is simple.
1350 sx_xlock(&lf_owner_graph_lock);
1351 lf_remove_outgoing(lock);
1352 sx_xunlock(&lf_owner_graph_lock);
1355 * Removing in-coming edges may allow some other lock to
1356 * become active - we use lf_update_dependancies to figure
1357 * this out.
1359 LIST_INIT(&granted);
1360 lf_update_dependancies(state, lock, TRUE, &granted);
1361 lf_free_lock(lock);
1364 * Feed any newly active locks to lf_activate_lock.
1366 while (!LIST_EMPTY(&granted)) {
1367 lock = LIST_FIRST(&granted);
1368 LIST_REMOVE(lock, lf_link);
1369 lf_activate_lock(state, lock);
1374 * Set a byte-range lock.
1376 static int
1377 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1378 void **cookiep)
1380 static char lockstr[] = "lockf";
1381 int priority, error;
1383 #ifdef LOCKF_DEBUG
1384 if (lockf_debug & 1)
1385 lf_print("lf_setlock", lock);
1386 #endif /* LOCKF_DEBUG */
1389 * Set the priority
1391 priority = PLOCK;
1392 if (lock->lf_type == F_WRLCK)
1393 priority += 4;
1394 if (!(lock->lf_flags & F_NOINTR))
1395 priority |= PCATCH;
1397 * Scan lock list for this file looking for locks that would block us.
1399 if (lf_getblock(state, lock)) {
1401 * Free the structure and return if nonblocking.
1403 if ((lock->lf_flags & F_WAIT) == 0
1404 && lock->lf_async_task == NULL) {
1405 lf_free_lock(lock);
1406 error = EAGAIN;
1407 goto out;
1411 * For flock type locks, we must first remove
1412 * any shared locks that we hold before we sleep
1413 * waiting for an exclusive lock.
1415 if ((lock->lf_flags & F_FLOCK) &&
1416 lock->lf_type == F_WRLCK) {
1417 lock->lf_type = F_UNLCK;
1418 lf_activate_lock(state, lock);
1419 lock->lf_type = F_WRLCK;
1423 * We are blocked. Create edges to each blocking lock,
1424 * checking for deadlock using the owner graph. For
1425 * simplicity, we run deadlock detection for all
1426 * locks, posix and otherwise.
1428 sx_xlock(&lf_owner_graph_lock);
1429 error = lf_add_outgoing(state, lock);
1430 sx_xunlock(&lf_owner_graph_lock);
1432 if (error) {
1433 #ifdef LOCKF_DEBUG
1434 if (lockf_debug & 1)
1435 lf_print("lf_setlock: deadlock", lock);
1436 #endif
1437 lf_free_lock(lock);
1438 goto out;
1442 * We have added edges to everything that blocks
1443 * us. Sleep until they all go away.
1445 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1446 #ifdef LOCKF_DEBUG
1447 if (lockf_debug & 1) {
1448 struct lockf_edge *e;
1449 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1450 lf_print("lf_setlock: blocking on", e->le_to);
1451 lf_printlist("lf_setlock", e->le_to);
1454 #endif /* LOCKF_DEBUG */
1456 if ((lock->lf_flags & F_WAIT) == 0) {
1458 * The caller requested async notification -
1459 * this callback happens when the blocking
1460 * lock is released, allowing the caller to
1461 * make another attempt to take the lock.
1463 *cookiep = (void *) lock;
1464 error = EINPROGRESS;
1465 goto out;
1468 lock->lf_refs++;
1469 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1470 if (lf_free_lock(lock)) {
1471 error = EDOOFUS;
1472 goto out;
1476 * We may have been awakened by a signal and/or by a
1477 * debugger continuing us (in which cases we must
1478 * remove our lock graph edges) and/or by another
1479 * process releasing a lock (in which case our edges
1480 * have already been removed and we have been moved to
1481 * the active list). We may also have been woken by
1482 * lf_purgelocks which we report to the caller as
1483 * EINTR. In that case, lf_purgelocks will have
1484 * removed our lock graph edges.
1486 * Note that it is possible to receive a signal after
1487 * we were successfully woken (and moved to the active
1488 * list) but before we resumed execution. In this
1489 * case, our lf_outedges list will be clear. We
1490 * pretend there was no error.
1492 * Note also, if we have been sleeping long enough, we
1493 * may now have incoming edges from some newer lock
1494 * which is waiting behind us in the queue.
1496 if (lock->lf_flags & F_INTR) {
1497 error = EINTR;
1498 lf_free_lock(lock);
1499 goto out;
1501 if (LIST_EMPTY(&lock->lf_outedges)) {
1502 error = 0;
1503 } else {
1504 lf_cancel_lock(state, lock);
1505 goto out;
1507 #ifdef LOCKF_DEBUG
1508 if (lockf_debug & 1) {
1509 lf_print("lf_setlock: granted", lock);
1511 #endif
1512 goto out;
1515 * It looks like we are going to grant the lock. First add
1516 * edges from any currently pending lock that the new lock
1517 * would block.
1519 sx_xlock(&lf_owner_graph_lock);
1520 error = lf_add_incoming(state, lock);
1521 sx_xunlock(&lf_owner_graph_lock);
1522 if (error) {
1523 #ifdef LOCKF_DEBUG
1524 if (lockf_debug & 1)
1525 lf_print("lf_setlock: deadlock", lock);
1526 #endif
1527 lf_free_lock(lock);
1528 goto out;
1532 * No blocks!! Add the lock. Note that we will
1533 * downgrade or upgrade any overlapping locks this
1534 * process already owns.
1536 lf_activate_lock(state, lock);
1537 error = 0;
1538 out:
1539 return (error);
1543 * Remove a byte-range lock on an inode.
1545 * Generally, find the lock (or an overlap to that lock)
1546 * and remove it (or shrink it), then wakeup anyone we can.
1548 static int
1549 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1551 struct lockf_entry *overlap;
1553 overlap = LIST_FIRST(&state->ls_active);
1555 if (overlap == NOLOCKF)
1556 return (0);
1557 #ifdef LOCKF_DEBUG
1558 if (unlock->lf_type != F_UNLCK)
1559 panic("lf_clearlock: bad type");
1560 if (lockf_debug & 1)
1561 lf_print("lf_clearlock", unlock);
1562 #endif /* LOCKF_DEBUG */
1564 lf_activate_lock(state, unlock);
1566 return (0);
1570 * Check whether there is a blocking lock, and if so return its
1571 * details in '*fl'.
1573 static int
1574 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1576 struct lockf_entry *block;
1578 #ifdef LOCKF_DEBUG
1579 if (lockf_debug & 1)
1580 lf_print("lf_getlock", lock);
1581 #endif /* LOCKF_DEBUG */
1583 if ((block = lf_getblock(state, lock))) {
1584 fl->l_type = block->lf_type;
1585 fl->l_whence = SEEK_SET;
1586 fl->l_start = block->lf_start;
1587 if (block->lf_end == OFF_MAX)
1588 fl->l_len = 0;
1589 else
1590 fl->l_len = block->lf_end - block->lf_start + 1;
1591 fl->l_pid = block->lf_owner->lo_pid;
1592 fl->l_sysid = block->lf_owner->lo_sysid;
1593 } else {
1594 fl->l_type = F_UNLCK;
1596 return (0);
1600 * Cancel an async lock request.
1602 static int
1603 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1605 struct lockf_entry *reallock;
1608 * We need to match this request with an existing lock
1609 * request.
1611 LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1612 if ((void *) reallock == cookie) {
1614 * Double-check that this lock looks right
1615 * (maybe use a rolling ID for the cancel
1616 * cookie instead?)
1618 if (!(reallock->lf_vnode == lock->lf_vnode
1619 && reallock->lf_start == lock->lf_start
1620 && reallock->lf_end == lock->lf_end)) {
1621 return (ENOENT);
1625 * Make sure this lock was async and then just
1626 * remove it from its wait lists.
1628 if (!reallock->lf_async_task) {
1629 return (ENOENT);
1633 * Note that since any other thread must take
1634 * state->ls_lock before it can possibly
1635 * trigger the async callback, we are safe
1636 * from a race with lf_wakeup_lock, i.e. we
1637 * can free the lock (actually our caller does
1638 * this).
1640 lf_cancel_lock(state, reallock);
1641 return (0);
1646 * We didn't find a matching lock - not much we can do here.
1648 return (ENOENT);
1652 * Walk the list of locks for an inode and
1653 * return the first blocking lock.
1655 static struct lockf_entry *
1656 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1658 struct lockf_entry *overlap;
1660 LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1662 * We may assume that the active list is sorted by
1663 * lf_start.
1665 if (overlap->lf_start > lock->lf_end)
1666 break;
1667 if (!lf_blocks(lock, overlap))
1668 continue;
1669 return (overlap);
1671 return (NOLOCKF);
1675 * Walk the list of locks for an inode to find an overlapping lock (if
1676 * any) and return a classification of that overlap.
1678 * Arguments:
1679 * *overlap The place in the lock list to start looking
1680 * lock The lock which is being tested
1681 * type Pass 'SELF' to test only locks with the same
1682 * owner as lock, or 'OTHER' to test only locks
1683 * with a different owner
1685 * Returns one of six values:
1686 * 0) no overlap
1687 * 1) overlap == lock
1688 * 2) overlap contains lock
1689 * 3) lock contains overlap
1690 * 4) overlap starts before lock
1691 * 5) overlap ends after lock
1693 * If there is an overlapping lock, '*overlap' is set to point at the
1694 * overlapping lock.
1696 * NOTE: this returns only the FIRST overlapping lock. There
1697 * may be more than one.
1699 static int
1700 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1702 struct lockf_entry *lf;
1703 off_t start, end;
1704 int res;
1706 if ((*overlap) == NOLOCKF) {
1707 return (0);
1709 #ifdef LOCKF_DEBUG
1710 if (lockf_debug & 2)
1711 lf_print("lf_findoverlap: looking for overlap in", lock);
1712 #endif /* LOCKF_DEBUG */
1713 start = lock->lf_start;
1714 end = lock->lf_end;
1715 res = 0;
1716 while (*overlap) {
1717 lf = *overlap;
1718 if (lf->lf_start > end)
1719 break;
1720 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1721 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1722 *overlap = LIST_NEXT(lf, lf_link);
1723 continue;
1725 #ifdef LOCKF_DEBUG
1726 if (lockf_debug & 2)
1727 lf_print("\tchecking", lf);
1728 #endif /* LOCKF_DEBUG */
1730 * OK, check for overlap
1732 * Six cases:
1733 * 0) no overlap
1734 * 1) overlap == lock
1735 * 2) overlap contains lock
1736 * 3) lock contains overlap
1737 * 4) overlap starts before lock
1738 * 5) overlap ends after lock
1740 if (start > lf->lf_end) {
1741 /* Case 0 */
1742 #ifdef LOCKF_DEBUG
1743 if (lockf_debug & 2)
1744 printf("no overlap\n");
1745 #endif /* LOCKF_DEBUG */
1746 *overlap = LIST_NEXT(lf, lf_link);
1747 continue;
1749 if (lf->lf_start == start && lf->lf_end == end) {
1750 /* Case 1 */
1751 #ifdef LOCKF_DEBUG
1752 if (lockf_debug & 2)
1753 printf("overlap == lock\n");
1754 #endif /* LOCKF_DEBUG */
1755 res = 1;
1756 break;
1758 if (lf->lf_start <= start && lf->lf_end >= end) {
1759 /* Case 2 */
1760 #ifdef LOCKF_DEBUG
1761 if (lockf_debug & 2)
1762 printf("overlap contains lock\n");
1763 #endif /* LOCKF_DEBUG */
1764 res = 2;
1765 break;
1767 if (start <= lf->lf_start && end >= lf->lf_end) {
1768 /* Case 3 */
1769 #ifdef LOCKF_DEBUG
1770 if (lockf_debug & 2)
1771 printf("lock contains overlap\n");
1772 #endif /* LOCKF_DEBUG */
1773 res = 3;
1774 break;
1776 if (lf->lf_start < start && lf->lf_end >= start) {
1777 /* Case 4 */
1778 #ifdef LOCKF_DEBUG
1779 if (lockf_debug & 2)
1780 printf("overlap starts before lock\n");
1781 #endif /* LOCKF_DEBUG */
1782 res = 4;
1783 break;
1785 if (lf->lf_start > start && lf->lf_end > end) {
1786 /* Case 5 */
1787 #ifdef LOCKF_DEBUG
1788 if (lockf_debug & 2)
1789 printf("overlap ends after lock\n");
1790 #endif /* LOCKF_DEBUG */
1791 res = 5;
1792 break;
1794 panic("lf_findoverlap: default");
1796 return (res);
1800 * Split an the existing 'lock1', based on the extent of the lock
1801 * described by 'lock2'. The existing lock should cover 'lock2'
1802 * entirely.
1804 * Any pending locks which have been been unblocked are added to
1805 * 'granted'
1807 static void
1808 lf_split(struct lockf *state, struct lockf_entry *lock1,
1809 struct lockf_entry *lock2, struct lockf_entry_list *granted)
1811 struct lockf_entry *splitlock;
1813 #ifdef LOCKF_DEBUG
1814 if (lockf_debug & 2) {
1815 lf_print("lf_split", lock1);
1816 lf_print("splitting from", lock2);
1818 #endif /* LOCKF_DEBUG */
1820 * Check to see if we don't need to split at all.
1822 if (lock1->lf_start == lock2->lf_start) {
1823 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1824 return;
1826 if (lock1->lf_end == lock2->lf_end) {
1827 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1828 return;
1831 * Make a new lock consisting of the last part of
1832 * the encompassing lock.
1834 splitlock = lf_alloc_lock(lock1->lf_owner);
1835 memcpy(splitlock, lock1, sizeof *splitlock);
1836 splitlock->lf_refs = 1;
1837 if (splitlock->lf_flags & F_REMOTE)
1838 vref(splitlock->lf_vnode);
1841 * This cannot cause a deadlock since any edges we would add
1842 * to splitlock already exist in lock1. We must be sure to add
1843 * necessary dependancies to splitlock before we reduce lock1
1844 * otherwise we may accidentally grant a pending lock that
1845 * was blocked by the tail end of lock1.
1847 splitlock->lf_start = lock2->lf_end + 1;
1848 LIST_INIT(&splitlock->lf_outedges);
1849 LIST_INIT(&splitlock->lf_inedges);
1850 sx_xlock(&lf_owner_graph_lock);
1851 lf_add_incoming(state, splitlock);
1852 sx_xunlock(&lf_owner_graph_lock);
1854 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1857 * OK, now link it in
1859 lf_insert_lock(state, splitlock);
1862 struct lockdesc {
1863 STAILQ_ENTRY(lockdesc) link;
1864 struct vnode *vp;
1865 struct flock fl;
1867 STAILQ_HEAD(lockdesclist, lockdesc);
1870 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1872 struct lockf *ls;
1873 struct lockf_entry *lf;
1874 struct lockdesc *ldesc;
1875 struct lockdesclist locks;
1876 int error;
1879 * In order to keep the locking simple, we iterate over the
1880 * active lock lists to build a list of locks that need
1881 * releasing. We then call the iterator for each one in turn.
1883 * We take an extra reference to the vnode for the duration to
1884 * make sure it doesn't go away before we are finished.
1886 STAILQ_INIT(&locks);
1887 sx_xlock(&lf_lock_states_lock);
1888 LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1889 sx_xlock(&ls->ls_lock);
1890 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1891 if (lf->lf_owner->lo_sysid != sysid)
1892 continue;
1894 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1895 M_WAITOK);
1896 ldesc->vp = lf->lf_vnode;
1897 vref(ldesc->vp);
1898 ldesc->fl.l_start = lf->lf_start;
1899 if (lf->lf_end == OFF_MAX)
1900 ldesc->fl.l_len = 0;
1901 else
1902 ldesc->fl.l_len =
1903 lf->lf_end - lf->lf_start + 1;
1904 ldesc->fl.l_whence = SEEK_SET;
1905 ldesc->fl.l_type = F_UNLCK;
1906 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1907 ldesc->fl.l_sysid = sysid;
1908 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1910 sx_xunlock(&ls->ls_lock);
1912 sx_xunlock(&lf_lock_states_lock);
1915 * Call the iterator function for each lock in turn. If the
1916 * iterator returns an error code, just free the rest of the
1917 * lockdesc structures.
1919 error = 0;
1920 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1921 STAILQ_REMOVE_HEAD(&locks, link);
1922 if (!error)
1923 error = fn(ldesc->vp, &ldesc->fl, arg);
1924 vrele(ldesc->vp);
1925 free(ldesc, M_LOCKF);
1928 return (error);
1932 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1934 struct lockf *ls;
1935 struct lockf_entry *lf;
1936 struct lockdesc *ldesc;
1937 struct lockdesclist locks;
1938 int error;
1941 * In order to keep the locking simple, we iterate over the
1942 * active lock lists to build a list of locks that need
1943 * releasing. We then call the iterator for each one in turn.
1945 * We take an extra reference to the vnode for the duration to
1946 * make sure it doesn't go away before we are finished.
1948 STAILQ_INIT(&locks);
1949 VI_LOCK(vp);
1950 ls = vp->v_lockf;
1951 if (!ls) {
1952 VI_UNLOCK(vp);
1953 return (0);
1955 ls->ls_threads++;
1956 VI_UNLOCK(vp);
1958 sx_xlock(&ls->ls_lock);
1959 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1960 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1961 M_WAITOK);
1962 ldesc->vp = lf->lf_vnode;
1963 vref(ldesc->vp);
1964 ldesc->fl.l_start = lf->lf_start;
1965 if (lf->lf_end == OFF_MAX)
1966 ldesc->fl.l_len = 0;
1967 else
1968 ldesc->fl.l_len =
1969 lf->lf_end - lf->lf_start + 1;
1970 ldesc->fl.l_whence = SEEK_SET;
1971 ldesc->fl.l_type = F_UNLCK;
1972 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1973 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1974 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1976 sx_xunlock(&ls->ls_lock);
1977 VI_LOCK(vp);
1978 ls->ls_threads--;
1979 wakeup(ls);
1980 VI_UNLOCK(vp);
1983 * Call the iterator function for each lock in turn. If the
1984 * iterator returns an error code, just free the rest of the
1985 * lockdesc structures.
1987 error = 0;
1988 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1989 STAILQ_REMOVE_HEAD(&locks, link);
1990 if (!error)
1991 error = fn(ldesc->vp, &ldesc->fl, arg);
1992 vrele(ldesc->vp);
1993 free(ldesc, M_LOCKF);
1996 return (error);
1999 static int
2000 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2003 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2004 return (0);
2007 void
2008 lf_clearremotesys(int sysid)
2011 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2012 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2016 lf_countlocks(int sysid)
2018 int i;
2019 struct lock_owner *lo;
2020 int count;
2022 count = 0;
2023 sx_xlock(&lf_lock_owners_lock);
2024 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2025 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2026 if (lo->lo_sysid == sysid)
2027 count += lo->lo_refs;
2028 sx_xunlock(&lf_lock_owners_lock);
2030 return (count);
2033 #ifdef LOCKF_DEBUG
2036 * Return non-zero if y is reachable from x using a brute force
2037 * search. If reachable and path is non-null, return the route taken
2038 * in path.
2040 static int
2041 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2042 struct owner_vertex_list *path)
2044 struct owner_edge *e;
2046 if (x == y) {
2047 if (path)
2048 TAILQ_INSERT_HEAD(path, x, v_link);
2049 return 1;
2052 LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2053 if (graph_reaches(e->e_to, y, path)) {
2054 if (path)
2055 TAILQ_INSERT_HEAD(path, x, v_link);
2056 return 1;
2059 return 0;
2063 * Perform consistency checks on the graph. Make sure the values of
2064 * v_order are correct. If checkorder is non-zero, check no vertex can
2065 * reach any other vertex with a smaller order.
2067 static void
2068 graph_check(struct owner_graph *g, int checkorder)
2070 int i, j;
2072 for (i = 0; i < g->g_size; i++) {
2073 if (!g->g_vertices[i]->v_owner)
2074 continue;
2075 KASSERT(g->g_vertices[i]->v_order == i,
2076 ("lock graph vertices disordered"));
2077 if (checkorder) {
2078 for (j = 0; j < i; j++) {
2079 if (!g->g_vertices[j]->v_owner)
2080 continue;
2081 KASSERT(!graph_reaches(g->g_vertices[i],
2082 g->g_vertices[j], NULL),
2083 ("lock graph vertices disordered"));
2089 static void
2090 graph_print_vertices(struct owner_vertex_list *set)
2092 struct owner_vertex *v;
2094 printf("{ ");
2095 TAILQ_FOREACH(v, set, v_link) {
2096 printf("%d:", v->v_order);
2097 lf_print_owner(v->v_owner);
2098 if (TAILQ_NEXT(v, v_link))
2099 printf(", ");
2101 printf(" }\n");
2104 #endif
2107 * Calculate the sub-set of vertices v from the affected region [y..x]
2108 * where v is reachable from y. Return -1 if a loop was detected
2109 * (i.e. x is reachable from y, otherwise the number of vertices in
2110 * this subset.
2112 static int
2113 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2114 struct owner_vertex *y, struct owner_vertex_list *delta)
2116 uint32_t gen;
2117 struct owner_vertex *v;
2118 struct owner_edge *e;
2119 int n;
2122 * We start with a set containing just y. Then for each vertex
2123 * v in the set so far unprocessed, we add each vertex that v
2124 * has an out-edge to and that is within the affected region
2125 * [y..x]. If we see the vertex x on our travels, stop
2126 * immediately.
2128 TAILQ_INIT(delta);
2129 TAILQ_INSERT_TAIL(delta, y, v_link);
2130 v = y;
2131 n = 1;
2132 gen = g->g_gen;
2133 while (v) {
2134 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2135 if (e->e_to == x)
2136 return -1;
2137 if (e->e_to->v_order < x->v_order
2138 && e->e_to->v_gen != gen) {
2139 e->e_to->v_gen = gen;
2140 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2141 n++;
2144 v = TAILQ_NEXT(v, v_link);
2147 return (n);
2151 * Calculate the sub-set of vertices v from the affected region [y..x]
2152 * where v reaches x. Return the number of vertices in this subset.
2154 static int
2155 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2156 struct owner_vertex *y, struct owner_vertex_list *delta)
2158 uint32_t gen;
2159 struct owner_vertex *v;
2160 struct owner_edge *e;
2161 int n;
2164 * We start with a set containing just x. Then for each vertex
2165 * v in the set so far unprocessed, we add each vertex that v
2166 * has an in-edge from and that is within the affected region
2167 * [y..x].
2169 TAILQ_INIT(delta);
2170 TAILQ_INSERT_TAIL(delta, x, v_link);
2171 v = x;
2172 n = 1;
2173 gen = g->g_gen;
2174 while (v) {
2175 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2176 if (e->e_from->v_order > y->v_order
2177 && e->e_from->v_gen != gen) {
2178 e->e_from->v_gen = gen;
2179 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2180 n++;
2183 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2186 return (n);
2189 static int
2190 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2192 struct owner_vertex *v;
2193 int i, j;
2195 TAILQ_FOREACH(v, set, v_link) {
2196 for (i = n;
2197 i > 0 && indices[i - 1] > v->v_order; i--)
2199 for (j = n - 1; j >= i; j--)
2200 indices[j + 1] = indices[j];
2201 indices[i] = v->v_order;
2202 n++;
2205 return (n);
2208 static int
2209 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2210 struct owner_vertex_list *set)
2212 struct owner_vertex *v, *vlowest;
2214 while (!TAILQ_EMPTY(set)) {
2215 vlowest = NULL;
2216 TAILQ_FOREACH(v, set, v_link) {
2217 if (!vlowest || v->v_order < vlowest->v_order)
2218 vlowest = v;
2220 TAILQ_REMOVE(set, vlowest, v_link);
2221 vlowest->v_order = indices[nextunused];
2222 g->g_vertices[vlowest->v_order] = vlowest;
2223 nextunused++;
2226 return (nextunused);
2229 static int
2230 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2231 struct owner_vertex *y)
2233 struct owner_edge *e;
2234 struct owner_vertex_list deltaF, deltaB;
2235 int nF, nB, n, vi, i;
2236 int *indices;
2238 sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2240 LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2241 if (e->e_to == y) {
2242 e->e_refs++;
2243 return (0);
2247 #ifdef LOCKF_DEBUG
2248 if (lockf_debug & 8) {
2249 printf("adding edge %d:", x->v_order);
2250 lf_print_owner(x->v_owner);
2251 printf(" -> %d:", y->v_order);
2252 lf_print_owner(y->v_owner);
2253 printf("\n");
2255 #endif
2256 if (y->v_order < x->v_order) {
2258 * The new edge violates the order. First find the set
2259 * of affected vertices reachable from y (deltaF) and
2260 * the set of affect vertices affected that reach x
2261 * (deltaB), using the graph generation number to
2262 * detect whether we have visited a given vertex
2263 * already. We re-order the graph so that each vertex
2264 * in deltaB appears before each vertex in deltaF.
2266 * If x is a member of deltaF, then the new edge would
2267 * create a cycle. Otherwise, we may assume that
2268 * deltaF and deltaB are disjoint.
2270 g->g_gen++;
2271 if (g->g_gen == 0) {
2273 * Generation wrap.
2275 for (vi = 0; vi < g->g_size; vi++) {
2276 g->g_vertices[vi]->v_gen = 0;
2278 g->g_gen++;
2280 nF = graph_delta_forward(g, x, y, &deltaF);
2281 if (nF < 0) {
2282 #ifdef LOCKF_DEBUG
2283 if (lockf_debug & 8) {
2284 struct owner_vertex_list path;
2285 printf("deadlock: ");
2286 TAILQ_INIT(&path);
2287 graph_reaches(y, x, &path);
2288 graph_print_vertices(&path);
2290 #endif
2291 return (EDEADLK);
2294 #ifdef LOCKF_DEBUG
2295 if (lockf_debug & 8) {
2296 printf("re-ordering graph vertices\n");
2297 printf("deltaF = ");
2298 graph_print_vertices(&deltaF);
2300 #endif
2302 nB = graph_delta_backward(g, x, y, &deltaB);
2304 #ifdef LOCKF_DEBUG
2305 if (lockf_debug & 8) {
2306 printf("deltaB = ");
2307 graph_print_vertices(&deltaB);
2309 #endif
2312 * We first build a set of vertex indices (vertex
2313 * order values) that we may use, then we re-assign
2314 * orders first to those vertices in deltaB, then to
2315 * deltaF. Note that the contents of deltaF and deltaB
2316 * may be partially disordered - we perform an
2317 * insertion sort while building our index set.
2319 indices = g->g_indexbuf;
2320 n = graph_add_indices(indices, 0, &deltaF);
2321 graph_add_indices(indices, n, &deltaB);
2324 * We must also be sure to maintain the relative
2325 * ordering of deltaF and deltaB when re-assigning
2326 * vertices. We do this by iteratively removing the
2327 * lowest ordered element from the set and assigning
2328 * it the next value from our new ordering.
2330 i = graph_assign_indices(g, indices, 0, &deltaB);
2331 graph_assign_indices(g, indices, i, &deltaF);
2333 #ifdef LOCKF_DEBUG
2334 if (lockf_debug & 8) {
2335 struct owner_vertex_list set;
2336 TAILQ_INIT(&set);
2337 for (i = 0; i < nB + nF; i++)
2338 TAILQ_INSERT_TAIL(&set,
2339 g->g_vertices[indices[i]], v_link);
2340 printf("new ordering = ");
2341 graph_print_vertices(&set);
2343 #endif
2346 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2348 #ifdef LOCKF_DEBUG
2349 if (lockf_debug & 8) {
2350 graph_check(g, TRUE);
2352 #endif
2354 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2356 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2357 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2358 e->e_refs = 1;
2359 e->e_from = x;
2360 e->e_to = y;
2362 return (0);
2366 * Remove an edge x->y from the graph.
2368 static void
2369 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2370 struct owner_vertex *y)
2372 struct owner_edge *e;
2374 sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2376 LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2377 if (e->e_to == y)
2378 break;
2380 KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2382 e->e_refs--;
2383 if (e->e_refs == 0) {
2384 #ifdef LOCKF_DEBUG
2385 if (lockf_debug & 8) {
2386 printf("removing edge %d:", x->v_order);
2387 lf_print_owner(x->v_owner);
2388 printf(" -> %d:", y->v_order);
2389 lf_print_owner(y->v_owner);
2390 printf("\n");
2392 #endif
2393 LIST_REMOVE(e, e_outlink);
2394 LIST_REMOVE(e, e_inlink);
2395 free(e, M_LOCKF);
2400 * Allocate a vertex from the free list. Return ENOMEM if there are
2401 * none.
2403 static struct owner_vertex *
2404 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2406 struct owner_vertex *v;
2408 sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2410 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2411 if (g->g_size == g->g_space) {
2412 g->g_vertices = realloc(g->g_vertices,
2413 2 * g->g_space * sizeof(struct owner_vertex *),
2414 M_LOCKF, M_WAITOK);
2415 free(g->g_indexbuf, M_LOCKF);
2416 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2417 M_LOCKF, M_WAITOK);
2418 g->g_space = 2 * g->g_space;
2420 v->v_order = g->g_size;
2421 v->v_gen = g->g_gen;
2422 g->g_vertices[g->g_size] = v;
2423 g->g_size++;
2425 LIST_INIT(&v->v_outedges);
2426 LIST_INIT(&v->v_inedges);
2427 v->v_owner = lo;
2429 return (v);
2432 static void
2433 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2435 struct owner_vertex *w;
2436 int i;
2438 sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2440 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2441 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2444 * Remove from the graph's array and close up the gap,
2445 * renumbering the other vertices.
2447 for (i = v->v_order + 1; i < g->g_size; i++) {
2448 w = g->g_vertices[i];
2449 w->v_order--;
2450 g->g_vertices[i - 1] = w;
2452 g->g_size--;
2454 free(v, M_LOCKF);
2457 static struct owner_graph *
2458 graph_init(struct owner_graph *g)
2461 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2462 M_LOCKF, M_WAITOK);
2463 g->g_size = 0;
2464 g->g_space = 10;
2465 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2466 g->g_gen = 0;
2468 return (g);
2471 #ifdef LOCKF_DEBUG
2473 * Print description of a lock owner
2475 static void
2476 lf_print_owner(struct lock_owner *lo)
2479 if (lo->lo_flags & F_REMOTE) {
2480 printf("remote pid %d, system %d",
2481 lo->lo_pid, lo->lo_sysid);
2482 } else if (lo->lo_flags & F_FLOCK) {
2483 printf("file %p", lo->lo_id);
2484 } else {
2485 printf("local pid %d", lo->lo_pid);
2490 * Print out a lock.
2492 static void
2493 lf_print(char *tag, struct lockf_entry *lock)
2496 printf("%s: lock %p for ", tag, (void *)lock);
2497 lf_print_owner(lock->lf_owner);
2498 if (lock->lf_inode != (struct inode *)0)
2499 printf(" in ino %ju on dev <%s>,",
2500 (uintmax_t)lock->lf_inode->i_number,
2501 devtoname(lock->lf_inode->i_dev));
2502 printf(" %s, start %jd, end ",
2503 lock->lf_type == F_RDLCK ? "shared" :
2504 lock->lf_type == F_WRLCK ? "exclusive" :
2505 lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2506 (intmax_t)lock->lf_start);
2507 if (lock->lf_end == OFF_MAX)
2508 printf("EOF");
2509 else
2510 printf("%jd", (intmax_t)lock->lf_end);
2511 if (!LIST_EMPTY(&lock->lf_outedges))
2512 printf(" block %p\n",
2513 (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2514 else
2515 printf("\n");
2518 static void
2519 lf_printlist(char *tag, struct lockf_entry *lock)
2521 struct lockf_entry *lf, *blk;
2522 struct lockf_edge *e;
2524 if (lock->lf_inode == (struct inode *)0)
2525 return;
2527 printf("%s: Lock list for ino %ju on dev <%s>:\n",
2528 tag, (uintmax_t)lock->lf_inode->i_number,
2529 devtoname(lock->lf_inode->i_dev));
2530 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2531 printf("\tlock %p for ",(void *)lf);
2532 lf_print_owner(lock->lf_owner);
2533 printf(", %s, start %jd, end %jd",
2534 lf->lf_type == F_RDLCK ? "shared" :
2535 lf->lf_type == F_WRLCK ? "exclusive" :
2536 lf->lf_type == F_UNLCK ? "unlock" :
2537 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2538 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2539 blk = e->le_to;
2540 printf("\n\t\tlock request %p for ", (void *)blk);
2541 lf_print_owner(blk->lf_owner);
2542 printf(", %s, start %jd, end %jd",
2543 blk->lf_type == F_RDLCK ? "shared" :
2544 blk->lf_type == F_WRLCK ? "exclusive" :
2545 blk->lf_type == F_UNLCK ? "unlock" :
2546 "unknown", (intmax_t)blk->lf_start,
2547 (intmax_t)blk->lf_end);
2548 if (!LIST_EMPTY(&blk->lf_inedges))
2549 panic("lf_printlist: bad list");
2551 printf("\n");
2554 #endif /* LOCKF_DEBUG */