1 /* Type based alias analysis.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This pass determines which types in the program contain only
23 instances that are completely encapsulated by the compilation unit.
24 Those types that are encapsulated must also pass the further
25 requirement that there be no bad operations on any instances of
28 A great deal of freedom in compilation is allowed for the instances
29 of those types that pass these conditions.
32 /* The code in this module is called by the ipa pass manager. It
33 should be one of the later passes since its information is used by
34 the rest of the compilation. */
38 #include "coretypes.h"
41 #include "tree-flow.h"
42 #include "tree-inline.h"
43 #include "tree-pass.h"
44 #include "langhooks.h"
45 #include "pointer-set.h"
47 #include "ipa-utils.h"
48 #include "ipa-type-escape.h"
50 #include "tree-gimple.h"
55 #include "diagnostic.h"
56 #include "langhooks.h"
58 /* Some of the aliasing is called very early, before this phase is
59 called. To assure that this is not a problem, we keep track of if
60 this phase has been run. */
61 static bool initialized
= false;
63 /* This bitmap contains the set of local vars that are the lhs of
64 calls to mallocs. These variables, when seen on the rhs as part of
65 a cast, the cast are not marked as doing bad things to the type
66 even though they are generally of the form
67 "foo = (type_of_foo)void_temp". */
68 static bitmap results_of_malloc
;
70 /* Scratch bitmap for avoiding work. */
71 static bitmap been_there_done_that
;
72 static bitmap bitmap_tmp
;
74 /* There are two levels of escape that types can undergo.
76 EXPOSED_PARAMETER - some instance of the variable is
77 passed by value into an externally visible function or some
78 instance of the variable is passed out of an externally visible
79 function as a return value. In this case any of the fields of the
80 variable that are pointer types end up having their types marked as
83 FULL_ESCAPE - when bad things happen to good types. One of the
84 following things happens to the type: (a) either an instance of the
85 variable has its address passed to an externally visible function,
86 (b) the address is taken and some bad cast happens to the address
87 or (c) explicit arithmetic is done to the address.
96 /* The following two bit vectors global_types_* correspond to
97 previous cases above. During the analysis phase, a bit is set in
98 one of these vectors if an operation of the offending class is
99 discovered to happen on the associated type. */
101 static bitmap global_types_exposed_parameter
;
102 static bitmap global_types_full_escape
;
104 /* All of the types seen in this compilation unit. */
105 static bitmap global_types_seen
;
106 /* Reverse map to take a canon uid and map it to a canon type. Uid's
107 are never manipulated unless they are associated with a canon
109 static splay_tree uid_to_canon_type
;
111 /* Internal structure of type mapping code. This maps a canon type
112 name to its canon type. */
113 static splay_tree all_canon_types
;
115 /* Map from type clones to the single canon type. */
116 static splay_tree type_to_canon_type
;
118 /* A splay tree of bitmaps. An element X in the splay tree has a bit
119 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (Y)) if there was
120 an operation in the program of the form "&X.Y". */
121 static splay_tree uid_to_addressof_down_map
;
123 /* A splay tree of bitmaps. An element Y in the splay tree has a bit
124 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (X)) if there was
125 an operation in the program of the form "&X.Y". */
126 static splay_tree uid_to_addressof_up_map
;
128 /* Tree to hold the subtype maps used to mark subtypes of escaped
130 static splay_tree uid_to_subtype_map
;
132 /* Records tree nodes seen in cgraph_create_edges. Simply using
133 walk_tree_without_duplicates doesn't guarantee each node is visited
134 once because it gets a new htab upon each recursive call from
136 static struct pointer_set_t
*visited_nodes
;
138 static bitmap_obstack ipa_obstack
;
140 /* Get the name of TYPE or return the string "<UNNAMED>". */
142 get_name_of_type (tree type
)
144 tree name
= TYPE_NAME (type
);
147 /* Unnamed type, do what you like here. */
148 return (char*)"<UNNAMED>";
150 /* It will be a TYPE_DECL in the case of a typedef, otherwise, an
152 if (TREE_CODE (name
) == TYPE_DECL
)
154 /* Each DECL has a DECL_NAME field which contains an
155 IDENTIFIER_NODE. (Some decls, most often labels, may have
156 zero as the DECL_NAME). */
157 if (DECL_NAME (name
))
158 return (char*)IDENTIFIER_POINTER (DECL_NAME (name
));
160 /* Unnamed type, do what you like here. */
161 return (char*)"<UNNAMED>";
163 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
164 return (char*)IDENTIFIER_POINTER (name
);
166 return (char*)"<UNNAMED>";
175 /* Splay tree comparison function on type_brand_s structures. */
178 compare_type_brand (splay_tree_key sk1
, splay_tree_key sk2
)
180 struct type_brand_s
* k1
= (struct type_brand_s
*) sk1
;
181 struct type_brand_s
* k2
= (struct type_brand_s
*) sk2
;
183 int value
= strcmp(k1
->name
, k2
->name
);
185 return k2
->seq
- k1
->seq
;
190 /* All of the "unique_type" code is a hack to get around the sleazy
191 implementation used to compile more than file. Currently gcc does
192 not get rid of multiple instances of the same type that have been
193 collected from different compilation units. */
194 /* This is a trivial algorithm for removing duplicate types. This
195 would not work for any language that used structural equivalence as
196 the basis of its type system. */
197 /* Return either TYPE if this is first time TYPE has been seen an
198 compatible TYPE that has already been processed. */
201 discover_unique_type (tree type
)
203 struct type_brand_s
* brand
= XNEW (struct type_brand_s
);
205 splay_tree_node result
;
207 brand
->name
= get_name_of_type (type
);
212 result
= splay_tree_lookup (all_canon_types
, (splay_tree_key
) brand
);
216 /* Create an alias since this is just the same as
218 tree other_type
= (tree
) result
->value
;
219 if (lang_hooks
.types_compatible_p (type
, other_type
) == 1)
222 /* Insert this new type as an alias for other_type. */
223 splay_tree_insert (type_to_canon_type
,
224 (splay_tree_key
) type
,
225 (splay_tree_value
) other_type
);
228 /* Not compatible, look for next instance with same name. */
232 /* No more instances, create new one since this is the first
233 time we saw this type. */
235 /* Insert the new brand. */
236 splay_tree_insert (all_canon_types
,
237 (splay_tree_key
) brand
,
238 (splay_tree_value
) type
);
240 /* Insert this new type as an alias for itself. */
241 splay_tree_insert (type_to_canon_type
,
242 (splay_tree_key
) type
,
243 (splay_tree_value
) type
);
245 /* Insert the uid for reverse lookup; */
246 splay_tree_insert (uid_to_canon_type
,
247 (splay_tree_key
) TYPE_UID (type
),
248 (splay_tree_value
) type
);
250 bitmap_set_bit (global_types_seen
, TYPE_UID (type
));
256 /* Return true if TYPE is one of the type classes that we are willing
257 to analyze. This skips the goofy types like arrays of pointers to
260 type_to_consider (tree type
)
262 /* Strip the *'s off. */
263 type
= TYPE_MAIN_VARIANT (type
);
264 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
265 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
267 switch (TREE_CODE (type
))
273 case QUAL_UNION_TYPE
:
286 /* Get the canon type of TYPE. If SEE_THRU_PTRS is true, remove all
287 the POINTER_TOs and if SEE_THRU_ARRAYS is true, remove all of the
288 ARRAY_OFs and POINTER_TOs. */
291 get_canon_type (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
293 splay_tree_node result
;
294 /* Strip the *'s off. */
295 if (!type
|| !type_to_consider (type
))
298 type
= TYPE_MAIN_VARIANT (type
);
300 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
301 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
303 else if (see_thru_ptrs
)
304 while (POINTER_TYPE_P (type
))
305 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
307 result
= splay_tree_lookup(type_to_canon_type
, (splay_tree_key
) type
);
310 return discover_unique_type (type
);
311 else return (tree
) result
->value
;
314 /* Same as GET_CANON_TYPE, except return the TYPE_ID rather than the
318 get_canon_type_uid (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
320 type
= get_canon_type (type
, see_thru_ptrs
, see_thru_arrays
);
322 return TYPE_UID(type
);
326 /* Return 0 if TYPE is a record or union type. Return a positive
327 number if TYPE is a pointer to a record or union. The number is
328 the number of pointer types stripped to get to the record or union
329 type. Return -1 if TYPE is none of the above. */
332 ipa_type_escape_star_count_of_interesting_type (tree type
)
335 /* Strip the *'s off. */
338 type
= TYPE_MAIN_VARIANT (type
);
339 while (POINTER_TYPE_P (type
))
341 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
345 /* We are interested in records, and unions only. */
346 if (TREE_CODE (type
) == RECORD_TYPE
347 || TREE_CODE (type
) == QUAL_UNION_TYPE
348 || TREE_CODE (type
) == UNION_TYPE
)
355 /* Return 0 if TYPE is a record or union type. Return a positive
356 number if TYPE is a pointer to a record or union. The number is
357 the number of pointer types stripped to get to the record or union
358 type. Return -1 if TYPE is none of the above. */
361 ipa_type_escape_star_count_of_interesting_or_array_type (tree type
)
364 /* Strip the *'s off. */
367 type
= TYPE_MAIN_VARIANT (type
);
368 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
370 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
374 /* We are interested in records, and unions only. */
375 if (TREE_CODE (type
) == RECORD_TYPE
376 || TREE_CODE (type
) == QUAL_UNION_TYPE
377 || TREE_CODE (type
) == UNION_TYPE
)
384 /* Return true if the record, or union TYPE passed in escapes this
385 compilation unit. Note that all of the pointer-to's are removed
386 before testing since these may not be correct. */
389 ipa_type_escape_type_contained_p (tree type
)
393 return !bitmap_bit_p (global_types_full_escape
,
394 get_canon_type_uid (type
, true, false));
397 /* Return true if a modification to a field of type FIELD_TYPE cannot
398 clobber a record of RECORD_TYPE. */
401 ipa_type_escape_field_does_not_clobber_p (tree record_type
, tree field_type
)
403 splay_tree_node result
;
409 /* Strip off all of the pointer tos on the record type. Strip the
410 same number of pointer tos from the field type. If the field
411 type has fewer, it could not have been aliased. */
412 record_type
= TYPE_MAIN_VARIANT (record_type
);
413 field_type
= TYPE_MAIN_VARIANT (field_type
);
414 while (POINTER_TYPE_P (record_type
))
416 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
417 if (POINTER_TYPE_P (field_type
))
418 field_type
= TYPE_MAIN_VARIANT (TREE_TYPE (field_type
));
420 /* However, if field_type is a union, this quick test is not
421 correct since one of the variants of the union may be a
422 pointer to type and we cannot see across that here. So we
423 just strip the remaining pointer tos off the record type
424 and fall thru to the more precise code. */
425 if (TREE_CODE (field_type
) == QUAL_UNION_TYPE
426 || TREE_CODE (field_type
) == UNION_TYPE
)
428 while (POINTER_TYPE_P (record_type
))
429 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
436 record_type
= get_canon_type (record_type
, true, true);
437 /* The record type must be contained. The field type may
439 if (!ipa_type_escape_type_contained_p (record_type
))
442 uid
= TYPE_UID (record_type
);
443 result
= splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
447 bitmap field_type_map
= (bitmap
) result
->value
;
448 uid
= get_canon_type_uid (field_type
, true, true);
449 /* If the bit is there, the address was taken. If not, it
451 return !bitmap_bit_p (field_type_map
, uid
);
454 /* No bitmap means no addresses were taken. */
459 /* Add TYPE to the suspect type set. Return true if the bit needed to
463 mark_type (tree type
, enum escape_t escape_status
)
468 type
= get_canon_type (type
, true, true);
472 switch (escape_status
)
474 case EXPOSED_PARAMETER
:
475 map
= global_types_exposed_parameter
;
478 map
= global_types_full_escape
;
482 uid
= TYPE_UID (type
);
483 if (bitmap_bit_p (map
, uid
))
487 bitmap_set_bit (map
, uid
);
488 if (escape_status
== FULL_ESCAPE
)
490 /* Efficiency hack. When things are bad, do not mess around
491 with this type anymore. */
492 bitmap_set_bit (global_types_exposed_parameter
, uid
);
498 /* Add interesting TYPE to the suspect type set. If the set is
499 EXPOSED_PARAMETER and the TYPE is a pointer type, the set is
500 changed to FULL_ESCAPE. */
503 mark_interesting_type (tree type
, enum escape_t escape_status
)
506 if (ipa_type_escape_star_count_of_interesting_type (type
) >= 0)
508 if ((escape_status
== EXPOSED_PARAMETER
)
509 && POINTER_TYPE_P (type
))
510 /* EXPOSED_PARAMETERs are only structs or unions are passed by
511 value. Anything passed by reference to an external
512 function fully exposes the type. */
513 mark_type (type
, FULL_ESCAPE
);
515 mark_type (type
, escape_status
);
519 /* Return true if PARENT is supertype of CHILD. Both types must be
520 known to be structures or unions. */
523 parent_type_p (tree parent
, tree child
)
526 tree binfo
, base_binfo
;
527 if (TYPE_BINFO (parent
))
528 for (binfo
= TYPE_BINFO (parent
), i
= 0;
529 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
531 tree binfotype
= BINFO_TYPE (base_binfo
);
532 if (binfotype
== child
)
534 else if (parent_type_p (binfotype
, child
))
537 if (TREE_CODE (parent
) == UNION_TYPE
538 || TREE_CODE (parent
) == QUAL_UNION_TYPE
)
541 /* Search all of the variants in the union to see if one of them
543 for (field
= TYPE_FIELDS (parent
);
545 field
= TREE_CHAIN (field
))
548 if (TREE_CODE (field
) != FIELD_DECL
)
551 field_type
= TREE_TYPE (field
);
552 if (field_type
== child
)
556 /* If we did not find it, recursively ask the variants if one of
557 their children is the child type. */
558 for (field
= TYPE_FIELDS (parent
);
560 field
= TREE_CHAIN (field
))
563 if (TREE_CODE (field
) != FIELD_DECL
)
566 field_type
= TREE_TYPE (field
);
567 if (TREE_CODE (field_type
) == RECORD_TYPE
568 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
569 || TREE_CODE (field_type
) == UNION_TYPE
)
570 if (parent_type_p (field_type
, child
))
575 if (TREE_CODE (parent
) == RECORD_TYPE
)
578 for (field
= TYPE_FIELDS (parent
);
580 field
= TREE_CHAIN (field
))
583 if (TREE_CODE (field
) != FIELD_DECL
)
586 field_type
= TREE_TYPE (field
);
587 if (field_type
== child
)
589 /* You can only cast to the first field so if it does not
591 if (TREE_CODE (field_type
) == RECORD_TYPE
592 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
593 || TREE_CODE (field_type
) == UNION_TYPE
)
595 if (parent_type_p (field_type
, child
))
605 /* Return the number of pointer tos for TYPE and return TYPE with all
606 of these stripped off. */
609 count_stars (tree
* type_ptr
)
611 tree type
= *type_ptr
;
613 type
= TYPE_MAIN_VARIANT (type
);
614 while (POINTER_TYPE_P (type
))
616 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
631 /* Check the cast FROM_TYPE to TO_TYPE. This function requires that
632 the two types have already passed the
633 ipa_type_escape_star_count_of_interesting_type test. */
635 static enum cast_type
636 check_cast_type (tree to_type
, tree from_type
)
638 int to_stars
= count_stars (&to_type
);
639 int from_stars
= count_stars (&from_type
);
640 if (to_stars
!= from_stars
)
643 if (to_type
== from_type
)
646 if (parent_type_p (to_type
, from_type
)) return CT_UP
;
647 if (parent_type_p (from_type
, to_type
)) return CT_DOWN
;
651 /* Check a cast FROM this variable, TO_TYPE. Mark the escaping types
654 check_cast (tree to_type
, tree from
)
656 tree from_type
= get_canon_type (TREE_TYPE (from
), false, false);
657 bool to_interesting_type
, from_interesting_type
;
659 to_type
= get_canon_type (to_type
, false, false);
660 if (!from_type
|| !to_type
|| from_type
== to_type
)
663 to_interesting_type
=
664 ipa_type_escape_star_count_of_interesting_type (to_type
) >= 0;
665 from_interesting_type
=
666 ipa_type_escape_star_count_of_interesting_type (from_type
) >= 0;
668 if (to_interesting_type
)
669 if (from_interesting_type
)
671 /* Both types are interesting. This can be one of four types
672 of cast: useless, up, down, or sideways. We do not care
673 about up or useless. Sideways casts are always bad and
674 both sides get marked as escaping. Downcasts are not
675 interesting here because if type is marked as escaping, all
676 of its subtypes escape. */
677 switch (check_cast_type (to_type
, from_type
))
685 mark_type (to_type
, FULL_ESCAPE
);
686 mark_type (from_type
, FULL_ESCAPE
);
692 /* If this is a cast from the local that is a result from a
693 call to malloc, do not mark the cast as bad. */
694 if (DECL_P (from
) && !bitmap_bit_p (results_of_malloc
, DECL_UID (from
)))
695 mark_type (to_type
, FULL_ESCAPE
);
697 else if (from_interesting_type
)
698 mark_type (from_type
, FULL_ESCAPE
);
701 /* Register the parameter and return types of function FN. The type
702 ESCAPES if the function is visible outside of the compilation
705 check_function_parameter_and_return_types (tree fn
, bool escapes
)
709 if (TYPE_ARG_TYPES (TREE_TYPE (fn
)))
711 for (arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
712 arg
&& TREE_VALUE (arg
) != void_type_node
;
713 arg
= TREE_CHAIN (arg
))
715 tree type
= get_canon_type (TREE_VALUE (arg
), false, false);
717 mark_interesting_type (type
, EXPOSED_PARAMETER
);
722 /* FIXME - According to Geoff Keating, we should never have to
723 do this; the front ends should always process the arg list
724 from the TYPE_ARG_LIST. However, Geoff is wrong, this code
725 does seem to be live. */
727 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
729 tree type
= get_canon_type (TREE_TYPE (arg
), false, false);
731 mark_interesting_type (type
, EXPOSED_PARAMETER
);
736 tree type
= get_canon_type (TREE_TYPE (TREE_TYPE (fn
)), false, false);
737 mark_interesting_type (type
, EXPOSED_PARAMETER
);
741 /* Return true if the variable T is the right kind of static variable to
742 perform compilation unit scope escape analysis. */
745 has_proper_scope_for_analysis (tree t
)
747 /* If the variable has the "used" attribute, treat it as if it had a
748 been touched by the devil. */
749 tree type
= get_canon_type (TREE_TYPE (t
), false, false);
752 if (lookup_attribute ("used", DECL_ATTRIBUTES (t
)))
754 mark_interesting_type (type
, FULL_ESCAPE
);
758 /* Do not want to do anything with volatile except mark any
759 function that uses one to be not const or pure. */
760 if (TREE_THIS_VOLATILE (t
))
763 /* Do not care about a local automatic that is not static. */
764 if (!TREE_STATIC (t
) && !DECL_EXTERNAL (t
))
767 if (DECL_EXTERNAL (t
) || TREE_PUBLIC (t
))
769 /* If the front end set the variable to be READONLY and
770 constant, we can allow this variable in pure or const
771 functions but the scope is too large for our analysis to set
772 these bits ourselves. */
774 if (TREE_READONLY (t
)
776 && is_gimple_min_invariant (DECL_INITIAL (t
)))
777 ; /* Read of a constant, do not change the function state. */
780 /* The type escapes for all public and externs. */
781 mark_interesting_type (type
, FULL_ESCAPE
);
786 /* If T is a VAR_DECL for a static that we are interested in, add the
787 uid to the bitmap. */
790 check_operand (tree t
)
794 /* This is an assignment from a function, register the types as
796 if (TREE_CODE (t
) == FUNCTION_DECL
)
797 check_function_parameter_and_return_types (t
, true);
799 else if (TREE_CODE (t
) == VAR_DECL
)
800 has_proper_scope_for_analysis (t
);
803 /* Examine tree T for references. */
808 if ((TREE_CODE (t
) == EXC_PTR_EXPR
) || (TREE_CODE (t
) == FILTER_EXPR
))
811 while (TREE_CODE (t
) == REALPART_EXPR
812 || TREE_CODE (t
) == IMAGPART_EXPR
813 || handled_component_p (t
))
815 if (TREE_CODE (t
) == ARRAY_REF
)
816 check_operand (TREE_OPERAND (t
, 1));
817 t
= TREE_OPERAND (t
, 0);
820 if (INDIRECT_REF_P (t
))
821 /* || TREE_CODE (t) == MEM_REF) */
822 check_tree (TREE_OPERAND (t
, 0));
824 if (SSA_VAR_P (t
) || (TREE_CODE (t
) == FUNCTION_DECL
))
828 /* Create an address_of edge FROM_TYPE.TO_TYPE. */
830 mark_interesting_addressof (tree to_type
, tree from_type
)
835 splay_tree_node result
;
837 from_type
= get_canon_type (from_type
, false, false);
838 to_type
= get_canon_type (to_type
, false, false);
840 if (!from_type
|| !to_type
)
843 from_uid
= TYPE_UID (from_type
);
844 to_uid
= TYPE_UID (to_type
);
846 gcc_assert (ipa_type_escape_star_count_of_interesting_type (from_type
) == 0);
848 /* Process the Y into X map pointer. */
849 result
= splay_tree_lookup (uid_to_addressof_down_map
,
850 (splay_tree_key
) from_uid
);
853 type_map
= (bitmap
) result
->value
;
856 type_map
= BITMAP_ALLOC (&ipa_obstack
);
857 splay_tree_insert (uid_to_addressof_down_map
,
859 (splay_tree_value
)type_map
);
861 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
863 /* Process the X into Y reverse map pointer. */
865 splay_tree_lookup (uid_to_addressof_up_map
, (splay_tree_key
) to_uid
);
868 type_map
= (bitmap
) result
->value
;
871 type_map
= BITMAP_ALLOC (&ipa_obstack
);
872 splay_tree_insert (uid_to_addressof_up_map
,
874 (splay_tree_value
)type_map
);
876 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
879 /* Scan tree T to see if there are any addresses taken in within T. */
882 look_for_address_of (tree t
)
884 if (TREE_CODE (t
) == ADDR_EXPR
)
886 tree x
= get_base_var (t
);
887 tree cref
= TREE_OPERAND (t
, 0);
889 /* If we have an expression of the form "&a.b.c.d", mark a.b,
890 b.c and c.d. as having its address taken. */
891 tree fielddecl
= NULL_TREE
;
894 if (TREE_CODE (cref
) == COMPONENT_REF
)
896 fielddecl
= TREE_OPERAND (cref
, 1);
897 mark_interesting_addressof (TREE_TYPE (fielddecl
),
898 DECL_FIELD_CONTEXT (fielddecl
));
900 else if (TREE_CODE (cref
) == ARRAY_REF
)
901 get_canon_type (TREE_TYPE (cref
), false, false);
903 cref
= TREE_OPERAND (cref
, 0);
906 if (TREE_CODE (x
) == VAR_DECL
)
907 has_proper_scope_for_analysis (x
);
912 /* Scan tree T to see if there are any casts within it.
913 LHS Is the LHS of the expression involving the cast. */
916 look_for_casts (tree lhs
__attribute__((unused
)), tree t
)
918 if (is_gimple_cast (t
) || TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
920 tree castfromvar
= TREE_OPERAND (t
, 0);
921 check_cast (TREE_TYPE (t
), castfromvar
);
923 else if (TREE_CODE (t
) == COMPONENT_REF
924 || TREE_CODE (t
) == INDIRECT_REF
925 || TREE_CODE (t
) == BIT_FIELD_REF
)
927 tree base
= get_base_address (t
);
930 t
= TREE_OPERAND (t
, 0);
931 if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
933 /* This may be some part of a component ref.
934 IE it may be a.b.VIEW_CONVERT_EXPR<weird_type>(c).d, AFAIK.
935 castfromref will give you a.b.c, not a. */
936 tree castfromref
= TREE_OPERAND (t
, 0);
937 check_cast (TREE_TYPE (t
), castfromref
);
939 else if (TREE_CODE (t
) == COMPONENT_REF
)
940 get_canon_type (TREE_TYPE (TREE_OPERAND (t
, 1)), false, false);
945 /* Check to see if T is a read or address of operation on a static var
946 we are interested in analyzing. */
949 check_rhs_var (tree t
)
951 look_for_address_of (t
);
955 /* Check to see if T is an assignment to a static var we are
956 interested in analyzing. */
959 check_lhs_var (tree t
)
964 /* This is a scaled down version of get_asm_expr_operands from
965 tree_ssa_operands.c. The version there runs much later and assumes
966 that aliasing information is already available. Here we are just
967 trying to find if the set of inputs and outputs contain references
968 or address of operations to local. FN is the function being
969 analyzed and STMT is the actual asm statement. */
972 get_asm_expr_operands (tree stmt
)
974 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
975 const char **oconstraints
976 = (const char **) alloca ((noutputs
) * sizeof (const char *));
979 const char *constraint
;
980 bool allows_mem
, allows_reg
, is_inout
;
982 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
984 oconstraints
[i
] = constraint
985 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
986 parse_output_constraint (&constraint
, i
, 0, 0,
987 &allows_mem
, &allows_reg
, &is_inout
);
989 check_lhs_var (TREE_VALUE (link
));
992 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
995 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
996 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
997 oconstraints
, &allows_mem
, &allows_reg
);
999 check_rhs_var (TREE_VALUE (link
));
1002 /* There is no code here to check for asm memory clobbers. The
1003 casual maintainer might think that such code would be necessary,
1004 but that appears to be wrong. In other parts of the compiler,
1005 the asm memory clobbers are assumed to only clobber variables
1006 that are addressable. All types with addressable instances are
1007 assumed to already escape. So, we are protected here. */
1010 /* Check the parameters of a function call to CALL_EXPR to mark the
1011 types that pass across the function boundary. Also check to see if
1012 this is either an indirect call, a call outside the compilation
1016 check_call (tree call_expr
)
1018 int flags
= call_expr_flags(call_expr
);
1019 tree operand_list
= TREE_OPERAND (call_expr
, 1);
1021 tree callee_t
= get_callee_fndecl (call_expr
);
1023 struct cgraph_node
* callee
;
1024 enum availability avail
= AVAIL_NOT_AVAILABLE
;
1026 for (operand
= operand_list
;
1027 operand
!= NULL_TREE
;
1028 operand
= TREE_CHAIN (operand
))
1030 tree argument
= TREE_VALUE (operand
);
1031 check_rhs_var (argument
);
1037 tree last_arg_type
= NULL
;
1038 callee
= cgraph_node(callee_t
);
1039 avail
= cgraph_function_body_availability (callee
);
1041 /* Check that there are no implicit casts in the passing of
1043 if (TYPE_ARG_TYPES (TREE_TYPE (callee_t
)))
1045 operand
= operand_list
;
1046 for (arg_type
= TYPE_ARG_TYPES (TREE_TYPE (callee_t
));
1047 arg_type
&& TREE_VALUE (arg_type
) != void_type_node
;
1048 arg_type
= TREE_CHAIN (arg_type
))
1052 argument
= TREE_VALUE (operand
);
1053 last_arg_type
= TREE_VALUE(arg_type
);
1054 check_cast (last_arg_type
, argument
);
1055 operand
= TREE_CHAIN (operand
);
1058 /* The code reaches here for some unfortunate
1059 builtin functions that do not have a list of
1066 /* FIXME - According to Geoff Keating, we should never
1067 have to do this; the front ends should always process
1068 the arg list from the TYPE_ARG_LIST. */
1069 operand
= operand_list
;
1070 for (arg_type
= DECL_ARGUMENTS (callee_t
);
1072 arg_type
= TREE_CHAIN (arg_type
))
1076 argument
= TREE_VALUE (operand
);
1077 last_arg_type
= TREE_TYPE(arg_type
);
1078 check_cast (last_arg_type
, argument
);
1079 operand
= TREE_CHAIN (operand
);
1082 /* The code reaches here for some unfortunate
1083 builtin functions that do not have a list of
1089 /* In the case where we have a var_args function, we need to
1090 check the remaining parameters against the last argument. */
1091 arg_type
= last_arg_type
;
1093 operand
!= NULL_TREE
;
1094 operand
= TREE_CHAIN (operand
))
1096 argument
= TREE_VALUE (operand
);
1098 check_cast (arg_type
, argument
);
1101 /* The code reaches here for some unfortunate
1102 builtin functions that do not have a list of
1103 argument types. Most of these functions have
1104 been marked as having their parameters not
1105 escape, but for the rest, the type is doomed. */
1106 tree type
= get_canon_type (TREE_TYPE (argument
), false, false);
1107 mark_interesting_type (type
, FULL_ESCAPE
);
1112 /* The callee is either unknown (indirect call) or there is just no
1113 scannable code for it (external call) . We look to see if there
1114 are any bits available for the callee (such as by declaration or
1115 because it is builtin) and process solely on the basis of those
1118 if (avail
== AVAIL_NOT_AVAILABLE
|| avail
== AVAIL_OVERWRITABLE
)
1120 /* If this is a direct call to an external function, mark all of
1121 the parameter and return types. */
1122 for (operand
= operand_list
;
1123 operand
!= NULL_TREE
;
1124 operand
= TREE_CHAIN (operand
))
1127 get_canon_type (TREE_TYPE (TREE_VALUE (operand
)), false, false);
1128 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1134 get_canon_type (TREE_TYPE (TREE_TYPE (callee_t
)), false, false);
1135 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1138 return (flags
& ECF_MALLOC
);
1141 /* CODE is the operation on OP0 and OP1. OP0 is the operand that we
1142 *know* is a pointer type. OP1 may be a pointer type. */
1144 okay_pointer_operation (enum tree_code code
, tree op0
, tree op1
)
1146 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
1147 tree op1type
= TYPE_MAIN_VARIANT (TREE_TYPE (op1
));
1148 if (POINTER_TYPE_P (op1type
))
1155 /* TODO: Handle multiples of op0 size as well */
1156 if (operand_equal_p (size_in_bytes (op0type
), op1
, 0))
1166 /* TP is the part of the tree currently under the microscope.
1167 WALK_SUBTREES is part of the walk_tree api but is unused here.
1168 DATA is cgraph_node of the function being walked. */
1170 /* FIXME: When this is converted to run over SSA form, this code
1171 should be converted to use the operand scanner. */
1174 scan_for_refs (tree
*tp
, int *walk_subtrees
, void *data
)
1176 struct cgraph_node
*fn
= data
;
1179 switch (TREE_CODE (t
))
1182 if (DECL_INITIAL (t
))
1183 walk_tree (&DECL_INITIAL (t
), scan_for_refs
, fn
, visited_nodes
);
1189 /* First look on the lhs and see what variable is stored to */
1190 tree lhs
= TREE_OPERAND (t
, 0);
1191 tree rhs
= TREE_OPERAND (t
, 1);
1193 check_lhs_var (lhs
);
1194 check_cast (TREE_TYPE (lhs
), rhs
);
1196 /* For the purposes of figuring out what the cast affects */
1198 /* Next check the operands on the rhs to see if they are ok. */
1199 switch (TREE_CODE_CLASS (TREE_CODE (rhs
)))
1203 tree op0
= TREE_OPERAND (rhs
, 0);
1204 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1205 tree op1
= TREE_OPERAND (rhs
, 1);
1206 tree type1
= get_canon_type (TREE_TYPE (op1
), false, false);
1208 /* If this is pointer arithmetic of any bad sort, then
1209 we need to mark the types as bad. For binary
1210 operations, no binary operator we currently support
1211 is always "safe" in regard to what it would do to
1212 pointers for purposes of determining which types
1213 escape, except operations of the size of the type.
1214 It is possible that min and max under the right set
1215 of circumstances and if the moon is in the correct
1216 place could be safe, but it is hard to see how this
1217 is worth the effort. */
1219 if (type0
&& POINTER_TYPE_P (type0
)
1220 && !okay_pointer_operation (TREE_CODE (rhs
), op0
, op1
))
1221 mark_interesting_type (type0
, FULL_ESCAPE
);
1222 if (type1
&& POINTER_TYPE_P (type1
)
1223 && !okay_pointer_operation (TREE_CODE (rhs
), op1
, op0
))
1224 mark_interesting_type (type1
, FULL_ESCAPE
);
1226 look_for_casts (lhs
, op0
);
1227 look_for_casts (lhs
, op1
);
1228 check_rhs_var (op0
);
1229 check_rhs_var (op1
);
1234 tree op0
= TREE_OPERAND (rhs
, 0);
1235 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1236 /* For unary operations, if the operation is NEGATE or
1237 ABS on a pointer, this is also considered pointer
1238 arithmetic and thus, bad for business. */
1239 if (type0
&& (TREE_CODE (op0
) == NEGATE_EXPR
1240 || TREE_CODE (op0
) == ABS_EXPR
)
1241 && POINTER_TYPE_P (type0
))
1243 mark_interesting_type (type0
, FULL_ESCAPE
);
1245 check_rhs_var (op0
);
1246 look_for_casts (lhs
, op0
);
1247 look_for_casts (lhs
, rhs
);
1252 look_for_casts (lhs
, rhs
);
1253 check_rhs_var (rhs
);
1255 case tcc_declaration
:
1256 check_rhs_var (rhs
);
1258 case tcc_expression
:
1259 switch (TREE_CODE (rhs
))
1262 look_for_casts (lhs
, TREE_OPERAND (rhs
, 0));
1263 check_rhs_var (rhs
);
1266 /* If this is a call to malloc, squirrel away the
1267 result so we do mark the resulting cast as being
1269 if (check_call (rhs
))
1270 bitmap_set_bit (results_of_malloc
, DECL_UID (lhs
));
1284 /* This case is here to find addresses on rhs of constructors in
1285 decl_initial of static variables. */
1296 get_asm_expr_operands (t
);
1307 /* The init routine for analyzing global static variable usage. See
1308 comments at top for description. */
1312 bitmap_obstack_initialize (&ipa_obstack
);
1313 global_types_exposed_parameter
= BITMAP_ALLOC (&ipa_obstack
);
1314 global_types_full_escape
= BITMAP_ALLOC (&ipa_obstack
);
1315 global_types_seen
= BITMAP_ALLOC (&ipa_obstack
);
1316 results_of_malloc
= BITMAP_ALLOC (&ipa_obstack
);
1318 uid_to_canon_type
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1319 all_canon_types
= splay_tree_new (compare_type_brand
, 0, 0);
1320 type_to_canon_type
= splay_tree_new (splay_tree_compare_pointers
, 0, 0);
1321 uid_to_subtype_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1322 uid_to_addressof_down_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1323 uid_to_addressof_up_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1325 /* There are some shared nodes, in particular the initializers on
1326 static declarations. We do not need to scan them more than once
1327 since all we would be interested in are the addressof
1329 visited_nodes
= pointer_set_create ();
1333 /* Check out the rhs of a static or global initialization VNODE to see
1334 if any of them contain addressof operations. Note that some of
1335 these variables may not even be referenced in the code in this
1336 compilation unit but their right hand sides may contain references
1337 to variables defined within this unit. */
1340 analyze_variable (struct cgraph_varpool_node
*vnode
)
1342 tree global
= vnode
->decl
;
1343 tree type
= get_canon_type (TREE_TYPE (global
), false, false);
1345 /* If this variable has exposure beyond the compilation unit, add
1346 its type to the global types. */
1348 if (vnode
->externally_visible
)
1349 mark_interesting_type (type
, FULL_ESCAPE
);
1351 gcc_assert (TREE_CODE (global
) == VAR_DECL
);
1353 if (DECL_INITIAL (global
))
1354 walk_tree (&DECL_INITIAL (global
), scan_for_refs
, NULL
, visited_nodes
);
1357 /* This is the main routine for finding the reference patterns for
1358 global variables within a function FN. */
1361 analyze_function (struct cgraph_node
*fn
)
1363 tree decl
= fn
->decl
;
1364 check_function_parameter_and_return_types (decl
,
1365 fn
->local
.externally_visible
);
1367 fprintf (dump_file
, "\n local analysis of %s", cgraph_node_name (fn
));
1370 struct function
*this_cfun
= DECL_STRUCT_FUNCTION (decl
);
1371 basic_block this_block
;
1373 FOR_EACH_BB_FN (this_block
, this_cfun
)
1375 block_stmt_iterator bsi
;
1376 for (bsi
= bsi_start (this_block
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1377 walk_tree (bsi_stmt_ptr (bsi
), scan_for_refs
,
1382 /* There may be const decls with interesting right hand sides. */
1383 if (DECL_STRUCT_FUNCTION (decl
))
1386 for (step
= DECL_STRUCT_FUNCTION (decl
)->unexpanded_var_list
;
1388 step
= TREE_CHAIN (step
))
1390 tree var
= TREE_VALUE (step
);
1391 if (TREE_CODE (var
) == VAR_DECL
1392 && DECL_INITIAL (var
)
1393 && !TREE_STATIC (var
))
1394 walk_tree (&DECL_INITIAL (var
), scan_for_refs
,
1396 get_canon_type (TREE_TYPE (var
), false, false);
1403 /* Convert a type_UID into a type. */
1405 type_for_uid (int uid
)
1407 splay_tree_node result
=
1408 splay_tree_lookup (uid_to_canon_type
, (splay_tree_key
) uid
);
1411 return (tree
) result
->value
;
1415 /* Return the a bitmap with the subtypes of the type for UID. If it
1416 does not exist, return either NULL or a new bitmap depending on the
1420 subtype_map_for_uid (int uid
, bool create
)
1422 splay_tree_node result
= splay_tree_lookup (uid_to_subtype_map
,
1423 (splay_tree_key
) uid
);
1426 return (bitmap
) result
->value
;
1429 bitmap subtype_map
= BITMAP_ALLOC (&ipa_obstack
);
1430 splay_tree_insert (uid_to_subtype_map
,
1432 (splay_tree_value
)subtype_map
);
1438 /* Mark all of the supertypes and field types of TYPE as being seen.
1439 Also accumulate the subtypes for each type so that
1440 close_types_full_escape can mark a subtype as escaping if the
1441 supertype escapes. */
1444 close_type_seen (tree type
)
1448 tree binfo
, base_binfo
;
1450 /* See thru all pointer tos and array ofs. */
1451 type
= get_canon_type (type
, true, true);
1455 uid
= TYPE_UID (type
);
1457 if (bitmap_bit_p (been_there_done_that
, uid
))
1459 bitmap_set_bit (been_there_done_that
, uid
);
1461 /* If we are doing a language with a type hierarchy, mark all of
1462 the superclasses. */
1463 if (TYPE_BINFO (type
))
1464 for (binfo
= TYPE_BINFO (type
), i
= 0;
1465 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1467 tree binfo_type
= BINFO_TYPE (base_binfo
);
1468 bitmap subtype_map
= subtype_map_for_uid
1469 (TYPE_UID (TYPE_MAIN_VARIANT (binfo_type
)), true);
1470 bitmap_set_bit (subtype_map
, uid
);
1471 close_type_seen (get_canon_type (binfo_type
, true, true));
1474 /* If the field is a struct or union type, mark all of the
1476 for (field
= TYPE_FIELDS (type
);
1478 field
= TREE_CHAIN (field
))
1481 if (TREE_CODE (field
) != FIELD_DECL
)
1484 field_type
= TREE_TYPE (field
);
1485 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1486 close_type_seen (get_canon_type (field_type
, true, true));
1490 /* Take a TYPE that has been passed by value to an external function
1491 and mark all of the fields that have pointer types as escaping. For
1492 any of the non pointer types that are structures or unions,
1493 recurse. TYPE is never a pointer type. */
1496 close_type_exposed_parameter (tree type
)
1501 type
= get_canon_type (type
, false, false);
1504 uid
= TYPE_UID (type
);
1505 gcc_assert (!POINTER_TYPE_P (type
));
1507 if (bitmap_bit_p (been_there_done_that
, uid
))
1509 bitmap_set_bit (been_there_done_that
, uid
);
1511 /* If the field is a struct or union type, mark all of the
1513 for (field
= TYPE_FIELDS (type
);
1515 field
= TREE_CHAIN (field
))
1519 if (TREE_CODE (field
) != FIELD_DECL
)
1522 field_type
= get_canon_type (TREE_TYPE (field
), false, false);
1523 mark_interesting_type (field_type
, EXPOSED_PARAMETER
);
1525 /* Only recurse for non pointer types of structures and unions. */
1526 if (ipa_type_escape_star_count_of_interesting_type (field_type
) == 0)
1527 close_type_exposed_parameter (field_type
);
1531 /* The next function handles the case where a type fully escapes.
1532 This means that not only does the type itself escape,
1534 a) the type of every field recursively escapes
1535 b) the type of every subtype escapes as well as the super as well
1536 as all of the pointer to types for each field.
1538 Note that pointer to types are not marked as escaping. If the
1539 pointed to type escapes, the pointer to type also escapes.
1541 Take a TYPE that has had the address taken for an instance of it
1542 and mark all of the types for its fields as having their addresses
1546 close_type_full_escape (tree type
)
1551 tree binfo
, base_binfo
;
1554 splay_tree_node address_result
;
1556 /* Strip off any pointer or array types. */
1557 type
= get_canon_type (type
, true, true);
1560 uid
= TYPE_UID (type
);
1562 if (bitmap_bit_p (been_there_done_that
, uid
))
1564 bitmap_set_bit (been_there_done_that
, uid
);
1566 subtype_map
= subtype_map_for_uid (uid
, false);
1568 /* If we are doing a language with a type hierarchy, mark all of
1569 the superclasses. */
1570 if (TYPE_BINFO (type
))
1571 for (binfo
= TYPE_BINFO (type
), i
= 0;
1572 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1574 tree binfotype
= BINFO_TYPE (base_binfo
);
1575 binfotype
= mark_type (binfotype
, FULL_ESCAPE
);
1576 close_type_full_escape (binfotype
);
1579 /* Mark as escaped any types that have been down casted to
1582 EXECUTE_IF_SET_IN_BITMAP (subtype_map
, 0, i
, bi
)
1584 tree subtype
= type_for_uid (i
);
1585 subtype
= mark_type (subtype
, FULL_ESCAPE
);
1586 close_type_full_escape (subtype
);
1589 /* If the field is a struct or union type, mark all of the
1591 for (field
= TYPE_FIELDS (type
);
1593 field
= TREE_CHAIN (field
))
1596 if (TREE_CODE (field
) != FIELD_DECL
)
1599 field_type
= TREE_TYPE (field
);
1600 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1602 field_type
= mark_type (field_type
, FULL_ESCAPE
);
1603 close_type_full_escape (field_type
);
1607 /* For all of the types A that contain this type B and were part of
1608 an expression like "&...A.B...", mark the A's as escaping. */
1609 address_result
= splay_tree_lookup (uid_to_addressof_up_map
,
1610 (splay_tree_key
) uid
);
1613 bitmap containing_classes
= (bitmap
) address_result
->value
;
1614 EXECUTE_IF_SET_IN_BITMAP (containing_classes
, 0, i
, bi
)
1616 close_type_full_escape (type_for_uid (i
));
1621 /* Transitively close the addressof bitmap for the type with UID.
1622 This means that if we had a.b and b.c, a would have both b and c in
1626 close_addressof_down (int uid
)
1629 splay_tree_node result
=
1630 splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1636 map
= (bitmap
) result
->value
;
1640 if (bitmap_bit_p (been_there_done_that
, uid
))
1642 bitmap_set_bit (been_there_done_that
, uid
);
1644 /* If the type escapes, get rid of the addressof map, it will not be
1646 if (bitmap_bit_p (global_types_full_escape
, uid
))
1649 splay_tree_remove (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1653 /* The new_map will have all of the bits for the enclosed fields and
1654 will have the unique id version of the old map. */
1655 new_map
= BITMAP_ALLOC (&ipa_obstack
);
1657 EXECUTE_IF_SET_IN_BITMAP (map
, 0, i
, bi
)
1659 bitmap submap
= close_addressof_down (i
);
1660 bitmap_set_bit (new_map
, i
);
1662 bitmap_ior_into (new_map
, submap
);
1664 result
->value
= (splay_tree_value
) new_map
;
1671 /* The main entry point for type escape analysis. */
1674 type_escape_execute (void)
1676 struct cgraph_node
*node
;
1677 struct cgraph_varpool_node
*vnode
;
1680 splay_tree_node result
;
1684 /* Process all of the variables first. */
1685 for (vnode
= cgraph_varpool_nodes_queue
; vnode
; vnode
= vnode
->next_needed
)
1686 analyze_variable (vnode
);
1688 /* Process all of the functions. next
1690 We do not want to process any of the clones so we check that this
1691 is a master clone. However, we do need to process any
1692 AVAIL_OVERWRITABLE functions (these are never clones) because
1693 they may cause a type variable to escape.
1695 for (node
= cgraph_nodes
; node
; node
= node
->next
)
1697 && (cgraph_is_master_clone (node
)
1698 || (cgraph_function_body_availability (node
) == AVAIL_OVERWRITABLE
)))
1699 analyze_function (node
);
1702 pointer_set_destroy (visited_nodes
);
1703 visited_nodes
= NULL
;
1705 /* Do all of the closures to discover which types escape the
1706 compilation unit. */
1708 been_there_done_that
= BITMAP_ALLOC (&ipa_obstack
);
1709 bitmap_tmp
= BITMAP_ALLOC (&ipa_obstack
);
1711 /* Examine the types that we have directly seen in scanning the code
1712 and add to that any contained types or superclasses. */
1714 bitmap_copy (bitmap_tmp
, global_types_seen
);
1715 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1717 tree type
= type_for_uid (i
);
1718 /* Only look at records and unions and pointer tos. */
1719 if (ipa_type_escape_star_count_of_interesting_or_array_type (type
) >= 0)
1720 close_type_seen (type
);
1722 bitmap_clear (been_there_done_that
);
1724 /* Examine all of the types passed by value and mark any enclosed
1725 pointer types as escaping. */
1726 bitmap_copy (bitmap_tmp
, global_types_exposed_parameter
);
1727 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1729 close_type_exposed_parameter (type_for_uid (i
));
1731 bitmap_clear (been_there_done_that
);
1733 /* Close the types for escape. If something escapes, then any
1734 enclosed types escape as well as any subtypes. */
1735 bitmap_copy (bitmap_tmp
, global_types_full_escape
);
1736 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1738 close_type_full_escape (type_for_uid (i
));
1740 bitmap_clear (been_there_done_that
);
1742 /* Before this pass, the uid_to_addressof_down_map for type X
1743 contained an entry for Y if there had been an operation of the
1744 form &X.Y. This step adds all of the fields contained within Y
1745 (recursively) to X's map. */
1747 result
= splay_tree_min (uid_to_addressof_down_map
);
1750 int uid
= result
->key
;
1751 /* Close the addressof map, i.e. copy all of the transitive
1752 substructures up to this level. */
1753 close_addressof_down (uid
);
1754 result
= splay_tree_successor (uid_to_addressof_down_map
, uid
);
1757 /* Do not need the array types and pointer types in the persistent
1759 result
= splay_tree_min (all_canon_types
);
1762 tree type
= (tree
) result
->value
;
1763 tree key
= (tree
) result
->key
;
1764 if (POINTER_TYPE_P (type
)
1765 || TREE_CODE (type
) == ARRAY_TYPE
)
1767 splay_tree_remove (all_canon_types
, (splay_tree_key
) result
->key
);
1768 splay_tree_remove (type_to_canon_type
, (splay_tree_key
) type
);
1769 splay_tree_remove (uid_to_canon_type
, (splay_tree_key
) TYPE_UID (type
));
1770 bitmap_clear_bit (global_types_seen
, TYPE_UID (type
));
1772 result
= splay_tree_successor (all_canon_types
, (splay_tree_key
) key
);
1777 EXECUTE_IF_SET_IN_BITMAP (global_types_seen
, 0, i
, bi
)
1779 /* The pointer types are in the global_types_full_escape
1780 bitmap but not in the backwards map. They also contain
1781 no useful information since they are not marked. */
1782 tree type
= type_for_uid (i
);
1783 fprintf(dump_file
, "type %d ", i
);
1784 print_generic_expr (dump_file
, type
, 0);
1785 if (bitmap_bit_p (global_types_full_escape
, i
))
1786 fprintf(dump_file
, " escaped\n");
1788 fprintf(dump_file
, " contained\n");
1792 /* Get rid of uid_to_addressof_up_map and its bitmaps. */
1793 result
= splay_tree_min (uid_to_addressof_up_map
);
1796 int uid
= (int)result
->key
;
1797 bitmap bm
= (bitmap
)result
->value
;
1800 splay_tree_remove (uid_to_addressof_up_map
, (splay_tree_key
) uid
);
1801 result
= splay_tree_successor (uid_to_addressof_up_map
, uid
);
1804 /* Get rid of the subtype map. */
1805 result
= splay_tree_min (uid_to_subtype_map
);
1808 bitmap b
= (bitmap
)result
->value
;
1810 splay_tree_remove (uid_to_subtype_map
, result
->key
);
1811 result
= splay_tree_min (uid_to_subtype_map
);
1813 splay_tree_delete (uid_to_subtype_map
);
1814 uid_to_subtype_map
= NULL
;
1816 BITMAP_FREE (global_types_exposed_parameter
);
1817 BITMAP_FREE (been_there_done_that
);
1818 BITMAP_FREE (bitmap_tmp
);
1819 BITMAP_FREE (results_of_malloc
);
1824 gate_type_escape_vars (void)
1826 return (flag_unit_at_a_time
!= 0 && flag_ipa_type_escape
1827 /* Don't bother doing anything if the program has errors. */
1828 && !(errorcount
|| sorrycount
));
1831 struct tree_opt_pass pass_ipa_type_escape
=
1833 "type-escape-var", /* name */
1834 gate_type_escape_vars
, /* gate */
1835 type_escape_execute
, /* execute */
1838 0, /* static_pass_number */
1839 TV_IPA_TYPE_ESCAPE
, /* tv_id */
1840 0, /* properties_required */
1841 0, /* properties_provided */
1842 0, /* properties_destroyed */
1843 0, /* todo_flags_start */
1844 0, /* todo_flags_finish */