1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
79 #include "coretypes.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "insn-attr.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts
;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges
;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras
;
118 /* Number of instructions combined in this function. */
120 static int combine_successes
;
122 /* Totals over entire compilation. */
124 static int total_attempts
, total_merges
, total_extras
, total_successes
;
126 /* combine_instructions may try to replace the right hand side of the
127 second instruction with the value of an associated REG_EQUAL note
128 before throwing it at try_combine. That is problematic when there
129 is a REG_DEAD note for a register used in the old right hand side
130 and can cause distribute_notes to do wrong things. This is the
131 second instruction if it has been so modified, null otherwise. */
135 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
137 static rtx i2mod_old_rhs
;
139 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
141 static rtx i2mod_new_rhs
;
143 /* Vector mapping INSN_UIDs to cuids.
144 The cuids are like uids but increase monotonically always.
145 Combine always uses cuids so that it can compare them.
146 But actually renumbering the uids, which we used to do,
147 proves to be a bad idea because it makes it hard to compare
148 the dumps produced by earlier passes with those from later passes. */
150 static int *uid_cuid
;
151 static int max_uid_cuid
;
153 /* Get the cuid of an insn. */
155 #define INSN_CUID(INSN) \
156 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
158 /* Maximum register number, which is the size of the tables below. */
160 static unsigned int combine_max_regno
;
163 /* Record last point of death of (hard or pseudo) register n. */
166 /* Record last point of modification of (hard or pseudo) register n. */
169 /* The next group of fields allows the recording of the last value assigned
170 to (hard or pseudo) register n. We use this information to see if an
171 operation being processed is redundant given a prior operation performed
172 on the register. For example, an `and' with a constant is redundant if
173 all the zero bits are already known to be turned off.
175 We use an approach similar to that used by cse, but change it in the
178 (1) We do not want to reinitialize at each label.
179 (2) It is useful, but not critical, to know the actual value assigned
180 to a register. Often just its form is helpful.
182 Therefore, we maintain the following fields:
184 last_set_value the last value assigned
185 last_set_label records the value of label_tick when the
186 register was assigned
187 last_set_table_tick records the value of label_tick when a
188 value using the register is assigned
189 last_set_invalid set to nonzero when it is not valid
190 to use the value of this register in some
193 To understand the usage of these tables, it is important to understand
194 the distinction between the value in last_set_value being valid and
195 the register being validly contained in some other expression in the
198 (The next two parameters are out of date).
200 reg_stat[i].last_set_value is valid if it is nonzero, and either
201 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
203 Register I may validly appear in any expression returned for the value
204 of another register if reg_n_sets[i] is 1. It may also appear in the
205 value for register J if reg_stat[j].last_set_invalid is zero, or
206 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
208 If an expression is found in the table containing a register which may
209 not validly appear in an expression, the register is replaced by
210 something that won't match, (clobber (const_int 0)). */
212 /* Record last value assigned to (hard or pseudo) register n. */
216 /* Record the value of label_tick when an expression involving register n
217 is placed in last_set_value. */
219 int last_set_table_tick
;
221 /* Record the value of label_tick when the value for register n is placed in
226 /* These fields are maintained in parallel with last_set_value and are
227 used to store the mode in which the register was last set, the bits
228 that were known to be zero when it was last set, and the number of
229 sign bits copies it was known to have when it was last set. */
231 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
232 char last_set_sign_bit_copies
;
233 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
235 /* Set nonzero if references to register n in expressions should not be
236 used. last_set_invalid is set nonzero when this register is being
237 assigned to and last_set_table_tick == label_tick. */
239 char last_set_invalid
;
241 /* Some registers that are set more than once and used in more than one
242 basic block are nevertheless always set in similar ways. For example,
243 a QImode register may be loaded from memory in two places on a machine
244 where byte loads zero extend.
246 We record in the following fields if a register has some leading bits
247 that are always equal to the sign bit, and what we know about the
248 nonzero bits of a register, specifically which bits are known to be
251 If an entry is zero, it means that we don't know anything special. */
253 unsigned char sign_bit_copies
;
255 unsigned HOST_WIDE_INT nonzero_bits
;
257 /* Record the value of the label_tick when the last truncation
258 happened. The field truncated_to_mode is only valid if
259 truncation_label == label_tick. */
261 int truncation_label
;
263 /* Record the last truncation seen for this register. If truncation
264 is not a nop to this mode we might be able to save an explicit
265 truncation if we know that value already contains a truncated
268 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
271 static struct reg_stat
*reg_stat
;
273 /* Record the cuid of the last insn that invalidated memory
274 (anything that writes memory, and subroutine calls, but not pushes). */
276 static int mem_last_set
;
278 /* Record the cuid of the last CALL_INSN
279 so we can tell whether a potential combination crosses any calls. */
281 static int last_call_cuid
;
283 /* When `subst' is called, this is the insn that is being modified
284 (by combining in a previous insn). The PATTERN of this insn
285 is still the old pattern partially modified and it should not be
286 looked at, but this may be used to examine the successors of the insn
287 to judge whether a simplification is valid. */
289 static rtx subst_insn
;
291 /* This is the lowest CUID that `subst' is currently dealing with.
292 get_last_value will not return a value if the register was set at or
293 after this CUID. If not for this mechanism, we could get confused if
294 I2 or I1 in try_combine were an insn that used the old value of a register
295 to obtain a new value. In that case, we might erroneously get the
296 new value of the register when we wanted the old one. */
298 static int subst_low_cuid
;
300 /* This contains any hard registers that are used in newpat; reg_dead_at_p
301 must consider all these registers to be always live. */
303 static HARD_REG_SET newpat_used_regs
;
305 /* This is an insn to which a LOG_LINKS entry has been added. If this
306 insn is the earlier than I2 or I3, combine should rescan starting at
309 static rtx added_links_insn
;
311 /* Basic block in which we are performing combines. */
312 static basic_block this_basic_block
;
314 /* A bitmap indicating which blocks had registers go dead at entry.
315 After combine, we'll need to re-do global life analysis with
316 those blocks as starting points. */
317 static sbitmap refresh_blocks
;
319 /* The following array records the insn_rtx_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost
;
324 /* Length of the currently allocated uid_insn_cost array. */
326 static int last_insn_cost
;
328 /* Incremented for each label. */
330 static int label_tick
;
332 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
333 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
335 static enum machine_mode nonzero_bits_mode
;
337 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
338 be safely used. It is zero while computing them and after combine has
339 completed. This former test prevents propagating values based on
340 previously set values, which can be incorrect if a variable is modified
343 static int nonzero_sign_valid
;
346 /* Record one modification to rtl structure
347 to be undone by storing old_contents into *where. */
352 enum { UNDO_RTX
, UNDO_INT
, UNDO_MODE
} kind
;
353 union { rtx r
; int i
; enum machine_mode m
; } old_contents
;
354 union { rtx
*r
; int *i
; } where
;
357 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
358 num_undo says how many are currently recorded.
360 other_insn is nonzero if we have modified some other insn in the process
361 of working on subst_insn. It must be verified too. */
370 static struct undobuf undobuf
;
372 /* Number of times the pseudo being substituted for
373 was found and replaced. */
375 static int n_occurrences
;
377 static rtx
reg_nonzero_bits_for_combine (rtx
, enum machine_mode
, rtx
,
379 unsigned HOST_WIDE_INT
,
380 unsigned HOST_WIDE_INT
*);
381 static rtx
reg_num_sign_bit_copies_for_combine (rtx
, enum machine_mode
, rtx
,
383 unsigned int, unsigned int *);
384 static void do_SUBST (rtx
*, rtx
);
385 static void do_SUBST_INT (int *, int);
386 static void init_reg_last (void);
387 static void setup_incoming_promotions (void);
388 static void set_nonzero_bits_and_sign_copies (rtx
, rtx
, void *);
389 static int cant_combine_insn_p (rtx
);
390 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
391 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, int, rtx
*);
392 static int contains_muldiv (rtx
);
393 static rtx
try_combine (rtx
, rtx
, rtx
, int *);
394 static void undo_all (void);
395 static void undo_commit (void);
396 static rtx
*find_split_point (rtx
*, rtx
);
397 static rtx
subst (rtx
, rtx
, rtx
, int, int);
398 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int);
399 static rtx
simplify_if_then_else (rtx
);
400 static rtx
simplify_set (rtx
);
401 static rtx
simplify_logical (rtx
);
402 static rtx
expand_compound_operation (rtx
);
403 static rtx
expand_field_assignment (rtx
);
404 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
405 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
406 static rtx
extract_left_shift (rtx
, int);
407 static rtx
make_compound_operation (rtx
, enum rtx_code
);
408 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
409 unsigned HOST_WIDE_INT
*);
410 static rtx
canon_reg_for_combine (rtx
, rtx
);
411 static rtx
force_to_mode (rtx
, enum machine_mode
,
412 unsigned HOST_WIDE_INT
, int);
413 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
414 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
415 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
416 static rtx
make_field_assignment (rtx
);
417 static rtx
apply_distributive_law (rtx
);
418 static rtx
distribute_and_simplify_rtx (rtx
, int);
419 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
420 unsigned HOST_WIDE_INT
);
421 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
422 unsigned HOST_WIDE_INT
);
423 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
424 HOST_WIDE_INT
, enum machine_mode
, int *);
425 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
426 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
428 static int recog_for_combine (rtx
*, rtx
, rtx
*);
429 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
430 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
431 static void update_table_tick (rtx
);
432 static void record_value_for_reg (rtx
, rtx
, rtx
);
433 static void check_conversions (rtx
, rtx
);
434 static void record_dead_and_set_regs_1 (rtx
, rtx
, void *);
435 static void record_dead_and_set_regs (rtx
);
436 static int get_last_value_validate (rtx
*, rtx
, int, int);
437 static rtx
get_last_value (rtx
);
438 static int use_crosses_set_p (rtx
, int);
439 static void reg_dead_at_p_1 (rtx
, rtx
, void *);
440 static int reg_dead_at_p (rtx
, rtx
);
441 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
442 static int reg_bitfield_target_p (rtx
, rtx
);
443 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
444 static void distribute_links (rtx
);
445 static void mark_used_regs_combine (rtx
);
446 static int insn_cuid (rtx
);
447 static void record_promoted_value (rtx
, rtx
);
448 static int unmentioned_reg_p_1 (rtx
*, void *);
449 static bool unmentioned_reg_p (rtx
, rtx
);
450 static void record_truncated_value (rtx
);
451 static bool reg_truncated_to_mode (enum machine_mode
, rtx
);
452 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
455 /* It is not safe to use ordinary gen_lowpart in combine.
456 See comments in gen_lowpart_for_combine. */
457 #undef RTL_HOOKS_GEN_LOWPART
458 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
460 /* Our implementation of gen_lowpart never emits a new pseudo. */
461 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
462 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
464 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
465 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
467 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
468 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
470 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
471 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
473 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
476 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
477 insn. The substitution can be undone by undo_all. If INTO is already
478 set to NEWVAL, do not record this change. Because computing NEWVAL might
479 also call SUBST, we have to compute it before we put anything into
483 do_SUBST (rtx
*into
, rtx newval
)
488 if (oldval
== newval
)
491 /* We'd like to catch as many invalid transformations here as
492 possible. Unfortunately, there are way too many mode changes
493 that are perfectly valid, so we'd waste too much effort for
494 little gain doing the checks here. Focus on catching invalid
495 transformations involving integer constants. */
496 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
497 && GET_CODE (newval
) == CONST_INT
)
499 /* Sanity check that we're replacing oldval with a CONST_INT
500 that is a valid sign-extension for the original mode. */
501 gcc_assert (INTVAL (newval
)
502 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
504 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
505 CONST_INT is not valid, because after the replacement, the
506 original mode would be gone. Unfortunately, we can't tell
507 when do_SUBST is called to replace the operand thereof, so we
508 perform this test on oldval instead, checking whether an
509 invalid replacement took place before we got here. */
510 gcc_assert (!(GET_CODE (oldval
) == SUBREG
511 && GET_CODE (SUBREG_REG (oldval
)) == CONST_INT
));
512 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
513 && GET_CODE (XEXP (oldval
, 0)) == CONST_INT
));
517 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
519 buf
= XNEW (struct undo
);
521 buf
->kind
= UNDO_RTX
;
523 buf
->old_contents
.r
= oldval
;
526 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
529 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
531 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
532 for the value of a HOST_WIDE_INT value (including CONST_INT) is
536 do_SUBST_INT (int *into
, int newval
)
541 if (oldval
== newval
)
545 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
547 buf
= XNEW (struct undo
);
549 buf
->kind
= UNDO_INT
;
551 buf
->old_contents
.i
= oldval
;
554 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
557 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
559 /* Similar to SUBST, but just substitute the mode. This is used when
560 changing the mode of a pseudo-register, so that any other
561 references to the entry in the regno_reg_rtx array will change as
565 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
568 enum machine_mode oldval
= GET_MODE (*into
);
570 if (oldval
== newval
)
574 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
576 buf
= XNEW (struct undo
);
578 buf
->kind
= UNDO_MODE
;
580 buf
->old_contents
.m
= oldval
;
581 PUT_MODE (*into
, newval
);
583 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
586 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
588 /* Subroutine of try_combine. Determine whether the combine replacement
589 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
590 that the original instruction sequence I1, I2 and I3. Note that I1
591 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
592 costs of all instructions can be estimated, and the replacements are
593 more expensive than the original sequence. */
596 combine_validate_cost (rtx i1
, rtx i2
, rtx i3
, rtx newpat
, rtx newi2pat
)
598 int i1_cost
, i2_cost
, i3_cost
;
599 int new_i2_cost
, new_i3_cost
;
600 int old_cost
, new_cost
;
602 /* Lookup the original insn_rtx_costs. */
603 i2_cost
= INSN_UID (i2
) <= last_insn_cost
604 ? uid_insn_cost
[INSN_UID (i2
)] : 0;
605 i3_cost
= INSN_UID (i3
) <= last_insn_cost
606 ? uid_insn_cost
[INSN_UID (i3
)] : 0;
610 i1_cost
= INSN_UID (i1
) <= last_insn_cost
611 ? uid_insn_cost
[INSN_UID (i1
)] : 0;
612 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0)
613 ? i1_cost
+ i2_cost
+ i3_cost
: 0;
617 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
621 /* Calculate the replacement insn_rtx_costs. */
622 new_i3_cost
= insn_rtx_cost (newpat
);
625 new_i2_cost
= insn_rtx_cost (newi2pat
);
626 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
627 ? new_i2_cost
+ new_i3_cost
: 0;
631 new_cost
= new_i3_cost
;
635 if (undobuf
.other_insn
)
637 int old_other_cost
, new_other_cost
;
639 old_other_cost
= (INSN_UID (undobuf
.other_insn
) <= last_insn_cost
640 ? uid_insn_cost
[INSN_UID (undobuf
.other_insn
)] : 0);
641 new_other_cost
= insn_rtx_cost (PATTERN (undobuf
.other_insn
));
642 if (old_other_cost
> 0 && new_other_cost
> 0)
644 old_cost
+= old_other_cost
;
645 new_cost
+= new_other_cost
;
651 /* Disallow this recombination if both new_cost and old_cost are
652 greater than zero, and new_cost is greater than old cost. */
654 && new_cost
> old_cost
)
661 "rejecting combination of insns %d, %d and %d\n",
662 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
663 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
664 i1_cost
, i2_cost
, i3_cost
, old_cost
);
669 "rejecting combination of insns %d and %d\n",
670 INSN_UID (i2
), INSN_UID (i3
));
671 fprintf (dump_file
, "original costs %d + %d = %d\n",
672 i2_cost
, i3_cost
, old_cost
);
677 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
678 new_i2_cost
, new_i3_cost
, new_cost
);
681 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
687 /* Update the uid_insn_cost array with the replacement costs. */
688 uid_insn_cost
[INSN_UID (i2
)] = new_i2_cost
;
689 uid_insn_cost
[INSN_UID (i3
)] = new_i3_cost
;
691 uid_insn_cost
[INSN_UID (i1
)] = 0;
696 /* Main entry point for combiner. F is the first insn of the function.
697 NREGS is the first unused pseudo-reg number.
699 Return nonzero if the combiner has turned an indirect jump
700 instruction into a direct jump. */
702 combine_instructions (rtx f
, unsigned int nregs
)
710 rtx links
, nextlinks
;
711 sbitmap_iterator sbi
;
713 int new_direct_jump_p
= 0;
715 combine_attempts
= 0;
718 combine_successes
= 0;
720 combine_max_regno
= nregs
;
722 rtl_hooks
= combine_rtl_hooks
;
724 reg_stat
= XCNEWVEC (struct reg_stat
, nregs
);
726 init_recog_no_volatile ();
728 /* Compute maximum uid value so uid_cuid can be allocated. */
730 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
731 if (INSN_UID (insn
) > i
)
734 uid_cuid
= XNEWVEC (int, i
+ 1);
737 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
739 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
740 problems when, for example, we have j <<= 1 in a loop. */
742 nonzero_sign_valid
= 0;
744 /* Compute the mapping from uids to cuids.
745 Cuids are numbers assigned to insns, like uids,
746 except that cuids increase monotonically through the code.
748 Scan all SETs and see if we can deduce anything about what
749 bits are known to be zero for some registers and how many copies
750 of the sign bit are known to exist for those registers.
752 Also set any known values so that we can use it while searching
753 for what bits are known to be set. */
757 setup_incoming_promotions ();
759 refresh_blocks
= sbitmap_alloc (last_basic_block
);
760 sbitmap_zero (refresh_blocks
);
762 /* Allocate array of current insn_rtx_costs. */
763 uid_insn_cost
= XCNEWVEC (int, max_uid_cuid
+ 1);
764 last_insn_cost
= max_uid_cuid
;
766 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
768 uid_cuid
[INSN_UID (insn
)] = ++i
;
774 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
776 record_dead_and_set_regs (insn
);
779 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
780 if (REG_NOTE_KIND (links
) == REG_INC
)
781 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
785 /* Record the current insn_rtx_cost of this instruction. */
786 if (NONJUMP_INSN_P (insn
))
787 uid_insn_cost
[INSN_UID (insn
)] = insn_rtx_cost (PATTERN (insn
));
789 fprintf(dump_file
, "insn_cost %d: %d\n",
790 INSN_UID (insn
), uid_insn_cost
[INSN_UID (insn
)]);
797 nonzero_sign_valid
= 1;
799 /* Now scan all the insns in forward order. */
805 setup_incoming_promotions ();
807 FOR_EACH_BB (this_basic_block
)
809 for (insn
= BB_HEAD (this_basic_block
);
810 insn
!= NEXT_INSN (BB_END (this_basic_block
));
811 insn
= next
? next
: NEXT_INSN (insn
))
818 else if (INSN_P (insn
))
820 /* See if we know about function return values before this
821 insn based upon SUBREG flags. */
822 check_conversions (insn
, PATTERN (insn
));
824 /* Try this insn with each insn it links back to. */
826 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
827 if ((next
= try_combine (insn
, XEXP (links
, 0),
828 NULL_RTX
, &new_direct_jump_p
)) != 0)
831 /* Try each sequence of three linked insns ending with this one. */
833 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
835 rtx link
= XEXP (links
, 0);
837 /* If the linked insn has been replaced by a note, then there
838 is no point in pursuing this chain any further. */
842 for (nextlinks
= LOG_LINKS (link
);
844 nextlinks
= XEXP (nextlinks
, 1))
845 if ((next
= try_combine (insn
, link
,
847 &new_direct_jump_p
)) != 0)
852 /* Try to combine a jump insn that uses CC0
853 with a preceding insn that sets CC0, and maybe with its
854 logical predecessor as well.
855 This is how we make decrement-and-branch insns.
856 We need this special code because data flow connections
857 via CC0 do not get entered in LOG_LINKS. */
860 && (prev
= prev_nonnote_insn (insn
)) != 0
861 && NONJUMP_INSN_P (prev
)
862 && sets_cc0_p (PATTERN (prev
)))
864 if ((next
= try_combine (insn
, prev
,
865 NULL_RTX
, &new_direct_jump_p
)) != 0)
868 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
869 nextlinks
= XEXP (nextlinks
, 1))
870 if ((next
= try_combine (insn
, prev
,
872 &new_direct_jump_p
)) != 0)
876 /* Do the same for an insn that explicitly references CC0. */
877 if (NONJUMP_INSN_P (insn
)
878 && (prev
= prev_nonnote_insn (insn
)) != 0
879 && NONJUMP_INSN_P (prev
)
880 && sets_cc0_p (PATTERN (prev
))
881 && GET_CODE (PATTERN (insn
)) == SET
882 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
884 if ((next
= try_combine (insn
, prev
,
885 NULL_RTX
, &new_direct_jump_p
)) != 0)
888 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
889 nextlinks
= XEXP (nextlinks
, 1))
890 if ((next
= try_combine (insn
, prev
,
892 &new_direct_jump_p
)) != 0)
896 /* Finally, see if any of the insns that this insn links to
897 explicitly references CC0. If so, try this insn, that insn,
898 and its predecessor if it sets CC0. */
899 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
900 if (NONJUMP_INSN_P (XEXP (links
, 0))
901 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
902 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
903 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
904 && NONJUMP_INSN_P (prev
)
905 && sets_cc0_p (PATTERN (prev
))
906 && (next
= try_combine (insn
, XEXP (links
, 0),
907 prev
, &new_direct_jump_p
)) != 0)
911 /* Try combining an insn with two different insns whose results it
913 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
914 for (nextlinks
= XEXP (links
, 1); nextlinks
;
915 nextlinks
= XEXP (nextlinks
, 1))
916 if ((next
= try_combine (insn
, XEXP (links
, 0),
918 &new_direct_jump_p
)) != 0)
921 /* Try this insn with each REG_EQUAL note it links back to. */
922 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
925 rtx temp
= XEXP (links
, 0);
926 if ((set
= single_set (temp
)) != 0
927 && (note
= find_reg_equal_equiv_note (temp
)) != 0
928 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
929 /* Avoid using a register that may already been marked
930 dead by an earlier instruction. */
931 && ! unmentioned_reg_p (note
, SET_SRC (set
))
932 && (GET_MODE (note
) == VOIDmode
933 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
934 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
936 /* Temporarily replace the set's source with the
937 contents of the REG_EQUAL note. The insn will
938 be deleted or recognized by try_combine. */
939 rtx orig
= SET_SRC (set
);
940 SET_SRC (set
) = note
;
942 i2mod_old_rhs
= copy_rtx (orig
);
943 i2mod_new_rhs
= copy_rtx (note
);
944 next
= try_combine (insn
, i2mod
, NULL_RTX
,
949 SET_SRC (set
) = orig
;
954 record_dead_and_set_regs (insn
);
963 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks
, 0, j
, sbi
)
964 BASIC_BLOCK (j
)->flags
|= BB_DIRTY
;
965 new_direct_jump_p
|= purge_all_dead_edges ();
966 delete_noop_moves ();
968 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
969 PROP_DEATH_NOTES
| PROP_SCAN_DEAD_CODE
970 | PROP_KILL_DEAD_CODE
);
973 sbitmap_free (refresh_blocks
);
974 free (uid_insn_cost
);
979 struct undo
*undo
, *next
;
980 for (undo
= undobuf
.frees
; undo
; undo
= next
)
988 total_attempts
+= combine_attempts
;
989 total_merges
+= combine_merges
;
990 total_extras
+= combine_extras
;
991 total_successes
+= combine_successes
;
993 nonzero_sign_valid
= 0;
994 rtl_hooks
= general_rtl_hooks
;
996 /* Make recognizer allow volatile MEMs again. */
999 return new_direct_jump_p
;
1002 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1005 init_reg_last (void)
1008 for (i
= 0; i
< combine_max_regno
; i
++)
1009 memset (reg_stat
+ i
, 0, offsetof (struct reg_stat
, sign_bit_copies
));
1012 /* Set up any promoted values for incoming argument registers. */
1015 setup_incoming_promotions (void)
1019 enum machine_mode mode
;
1021 rtx first
= get_insns ();
1023 if (targetm
.calls
.promote_function_args (TREE_TYPE (cfun
->decl
)))
1025 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1026 /* Check whether this register can hold an incoming pointer
1027 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1028 numbers, so translate if necessary due to register windows. */
1029 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
1030 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
1032 record_value_for_reg
1033 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
1036 gen_rtx_CLOBBER (mode
, const0_rtx
)));
1041 /* Called via note_stores. If X is a pseudo that is narrower than
1042 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1044 If we are setting only a portion of X and we can't figure out what
1045 portion, assume all bits will be used since we don't know what will
1048 Similarly, set how many bits of X are known to be copies of the sign bit
1049 at all locations in the function. This is the smallest number implied
1053 set_nonzero_bits_and_sign_copies (rtx x
, rtx set
,
1054 void *data ATTRIBUTE_UNUSED
)
1059 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1060 /* If this register is undefined at the start of the file, we can't
1061 say what its contents were. */
1062 && ! REGNO_REG_SET_P
1063 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
, REGNO (x
))
1064 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
1066 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1068 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1069 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
1073 /* If this is a complex assignment, see if we can convert it into a
1074 simple assignment. */
1075 set
= expand_field_assignment (set
);
1077 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1078 set what we know about X. */
1080 if (SET_DEST (set
) == x
1081 || (GET_CODE (SET_DEST (set
)) == SUBREG
1082 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
1083 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
1084 && SUBREG_REG (SET_DEST (set
)) == x
))
1086 rtx src
= SET_SRC (set
);
1088 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1089 /* If X is narrower than a word and SRC is a non-negative
1090 constant that would appear negative in the mode of X,
1091 sign-extend it for use in reg_stat[].nonzero_bits because some
1092 machines (maybe most) will actually do the sign-extension
1093 and this is the conservative approach.
1095 ??? For 2.5, try to tighten up the MD files in this regard
1096 instead of this kludge. */
1098 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
1099 && GET_CODE (src
) == CONST_INT
1101 && 0 != (INTVAL (src
)
1102 & ((HOST_WIDE_INT
) 1
1103 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
1104 src
= GEN_INT (INTVAL (src
)
1105 | ((HOST_WIDE_INT
) (-1)
1106 << GET_MODE_BITSIZE (GET_MODE (x
))));
1109 /* Don't call nonzero_bits if it cannot change anything. */
1110 if (reg_stat
[REGNO (x
)].nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1111 reg_stat
[REGNO (x
)].nonzero_bits
1112 |= nonzero_bits (src
, nonzero_bits_mode
);
1113 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1114 if (reg_stat
[REGNO (x
)].sign_bit_copies
== 0
1115 || reg_stat
[REGNO (x
)].sign_bit_copies
> num
)
1116 reg_stat
[REGNO (x
)].sign_bit_copies
= num
;
1120 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1121 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
1126 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1127 insns that were previously combined into I3 or that will be combined
1128 into the merger of INSN and I3.
1130 Return 0 if the combination is not allowed for any reason.
1132 If the combination is allowed, *PDEST will be set to the single
1133 destination of INSN and *PSRC to the single source, and this function
1137 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
, rtx succ
,
1138 rtx
*pdest
, rtx
*psrc
)
1141 rtx set
= 0, src
, dest
;
1146 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
1147 && next_active_insn (succ
) == i3
)
1148 : next_active_insn (insn
) == i3
);
1150 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1151 or a PARALLEL consisting of such a SET and CLOBBERs.
1153 If INSN has CLOBBER parallel parts, ignore them for our processing.
1154 By definition, these happen during the execution of the insn. When it
1155 is merged with another insn, all bets are off. If they are, in fact,
1156 needed and aren't also supplied in I3, they may be added by
1157 recog_for_combine. Otherwise, it won't match.
1159 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1162 Get the source and destination of INSN. If more than one, can't
1165 if (GET_CODE (PATTERN (insn
)) == SET
)
1166 set
= PATTERN (insn
);
1167 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1168 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1170 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1172 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1175 switch (GET_CODE (elt
))
1177 /* This is important to combine floating point insns
1178 for the SH4 port. */
1180 /* Combining an isolated USE doesn't make sense.
1181 We depend here on combinable_i3pat to reject them. */
1182 /* The code below this loop only verifies that the inputs of
1183 the SET in INSN do not change. We call reg_set_between_p
1184 to verify that the REG in the USE does not change between
1186 If the USE in INSN was for a pseudo register, the matching
1187 insn pattern will likely match any register; combining this
1188 with any other USE would only be safe if we knew that the
1189 used registers have identical values, or if there was
1190 something to tell them apart, e.g. different modes. For
1191 now, we forgo such complicated tests and simply disallow
1192 combining of USES of pseudo registers with any other USE. */
1193 if (REG_P (XEXP (elt
, 0))
1194 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1196 rtx i3pat
= PATTERN (i3
);
1197 int i
= XVECLEN (i3pat
, 0) - 1;
1198 unsigned int regno
= REGNO (XEXP (elt
, 0));
1202 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1204 if (GET_CODE (i3elt
) == USE
1205 && REG_P (XEXP (i3elt
, 0))
1206 && (REGNO (XEXP (i3elt
, 0)) == regno
1207 ? reg_set_between_p (XEXP (elt
, 0),
1208 PREV_INSN (insn
), i3
)
1209 : regno
>= FIRST_PSEUDO_REGISTER
))
1216 /* We can ignore CLOBBERs. */
1221 /* Ignore SETs whose result isn't used but not those that
1222 have side-effects. */
1223 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1224 && (!(note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
1225 || INTVAL (XEXP (note
, 0)) <= 0)
1226 && ! side_effects_p (elt
))
1229 /* If we have already found a SET, this is a second one and
1230 so we cannot combine with this insn. */
1238 /* Anything else means we can't combine. */
1244 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1245 so don't do anything with it. */
1246 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1255 set
= expand_field_assignment (set
);
1256 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1258 /* Don't eliminate a store in the stack pointer. */
1259 if (dest
== stack_pointer_rtx
1260 /* Don't combine with an insn that sets a register to itself if it has
1261 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1262 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1263 /* Can't merge an ASM_OPERANDS. */
1264 || GET_CODE (src
) == ASM_OPERANDS
1265 /* Can't merge a function call. */
1266 || GET_CODE (src
) == CALL
1267 /* Don't eliminate a function call argument. */
1269 && (find_reg_fusage (i3
, USE
, dest
)
1271 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1272 && global_regs
[REGNO (dest
)])))
1273 /* Don't substitute into an incremented register. */
1274 || FIND_REG_INC_NOTE (i3
, dest
)
1275 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1276 /* Don't substitute into a non-local goto, this confuses CFG. */
1277 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1279 /* Don't combine the end of a libcall into anything. */
1280 /* ??? This gives worse code, and appears to be unnecessary, since no
1281 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1282 use REG_RETVAL notes for noconflict blocks, but other code here
1283 makes sure that those insns don't disappear. */
1284 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1286 /* Make sure that DEST is not used after SUCC but before I3. */
1287 || (succ
&& ! all_adjacent
1288 && reg_used_between_p (dest
, succ
, i3
))
1289 /* Make sure that the value that is to be substituted for the register
1290 does not use any registers whose values alter in between. However,
1291 If the insns are adjacent, a use can't cross a set even though we
1292 think it might (this can happen for a sequence of insns each setting
1293 the same destination; last_set of that register might point to
1294 a NOTE). If INSN has a REG_EQUIV note, the register is always
1295 equivalent to the memory so the substitution is valid even if there
1296 are intervening stores. Also, don't move a volatile asm or
1297 UNSPEC_VOLATILE across any other insns. */
1300 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1301 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1302 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1303 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1304 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1305 better register allocation by not doing the combine. */
1306 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1307 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1308 /* Don't combine across a CALL_INSN, because that would possibly
1309 change whether the life span of some REGs crosses calls or not,
1310 and it is a pain to update that information.
1311 Exception: if source is a constant, moving it later can't hurt.
1312 Accept that special case, because it helps -fforce-addr a lot. */
1313 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1316 /* DEST must either be a REG or CC0. */
1319 /* If register alignment is being enforced for multi-word items in all
1320 cases except for parameters, it is possible to have a register copy
1321 insn referencing a hard register that is not allowed to contain the
1322 mode being copied and which would not be valid as an operand of most
1323 insns. Eliminate this problem by not combining with such an insn.
1325 Also, on some machines we don't want to extend the life of a hard
1329 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1330 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1331 /* Don't extend the life of a hard register unless it is
1332 user variable (if we have few registers) or it can't
1333 fit into the desired register (meaning something special
1335 Also avoid substituting a return register into I3, because
1336 reload can't handle a conflict with constraints of other
1338 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1339 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1342 else if (GET_CODE (dest
) != CC0
)
1346 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1347 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1348 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1350 /* Don't substitute for a register intended as a clobberable
1352 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1353 if (rtx_equal_p (reg
, dest
))
1356 /* If the clobber represents an earlyclobber operand, we must not
1357 substitute an expression containing the clobbered register.
1358 As we do not analyze the constraint strings here, we have to
1359 make the conservative assumption. However, if the register is
1360 a fixed hard reg, the clobber cannot represent any operand;
1361 we leave it up to the machine description to either accept or
1362 reject use-and-clobber patterns. */
1364 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1365 || !fixed_regs
[REGNO (reg
)])
1366 if (reg_overlap_mentioned_p (reg
, src
))
1370 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1371 or not), reject, unless nothing volatile comes between it and I3 */
1373 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1375 /* Make sure succ doesn't contain a volatile reference. */
1376 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1379 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1380 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1384 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1385 to be an explicit register variable, and was chosen for a reason. */
1387 if (GET_CODE (src
) == ASM_OPERANDS
1388 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1391 /* If there are any volatile insns between INSN and I3, reject, because
1392 they might affect machine state. */
1394 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1395 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1398 /* If INSN contains an autoincrement or autodecrement, make sure that
1399 register is not used between there and I3, and not already used in
1400 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1401 Also insist that I3 not be a jump; if it were one
1402 and the incremented register were spilled, we would lose. */
1405 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1406 if (REG_NOTE_KIND (link
) == REG_INC
1408 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1409 || (pred
!= NULL_RTX
1410 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
1411 || (succ
!= NULL_RTX
1412 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
1413 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1418 /* Don't combine an insn that follows a CC0-setting insn.
1419 An insn that uses CC0 must not be separated from the one that sets it.
1420 We do, however, allow I2 to follow a CC0-setting insn if that insn
1421 is passed as I1; in that case it will be deleted also.
1422 We also allow combining in this case if all the insns are adjacent
1423 because that would leave the two CC0 insns adjacent as well.
1424 It would be more logical to test whether CC0 occurs inside I1 or I2,
1425 but that would be much slower, and this ought to be equivalent. */
1427 p
= prev_nonnote_insn (insn
);
1428 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
1433 /* If we get here, we have passed all the tests and the combination is
1442 /* LOC is the location within I3 that contains its pattern or the component
1443 of a PARALLEL of the pattern. We validate that it is valid for combining.
1445 One problem is if I3 modifies its output, as opposed to replacing it
1446 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1447 so would produce an insn that is not equivalent to the original insns.
1451 (set (reg:DI 101) (reg:DI 100))
1452 (set (subreg:SI (reg:DI 101) 0) <foo>)
1454 This is NOT equivalent to:
1456 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1457 (set (reg:DI 101) (reg:DI 100))])
1459 Not only does this modify 100 (in which case it might still be valid
1460 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1462 We can also run into a problem if I2 sets a register that I1
1463 uses and I1 gets directly substituted into I3 (not via I2). In that
1464 case, we would be getting the wrong value of I2DEST into I3, so we
1465 must reject the combination. This case occurs when I2 and I1 both
1466 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1467 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1468 of a SET must prevent combination from occurring.
1470 Before doing the above check, we first try to expand a field assignment
1471 into a set of logical operations.
1473 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1474 we place a register that is both set and used within I3. If more than one
1475 such register is detected, we fail.
1477 Return 1 if the combination is valid, zero otherwise. */
1480 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
,
1481 int i1_not_in_src
, rtx
*pi3dest_killed
)
1485 if (GET_CODE (x
) == SET
)
1488 rtx dest
= SET_DEST (set
);
1489 rtx src
= SET_SRC (set
);
1490 rtx inner_dest
= dest
;
1493 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1494 || GET_CODE (inner_dest
) == SUBREG
1495 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1496 inner_dest
= XEXP (inner_dest
, 0);
1498 /* Check for the case where I3 modifies its output, as discussed
1499 above. We don't want to prevent pseudos from being combined
1500 into the address of a MEM, so only prevent the combination if
1501 i1 or i2 set the same MEM. */
1502 if ((inner_dest
!= dest
&&
1503 (!MEM_P (inner_dest
)
1504 || rtx_equal_p (i2dest
, inner_dest
)
1505 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
)))
1506 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1507 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1509 /* This is the same test done in can_combine_p except we can't test
1510 all_adjacent; we don't have to, since this instruction will stay
1511 in place, thus we are not considering increasing the lifetime of
1514 Also, if this insn sets a function argument, combining it with
1515 something that might need a spill could clobber a previous
1516 function argument; the all_adjacent test in can_combine_p also
1517 checks this; here, we do a more specific test for this case. */
1519 || (REG_P (inner_dest
)
1520 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1521 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1522 GET_MODE (inner_dest
))))
1523 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1526 /* If DEST is used in I3, it is being killed in this insn, so
1527 record that for later. We have to consider paradoxical
1528 subregs here, since they kill the whole register, but we
1529 ignore partial subregs, STRICT_LOW_PART, etc.
1530 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1531 STACK_POINTER_REGNUM, since these are always considered to be
1532 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1534 if (GET_CODE (subdest
) == SUBREG
1535 && (GET_MODE_SIZE (GET_MODE (subdest
))
1536 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
1537 subdest
= SUBREG_REG (subdest
);
1540 && reg_referenced_p (subdest
, PATTERN (i3
))
1541 && REGNO (subdest
) != FRAME_POINTER_REGNUM
1542 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1543 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
1545 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1546 && (REGNO (subdest
) != ARG_POINTER_REGNUM
1547 || ! fixed_regs
[REGNO (subdest
)])
1549 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
1551 if (*pi3dest_killed
)
1554 *pi3dest_killed
= subdest
;
1558 else if (GET_CODE (x
) == PARALLEL
)
1562 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1563 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1564 i1_not_in_src
, pi3dest_killed
))
1571 /* Return 1 if X is an arithmetic expression that contains a multiplication
1572 and division. We don't count multiplications by powers of two here. */
1575 contains_muldiv (rtx x
)
1577 switch (GET_CODE (x
))
1579 case MOD
: case DIV
: case UMOD
: case UDIV
:
1583 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1584 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1587 return contains_muldiv (XEXP (x
, 0))
1588 || contains_muldiv (XEXP (x
, 1));
1591 return contains_muldiv (XEXP (x
, 0));
1597 /* Determine whether INSN can be used in a combination. Return nonzero if
1598 not. This is used in try_combine to detect early some cases where we
1599 can't perform combinations. */
1602 cant_combine_insn_p (rtx insn
)
1607 /* If this isn't really an insn, we can't do anything.
1608 This can occur when flow deletes an insn that it has merged into an
1609 auto-increment address. */
1610 if (! INSN_P (insn
))
1613 /* Never combine loads and stores involving hard regs that are likely
1614 to be spilled. The register allocator can usually handle such
1615 reg-reg moves by tying. If we allow the combiner to make
1616 substitutions of likely-spilled regs, reload might die.
1617 As an exception, we allow combinations involving fixed regs; these are
1618 not available to the register allocator so there's no risk involved. */
1620 set
= single_set (insn
);
1623 src
= SET_SRC (set
);
1624 dest
= SET_DEST (set
);
1625 if (GET_CODE (src
) == SUBREG
)
1626 src
= SUBREG_REG (src
);
1627 if (GET_CODE (dest
) == SUBREG
)
1628 dest
= SUBREG_REG (dest
);
1629 if (REG_P (src
) && REG_P (dest
)
1630 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1631 && ! fixed_regs
[REGNO (src
)]
1632 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src
))))
1633 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1634 && ! fixed_regs
[REGNO (dest
)]
1635 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest
))))))
1641 struct likely_spilled_retval_info
1643 unsigned regno
, nregs
;
1647 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1648 hard registers that are known to be written to / clobbered in full. */
1650 likely_spilled_retval_1 (rtx x
, rtx set
, void *data
)
1652 struct likely_spilled_retval_info
*info
= data
;
1653 unsigned regno
, nregs
;
1656 if (!REG_P (XEXP (set
, 0)))
1659 if (regno
>= info
->regno
+ info
->nregs
)
1661 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1662 if (regno
+ nregs
<= info
->regno
)
1664 new_mask
= (2U << (nregs
- 1)) - 1;
1665 if (regno
< info
->regno
)
1666 new_mask
>>= info
->regno
- regno
;
1668 new_mask
<<= regno
- info
->regno
;
1669 info
->mask
&= new_mask
;
1672 /* Return nonzero iff part of the return value is live during INSN, and
1673 it is likely spilled. This can happen when more than one insn is needed
1674 to copy the return value, e.g. when we consider to combine into the
1675 second copy insn for a complex value. */
1678 likely_spilled_retval_p (rtx insn
)
1680 rtx use
= BB_END (this_basic_block
);
1682 unsigned regno
, nregs
;
1683 /* We assume here that no machine mode needs more than
1684 32 hard registers when the value overlaps with a register
1685 for which FUNCTION_VALUE_REGNO_P is true. */
1687 struct likely_spilled_retval_info info
;
1689 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
1691 reg
= XEXP (PATTERN (use
), 0);
1692 if (!REG_P (reg
) || !FUNCTION_VALUE_REGNO_P (REGNO (reg
)))
1694 regno
= REGNO (reg
);
1695 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1698 mask
= (2U << (nregs
- 1)) - 1;
1700 /* Disregard parts of the return value that are set later. */
1704 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
1705 note_stores (PATTERN (insn
), likely_spilled_retval_1
, &info
);
1708 /* Check if any of the (probably) live return value registers is
1713 if ((mask
& 1 << nregs
)
1714 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno
+ nregs
)))
1720 /* Adjust INSN after we made a change to its destination.
1722 Changing the destination can invalidate notes that say something about
1723 the results of the insn and a LOG_LINK pointing to the insn. */
1726 adjust_for_new_dest (rtx insn
)
1730 /* For notes, be conservative and simply remove them. */
1731 loc
= ®_NOTES (insn
);
1734 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1735 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1736 *loc
= XEXP (*loc
, 1);
1738 loc
= &XEXP (*loc
, 1);
1741 /* The new insn will have a destination that was previously the destination
1742 of an insn just above it. Call distribute_links to make a LOG_LINK from
1743 the next use of that destination. */
1744 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
));
1747 /* Return TRUE if combine can reuse reg X in mode MODE.
1748 ADDED_SETS is nonzero if the original set is still required. */
1750 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
1758 /* Allow hard registers if the new mode is legal, and occupies no more
1759 registers than the old mode. */
1760 if (regno
< FIRST_PSEUDO_REGISTER
)
1761 return (HARD_REGNO_MODE_OK (regno
, mode
)
1762 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
1763 >= hard_regno_nregs
[regno
][mode
]));
1765 /* Or a pseudo that is only used once. */
1766 return (REG_N_SETS (regno
) == 1 && !added_sets
1767 && !REG_USERVAR_P (x
));
1771 /* Check whether X, the destination of a set, refers to part of
1772 the register specified by REG. */
1775 reg_subword_p (rtx x
, rtx reg
)
1777 /* Check that reg is an integer mode register. */
1778 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
1781 if (GET_CODE (x
) == STRICT_LOW_PART
1782 || GET_CODE (x
) == ZERO_EXTRACT
)
1785 return GET_CODE (x
) == SUBREG
1786 && SUBREG_REG (x
) == reg
1787 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
1791 /* Try to combine the insns I1 and I2 into I3.
1792 Here I1 and I2 appear earlier than I3.
1793 I1 can be zero; then we combine just I2 into I3.
1795 If we are combining three insns and the resulting insn is not recognized,
1796 try splitting it into two insns. If that happens, I2 and I3 are retained
1797 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1800 Return 0 if the combination does not work. Then nothing is changed.
1801 If we did the combination, return the insn at which combine should
1804 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1805 new direct jump instruction. */
1808 try_combine (rtx i3
, rtx i2
, rtx i1
, int *new_direct_jump_p
)
1810 /* New patterns for I3 and I2, respectively. */
1811 rtx newpat
, newi2pat
= 0;
1812 rtvec newpat_vec_with_clobbers
= 0;
1813 int substed_i2
= 0, substed_i1
= 0;
1814 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1815 int added_sets_1
, added_sets_2
;
1816 /* Total number of SETs to put into I3. */
1818 /* Nonzero if I2's body now appears in I3. */
1820 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1821 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1822 /* Contains I3 if the destination of I3 is used in its source, which means
1823 that the old life of I3 is being killed. If that usage is placed into
1824 I2 and not in I3, a REG_DEAD note must be made. */
1825 rtx i3dest_killed
= 0;
1826 /* SET_DEST and SET_SRC of I2 and I1. */
1827 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1828 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
1829 rtx i1pat
= 0, i2pat
= 0;
1830 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1831 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1832 int i2dest_killed
= 0, i1dest_killed
= 0;
1833 int i1_feeds_i3
= 0;
1834 /* Notes that must be added to REG_NOTES in I3 and I2. */
1835 rtx new_i3_notes
, new_i2_notes
;
1836 /* Notes that we substituted I3 into I2 instead of the normal case. */
1837 int i3_subst_into_i2
= 0;
1838 /* Notes that I1, I2 or I3 is a MULT operation. */
1847 /* Exit early if one of the insns involved can't be used for
1849 if (cant_combine_insn_p (i3
)
1850 || cant_combine_insn_p (i2
)
1851 || (i1
&& cant_combine_insn_p (i1
))
1852 || likely_spilled_retval_p (i3
)
1853 /* We also can't do anything if I3 has a
1854 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1857 /* ??? This gives worse code, and appears to be unnecessary, since no
1858 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1859 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1865 undobuf
.other_insn
= 0;
1867 /* Reset the hard register usage information. */
1868 CLEAR_HARD_REG_SET (newpat_used_regs
);
1870 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1871 code below, set I1 to be the earlier of the two insns. */
1872 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1873 temp
= i1
, i1
= i2
, i2
= temp
;
1875 added_links_insn
= 0;
1877 /* First check for one important special-case that the code below will
1878 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1879 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1880 we may be able to replace that destination with the destination of I3.
1881 This occurs in the common code where we compute both a quotient and
1882 remainder into a structure, in which case we want to do the computation
1883 directly into the structure to avoid register-register copies.
1885 Note that this case handles both multiple sets in I2 and also
1886 cases where I2 has a number of CLOBBER or PARALLELs.
1888 We make very conservative checks below and only try to handle the
1889 most common cases of this. For example, we only handle the case
1890 where I2 and I3 are adjacent to avoid making difficult register
1893 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
1894 && REG_P (SET_SRC (PATTERN (i3
)))
1895 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1896 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1897 && GET_CODE (PATTERN (i2
)) == PARALLEL
1898 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1899 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1900 below would need to check what is inside (and reg_overlap_mentioned_p
1901 doesn't support those codes anyway). Don't allow those destinations;
1902 the resulting insn isn't likely to be recognized anyway. */
1903 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1904 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1905 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1906 SET_DEST (PATTERN (i3
)))
1907 && next_real_insn (i2
) == i3
)
1909 rtx p2
= PATTERN (i2
);
1911 /* Make sure that the destination of I3,
1912 which we are going to substitute into one output of I2,
1913 is not used within another output of I2. We must avoid making this:
1914 (parallel [(set (mem (reg 69)) ...)
1915 (set (reg 69) ...)])
1916 which is not well-defined as to order of actions.
1917 (Besides, reload can't handle output reloads for this.)
1919 The problem can also happen if the dest of I3 is a memory ref,
1920 if another dest in I2 is an indirect memory ref. */
1921 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1922 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1923 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1924 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1925 SET_DEST (XVECEXP (p2
, 0, i
))))
1928 if (i
== XVECLEN (p2
, 0))
1929 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1930 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1931 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1932 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1937 subst_low_cuid
= INSN_CUID (i2
);
1939 added_sets_2
= added_sets_1
= 0;
1940 i2dest
= SET_SRC (PATTERN (i3
));
1941 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
1943 /* Replace the dest in I2 with our dest and make the resulting
1944 insn the new pattern for I3. Then skip to where we
1945 validate the pattern. Everything was set up above. */
1946 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1947 SET_DEST (PATTERN (i3
)));
1950 i3_subst_into_i2
= 1;
1951 goto validate_replacement
;
1955 /* If I2 is setting a pseudo to a constant and I3 is setting some
1956 sub-part of it to another constant, merge them by making a new
1959 && (temp
= single_set (i2
)) != 0
1960 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1961 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1962 && GET_CODE (PATTERN (i3
)) == SET
1963 && (GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
1964 || GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_DOUBLE
)
1965 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
1967 rtx dest
= SET_DEST (PATTERN (i3
));
1971 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1973 if (GET_CODE (XEXP (dest
, 1)) == CONST_INT
1974 && GET_CODE (XEXP (dest
, 2)) == CONST_INT
)
1976 width
= INTVAL (XEXP (dest
, 1));
1977 offset
= INTVAL (XEXP (dest
, 2));
1978 dest
= XEXP (dest
, 0);
1979 if (BITS_BIG_ENDIAN
)
1980 offset
= GET_MODE_BITSIZE (GET_MODE (dest
)) - width
- offset
;
1985 if (GET_CODE (dest
) == STRICT_LOW_PART
)
1986 dest
= XEXP (dest
, 0);
1987 width
= GET_MODE_BITSIZE (GET_MODE (dest
));
1993 /* If this is the low part, we're done. */
1994 if (subreg_lowpart_p (dest
))
1996 /* Handle the case where inner is twice the size of outer. */
1997 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp
)))
1998 == 2 * GET_MODE_BITSIZE (GET_MODE (dest
)))
1999 offset
+= GET_MODE_BITSIZE (GET_MODE (dest
));
2000 /* Otherwise give up for now. */
2007 HOST_WIDE_INT mhi
, ohi
, ihi
;
2008 HOST_WIDE_INT mlo
, olo
, ilo
;
2009 rtx inner
= SET_SRC (PATTERN (i3
));
2010 rtx outer
= SET_SRC (temp
);
2012 if (GET_CODE (outer
) == CONST_INT
)
2014 olo
= INTVAL (outer
);
2015 ohi
= olo
< 0 ? -1 : 0;
2019 olo
= CONST_DOUBLE_LOW (outer
);
2020 ohi
= CONST_DOUBLE_HIGH (outer
);
2023 if (GET_CODE (inner
) == CONST_INT
)
2025 ilo
= INTVAL (inner
);
2026 ihi
= ilo
< 0 ? -1 : 0;
2030 ilo
= CONST_DOUBLE_LOW (inner
);
2031 ihi
= CONST_DOUBLE_HIGH (inner
);
2034 if (width
< HOST_BITS_PER_WIDE_INT
)
2036 mlo
= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
2039 else if (width
< HOST_BITS_PER_WIDE_INT
* 2)
2041 mhi
= ((unsigned HOST_WIDE_INT
) 1
2042 << (width
- HOST_BITS_PER_WIDE_INT
)) - 1;
2054 if (offset
>= HOST_BITS_PER_WIDE_INT
)
2056 mhi
= mlo
<< (offset
- HOST_BITS_PER_WIDE_INT
);
2058 ihi
= ilo
<< (offset
- HOST_BITS_PER_WIDE_INT
);
2061 else if (offset
> 0)
2063 mhi
= (mhi
<< offset
) | ((unsigned HOST_WIDE_INT
) mlo
2064 >> (HOST_BITS_PER_WIDE_INT
- offset
));
2065 mlo
= mlo
<< offset
;
2066 ihi
= (ihi
<< offset
) | ((unsigned HOST_WIDE_INT
) ilo
2067 >> (HOST_BITS_PER_WIDE_INT
- offset
));
2068 ilo
= ilo
<< offset
;
2071 olo
= (olo
& ~mlo
) | ilo
;
2072 ohi
= (ohi
& ~mhi
) | ihi
;
2076 subst_low_cuid
= INSN_CUID (i2
);
2077 added_sets_2
= added_sets_1
= 0;
2078 i2dest
= SET_DEST (temp
);
2079 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2081 SUBST (SET_SRC (temp
),
2082 immed_double_const (olo
, ohi
, GET_MODE (SET_DEST (temp
))));
2084 newpat
= PATTERN (i2
);
2085 goto validate_replacement
;
2090 /* If we have no I1 and I2 looks like:
2091 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2093 make up a dummy I1 that is
2096 (set (reg:CC X) (compare:CC Y (const_int 0)))
2098 (We can ignore any trailing CLOBBERs.)
2100 This undoes a previous combination and allows us to match a branch-and-
2103 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2104 && XVECLEN (PATTERN (i2
), 0) >= 2
2105 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2106 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2108 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2109 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2110 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2111 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2112 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2113 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2115 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2116 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2121 /* We make I1 with the same INSN_UID as I2. This gives it
2122 the same INSN_CUID for value tracking. Our fake I1 will
2123 never appear in the insn stream so giving it the same INSN_UID
2124 as I2 will not cause a problem. */
2126 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
2127 BLOCK_FOR_INSN (i2
), INSN_LOCATOR (i2
),
2128 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
2131 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2132 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2133 SET_DEST (PATTERN (i1
)));
2138 /* Verify that I2 and I1 are valid for combining. */
2139 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
2140 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
2146 /* Record whether I2DEST is used in I2SRC and similarly for the other
2147 cases. Knowing this will help in register status updating below. */
2148 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2149 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2150 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2151 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2152 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2154 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2156 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
2158 /* Ensure that I3's pattern can be the destination of combines. */
2159 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
2160 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
2167 /* See if any of the insns is a MULT operation. Unless one is, we will
2168 reject a combination that is, since it must be slower. Be conservative
2170 if (GET_CODE (i2src
) == MULT
2171 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2172 || (GET_CODE (PATTERN (i3
)) == SET
2173 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2176 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2177 We used to do this EXCEPT in one case: I3 has a post-inc in an
2178 output operand. However, that exception can give rise to insns like
2180 which is a famous insn on the PDP-11 where the value of r3 used as the
2181 source was model-dependent. Avoid this sort of thing. */
2184 if (!(GET_CODE (PATTERN (i3
)) == SET
2185 && REG_P (SET_SRC (PATTERN (i3
)))
2186 && MEM_P (SET_DEST (PATTERN (i3
)))
2187 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2188 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2189 /* It's not the exception. */
2192 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2193 if (REG_NOTE_KIND (link
) == REG_INC
2194 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2196 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2203 /* See if the SETs in I1 or I2 need to be kept around in the merged
2204 instruction: whenever the value set there is still needed past I3.
2205 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2207 For the SET in I1, we have two cases: If I1 and I2 independently
2208 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2209 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2210 in I1 needs to be kept around unless I1DEST dies or is set in either
2211 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2212 I1DEST. If so, we know I1 feeds into I2. */
2214 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
2217 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
2218 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
2220 /* If the set in I2 needs to be kept around, we must make a copy of
2221 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2222 PATTERN (I2), we are only substituting for the original I1DEST, not into
2223 an already-substituted copy. This also prevents making self-referential
2224 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2229 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2230 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
2232 i2pat
= copy_rtx (PATTERN (i2
));
2237 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
2238 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
2240 i1pat
= copy_rtx (PATTERN (i1
));
2245 /* Substitute in the latest insn for the regs set by the earlier ones. */
2247 maxreg
= max_reg_num ();
2252 /* Many machines that don't use CC0 have insns that can both perform an
2253 arithmetic operation and set the condition code. These operations will
2254 be represented as a PARALLEL with the first element of the vector
2255 being a COMPARE of an arithmetic operation with the constant zero.
2256 The second element of the vector will set some pseudo to the result
2257 of the same arithmetic operation. If we simplify the COMPARE, we won't
2258 match such a pattern and so will generate an extra insn. Here we test
2259 for this case, where both the comparison and the operation result are
2260 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2261 I2SRC. Later we will make the PARALLEL that contains I2. */
2263 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2264 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2265 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
2266 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2268 #ifdef SELECT_CC_MODE
2270 enum machine_mode compare_mode
;
2273 newpat
= PATTERN (i3
);
2274 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
2278 #ifdef SELECT_CC_MODE
2279 /* See if a COMPARE with the operand we substituted in should be done
2280 with the mode that is currently being used. If not, do the same
2281 processing we do in `subst' for a SET; namely, if the destination
2282 is used only once, try to replace it with a register of the proper
2283 mode and also replace the COMPARE. */
2284 if (undobuf
.other_insn
== 0
2285 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
2286 &undobuf
.other_insn
))
2287 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
2289 != GET_MODE (SET_DEST (newpat
))))
2291 if (can_change_dest_mode(SET_DEST (newpat
), added_sets_2
,
2294 unsigned int regno
= REGNO (SET_DEST (newpat
));
2297 if (regno
< FIRST_PSEUDO_REGISTER
)
2298 new_dest
= gen_rtx_REG (compare_mode
, regno
);
2301 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
2302 new_dest
= regno_reg_rtx
[regno
];
2305 SUBST (SET_DEST (newpat
), new_dest
);
2306 SUBST (XEXP (*cc_use
, 0), new_dest
);
2307 SUBST (SET_SRC (newpat
),
2308 gen_rtx_COMPARE (compare_mode
, i2src
, const0_rtx
));
2311 undobuf
.other_insn
= 0;
2318 /* It is possible that the source of I2 or I1 may be performing
2319 an unneeded operation, such as a ZERO_EXTEND of something
2320 that is known to have the high part zero. Handle that case
2321 by letting subst look at the innermost one of them.
2323 Another way to do this would be to have a function that tries
2324 to simplify a single insn instead of merging two or more
2325 insns. We don't do this because of the potential of infinite
2326 loops and because of the potential extra memory required.
2327 However, doing it the way we are is a bit of a kludge and
2328 doesn't catch all cases.
2330 But only do this if -fexpensive-optimizations since it slows
2331 things down and doesn't usually win.
2333 This is not done in the COMPARE case above because the
2334 unmodified I2PAT is used in the PARALLEL and so a pattern
2335 with a modified I2SRC would not match. */
2337 if (flag_expensive_optimizations
)
2339 /* Pass pc_rtx so no substitutions are done, just
2343 subst_low_cuid
= INSN_CUID (i1
);
2344 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
2348 subst_low_cuid
= INSN_CUID (i2
);
2349 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
2353 n_occurrences
= 0; /* `subst' counts here */
2355 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2356 need to make a unique copy of I2SRC each time we substitute it
2357 to avoid self-referential rtl. */
2359 subst_low_cuid
= INSN_CUID (i2
);
2360 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
2361 ! i1_feeds_i3
&& i1dest_in_i1src
);
2364 /* Record whether i2's body now appears within i3's body. */
2365 i2_is_used
= n_occurrences
;
2368 /* If we already got a failure, don't try to do more. Otherwise,
2369 try to substitute in I1 if we have it. */
2371 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
2373 /* Check that an autoincrement side-effect on I1 has not been lost.
2374 This happens if I1DEST is mentioned in I2 and dies there, and
2375 has disappeared from the new pattern. */
2376 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
2378 && dead_or_set_p (i2
, i1dest
)
2379 && !reg_overlap_mentioned_p (i1dest
, newpat
))
2380 /* Before we can do this substitution, we must redo the test done
2381 above (see detailed comments there) that ensures that I1DEST
2382 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2383 || !combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
, 0, 0))
2390 subst_low_cuid
= INSN_CUID (i1
);
2391 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
2395 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2396 to count all the ways that I2SRC and I1SRC can be used. */
2397 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
2398 && i2_is_used
+ added_sets_2
> 1)
2399 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
2400 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
2402 /* Fail if we tried to make a new register. */
2403 || max_reg_num () != maxreg
2404 /* Fail if we couldn't do something and have a CLOBBER. */
2405 || GET_CODE (newpat
) == CLOBBER
2406 /* Fail if this new pattern is a MULT and we didn't have one before
2407 at the outer level. */
2408 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
2415 /* If the actions of the earlier insns must be kept
2416 in addition to substituting them into the latest one,
2417 we must make a new PARALLEL for the latest insn
2418 to hold additional the SETs. */
2420 if (added_sets_1
|| added_sets_2
)
2424 if (GET_CODE (newpat
) == PARALLEL
)
2426 rtvec old
= XVEC (newpat
, 0);
2427 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
2428 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2429 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
2430 sizeof (old
->elem
[0]) * old
->num_elem
);
2435 total_sets
= 1 + added_sets_1
+ added_sets_2
;
2436 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2437 XVECEXP (newpat
, 0, 0) = old
;
2441 XVECEXP (newpat
, 0, --total_sets
) = i1pat
;
2445 /* If there is no I1, use I2's body as is. We used to also not do
2446 the subst call below if I2 was substituted into I3,
2447 but that could lose a simplification. */
2449 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2451 /* See comment where i2pat is assigned. */
2452 XVECEXP (newpat
, 0, --total_sets
)
2453 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2457 /* We come here when we are replacing a destination in I2 with the
2458 destination of I3. */
2459 validate_replacement
:
2461 /* Note which hard regs this insn has as inputs. */
2462 mark_used_regs_combine (newpat
);
2464 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2465 consider splitting this pattern, we might need these clobbers. */
2466 if (i1
&& GET_CODE (newpat
) == PARALLEL
2467 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
2469 int len
= XVECLEN (newpat
, 0);
2471 newpat_vec_with_clobbers
= rtvec_alloc (len
);
2472 for (i
= 0; i
< len
; i
++)
2473 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
2476 /* Is the result of combination a valid instruction? */
2477 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2479 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2480 the second SET's destination is a register that is unused and isn't
2481 marked as an instruction that might trap in an EH region. In that case,
2482 we just need the first SET. This can occur when simplifying a divmod
2483 insn. We *must* test for this case here because the code below that
2484 splits two independent SETs doesn't handle this case correctly when it
2485 updates the register status.
2487 It's pointless doing this if we originally had two sets, one from
2488 i3, and one from i2. Combining then splitting the parallel results
2489 in the original i2 again plus an invalid insn (which we delete).
2490 The net effect is only to move instructions around, which makes
2491 debug info less accurate.
2493 Also check the case where the first SET's destination is unused.
2494 That would not cause incorrect code, but does cause an unneeded
2497 if (insn_code_number
< 0
2498 && !(added_sets_2
&& i1
== 0)
2499 && GET_CODE (newpat
) == PARALLEL
2500 && XVECLEN (newpat
, 0) == 2
2501 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2502 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2503 && asm_noperands (newpat
) < 0)
2505 rtx set0
= XVECEXP (newpat
, 0, 0);
2506 rtx set1
= XVECEXP (newpat
, 0, 1);
2509 if (((REG_P (SET_DEST (set1
))
2510 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
2511 || (GET_CODE (SET_DEST (set1
)) == SUBREG
2512 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
2513 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2514 || INTVAL (XEXP (note
, 0)) <= 0)
2515 && ! side_effects_p (SET_SRC (set1
)))
2518 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2521 else if (((REG_P (SET_DEST (set0
))
2522 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
2523 || (GET_CODE (SET_DEST (set0
)) == SUBREG
2524 && find_reg_note (i3
, REG_UNUSED
,
2525 SUBREG_REG (SET_DEST (set0
)))))
2526 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2527 || INTVAL (XEXP (note
, 0)) <= 0)
2528 && ! side_effects_p (SET_SRC (set0
)))
2531 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2533 if (insn_code_number
>= 0)
2535 /* If we will be able to accept this, we have made a
2536 change to the destination of I3. This requires us to
2537 do a few adjustments. */
2539 PATTERN (i3
) = newpat
;
2540 adjust_for_new_dest (i3
);
2545 /* If we were combining three insns and the result is a simple SET
2546 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2547 insns. There are two ways to do this. It can be split using a
2548 machine-specific method (like when you have an addition of a large
2549 constant) or by combine in the function find_split_point. */
2551 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2552 && asm_noperands (newpat
) < 0)
2554 rtx m_split
, *split
;
2556 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2557 use I2DEST as a scratch register will help. In the latter case,
2558 convert I2DEST to the mode of the source of NEWPAT if we can. */
2560 m_split
= split_insns (newpat
, i3
);
2562 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2563 inputs of NEWPAT. */
2565 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2566 possible to try that as a scratch reg. This would require adding
2567 more code to make it work though. */
2569 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
2571 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
2573 /* First try to split using the original register as a
2574 scratch register. */
2575 m_split
= split_insns (gen_rtx_PARALLEL
2577 gen_rtvec (2, newpat
,
2578 gen_rtx_CLOBBER (VOIDmode
,
2582 /* If that didn't work, try changing the mode of I2DEST if
2585 && new_mode
!= GET_MODE (i2dest
)
2586 && new_mode
!= VOIDmode
2587 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
2589 enum machine_mode old_mode
= GET_MODE (i2dest
);
2592 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
2593 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
2596 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
2597 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
2600 m_split
= split_insns (gen_rtx_PARALLEL
2602 gen_rtvec (2, newpat
,
2603 gen_rtx_CLOBBER (VOIDmode
,
2608 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2612 PUT_MODE (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
2613 buf
= undobuf
.undos
;
2614 undobuf
.undos
= buf
->next
;
2615 buf
->next
= undobuf
.frees
;
2616 undobuf
.frees
= buf
;
2621 /* If recog_for_combine has discarded clobbers, try to use them
2622 again for the split. */
2623 if (m_split
== 0 && newpat_vec_with_clobbers
)
2625 = split_insns (gen_rtx_PARALLEL (VOIDmode
,
2626 newpat_vec_with_clobbers
), i3
);
2628 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
2630 m_split
= PATTERN (m_split
);
2631 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2632 if (insn_code_number
>= 0)
2635 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
2636 && (next_real_insn (i2
) == i3
2637 || ! use_crosses_set_p (PATTERN (m_split
), INSN_CUID (i2
))))
2640 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
2641 newi2pat
= PATTERN (m_split
);
2643 i3set
= single_set (NEXT_INSN (m_split
));
2644 i2set
= single_set (m_split
);
2646 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2648 /* If I2 or I3 has multiple SETs, we won't know how to track
2649 register status, so don't use these insns. If I2's destination
2650 is used between I2 and I3, we also can't use these insns. */
2652 if (i2_code_number
>= 0 && i2set
&& i3set
2653 && (next_real_insn (i2
) == i3
2654 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2655 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2657 if (insn_code_number
>= 0)
2660 /* It is possible that both insns now set the destination of I3.
2661 If so, we must show an extra use of it. */
2663 if (insn_code_number
>= 0)
2665 rtx new_i3_dest
= SET_DEST (i3set
);
2666 rtx new_i2_dest
= SET_DEST (i2set
);
2668 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2669 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2670 || GET_CODE (new_i3_dest
) == SUBREG
)
2671 new_i3_dest
= XEXP (new_i3_dest
, 0);
2673 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2674 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2675 || GET_CODE (new_i2_dest
) == SUBREG
)
2676 new_i2_dest
= XEXP (new_i2_dest
, 0);
2678 if (REG_P (new_i3_dest
)
2679 && REG_P (new_i2_dest
)
2680 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2681 REG_N_SETS (REGNO (new_i2_dest
))++;
2685 /* If we can split it and use I2DEST, go ahead and see if that
2686 helps things be recognized. Verify that none of the registers
2687 are set between I2 and I3. */
2688 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2692 /* We need I2DEST in the proper mode. If it is a hard register
2693 or the only use of a pseudo, we can change its mode.
2694 Make sure we don't change a hard register to have a mode that
2695 isn't valid for it, or change the number of registers. */
2696 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2697 || GET_MODE (*split
) == VOIDmode
2698 || can_change_dest_mode (i2dest
, added_sets_2
,
2700 && (next_real_insn (i2
) == i3
2701 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2702 /* We can't overwrite I2DEST if its value is still used by
2704 && ! reg_referenced_p (i2dest
, newpat
))
2706 rtx newdest
= i2dest
;
2707 enum rtx_code split_code
= GET_CODE (*split
);
2708 enum machine_mode split_mode
= GET_MODE (*split
);
2709 bool subst_done
= false;
2710 newi2pat
= NULL_RTX
;
2712 /* Get NEWDEST as a register in the proper mode. We have already
2713 validated that we can do this. */
2714 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2716 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
2717 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2720 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
2721 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
2725 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2726 an ASHIFT. This can occur if it was inside a PLUS and hence
2727 appeared to be a memory address. This is a kludge. */
2728 if (split_code
== MULT
2729 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2730 && INTVAL (XEXP (*split
, 1)) > 0
2731 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2733 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
2734 XEXP (*split
, 0), GEN_INT (i
)));
2735 /* Update split_code because we may not have a multiply
2737 split_code
= GET_CODE (*split
);
2740 #ifdef INSN_SCHEDULING
2741 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2742 be written as a ZERO_EXTEND. */
2743 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
2745 #ifdef LOAD_EXTEND_OP
2746 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2747 what it really is. */
2748 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
2750 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
2751 SUBREG_REG (*split
)));
2754 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
2755 SUBREG_REG (*split
)));
2759 /* Attempt to split binary operators using arithmetic identities. */
2760 if (BINARY_P (SET_SRC (newpat
))
2761 && split_mode
== GET_MODE (SET_SRC (newpat
))
2762 && ! side_effects_p (SET_SRC (newpat
)))
2764 rtx setsrc
= SET_SRC (newpat
);
2765 enum machine_mode mode
= GET_MODE (setsrc
);
2766 enum rtx_code code
= GET_CODE (setsrc
);
2767 rtx src_op0
= XEXP (setsrc
, 0);
2768 rtx src_op1
= XEXP (setsrc
, 1);
2770 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2771 if (rtx_equal_p (src_op0
, src_op1
))
2773 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
2774 SUBST (XEXP (setsrc
, 0), newdest
);
2775 SUBST (XEXP (setsrc
, 1), newdest
);
2778 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2779 else if ((code
== PLUS
|| code
== MULT
)
2780 && GET_CODE (src_op0
) == code
2781 && GET_CODE (XEXP (src_op0
, 0)) == code
2782 && (INTEGRAL_MODE_P (mode
)
2783 || (FLOAT_MODE_P (mode
)
2784 && flag_unsafe_math_optimizations
)))
2786 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
2787 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
2788 rtx r
= XEXP (src_op0
, 1);
2791 /* Split both "((X op Y) op X) op Y" and
2792 "((X op Y) op Y) op X" as "T op T" where T is
2794 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
2795 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
2797 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
2799 SUBST (XEXP (setsrc
, 0), newdest
);
2800 SUBST (XEXP (setsrc
, 1), newdest
);
2803 /* Split "((X op X) op Y) op Y)" as "T op T" where
2805 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
2807 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
2808 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
2809 SUBST (XEXP (setsrc
, 0), newdest
);
2810 SUBST (XEXP (setsrc
, 1), newdest
);
2818 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
2819 SUBST (*split
, newdest
);
2822 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2824 /* recog_for_combine might have added CLOBBERs to newi2pat.
2825 Make sure NEWPAT does not depend on the clobbered regs. */
2826 if (GET_CODE (newi2pat
) == PARALLEL
)
2827 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
2828 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
2830 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
2831 if (reg_overlap_mentioned_p (reg
, newpat
))
2838 /* If the split point was a MULT and we didn't have one before,
2839 don't use one now. */
2840 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2841 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2845 /* Check for a case where we loaded from memory in a narrow mode and
2846 then sign extended it, but we need both registers. In that case,
2847 we have a PARALLEL with both loads from the same memory location.
2848 We can split this into a load from memory followed by a register-register
2849 copy. This saves at least one insn, more if register allocation can
2852 We cannot do this if the destination of the first assignment is a
2853 condition code register or cc0. We eliminate this case by making sure
2854 the SET_DEST and SET_SRC have the same mode.
2856 We cannot do this if the destination of the second assignment is
2857 a register that we have already assumed is zero-extended. Similarly
2858 for a SUBREG of such a register. */
2860 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2861 && GET_CODE (newpat
) == PARALLEL
2862 && XVECLEN (newpat
, 0) == 2
2863 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2864 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2865 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
2866 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
2867 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2868 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2869 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2870 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2872 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2873 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2874 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2876 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2877 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2878 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2879 && (reg_stat
[REGNO (temp
)].nonzero_bits
2880 != GET_MODE_MASK (word_mode
))))
2881 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2882 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2884 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2885 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2886 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2887 && (reg_stat
[REGNO (temp
)].nonzero_bits
2888 != GET_MODE_MASK (word_mode
)))))
2889 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2890 SET_SRC (XVECEXP (newpat
, 0, 1)))
2891 && ! find_reg_note (i3
, REG_UNUSED
,
2892 SET_DEST (XVECEXP (newpat
, 0, 0))))
2896 newi2pat
= XVECEXP (newpat
, 0, 0);
2897 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2898 newpat
= XVECEXP (newpat
, 0, 1);
2899 SUBST (SET_SRC (newpat
),
2900 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2901 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2903 if (i2_code_number
>= 0)
2904 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2906 if (insn_code_number
>= 0)
2910 /* Similarly, check for a case where we have a PARALLEL of two independent
2911 SETs but we started with three insns. In this case, we can do the sets
2912 as two separate insns. This case occurs when some SET allows two
2913 other insns to combine, but the destination of that SET is still live. */
2915 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2916 && GET_CODE (newpat
) == PARALLEL
2917 && XVECLEN (newpat
, 0) == 2
2918 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2919 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2920 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2921 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2922 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2923 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2924 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2926 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2927 XVECEXP (newpat
, 0, 0))
2928 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2929 XVECEXP (newpat
, 0, 1))
2930 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2931 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1))))
2933 /* We cannot split the parallel into two sets if both sets
2935 && ! (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0))
2936 && reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 1)))
2940 /* Normally, it doesn't matter which of the two is done first,
2941 but it does if one references cc0. In that case, it has to
2944 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2946 newi2pat
= XVECEXP (newpat
, 0, 0);
2947 newpat
= XVECEXP (newpat
, 0, 1);
2952 newi2pat
= XVECEXP (newpat
, 0, 1);
2953 newpat
= XVECEXP (newpat
, 0, 0);
2956 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2958 if (i2_code_number
>= 0)
2959 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2962 /* If it still isn't recognized, fail and change things back the way they
2964 if ((insn_code_number
< 0
2965 /* Is the result a reasonable ASM_OPERANDS? */
2966 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2972 /* If we had to change another insn, make sure it is valid also. */
2973 if (undobuf
.other_insn
)
2975 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2976 rtx new_other_notes
;
2979 CLEAR_HARD_REG_SET (newpat_used_regs
);
2981 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2984 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2990 PATTERN (undobuf
.other_insn
) = other_pat
;
2992 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2993 are still valid. Then add any non-duplicate notes added by
2994 recog_for_combine. */
2995 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2997 next
= XEXP (note
, 1);
2999 if (REG_NOTE_KIND (note
) == REG_UNUSED
3000 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
3002 if (REG_P (XEXP (note
, 0)))
3003 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
3005 remove_note (undobuf
.other_insn
, note
);
3009 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
3010 if (REG_P (XEXP (note
, 0)))
3011 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
3013 distribute_notes (new_other_notes
, undobuf
.other_insn
,
3014 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3017 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3018 they are adjacent to each other or not. */
3020 rtx p
= prev_nonnote_insn (i3
);
3021 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3022 && sets_cc0_p (newi2pat
))
3030 /* Only allow this combination if insn_rtx_costs reports that the
3031 replacement instructions are cheaper than the originals. */
3032 if (!combine_validate_cost (i1
, i2
, i3
, newpat
, newi2pat
))
3038 /* We now know that we can do this combination. Merge the insns and
3039 update the status of registers and LOG_LINKS. */
3047 /* I3 now uses what used to be its destination and which is now
3048 I2's destination. This requires us to do a few adjustments. */
3049 PATTERN (i3
) = newpat
;
3050 adjust_for_new_dest (i3
);
3052 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3055 However, some later insn might be using I2's dest and have
3056 a LOG_LINK pointing at I3. We must remove this link.
3057 The simplest way to remove the link is to point it at I1,
3058 which we know will be a NOTE. */
3060 /* newi2pat is usually a SET here; however, recog_for_combine might
3061 have added some clobbers. */
3062 if (GET_CODE (newi2pat
) == PARALLEL
)
3063 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3065 ni2dest
= SET_DEST (newi2pat
);
3067 for (insn
= NEXT_INSN (i3
);
3068 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
3069 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3070 insn
= NEXT_INSN (insn
))
3072 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3074 for (link
= LOG_LINKS (insn
); link
;
3075 link
= XEXP (link
, 1))
3076 if (XEXP (link
, 0) == i3
)
3077 XEXP (link
, 0) = i1
;
3085 rtx i3notes
, i2notes
, i1notes
= 0;
3086 rtx i3links
, i2links
, i1links
= 0;
3089 /* Compute which registers we expect to eliminate. newi2pat may be setting
3090 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3091 same as i3dest, in which case newi2pat may be setting i1dest. */
3092 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3093 || i2dest_in_i2src
|| i2dest_in_i1src
3096 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
3097 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3101 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3103 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
3104 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
3106 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
3108 /* Ensure that we do not have something that should not be shared but
3109 occurs multiple times in the new insns. Check this by first
3110 resetting all the `used' flags and then copying anything is shared. */
3112 reset_used_flags (i3notes
);
3113 reset_used_flags (i2notes
);
3114 reset_used_flags (i1notes
);
3115 reset_used_flags (newpat
);
3116 reset_used_flags (newi2pat
);
3117 if (undobuf
.other_insn
)
3118 reset_used_flags (PATTERN (undobuf
.other_insn
));
3120 i3notes
= copy_rtx_if_shared (i3notes
);
3121 i2notes
= copy_rtx_if_shared (i2notes
);
3122 i1notes
= copy_rtx_if_shared (i1notes
);
3123 newpat
= copy_rtx_if_shared (newpat
);
3124 newi2pat
= copy_rtx_if_shared (newi2pat
);
3125 if (undobuf
.other_insn
)
3126 reset_used_flags (PATTERN (undobuf
.other_insn
));
3128 INSN_CODE (i3
) = insn_code_number
;
3129 PATTERN (i3
) = newpat
;
3131 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
3133 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
3135 reset_used_flags (call_usage
);
3136 call_usage
= copy_rtx (call_usage
);
3139 replace_rtx (call_usage
, i2dest
, i2src
);
3142 replace_rtx (call_usage
, i1dest
, i1src
);
3144 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
3147 if (undobuf
.other_insn
)
3148 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
3150 /* We had one special case above where I2 had more than one set and
3151 we replaced a destination of one of those sets with the destination
3152 of I3. In that case, we have to update LOG_LINKS of insns later
3153 in this basic block. Note that this (expensive) case is rare.
3155 Also, in this case, we must pretend that all REG_NOTEs for I2
3156 actually came from I3, so that REG_UNUSED notes from I2 will be
3157 properly handled. */
3159 if (i3_subst_into_i2
)
3161 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
3162 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
3163 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
3164 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
3165 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
3166 && ! find_reg_note (i2
, REG_UNUSED
,
3167 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
3168 for (temp
= NEXT_INSN (i2
);
3169 temp
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
3170 || BB_HEAD (this_basic_block
) != temp
);
3171 temp
= NEXT_INSN (temp
))
3172 if (temp
!= i3
&& INSN_P (temp
))
3173 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
3174 if (XEXP (link
, 0) == i2
)
3175 XEXP (link
, 0) = i3
;
3180 while (XEXP (link
, 1))
3181 link
= XEXP (link
, 1);
3182 XEXP (link
, 1) = i2notes
;
3196 INSN_CODE (i2
) = i2_code_number
;
3197 PATTERN (i2
) = newi2pat
;
3200 SET_INSN_DELETED (i2
);
3206 SET_INSN_DELETED (i1
);
3209 /* Get death notes for everything that is now used in either I3 or
3210 I2 and used to die in a previous insn. If we built two new
3211 patterns, move from I1 to I2 then I2 to I3 so that we get the
3212 proper movement on registers that I2 modifies. */
3216 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
3217 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
3220 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
3223 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3225 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
3228 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
3231 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
3234 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3237 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3238 know these are REG_UNUSED and want them to go to the desired insn,
3239 so we always pass it as i3. We have not counted the notes in
3240 reg_n_deaths yet, so we need to do so now. */
3242 if (newi2pat
&& new_i2_notes
)
3244 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
3245 if (REG_P (XEXP (temp
, 0)))
3246 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
3248 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3253 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
3254 if (REG_P (XEXP (temp
, 0)))
3255 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
3257 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3260 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3261 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3262 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3263 in that case, it might delete I2. Similarly for I2 and I1.
3264 Show an additional death due to the REG_DEAD note we make here. If
3265 we discard it in distribute_notes, we will decrement it again. */
3269 if (REG_P (i3dest_killed
))
3270 REG_N_DEATHS (REGNO (i3dest_killed
))++;
3272 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
3273 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
3275 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
);
3277 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
3279 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3283 if (i2dest_in_i2src
)
3286 REG_N_DEATHS (REGNO (i2dest
))++;
3288 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3289 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
3290 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3292 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
3293 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3294 NULL_RTX
, NULL_RTX
);
3297 if (i1dest_in_i1src
)
3300 REG_N_DEATHS (REGNO (i1dest
))++;
3302 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3303 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
3304 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3306 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
3307 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3308 NULL_RTX
, NULL_RTX
);
3311 distribute_links (i3links
);
3312 distribute_links (i2links
);
3313 distribute_links (i1links
);
3318 rtx i2_insn
= 0, i2_val
= 0, set
;
3320 /* The insn that used to set this register doesn't exist, and
3321 this life of the register may not exist either. See if one of
3322 I3's links points to an insn that sets I2DEST. If it does,
3323 that is now the last known value for I2DEST. If we don't update
3324 this and I2 set the register to a value that depended on its old
3325 contents, we will get confused. If this insn is used, thing
3326 will be set correctly in combine_instructions. */
3328 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
3329 if ((set
= single_set (XEXP (link
, 0))) != 0
3330 && rtx_equal_p (i2dest
, SET_DEST (set
)))
3331 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
3333 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
3335 /* If the reg formerly set in I2 died only once and that was in I3,
3336 zero its use count so it won't make `reload' do any work. */
3338 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
3339 && ! i2dest_in_i2src
)
3341 regno
= REGNO (i2dest
);
3342 REG_N_SETS (regno
)--;
3346 if (i1
&& REG_P (i1dest
))
3349 rtx i1_insn
= 0, i1_val
= 0, set
;
3351 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
3352 if ((set
= single_set (XEXP (link
, 0))) != 0
3353 && rtx_equal_p (i1dest
, SET_DEST (set
)))
3354 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
3356 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
3358 regno
= REGNO (i1dest
);
3359 if (! added_sets_1
&& ! i1dest_in_i1src
)
3360 REG_N_SETS (regno
)--;
3363 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3364 been made to this insn. The order of
3365 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3366 can affect nonzero_bits of newpat */
3368 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
3369 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
3371 /* Set new_direct_jump_p if a new return or simple jump instruction
3374 If I3 is now an unconditional jump, ensure that it has a
3375 BARRIER following it since it may have initially been a
3376 conditional jump. It may also be the last nonnote insn. */
3378 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
3380 *new_direct_jump_p
= 1;
3381 mark_jump_label (PATTERN (i3
), i3
, 0);
3383 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
3384 || !BARRIER_P (temp
))
3385 emit_barrier_after (i3
);
3388 if (undobuf
.other_insn
!= NULL_RTX
3389 && (returnjump_p (undobuf
.other_insn
)
3390 || any_uncondjump_p (undobuf
.other_insn
)))
3392 *new_direct_jump_p
= 1;
3394 if ((temp
= next_nonnote_insn (undobuf
.other_insn
)) == NULL_RTX
3395 || !BARRIER_P (temp
))
3396 emit_barrier_after (undobuf
.other_insn
);
3399 /* An NOOP jump does not need barrier, but it does need cleaning up
3401 if (GET_CODE (newpat
) == SET
3402 && SET_SRC (newpat
) == pc_rtx
3403 && SET_DEST (newpat
) == pc_rtx
)
3404 *new_direct_jump_p
= 1;
3407 combine_successes
++;
3410 if (added_links_insn
3411 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
3412 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
3413 return added_links_insn
;
3415 return newi2pat
? i2
: i3
;
3418 /* Undo all the modifications recorded in undobuf. */
3423 struct undo
*undo
, *next
;
3425 for (undo
= undobuf
.undos
; undo
; undo
= next
)
3431 *undo
->where
.r
= undo
->old_contents
.r
;
3434 *undo
->where
.i
= undo
->old_contents
.i
;
3437 PUT_MODE (*undo
->where
.r
, undo
->old_contents
.m
);
3443 undo
->next
= undobuf
.frees
;
3444 undobuf
.frees
= undo
;
3450 /* We've committed to accepting the changes we made. Move all
3451 of the undos to the free list. */
3456 struct undo
*undo
, *next
;
3458 for (undo
= undobuf
.undos
; undo
; undo
= next
)
3461 undo
->next
= undobuf
.frees
;
3462 undobuf
.frees
= undo
;
3467 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3468 where we have an arithmetic expression and return that point. LOC will
3471 try_combine will call this function to see if an insn can be split into
3475 find_split_point (rtx
*loc
, rtx insn
)
3478 enum rtx_code code
= GET_CODE (x
);
3480 unsigned HOST_WIDE_INT len
= 0;
3481 HOST_WIDE_INT pos
= 0;
3483 rtx inner
= NULL_RTX
;
3485 /* First special-case some codes. */
3489 #ifdef INSN_SCHEDULING
3490 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3492 if (MEM_P (SUBREG_REG (x
)))
3495 return find_split_point (&SUBREG_REG (x
), insn
);
3499 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3500 using LO_SUM and HIGH. */
3501 if (GET_CODE (XEXP (x
, 0)) == CONST
3502 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3505 gen_rtx_LO_SUM (Pmode
,
3506 gen_rtx_HIGH (Pmode
, XEXP (x
, 0)),
3508 return &XEXP (XEXP (x
, 0), 0);
3512 /* If we have a PLUS whose second operand is a constant and the
3513 address is not valid, perhaps will can split it up using
3514 the machine-specific way to split large constants. We use
3515 the first pseudo-reg (one of the virtual regs) as a placeholder;
3516 it will not remain in the result. */
3517 if (GET_CODE (XEXP (x
, 0)) == PLUS
3518 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3519 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
3521 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
3522 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
3525 /* This should have produced two insns, each of which sets our
3526 placeholder. If the source of the second is a valid address,
3527 we can make put both sources together and make a split point
3531 && NEXT_INSN (seq
) != NULL_RTX
3532 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
3533 && NONJUMP_INSN_P (seq
)
3534 && GET_CODE (PATTERN (seq
)) == SET
3535 && SET_DEST (PATTERN (seq
)) == reg
3536 && ! reg_mentioned_p (reg
,
3537 SET_SRC (PATTERN (seq
)))
3538 && NONJUMP_INSN_P (NEXT_INSN (seq
))
3539 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
3540 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
3541 && memory_address_p (GET_MODE (x
),
3542 SET_SRC (PATTERN (NEXT_INSN (seq
)))))
3544 rtx src1
= SET_SRC (PATTERN (seq
));
3545 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
3547 /* Replace the placeholder in SRC2 with SRC1. If we can
3548 find where in SRC2 it was placed, that can become our
3549 split point and we can replace this address with SRC2.
3550 Just try two obvious places. */
3552 src2
= replace_rtx (src2
, reg
, src1
);
3554 if (XEXP (src2
, 0) == src1
)
3555 split
= &XEXP (src2
, 0);
3556 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
3557 && XEXP (XEXP (src2
, 0), 0) == src1
)
3558 split
= &XEXP (XEXP (src2
, 0), 0);
3562 SUBST (XEXP (x
, 0), src2
);
3567 /* If that didn't work, perhaps the first operand is complex and
3568 needs to be computed separately, so make a split point there.
3569 This will occur on machines that just support REG + CONST
3570 and have a constant moved through some previous computation. */
3572 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
3573 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
3574 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
3575 return &XEXP (XEXP (x
, 0), 0);
3581 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3582 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3583 we need to put the operand into a register. So split at that
3586 if (SET_DEST (x
) == cc0_rtx
3587 && GET_CODE (SET_SRC (x
)) != COMPARE
3588 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
3589 && !OBJECT_P (SET_SRC (x
))
3590 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
3591 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
3592 return &SET_SRC (x
);
3595 /* See if we can split SET_SRC as it stands. */
3596 split
= find_split_point (&SET_SRC (x
), insn
);
3597 if (split
&& split
!= &SET_SRC (x
))
3600 /* See if we can split SET_DEST as it stands. */
3601 split
= find_split_point (&SET_DEST (x
), insn
);
3602 if (split
&& split
!= &SET_DEST (x
))
3605 /* See if this is a bitfield assignment with everything constant. If
3606 so, this is an IOR of an AND, so split it into that. */
3607 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
3608 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
3609 <= HOST_BITS_PER_WIDE_INT
)
3610 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
3611 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
3612 && GET_CODE (SET_SRC (x
)) == CONST_INT
3613 && ((INTVAL (XEXP (SET_DEST (x
), 1))
3614 + INTVAL (XEXP (SET_DEST (x
), 2)))
3615 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
3616 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
3618 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
3619 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
3620 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
3621 rtx dest
= XEXP (SET_DEST (x
), 0);
3622 enum machine_mode mode
= GET_MODE (dest
);
3623 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
3626 if (BITS_BIG_ENDIAN
)
3627 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
3629 or_mask
= gen_int_mode (src
<< pos
, mode
);
3632 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
3635 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
3637 simplify_gen_binary (IOR
, mode
,
3638 simplify_gen_binary (AND
, mode
,
3643 SUBST (SET_DEST (x
), dest
);
3645 split
= find_split_point (&SET_SRC (x
), insn
);
3646 if (split
&& split
!= &SET_SRC (x
))
3650 /* Otherwise, see if this is an operation that we can split into two.
3651 If so, try to split that. */
3652 code
= GET_CODE (SET_SRC (x
));
3657 /* If we are AND'ing with a large constant that is only a single
3658 bit and the result is only being used in a context where we
3659 need to know if it is zero or nonzero, replace it with a bit
3660 extraction. This will avoid the large constant, which might
3661 have taken more than one insn to make. If the constant were
3662 not a valid argument to the AND but took only one insn to make,
3663 this is no worse, but if it took more than one insn, it will
3666 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3667 && REG_P (XEXP (SET_SRC (x
), 0))
3668 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3669 && REG_P (SET_DEST (x
))
3670 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
3671 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3672 && XEXP (*split
, 0) == SET_DEST (x
)
3673 && XEXP (*split
, 1) == const0_rtx
)
3675 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3676 XEXP (SET_SRC (x
), 0),
3677 pos
, NULL_RTX
, 1, 1, 0, 0);
3678 if (extraction
!= 0)
3680 SUBST (SET_SRC (x
), extraction
);
3681 return find_split_point (loc
, insn
);
3687 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3688 is known to be on, this can be converted into a NEG of a shift. */
3689 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3690 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3691 && 1 <= (pos
= exact_log2
3692 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3693 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3695 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3699 gen_rtx_LSHIFTRT (mode
,
3700 XEXP (SET_SRC (x
), 0),
3703 split
= find_split_point (&SET_SRC (x
), insn
);
3704 if (split
&& split
!= &SET_SRC (x
))
3710 inner
= XEXP (SET_SRC (x
), 0);
3712 /* We can't optimize if either mode is a partial integer
3713 mode as we don't know how many bits are significant
3715 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3716 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3720 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3726 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3727 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3729 inner
= XEXP (SET_SRC (x
), 0);
3730 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3731 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3733 if (BITS_BIG_ENDIAN
)
3734 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3735 unsignedp
= (code
== ZERO_EXTRACT
);
3743 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3745 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3747 /* For unsigned, we have a choice of a shift followed by an
3748 AND or two shifts. Use two shifts for field sizes where the
3749 constant might be too large. We assume here that we can
3750 always at least get 8-bit constants in an AND insn, which is
3751 true for every current RISC. */
3753 if (unsignedp
&& len
<= 8)
3758 (mode
, gen_lowpart (mode
, inner
),
3760 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3762 split
= find_split_point (&SET_SRC (x
), insn
);
3763 if (split
&& split
!= &SET_SRC (x
))
3770 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3771 gen_rtx_ASHIFT (mode
,
3772 gen_lowpart (mode
, inner
),
3773 GEN_INT (GET_MODE_BITSIZE (mode
)
3775 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3777 split
= find_split_point (&SET_SRC (x
), insn
);
3778 if (split
&& split
!= &SET_SRC (x
))
3783 /* See if this is a simple operation with a constant as the second
3784 operand. It might be that this constant is out of range and hence
3785 could be used as a split point. */
3786 if (BINARY_P (SET_SRC (x
))
3787 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3788 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
3789 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3790 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
3791 return &XEXP (SET_SRC (x
), 1);
3793 /* Finally, see if this is a simple operation with its first operand
3794 not in a register. The operation might require this operand in a
3795 register, so return it as a split point. We can always do this
3796 because if the first operand were another operation, we would have
3797 already found it as a split point. */
3798 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
3799 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3800 return &XEXP (SET_SRC (x
), 0);
3806 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3807 it is better to write this as (not (ior A B)) so we can split it.
3808 Similarly for IOR. */
3809 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3812 gen_rtx_NOT (GET_MODE (x
),
3813 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
3815 XEXP (XEXP (x
, 0), 0),
3816 XEXP (XEXP (x
, 1), 0))));
3817 return find_split_point (loc
, insn
);
3820 /* Many RISC machines have a large set of logical insns. If the
3821 second operand is a NOT, put it first so we will try to split the
3822 other operand first. */
3823 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3825 rtx tem
= XEXP (x
, 0);
3826 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3827 SUBST (XEXP (x
, 1), tem
);
3835 /* Otherwise, select our actions depending on our rtx class. */
3836 switch (GET_RTX_CLASS (code
))
3838 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3840 split
= find_split_point (&XEXP (x
, 2), insn
);
3843 /* ... fall through ... */
3845 case RTX_COMM_ARITH
:
3847 case RTX_COMM_COMPARE
:
3848 split
= find_split_point (&XEXP (x
, 1), insn
);
3851 /* ... fall through ... */
3853 /* Some machines have (and (shift ...) ...) insns. If X is not
3854 an AND, but XEXP (X, 0) is, use it as our split point. */
3855 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3856 return &XEXP (x
, 0);
3858 split
= find_split_point (&XEXP (x
, 0), insn
);
3864 /* Otherwise, we don't have a split point. */
3869 /* Throughout X, replace FROM with TO, and return the result.
3870 The result is TO if X is FROM;
3871 otherwise the result is X, but its contents may have been modified.
3872 If they were modified, a record was made in undobuf so that
3873 undo_all will (among other things) return X to its original state.
3875 If the number of changes necessary is too much to record to undo,
3876 the excess changes are not made, so the result is invalid.
3877 The changes already made can still be undone.
3878 undobuf.num_undo is incremented for such changes, so by testing that
3879 the caller can tell whether the result is valid.
3881 `n_occurrences' is incremented each time FROM is replaced.
3883 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3885 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3886 by copying if `n_occurrences' is nonzero. */
3889 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int unique_copy
)
3891 enum rtx_code code
= GET_CODE (x
);
3892 enum machine_mode op0_mode
= VOIDmode
;
3897 /* Two expressions are equal if they are identical copies of a shared
3898 RTX or if they are both registers with the same register number
3901 #define COMBINE_RTX_EQUAL_P(X,Y) \
3903 || (REG_P (X) && REG_P (Y) \
3904 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3906 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3909 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3912 /* If X and FROM are the same register but different modes, they will
3913 not have been seen as equal above. However, flow.c will make a
3914 LOG_LINKS entry for that case. If we do nothing, we will try to
3915 rerecognize our original insn and, when it succeeds, we will
3916 delete the feeding insn, which is incorrect.
3918 So force this insn not to match in this (rare) case. */
3919 if (! in_dest
&& code
== REG
&& REG_P (from
)
3920 && REGNO (x
) == REGNO (from
))
3921 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3923 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3924 of which may contain things that can be combined. */
3925 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
3928 /* It is possible to have a subexpression appear twice in the insn.
3929 Suppose that FROM is a register that appears within TO.
3930 Then, after that subexpression has been scanned once by `subst',
3931 the second time it is scanned, TO may be found. If we were
3932 to scan TO here, we would find FROM within it and create a
3933 self-referent rtl structure which is completely wrong. */
3934 if (COMBINE_RTX_EQUAL_P (x
, to
))
3937 /* Parallel asm_operands need special attention because all of the
3938 inputs are shared across the arms. Furthermore, unsharing the
3939 rtl results in recognition failures. Failure to handle this case
3940 specially can result in circular rtl.
3942 Solve this by doing a normal pass across the first entry of the
3943 parallel, and only processing the SET_DESTs of the subsequent
3946 if (code
== PARALLEL
3947 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3948 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3950 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3952 /* If this substitution failed, this whole thing fails. */
3953 if (GET_CODE (new) == CLOBBER
3954 && XEXP (new, 0) == const0_rtx
)
3957 SUBST (XVECEXP (x
, 0, 0), new);
3959 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3961 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3964 && GET_CODE (dest
) != CC0
3965 && GET_CODE (dest
) != PC
)
3967 new = subst (dest
, from
, to
, 0, unique_copy
);
3969 /* If this substitution failed, this whole thing fails. */
3970 if (GET_CODE (new) == CLOBBER
3971 && XEXP (new, 0) == const0_rtx
)
3974 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3980 len
= GET_RTX_LENGTH (code
);
3981 fmt
= GET_RTX_FORMAT (code
);
3983 /* We don't need to process a SET_DEST that is a register, CC0,
3984 or PC, so set up to skip this common case. All other cases
3985 where we want to suppress replacing something inside a
3986 SET_SRC are handled via the IN_DEST operand. */
3988 && (REG_P (SET_DEST (x
))
3989 || GET_CODE (SET_DEST (x
)) == CC0
3990 || GET_CODE (SET_DEST (x
)) == PC
))
3993 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3996 op0_mode
= GET_MODE (XEXP (x
, 0));
3998 for (i
= 0; i
< len
; i
++)
4003 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4005 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
4007 new = (unique_copy
&& n_occurrences
4008 ? copy_rtx (to
) : to
);
4013 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
4016 /* If this substitution failed, this whole thing
4018 if (GET_CODE (new) == CLOBBER
4019 && XEXP (new, 0) == const0_rtx
)
4023 SUBST (XVECEXP (x
, i
, j
), new);
4026 else if (fmt
[i
] == 'e')
4028 /* If this is a register being set, ignore it. */
4032 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
4034 || code
== STRICT_LOW_PART
))
4037 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
4039 /* In general, don't install a subreg involving two
4040 modes not tieable. It can worsen register
4041 allocation, and can even make invalid reload
4042 insns, since the reg inside may need to be copied
4043 from in the outside mode, and that may be invalid
4044 if it is an fp reg copied in integer mode.
4046 We allow two exceptions to this: It is valid if
4047 it is inside another SUBREG and the mode of that
4048 SUBREG and the mode of the inside of TO is
4049 tieable and it is valid if X is a SET that copies
4052 if (GET_CODE (to
) == SUBREG
4053 && ! MODES_TIEABLE_P (GET_MODE (to
),
4054 GET_MODE (SUBREG_REG (to
)))
4055 && ! (code
== SUBREG
4056 && MODES_TIEABLE_P (GET_MODE (x
),
4057 GET_MODE (SUBREG_REG (to
))))
4059 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
4062 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
4064 #ifdef CANNOT_CHANGE_MODE_CLASS
4067 && REGNO (to
) < FIRST_PSEUDO_REGISTER
4068 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
4071 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
4074 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
4078 /* If we are in a SET_DEST, suppress most cases unless we
4079 have gone inside a MEM, in which case we want to
4080 simplify the address. We assume here that things that
4081 are actually part of the destination have their inner
4082 parts in the first expression. This is true for SUBREG,
4083 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4084 things aside from REG and MEM that should appear in a
4086 new = subst (XEXP (x
, i
), from
, to
,
4088 && (code
== SUBREG
|| code
== STRICT_LOW_PART
4089 || code
== ZERO_EXTRACT
))
4091 && i
== 0), unique_copy
);
4093 /* If we found that we will have to reject this combination,
4094 indicate that by returning the CLOBBER ourselves, rather than
4095 an expression containing it. This will speed things up as
4096 well as prevent accidents where two CLOBBERs are considered
4097 to be equal, thus producing an incorrect simplification. */
4099 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
4102 if (GET_CODE (x
) == SUBREG
4103 && (GET_CODE (new) == CONST_INT
4104 || GET_CODE (new) == CONST_DOUBLE
))
4106 enum machine_mode mode
= GET_MODE (x
);
4108 x
= simplify_subreg (GET_MODE (x
), new,
4109 GET_MODE (SUBREG_REG (x
)),
4112 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
4114 else if (GET_CODE (new) == CONST_INT
4115 && GET_CODE (x
) == ZERO_EXTEND
)
4117 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
4118 new, GET_MODE (XEXP (x
, 0)));
4122 SUBST (XEXP (x
, i
), new);
4127 /* Try to simplify X. If the simplification changed the code, it is likely
4128 that further simplification will help, so loop, but limit the number
4129 of repetitions that will be performed. */
4131 for (i
= 0; i
< 4; i
++)
4133 /* If X is sufficiently simple, don't bother trying to do anything
4135 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
4136 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
);
4138 if (GET_CODE (x
) == code
)
4141 code
= GET_CODE (x
);
4143 /* We no longer know the original mode of operand 0 since we
4144 have changed the form of X) */
4145 op0_mode
= VOIDmode
;
4151 /* Simplify X, a piece of RTL. We just operate on the expression at the
4152 outer level; call `subst' to simplify recursively. Return the new
4155 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4156 if we are inside a SET_DEST. */
4159 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
)
4161 enum rtx_code code
= GET_CODE (x
);
4162 enum machine_mode mode
= GET_MODE (x
);
4166 /* If this is a commutative operation, put a constant last and a complex
4167 expression first. We don't need to do this for comparisons here. */
4168 if (COMMUTATIVE_ARITH_P (x
)
4169 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
4172 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4173 SUBST (XEXP (x
, 1), temp
);
4176 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4177 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4178 things. Check for cases where both arms are testing the same
4181 Don't do anything if all operands are very simple. */
4184 && ((!OBJECT_P (XEXP (x
, 0))
4185 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4186 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
4187 || (!OBJECT_P (XEXP (x
, 1))
4188 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
4189 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
4191 && (!OBJECT_P (XEXP (x
, 0))
4192 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4193 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
4195 rtx cond
, true_rtx
, false_rtx
;
4197 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
4199 /* If everything is a comparison, what we have is highly unlikely
4200 to be simpler, so don't use it. */
4201 && ! (COMPARISON_P (x
)
4202 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
4204 rtx cop1
= const0_rtx
;
4205 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
4207 if (cond_code
== NE
&& COMPARISON_P (cond
))
4210 /* Simplify the alternative arms; this may collapse the true and
4211 false arms to store-flag values. Be careful to use copy_rtx
4212 here since true_rtx or false_rtx might share RTL with x as a
4213 result of the if_then_else_cond call above. */
4214 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0);
4215 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0);
4217 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4218 is unlikely to be simpler. */
4219 if (general_operand (true_rtx
, VOIDmode
)
4220 && general_operand (false_rtx
, VOIDmode
))
4222 enum rtx_code reversed
;
4224 /* Restarting if we generate a store-flag expression will cause
4225 us to loop. Just drop through in this case. */
4227 /* If the result values are STORE_FLAG_VALUE and zero, we can
4228 just make the comparison operation. */
4229 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4230 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
4232 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4233 && ((reversed
= reversed_comparison_code_parts
4234 (cond_code
, cond
, cop1
, NULL
))
4236 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
4239 /* Likewise, we can make the negate of a comparison operation
4240 if the result values are - STORE_FLAG_VALUE and zero. */
4241 else if (GET_CODE (true_rtx
) == CONST_INT
4242 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
4243 && false_rtx
== const0_rtx
)
4244 x
= simplify_gen_unary (NEG
, mode
,
4245 simplify_gen_relational (cond_code
,
4249 else if (GET_CODE (false_rtx
) == CONST_INT
4250 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
4251 && true_rtx
== const0_rtx
4252 && ((reversed
= reversed_comparison_code_parts
4253 (cond_code
, cond
, cop1
, NULL
))
4255 x
= simplify_gen_unary (NEG
, mode
,
4256 simplify_gen_relational (reversed
,
4261 return gen_rtx_IF_THEN_ELSE (mode
,
4262 simplify_gen_relational (cond_code
,
4267 true_rtx
, false_rtx
);
4269 code
= GET_CODE (x
);
4270 op0_mode
= VOIDmode
;
4275 /* Try to fold this expression in case we have constants that weren't
4278 switch (GET_RTX_CLASS (code
))
4281 if (op0_mode
== VOIDmode
)
4282 op0_mode
= GET_MODE (XEXP (x
, 0));
4283 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
4286 case RTX_COMM_COMPARE
:
4288 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
4289 if (cmp_mode
== VOIDmode
)
4291 cmp_mode
= GET_MODE (XEXP (x
, 1));
4292 if (cmp_mode
== VOIDmode
)
4293 cmp_mode
= op0_mode
;
4295 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
4296 XEXP (x
, 0), XEXP (x
, 1));
4299 case RTX_COMM_ARITH
:
4301 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4303 case RTX_BITFIELD_OPS
:
4305 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
4306 XEXP (x
, 1), XEXP (x
, 2));
4315 code
= GET_CODE (temp
);
4316 op0_mode
= VOIDmode
;
4317 mode
= GET_MODE (temp
);
4320 /* First see if we can apply the inverse distributive law. */
4321 if (code
== PLUS
|| code
== MINUS
4322 || code
== AND
|| code
== IOR
|| code
== XOR
)
4324 x
= apply_distributive_law (x
);
4325 code
= GET_CODE (x
);
4326 op0_mode
= VOIDmode
;
4329 /* If CODE is an associative operation not otherwise handled, see if we
4330 can associate some operands. This can win if they are constants or
4331 if they are logically related (i.e. (a & b) & a). */
4332 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
4333 || code
== AND
|| code
== IOR
|| code
== XOR
4334 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
4335 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
4336 || (flag_unsafe_math_optimizations
&& FLOAT_MODE_P (mode
))))
4338 if (GET_CODE (XEXP (x
, 0)) == code
)
4340 rtx other
= XEXP (XEXP (x
, 0), 0);
4341 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
4342 rtx inner_op1
= XEXP (x
, 1);
4345 /* Make sure we pass the constant operand if any as the second
4346 one if this is a commutative operation. */
4347 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
4349 rtx tem
= inner_op0
;
4350 inner_op0
= inner_op1
;
4353 inner
= simplify_binary_operation (code
== MINUS
? PLUS
4354 : code
== DIV
? MULT
4356 mode
, inner_op0
, inner_op1
);
4358 /* For commutative operations, try the other pair if that one
4360 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
4362 other
= XEXP (XEXP (x
, 0), 1);
4363 inner
= simplify_binary_operation (code
, mode
,
4364 XEXP (XEXP (x
, 0), 0),
4369 return simplify_gen_binary (code
, mode
, other
, inner
);
4373 /* A little bit of algebraic simplification here. */
4377 /* Ensure that our address has any ASHIFTs converted to MULT in case
4378 address-recognizing predicates are called later. */
4379 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
4380 SUBST (XEXP (x
, 0), temp
);
4384 if (op0_mode
== VOIDmode
)
4385 op0_mode
= GET_MODE (SUBREG_REG (x
));
4387 /* See if this can be moved to simplify_subreg. */
4388 if (CONSTANT_P (SUBREG_REG (x
))
4389 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
4390 /* Don't call gen_lowpart if the inner mode
4391 is VOIDmode and we cannot simplify it, as SUBREG without
4392 inner mode is invalid. */
4393 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
4394 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
4395 return gen_lowpart (mode
, SUBREG_REG (x
));
4397 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
4401 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
4407 /* Don't change the mode of the MEM if that would change the meaning
4409 if (MEM_P (SUBREG_REG (x
))
4410 && (MEM_VOLATILE_P (SUBREG_REG (x
))
4411 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0))))
4412 return gen_rtx_CLOBBER (mode
, const0_rtx
);
4414 /* Note that we cannot do any narrowing for non-constants since
4415 we might have been counting on using the fact that some bits were
4416 zero. We now do this in the SET. */
4421 temp
= expand_compound_operation (XEXP (x
, 0));
4423 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4424 replaced by (lshiftrt X C). This will convert
4425 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4427 if (GET_CODE (temp
) == ASHIFTRT
4428 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
4429 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
4430 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
4431 INTVAL (XEXP (temp
, 1)));
4433 /* If X has only a single bit that might be nonzero, say, bit I, convert
4434 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4435 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4436 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4437 or a SUBREG of one since we'd be making the expression more
4438 complex if it was just a register. */
4441 && ! (GET_CODE (temp
) == SUBREG
4442 && REG_P (SUBREG_REG (temp
)))
4443 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
4445 rtx temp1
= simplify_shift_const
4446 (NULL_RTX
, ASHIFTRT
, mode
,
4447 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
4448 GET_MODE_BITSIZE (mode
) - 1 - i
),
4449 GET_MODE_BITSIZE (mode
) - 1 - i
);
4451 /* If all we did was surround TEMP with the two shifts, we
4452 haven't improved anything, so don't use it. Otherwise,
4453 we are better off with TEMP1. */
4454 if (GET_CODE (temp1
) != ASHIFTRT
4455 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
4456 || XEXP (XEXP (temp1
, 0), 0) != temp
)
4462 /* We can't handle truncation to a partial integer mode here
4463 because we don't know the real bitsize of the partial
4465 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
4468 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4469 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4470 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
4472 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
4473 GET_MODE_MASK (mode
), 0));
4475 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4476 whose value is a comparison can be replaced with a subreg if
4477 STORE_FLAG_VALUE permits. */
4478 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4479 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4480 && (temp
= get_last_value (XEXP (x
, 0)))
4481 && COMPARISON_P (temp
))
4482 return gen_lowpart (mode
, XEXP (x
, 0));
4487 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4488 using cc0, in which case we want to leave it as a COMPARE
4489 so we can distinguish it from a register-register-copy. */
4490 if (XEXP (x
, 1) == const0_rtx
)
4493 /* x - 0 is the same as x unless x's mode has signed zeros and
4494 allows rounding towards -infinity. Under those conditions,
4496 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x
, 0)))
4497 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x
, 0))))
4498 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4504 /* (const (const X)) can become (const X). Do it this way rather than
4505 returning the inner CONST since CONST can be shared with a
4507 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4508 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4513 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4514 can add in an offset. find_split_point will split this address up
4515 again if it doesn't match. */
4516 if (GET_CODE (XEXP (x
, 0)) == HIGH
4517 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4523 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4524 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4525 bit-field and can be replaced by either a sign_extend or a
4526 sign_extract. The `and' may be a zero_extend and the two
4527 <c>, -<c> constants may be reversed. */
4528 if (GET_CODE (XEXP (x
, 0)) == XOR
4529 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4530 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4531 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4532 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4533 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4534 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4535 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4536 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4537 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4538 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4539 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4540 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4541 == (unsigned int) i
+ 1))))
4542 return simplify_shift_const
4543 (NULL_RTX
, ASHIFTRT
, mode
,
4544 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4545 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4546 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4547 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4549 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4550 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4551 the bitsize of the mode - 1. This allows simplification of
4552 "a = (b & 8) == 0;" */
4553 if (XEXP (x
, 1) == constm1_rtx
4554 && !REG_P (XEXP (x
, 0))
4555 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4556 && REG_P (SUBREG_REG (XEXP (x
, 0))))
4557 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4558 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4559 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4560 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
4561 GET_MODE_BITSIZE (mode
) - 1),
4562 GET_MODE_BITSIZE (mode
) - 1);
4564 /* If we are adding two things that have no bits in common, convert
4565 the addition into an IOR. This will often be further simplified,
4566 for example in cases like ((a & 1) + (a & 2)), which can
4569 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4570 && (nonzero_bits (XEXP (x
, 0), mode
)
4571 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4573 /* Try to simplify the expression further. */
4574 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4575 temp
= combine_simplify_rtx (tor
, mode
, in_dest
);
4577 /* If we could, great. If not, do not go ahead with the IOR
4578 replacement, since PLUS appears in many special purpose
4579 address arithmetic instructions. */
4580 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4586 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4587 (and <foo> (const_int pow2-1)) */
4588 if (GET_CODE (XEXP (x
, 1)) == AND
4589 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4590 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4591 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4592 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4593 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4597 /* If we have (mult (plus A B) C), apply the distributive law and then
4598 the inverse distributive law to see if things simplify. This
4599 occurs mostly in addresses, often when unrolling loops. */
4601 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4603 rtx result
= distribute_and_simplify_rtx (x
, 0);
4608 /* Try simplify a*(b/c) as (a*b)/c. */
4609 if (FLOAT_MODE_P (mode
) && flag_unsafe_math_optimizations
4610 && GET_CODE (XEXP (x
, 0)) == DIV
)
4612 rtx tem
= simplify_binary_operation (MULT
, mode
,
4613 XEXP (XEXP (x
, 0), 0),
4616 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
4621 /* If this is a divide by a power of two, treat it as a shift if
4622 its first operand is a shift. */
4623 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4624 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4625 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4626 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4627 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4628 || GET_CODE (XEXP (x
, 0)) == ROTATE
4629 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4630 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4634 case GT
: case GTU
: case GE
: case GEU
:
4635 case LT
: case LTU
: case LE
: case LEU
:
4636 case UNEQ
: case LTGT
:
4637 case UNGT
: case UNGE
:
4638 case UNLT
: case UNLE
:
4639 case UNORDERED
: case ORDERED
:
4640 /* If the first operand is a condition code, we can't do anything
4642 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4643 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4644 && ! CC0_P (XEXP (x
, 0))))
4646 rtx op0
= XEXP (x
, 0);
4647 rtx op1
= XEXP (x
, 1);
4648 enum rtx_code new_code
;
4650 if (GET_CODE (op0
) == COMPARE
)
4651 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4653 /* Simplify our comparison, if possible. */
4654 new_code
= simplify_comparison (code
, &op0
, &op1
);
4656 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4657 if only the low-order bit is possibly nonzero in X (such as when
4658 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4659 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4660 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4663 Remove any ZERO_EXTRACT we made when thinking this was a
4664 comparison. It may now be simpler to use, e.g., an AND. If a
4665 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4666 the call to make_compound_operation in the SET case. */
4668 if (STORE_FLAG_VALUE
== 1
4669 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4670 && op1
== const0_rtx
4671 && mode
== GET_MODE (op0
)
4672 && nonzero_bits (op0
, mode
) == 1)
4673 return gen_lowpart (mode
,
4674 expand_compound_operation (op0
));
4676 else if (STORE_FLAG_VALUE
== 1
4677 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4678 && op1
== const0_rtx
4679 && mode
== GET_MODE (op0
)
4680 && (num_sign_bit_copies (op0
, mode
)
4681 == GET_MODE_BITSIZE (mode
)))
4683 op0
= expand_compound_operation (op0
);
4684 return simplify_gen_unary (NEG
, mode
,
4685 gen_lowpart (mode
, op0
),
4689 else if (STORE_FLAG_VALUE
== 1
4690 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4691 && op1
== const0_rtx
4692 && mode
== GET_MODE (op0
)
4693 && nonzero_bits (op0
, mode
) == 1)
4695 op0
= expand_compound_operation (op0
);
4696 return simplify_gen_binary (XOR
, mode
,
4697 gen_lowpart (mode
, op0
),
4701 else if (STORE_FLAG_VALUE
== 1
4702 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4703 && op1
== const0_rtx
4704 && mode
== GET_MODE (op0
)
4705 && (num_sign_bit_copies (op0
, mode
)
4706 == GET_MODE_BITSIZE (mode
)))
4708 op0
= expand_compound_operation (op0
);
4709 return plus_constant (gen_lowpart (mode
, op0
), 1);
4712 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4714 if (STORE_FLAG_VALUE
== -1
4715 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4716 && op1
== const0_rtx
4717 && (num_sign_bit_copies (op0
, mode
)
4718 == GET_MODE_BITSIZE (mode
)))
4719 return gen_lowpart (mode
,
4720 expand_compound_operation (op0
));
4722 else if (STORE_FLAG_VALUE
== -1
4723 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4724 && op1
== const0_rtx
4725 && mode
== GET_MODE (op0
)
4726 && nonzero_bits (op0
, mode
) == 1)
4728 op0
= expand_compound_operation (op0
);
4729 return simplify_gen_unary (NEG
, mode
,
4730 gen_lowpart (mode
, op0
),
4734 else if (STORE_FLAG_VALUE
== -1
4735 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4736 && op1
== const0_rtx
4737 && mode
== GET_MODE (op0
)
4738 && (num_sign_bit_copies (op0
, mode
)
4739 == GET_MODE_BITSIZE (mode
)))
4741 op0
= expand_compound_operation (op0
);
4742 return simplify_gen_unary (NOT
, mode
,
4743 gen_lowpart (mode
, op0
),
4747 /* If X is 0/1, (eq X 0) is X-1. */
4748 else if (STORE_FLAG_VALUE
== -1
4749 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4750 && op1
== const0_rtx
4751 && mode
== GET_MODE (op0
)
4752 && nonzero_bits (op0
, mode
) == 1)
4754 op0
= expand_compound_operation (op0
);
4755 return plus_constant (gen_lowpart (mode
, op0
), -1);
4758 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4759 one bit that might be nonzero, we can convert (ne x 0) to
4760 (ashift x c) where C puts the bit in the sign bit. Remove any
4761 AND with STORE_FLAG_VALUE when we are done, since we are only
4762 going to test the sign bit. */
4763 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4764 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4765 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4766 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
4767 && op1
== const0_rtx
4768 && mode
== GET_MODE (op0
)
4769 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4771 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4772 expand_compound_operation (op0
),
4773 GET_MODE_BITSIZE (mode
) - 1 - i
);
4774 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4780 /* If the code changed, return a whole new comparison. */
4781 if (new_code
!= code
)
4782 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
4784 /* Otherwise, keep this operation, but maybe change its operands.
4785 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4786 SUBST (XEXP (x
, 0), op0
);
4787 SUBST (XEXP (x
, 1), op1
);
4792 return simplify_if_then_else (x
);
4798 /* If we are processing SET_DEST, we are done. */
4802 return expand_compound_operation (x
);
4805 return simplify_set (x
);
4809 return simplify_logical (x
);
4816 /* If this is a shift by a constant amount, simplify it. */
4817 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4818 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4819 INTVAL (XEXP (x
, 1)));
4821 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
4823 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
4825 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4837 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4840 simplify_if_then_else (rtx x
)
4842 enum machine_mode mode
= GET_MODE (x
);
4843 rtx cond
= XEXP (x
, 0);
4844 rtx true_rtx
= XEXP (x
, 1);
4845 rtx false_rtx
= XEXP (x
, 2);
4846 enum rtx_code true_code
= GET_CODE (cond
);
4847 int comparison_p
= COMPARISON_P (cond
);
4850 enum rtx_code false_code
;
4853 /* Simplify storing of the truth value. */
4854 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4855 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
4856 XEXP (cond
, 0), XEXP (cond
, 1));
4858 /* Also when the truth value has to be reversed. */
4860 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4861 && (reversed
= reversed_comparison (cond
, mode
)))
4864 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4865 in it is being compared against certain values. Get the true and false
4866 comparisons and see if that says anything about the value of each arm. */
4869 && ((false_code
= reversed_comparison_code (cond
, NULL
))
4871 && REG_P (XEXP (cond
, 0)))
4874 rtx from
= XEXP (cond
, 0);
4875 rtx true_val
= XEXP (cond
, 1);
4876 rtx false_val
= true_val
;
4879 /* If FALSE_CODE is EQ, swap the codes and arms. */
4881 if (false_code
== EQ
)
4883 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4884 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4887 /* If we are comparing against zero and the expression being tested has
4888 only a single bit that might be nonzero, that is its value when it is
4889 not equal to zero. Similarly if it is known to be -1 or 0. */
4891 if (true_code
== EQ
&& true_val
== const0_rtx
4892 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4893 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4894 else if (true_code
== EQ
&& true_val
== const0_rtx
4895 && (num_sign_bit_copies (from
, GET_MODE (from
))
4896 == GET_MODE_BITSIZE (GET_MODE (from
))))
4897 false_code
= EQ
, false_val
= constm1_rtx
;
4899 /* Now simplify an arm if we know the value of the register in the
4900 branch and it is used in the arm. Be careful due to the potential
4901 of locally-shared RTL. */
4903 if (reg_mentioned_p (from
, true_rtx
))
4904 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
4906 pc_rtx
, pc_rtx
, 0, 0);
4907 if (reg_mentioned_p (from
, false_rtx
))
4908 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
4910 pc_rtx
, pc_rtx
, 0, 0);
4912 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
4913 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
4915 true_rtx
= XEXP (x
, 1);
4916 false_rtx
= XEXP (x
, 2);
4917 true_code
= GET_CODE (cond
);
4920 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4921 reversed, do so to avoid needing two sets of patterns for
4922 subtract-and-branch insns. Similarly if we have a constant in the true
4923 arm, the false arm is the same as the first operand of the comparison, or
4924 the false arm is more complicated than the true arm. */
4927 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
4928 && (true_rtx
== pc_rtx
4929 || (CONSTANT_P (true_rtx
)
4930 && GET_CODE (false_rtx
) != CONST_INT
&& false_rtx
!= pc_rtx
)
4931 || true_rtx
== const0_rtx
4932 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
4933 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
4934 && !OBJECT_P (false_rtx
))
4935 || reg_mentioned_p (true_rtx
, false_rtx
)
4936 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
4938 true_code
= reversed_comparison_code (cond
, NULL
);
4939 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
4940 SUBST (XEXP (x
, 1), false_rtx
);
4941 SUBST (XEXP (x
, 2), true_rtx
);
4943 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4946 /* It is possible that the conditional has been simplified out. */
4947 true_code
= GET_CODE (cond
);
4948 comparison_p
= COMPARISON_P (cond
);
4951 /* If the two arms are identical, we don't need the comparison. */
4953 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
4956 /* Convert a == b ? b : a to "a". */
4957 if (true_code
== EQ
&& ! side_effects_p (cond
)
4958 && !HONOR_NANS (mode
)
4959 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
4960 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
4962 else if (true_code
== NE
&& ! side_effects_p (cond
)
4963 && !HONOR_NANS (mode
)
4964 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4965 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
4968 /* Look for cases where we have (abs x) or (neg (abs X)). */
4970 if (GET_MODE_CLASS (mode
) == MODE_INT
4971 && GET_CODE (false_rtx
) == NEG
4972 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
4974 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
4975 && ! side_effects_p (true_rtx
))
4980 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
4984 simplify_gen_unary (NEG
, mode
,
4985 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
4991 /* Look for MIN or MAX. */
4993 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4995 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4996 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
4997 && ! side_effects_p (cond
))
5002 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
5005 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
5008 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
5011 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
5016 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5017 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5018 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5019 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5020 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5021 neither 1 or -1, but it isn't worth checking for. */
5023 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5025 && GET_MODE_CLASS (mode
) == MODE_INT
5026 && ! side_effects_p (x
))
5028 rtx t
= make_compound_operation (true_rtx
, SET
);
5029 rtx f
= make_compound_operation (false_rtx
, SET
);
5030 rtx cond_op0
= XEXP (cond
, 0);
5031 rtx cond_op1
= XEXP (cond
, 1);
5032 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
5033 enum machine_mode m
= mode
;
5034 rtx z
= 0, c1
= NULL_RTX
;
5036 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
5037 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
5038 || GET_CODE (t
) == ASHIFT
5039 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
5040 && rtx_equal_p (XEXP (t
, 0), f
))
5041 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
5043 /* If an identity-zero op is commutative, check whether there
5044 would be a match if we swapped the operands. */
5045 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
5046 || GET_CODE (t
) == XOR
)
5047 && rtx_equal_p (XEXP (t
, 1), f
))
5048 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
5049 else if (GET_CODE (t
) == SIGN_EXTEND
5050 && (GET_CODE (XEXP (t
, 0)) == PLUS
5051 || GET_CODE (XEXP (t
, 0)) == MINUS
5052 || GET_CODE (XEXP (t
, 0)) == IOR
5053 || GET_CODE (XEXP (t
, 0)) == XOR
5054 || GET_CODE (XEXP (t
, 0)) == ASHIFT
5055 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
5056 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
5057 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
5058 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
5059 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
5060 && (num_sign_bit_copies (f
, GET_MODE (f
))
5062 (GET_MODE_BITSIZE (mode
)
5063 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
5065 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5066 extend_op
= SIGN_EXTEND
;
5067 m
= GET_MODE (XEXP (t
, 0));
5069 else if (GET_CODE (t
) == SIGN_EXTEND
5070 && (GET_CODE (XEXP (t
, 0)) == PLUS
5071 || GET_CODE (XEXP (t
, 0)) == IOR
5072 || GET_CODE (XEXP (t
, 0)) == XOR
)
5073 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
5074 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
5075 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5076 && (num_sign_bit_copies (f
, GET_MODE (f
))
5078 (GET_MODE_BITSIZE (mode
)
5079 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
5081 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5082 extend_op
= SIGN_EXTEND
;
5083 m
= GET_MODE (XEXP (t
, 0));
5085 else if (GET_CODE (t
) == ZERO_EXTEND
5086 && (GET_CODE (XEXP (t
, 0)) == PLUS
5087 || GET_CODE (XEXP (t
, 0)) == MINUS
5088 || GET_CODE (XEXP (t
, 0)) == IOR
5089 || GET_CODE (XEXP (t
, 0)) == XOR
5090 || GET_CODE (XEXP (t
, 0)) == ASHIFT
5091 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
5092 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
5093 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
5094 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5095 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
5096 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
5097 && ((nonzero_bits (f
, GET_MODE (f
))
5098 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
5101 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5102 extend_op
= ZERO_EXTEND
;
5103 m
= GET_MODE (XEXP (t
, 0));
5105 else if (GET_CODE (t
) == ZERO_EXTEND
5106 && (GET_CODE (XEXP (t
, 0)) == PLUS
5107 || GET_CODE (XEXP (t
, 0)) == IOR
5108 || GET_CODE (XEXP (t
, 0)) == XOR
)
5109 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
5110 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5111 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
5112 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5113 && ((nonzero_bits (f
, GET_MODE (f
))
5114 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
5117 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5118 extend_op
= ZERO_EXTEND
;
5119 m
= GET_MODE (XEXP (t
, 0));
5124 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
5125 cond_op0
, cond_op1
),
5126 pc_rtx
, pc_rtx
, 0, 0);
5127 temp
= simplify_gen_binary (MULT
, m
, temp
,
5128 simplify_gen_binary (MULT
, m
, c1
,
5130 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
5131 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
5133 if (extend_op
!= UNKNOWN
)
5134 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
5140 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5141 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5142 negation of a single bit, we can convert this operation to a shift. We
5143 can actually do this more generally, but it doesn't seem worth it. */
5145 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5146 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5147 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
5148 && (i
= exact_log2 (INTVAL (true_rtx
))) >= 0)
5149 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
5150 == GET_MODE_BITSIZE (mode
))
5151 && (i
= exact_log2 (-INTVAL (true_rtx
))) >= 0)))
5153 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5154 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
5156 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5157 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5158 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5159 && GET_MODE (XEXP (cond
, 0)) == mode
5160 && (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))
5161 == nonzero_bits (XEXP (cond
, 0), mode
)
5162 && (i
= exact_log2 (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
5163 return XEXP (cond
, 0);
5168 /* Simplify X, a SET expression. Return the new expression. */
5171 simplify_set (rtx x
)
5173 rtx src
= SET_SRC (x
);
5174 rtx dest
= SET_DEST (x
);
5175 enum machine_mode mode
5176 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
5180 /* (set (pc) (return)) gets written as (return). */
5181 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
5184 /* Now that we know for sure which bits of SRC we are using, see if we can
5185 simplify the expression for the object knowing that we only need the
5188 if (GET_MODE_CLASS (mode
) == MODE_INT
5189 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5191 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, 0);
5192 SUBST (SET_SRC (x
), src
);
5195 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5196 the comparison result and try to simplify it unless we already have used
5197 undobuf.other_insn. */
5198 if ((GET_MODE_CLASS (mode
) == MODE_CC
5199 || GET_CODE (src
) == COMPARE
5201 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
5202 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
5203 && COMPARISON_P (*cc_use
)
5204 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
5206 enum rtx_code old_code
= GET_CODE (*cc_use
);
5207 enum rtx_code new_code
;
5209 int other_changed
= 0;
5210 enum machine_mode compare_mode
= GET_MODE (dest
);
5212 if (GET_CODE (src
) == COMPARE
)
5213 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
5215 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
5217 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
5220 new_code
= old_code
;
5221 else if (!CONSTANT_P (tmp
))
5223 new_code
= GET_CODE (tmp
);
5224 op0
= XEXP (tmp
, 0);
5225 op1
= XEXP (tmp
, 1);
5229 rtx pat
= PATTERN (other_insn
);
5230 undobuf
.other_insn
= other_insn
;
5231 SUBST (*cc_use
, tmp
);
5233 /* Attempt to simplify CC user. */
5234 if (GET_CODE (pat
) == SET
)
5236 rtx
new = simplify_rtx (SET_SRC (pat
));
5237 if (new != NULL_RTX
)
5238 SUBST (SET_SRC (pat
), new);
5241 /* Convert X into a no-op move. */
5242 SUBST (SET_DEST (x
), pc_rtx
);
5243 SUBST (SET_SRC (x
), pc_rtx
);
5247 /* Simplify our comparison, if possible. */
5248 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
5250 #ifdef SELECT_CC_MODE
5251 /* If this machine has CC modes other than CCmode, check to see if we
5252 need to use a different CC mode here. */
5253 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5254 compare_mode
= GET_MODE (op0
);
5256 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
5259 /* If the mode changed, we have to change SET_DEST, the mode in the
5260 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5261 a hard register, just build new versions with the proper mode. If it
5262 is a pseudo, we lose unless it is only time we set the pseudo, in
5263 which case we can safely change its mode. */
5264 if (compare_mode
!= GET_MODE (dest
))
5266 if (can_change_dest_mode (dest
, 0, compare_mode
))
5268 unsigned int regno
= REGNO (dest
);
5271 if (regno
< FIRST_PSEUDO_REGISTER
)
5272 new_dest
= gen_rtx_REG (compare_mode
, regno
);
5275 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
5276 new_dest
= regno_reg_rtx
[regno
];
5279 SUBST (SET_DEST (x
), new_dest
);
5280 SUBST (XEXP (*cc_use
, 0), new_dest
);
5287 #endif /* SELECT_CC_MODE */
5289 /* If the code changed, we have to build a new comparison in
5290 undobuf.other_insn. */
5291 if (new_code
!= old_code
)
5293 int other_changed_previously
= other_changed
;
5294 unsigned HOST_WIDE_INT mask
;
5296 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
5300 /* If the only change we made was to change an EQ into an NE or
5301 vice versa, OP0 has only one bit that might be nonzero, and OP1
5302 is zero, check if changing the user of the condition code will
5303 produce a valid insn. If it won't, we can keep the original code
5304 in that insn by surrounding our operation with an XOR. */
5306 if (((old_code
== NE
&& new_code
== EQ
)
5307 || (old_code
== EQ
&& new_code
== NE
))
5308 && ! other_changed_previously
&& op1
== const0_rtx
5309 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
5310 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
5312 rtx pat
= PATTERN (other_insn
), note
= 0;
5314 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
5315 && ! check_asm_operands (pat
)))
5317 PUT_CODE (*cc_use
, old_code
);
5320 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
),
5321 op0
, GEN_INT (mask
));
5327 undobuf
.other_insn
= other_insn
;
5330 /* If we are now comparing against zero, change our source if
5331 needed. If we do not use cc0, we always have a COMPARE. */
5332 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5334 SUBST (SET_SRC (x
), op0
);
5340 /* Otherwise, if we didn't previously have a COMPARE in the
5341 correct mode, we need one. */
5342 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5344 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5347 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
5349 SUBST (SET_SRC (x
), op0
);
5352 /* Otherwise, update the COMPARE if needed. */
5353 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
5355 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5361 /* Get SET_SRC in a form where we have placed back any
5362 compound expressions. Then do the checks below. */
5363 src
= make_compound_operation (src
, SET
);
5364 SUBST (SET_SRC (x
), src
);
5367 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5368 and X being a REG or (subreg (reg)), we may be able to convert this to
5369 (set (subreg:m2 x) (op)).
5371 We can always do this if M1 is narrower than M2 because that means that
5372 we only care about the low bits of the result.
5374 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5375 perform a narrower operation than requested since the high-order bits will
5376 be undefined. On machine where it is defined, this transformation is safe
5377 as long as M1 and M2 have the same number of words. */
5379 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5380 && !OBJECT_P (SUBREG_REG (src
))
5381 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5383 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5384 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5385 #ifndef WORD_REGISTER_OPERATIONS
5386 && (GET_MODE_SIZE (GET_MODE (src
))
5387 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5389 #ifdef CANNOT_CHANGE_MODE_CLASS
5390 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
5391 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
5392 GET_MODE (SUBREG_REG (src
)),
5396 || (GET_CODE (dest
) == SUBREG
5397 && REG_P (SUBREG_REG (dest
)))))
5399 SUBST (SET_DEST (x
),
5400 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
5402 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5404 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5408 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5411 && GET_CODE (src
) == SUBREG
5412 && subreg_lowpart_p (src
)
5413 && (GET_MODE_BITSIZE (GET_MODE (src
))
5414 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src
)))))
5416 rtx inner
= SUBREG_REG (src
);
5417 enum machine_mode inner_mode
= GET_MODE (inner
);
5419 /* Here we make sure that we don't have a sign bit on. */
5420 if (GET_MODE_BITSIZE (inner_mode
) <= HOST_BITS_PER_WIDE_INT
5421 && (nonzero_bits (inner
, inner_mode
)
5422 < ((unsigned HOST_WIDE_INT
) 1
5423 << (GET_MODE_BITSIZE (GET_MODE (src
)) - 1))))
5425 SUBST (SET_SRC (x
), inner
);
5431 #ifdef LOAD_EXTEND_OP
5432 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5433 would require a paradoxical subreg. Replace the subreg with a
5434 zero_extend to avoid the reload that would otherwise be required. */
5436 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5437 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
5438 && SUBREG_BYTE (src
) == 0
5439 && (GET_MODE_SIZE (GET_MODE (src
))
5440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5441 && MEM_P (SUBREG_REG (src
)))
5444 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5445 GET_MODE (src
), SUBREG_REG (src
)));
5451 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5452 are comparing an item known to be 0 or -1 against 0, use a logical
5453 operation instead. Check for one of the arms being an IOR of the other
5454 arm with some value. We compute three terms to be IOR'ed together. In
5455 practice, at most two will be nonzero. Then we do the IOR's. */
5457 if (GET_CODE (dest
) != PC
5458 && GET_CODE (src
) == IF_THEN_ELSE
5459 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5460 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5461 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5462 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5463 #ifdef HAVE_conditional_move
5464 && ! can_conditionally_move_p (GET_MODE (src
))
5466 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5467 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5468 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5469 && ! side_effects_p (src
))
5471 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5472 ? XEXP (src
, 1) : XEXP (src
, 2));
5473 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5474 ? XEXP (src
, 2) : XEXP (src
, 1));
5475 rtx term1
= const0_rtx
, term2
, term3
;
5477 if (GET_CODE (true_rtx
) == IOR
5478 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
5479 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
5480 else if (GET_CODE (true_rtx
) == IOR
5481 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
5482 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
5483 else if (GET_CODE (false_rtx
) == IOR
5484 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
5485 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
5486 else if (GET_CODE (false_rtx
) == IOR
5487 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
5488 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
5490 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
5491 XEXP (XEXP (src
, 0), 0), true_rtx
);
5492 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
5493 simplify_gen_unary (NOT
, GET_MODE (src
),
5494 XEXP (XEXP (src
, 0), 0),
5499 simplify_gen_binary (IOR
, GET_MODE (src
),
5500 simplify_gen_binary (IOR
, GET_MODE (src
),
5507 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5508 whole thing fail. */
5509 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5511 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5514 /* Convert this into a field assignment operation, if possible. */
5515 return make_field_assignment (x
);
5518 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5522 simplify_logical (rtx x
)
5524 enum machine_mode mode
= GET_MODE (x
);
5525 rtx op0
= XEXP (x
, 0);
5526 rtx op1
= XEXP (x
, 1);
5528 switch (GET_CODE (x
))
5531 /* We can call simplify_and_const_int only if we don't lose
5532 any (sign) bits when converting INTVAL (op1) to
5533 "unsigned HOST_WIDE_INT". */
5534 if (GET_CODE (op1
) == CONST_INT
5535 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5536 || INTVAL (op1
) > 0))
5538 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5539 if (GET_CODE (x
) != AND
)
5546 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5547 apply the distributive law and then the inverse distributive
5548 law to see if things simplify. */
5549 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5551 rtx result
= distribute_and_simplify_rtx (x
, 0);
5555 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5557 rtx result
= distribute_and_simplify_rtx (x
, 1);
5564 /* If we have (ior (and A B) C), apply the distributive law and then
5565 the inverse distributive law to see if things simplify. */
5567 if (GET_CODE (op0
) == AND
)
5569 rtx result
= distribute_and_simplify_rtx (x
, 0);
5574 if (GET_CODE (op1
) == AND
)
5576 rtx result
= distribute_and_simplify_rtx (x
, 1);
5589 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5590 operations" because they can be replaced with two more basic operations.
5591 ZERO_EXTEND is also considered "compound" because it can be replaced with
5592 an AND operation, which is simpler, though only one operation.
5594 The function expand_compound_operation is called with an rtx expression
5595 and will convert it to the appropriate shifts and AND operations,
5596 simplifying at each stage.
5598 The function make_compound_operation is called to convert an expression
5599 consisting of shifts and ANDs into the equivalent compound expression.
5600 It is the inverse of this function, loosely speaking. */
5603 expand_compound_operation (rtx x
)
5605 unsigned HOST_WIDE_INT pos
= 0, len
;
5607 unsigned int modewidth
;
5610 switch (GET_CODE (x
))
5615 /* We can't necessarily use a const_int for a multiword mode;
5616 it depends on implicitly extending the value.
5617 Since we don't know the right way to extend it,
5618 we can't tell whether the implicit way is right.
5620 Even for a mode that is no wider than a const_int,
5621 we can't win, because we need to sign extend one of its bits through
5622 the rest of it, and we don't know which bit. */
5623 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5626 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5627 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5628 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5629 reloaded. If not for that, MEM's would very rarely be safe.
5631 Reject MODEs bigger than a word, because we might not be able
5632 to reference a two-register group starting with an arbitrary register
5633 (and currently gen_lowpart might crash for a SUBREG). */
5635 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5638 /* Reject MODEs that aren't scalar integers because turning vector
5639 or complex modes into shifts causes problems. */
5641 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5644 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5645 /* If the inner object has VOIDmode (the only way this can happen
5646 is if it is an ASM_OPERANDS), we can't do anything since we don't
5647 know how much masking to do. */
5656 /* ... fall through ... */
5659 /* If the operand is a CLOBBER, just return it. */
5660 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5663 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5664 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5665 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5668 /* Reject MODEs that aren't scalar integers because turning vector
5669 or complex modes into shifts causes problems. */
5671 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5674 len
= INTVAL (XEXP (x
, 1));
5675 pos
= INTVAL (XEXP (x
, 2));
5677 /* This should stay within the object being extracted, fail otherwise. */
5678 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5681 if (BITS_BIG_ENDIAN
)
5682 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5689 /* Convert sign extension to zero extension, if we know that the high
5690 bit is not set, as this is easier to optimize. It will be converted
5691 back to cheaper alternative in make_extraction. */
5692 if (GET_CODE (x
) == SIGN_EXTEND
5693 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5694 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5695 & ~(((unsigned HOST_WIDE_INT
)
5696 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5700 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5701 rtx temp2
= expand_compound_operation (temp
);
5703 /* Make sure this is a profitable operation. */
5704 if (rtx_cost (x
, SET
) > rtx_cost (temp2
, SET
))
5706 else if (rtx_cost (x
, SET
) > rtx_cost (temp
, SET
))
5712 /* We can optimize some special cases of ZERO_EXTEND. */
5713 if (GET_CODE (x
) == ZERO_EXTEND
)
5715 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5716 know that the last value didn't have any inappropriate bits
5718 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5719 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5720 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5721 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5722 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5723 return XEXP (XEXP (x
, 0), 0);
5725 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5726 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5727 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5728 && subreg_lowpart_p (XEXP (x
, 0))
5729 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5730 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5731 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5732 return SUBREG_REG (XEXP (x
, 0));
5734 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5735 is a comparison and STORE_FLAG_VALUE permits. This is like
5736 the first case, but it works even when GET_MODE (x) is larger
5737 than HOST_WIDE_INT. */
5738 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5739 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5740 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
5741 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5742 <= HOST_BITS_PER_WIDE_INT
)
5743 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5744 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5745 return XEXP (XEXP (x
, 0), 0);
5747 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5748 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5749 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5750 && subreg_lowpart_p (XEXP (x
, 0))
5751 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
5752 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5753 <= HOST_BITS_PER_WIDE_INT
)
5754 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5755 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5756 return SUBREG_REG (XEXP (x
, 0));
5760 /* If we reach here, we want to return a pair of shifts. The inner
5761 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5762 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5763 logical depending on the value of UNSIGNEDP.
5765 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5766 converted into an AND of a shift.
5768 We must check for the case where the left shift would have a negative
5769 count. This can happen in a case like (x >> 31) & 255 on machines
5770 that can't shift by a constant. On those machines, we would first
5771 combine the shift with the AND to produce a variable-position
5772 extraction. Then the constant of 31 would be substituted in to produce
5773 a such a position. */
5775 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5776 if (modewidth
+ len
>= pos
)
5778 enum machine_mode mode
= GET_MODE (x
);
5779 tem
= gen_lowpart (mode
, XEXP (x
, 0));
5780 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
5782 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5783 tem
, modewidth
- pos
- len
);
5784 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5785 mode
, tem
, modewidth
- len
);
5787 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5788 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5789 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5792 ((HOST_WIDE_INT
) 1 << len
) - 1);
5794 /* Any other cases we can't handle. */
5797 /* If we couldn't do this for some reason, return the original
5799 if (GET_CODE (tem
) == CLOBBER
)
5805 /* X is a SET which contains an assignment of one object into
5806 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5807 or certain SUBREGS). If possible, convert it into a series of
5810 We half-heartedly support variable positions, but do not at all
5811 support variable lengths. */
5814 expand_field_assignment (rtx x
)
5817 rtx pos
; /* Always counts from low bit. */
5819 rtx mask
, cleared
, masked
;
5820 enum machine_mode compute_mode
;
5822 /* Loop until we find something we can't simplify. */
5825 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5826 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5828 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5829 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5830 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
5832 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5833 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5835 inner
= XEXP (SET_DEST (x
), 0);
5836 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5837 pos
= XEXP (SET_DEST (x
), 2);
5839 /* A constant position should stay within the width of INNER. */
5840 if (GET_CODE (pos
) == CONST_INT
5841 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5844 if (BITS_BIG_ENDIAN
)
5846 if (GET_CODE (pos
) == CONST_INT
)
5847 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5849 else if (GET_CODE (pos
) == MINUS
5850 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5851 && (INTVAL (XEXP (pos
, 1))
5852 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5853 /* If position is ADJUST - X, new position is X. */
5854 pos
= XEXP (pos
, 0);
5856 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
5857 GEN_INT (GET_MODE_BITSIZE (
5864 /* A SUBREG between two modes that occupy the same numbers of words
5865 can be done by moving the SUBREG to the source. */
5866 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5867 /* We need SUBREGs to compute nonzero_bits properly. */
5868 && nonzero_sign_valid
5869 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5870 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5871 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5872 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5874 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5876 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5883 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5884 inner
= SUBREG_REG (inner
);
5886 compute_mode
= GET_MODE (inner
);
5888 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5889 if (! SCALAR_INT_MODE_P (compute_mode
))
5891 enum machine_mode imode
;
5893 /* Don't do anything for vector or complex integral types. */
5894 if (! FLOAT_MODE_P (compute_mode
))
5897 /* Try to find an integral mode to pun with. */
5898 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5899 if (imode
== BLKmode
)
5902 compute_mode
= imode
;
5903 inner
= gen_lowpart (imode
, inner
);
5906 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5907 if (len
>= HOST_BITS_PER_WIDE_INT
)
5910 /* Now compute the equivalent expression. Make a copy of INNER
5911 for the SET_DEST in case it is a MEM into which we will substitute;
5912 we don't want shared RTL in that case. */
5913 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5914 cleared
= simplify_gen_binary (AND
, compute_mode
,
5915 simplify_gen_unary (NOT
, compute_mode
,
5916 simplify_gen_binary (ASHIFT
,
5921 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
5922 simplify_gen_binary (
5924 gen_lowpart (compute_mode
, SET_SRC (x
)),
5928 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
5929 simplify_gen_binary (IOR
, compute_mode
,
5936 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5937 it is an RTX that represents a variable starting position; otherwise,
5938 POS is the (constant) starting bit position (counted from the LSB).
5940 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5943 IN_DEST is nonzero if this is a reference in the destination of a
5944 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5945 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5948 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5949 ZERO_EXTRACT should be built even for bits starting at bit 0.
5951 MODE is the desired mode of the result (if IN_DEST == 0).
5953 The result is an RTX for the extraction or NULL_RTX if the target
5957 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
5958 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
5959 int in_dest
, int in_compare
)
5961 /* This mode describes the size of the storage area
5962 to fetch the overall value from. Within that, we
5963 ignore the POS lowest bits, etc. */
5964 enum machine_mode is_mode
= GET_MODE (inner
);
5965 enum machine_mode inner_mode
;
5966 enum machine_mode wanted_inner_mode
;
5967 enum machine_mode wanted_inner_reg_mode
= word_mode
;
5968 enum machine_mode pos_mode
= word_mode
;
5969 enum machine_mode extraction_mode
= word_mode
;
5970 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
5972 rtx orig_pos_rtx
= pos_rtx
;
5973 HOST_WIDE_INT orig_pos
;
5975 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5977 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5978 consider just the QI as the memory to extract from.
5979 The subreg adds or removes high bits; its mode is
5980 irrelevant to the meaning of this extraction,
5981 since POS and LEN count from the lsb. */
5982 if (MEM_P (SUBREG_REG (inner
)))
5983 is_mode
= GET_MODE (SUBREG_REG (inner
));
5984 inner
= SUBREG_REG (inner
);
5986 else if (GET_CODE (inner
) == ASHIFT
5987 && GET_CODE (XEXP (inner
, 1)) == CONST_INT
5988 && pos_rtx
== 0 && pos
== 0
5989 && len
> (unsigned HOST_WIDE_INT
) INTVAL (XEXP (inner
, 1)))
5991 /* We're extracting the least significant bits of an rtx
5992 (ashift X (const_int C)), where LEN > C. Extract the
5993 least significant (LEN - C) bits of X, giving an rtx
5994 whose mode is MODE, then shift it left C times. */
5995 new = make_extraction (mode
, XEXP (inner
, 0),
5996 0, 0, len
- INTVAL (XEXP (inner
, 1)),
5997 unsignedp
, in_dest
, in_compare
);
5999 return gen_rtx_ASHIFT (mode
, new, XEXP (inner
, 1));
6002 inner_mode
= GET_MODE (inner
);
6004 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
6005 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
6007 /* See if this can be done without an extraction. We never can if the
6008 width of the field is not the same as that of some integer mode. For
6009 registers, we can only avoid the extraction if the position is at the
6010 low-order bit and this is either not in the destination or we have the
6011 appropriate STRICT_LOW_PART operation available.
6013 For MEM, we can avoid an extract if the field starts on an appropriate
6014 boundary and we can change the mode of the memory reference. */
6016 if (tmode
!= BLKmode
6017 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
6019 && (inner_mode
== tmode
6021 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode
),
6022 GET_MODE_BITSIZE (inner_mode
))
6023 || reg_truncated_to_mode (tmode
, inner
))
6026 && have_insn_for (STRICT_LOW_PART
, tmode
))))
6027 || (MEM_P (inner
) && pos_rtx
== 0
6029 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
6030 : BITS_PER_UNIT
)) == 0
6031 /* We can't do this if we are widening INNER_MODE (it
6032 may not be aligned, for one thing). */
6033 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
6034 && (inner_mode
== tmode
6035 || (! mode_dependent_address_p (XEXP (inner
, 0))
6036 && ! MEM_VOLATILE_P (inner
))))))
6038 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6039 field. If the original and current mode are the same, we need not
6040 adjust the offset. Otherwise, we do if bytes big endian.
6042 If INNER is not a MEM, get a piece consisting of just the field
6043 of interest (in this case POS % BITS_PER_WORD must be 0). */
6047 HOST_WIDE_INT offset
;
6049 /* POS counts from lsb, but make OFFSET count in memory order. */
6050 if (BYTES_BIG_ENDIAN
)
6051 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
6053 offset
= pos
/ BITS_PER_UNIT
;
6055 new = adjust_address_nv (inner
, tmode
, offset
);
6057 else if (REG_P (inner
))
6059 if (tmode
!= inner_mode
)
6061 /* We can't call gen_lowpart in a DEST since we
6062 always want a SUBREG (see below) and it would sometimes
6063 return a new hard register. */
6066 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
6068 if (WORDS_BIG_ENDIAN
6069 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
6070 final_word
= ((GET_MODE_SIZE (inner_mode
)
6071 - GET_MODE_SIZE (tmode
))
6072 / UNITS_PER_WORD
) - final_word
;
6074 final_word
*= UNITS_PER_WORD
;
6075 if (BYTES_BIG_ENDIAN
&&
6076 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
6077 final_word
+= (GET_MODE_SIZE (inner_mode
)
6078 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
6080 /* Avoid creating invalid subregs, for example when
6081 simplifying (x>>32)&255. */
6082 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
6085 new = gen_rtx_SUBREG (tmode
, inner
, final_word
);
6088 new = gen_lowpart (tmode
, inner
);
6094 new = force_to_mode (inner
, tmode
,
6095 len
>= HOST_BITS_PER_WIDE_INT
6096 ? ~(unsigned HOST_WIDE_INT
) 0
6097 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6100 /* If this extraction is going into the destination of a SET,
6101 make a STRICT_LOW_PART unless we made a MEM. */
6104 return (MEM_P (new) ? new
6105 : (GET_CODE (new) != SUBREG
6106 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
6107 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new)));
6112 if (GET_CODE (new) == CONST_INT
)
6113 return gen_int_mode (INTVAL (new), mode
);
6115 /* If we know that no extraneous bits are set, and that the high
6116 bit is not set, convert the extraction to the cheaper of
6117 sign and zero extension, that are equivalent in these cases. */
6118 if (flag_expensive_optimizations
6119 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
6120 && ((nonzero_bits (new, tmode
)
6121 & ~(((unsigned HOST_WIDE_INT
)
6122 GET_MODE_MASK (tmode
))
6126 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
6127 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
6129 /* Prefer ZERO_EXTENSION, since it gives more information to
6131 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
6136 /* Otherwise, sign- or zero-extend unless we already are in the
6139 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
6143 /* Unless this is a COMPARE or we have a funny memory reference,
6144 don't do anything with zero-extending field extracts starting at
6145 the low-order bit since they are simple AND operations. */
6146 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
6147 && ! in_compare
&& unsignedp
)
6150 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6151 if the position is not a constant and the length is not 1. In all
6152 other cases, we would only be going outside our object in cases when
6153 an original shift would have been undefined. */
6155 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6156 || (pos_rtx
!= 0 && len
!= 1)))
6159 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6160 and the mode for the result. */
6161 if (in_dest
&& mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
6163 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
6164 pos_mode
= mode_for_extraction (EP_insv
, 2);
6165 extraction_mode
= mode_for_extraction (EP_insv
, 3);
6168 if (! in_dest
&& unsignedp
6169 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
6171 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
6172 pos_mode
= mode_for_extraction (EP_extzv
, 3);
6173 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
6176 if (! in_dest
&& ! unsignedp
6177 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
6179 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
6180 pos_mode
= mode_for_extraction (EP_extv
, 3);
6181 extraction_mode
= mode_for_extraction (EP_extv
, 0);
6184 /* Never narrow an object, since that might not be safe. */
6186 if (mode
!= VOIDmode
6187 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6188 extraction_mode
= mode
;
6190 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6191 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6192 pos_mode
= GET_MODE (pos_rtx
);
6194 /* If this is not from memory, the desired mode is the preferred mode
6195 for an extraction pattern's first input operand, or word_mode if there
6198 wanted_inner_mode
= wanted_inner_reg_mode
;
6201 /* Be careful not to go beyond the extracted object and maintain the
6202 natural alignment of the memory. */
6203 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
6204 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
6205 > GET_MODE_BITSIZE (wanted_inner_mode
))
6207 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
6208 gcc_assert (wanted_inner_mode
!= VOIDmode
);
6211 /* If we have to change the mode of memory and cannot, the desired mode
6212 is EXTRACTION_MODE. */
6213 if (inner_mode
!= wanted_inner_mode
6214 && (mode_dependent_address_p (XEXP (inner
, 0))
6215 || MEM_VOLATILE_P (inner
)
6217 wanted_inner_mode
= extraction_mode
;
6222 if (BITS_BIG_ENDIAN
)
6224 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6225 BITS_BIG_ENDIAN style. If position is constant, compute new
6226 position. Otherwise, build subtraction.
6227 Note that POS is relative to the mode of the original argument.
6228 If it's a MEM we need to recompute POS relative to that.
6229 However, if we're extracting from (or inserting into) a register,
6230 we want to recompute POS relative to wanted_inner_mode. */
6231 int width
= (MEM_P (inner
)
6232 ? GET_MODE_BITSIZE (is_mode
)
6233 : GET_MODE_BITSIZE (wanted_inner_mode
));
6236 pos
= width
- len
- pos
;
6239 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
6240 /* POS may be less than 0 now, but we check for that below.
6241 Note that it can only be less than 0 if !MEM_P (inner). */
6244 /* If INNER has a wider mode, and this is a constant extraction, try to
6245 make it smaller and adjust the byte to point to the byte containing
6247 if (wanted_inner_mode
!= VOIDmode
6248 && inner_mode
!= wanted_inner_mode
6250 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6252 && ! mode_dependent_address_p (XEXP (inner
, 0))
6253 && ! MEM_VOLATILE_P (inner
))
6257 /* The computations below will be correct if the machine is big
6258 endian in both bits and bytes or little endian in bits and bytes.
6259 If it is mixed, we must adjust. */
6261 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6262 adjust OFFSET to compensate. */
6263 if (BYTES_BIG_ENDIAN
6264 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6265 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6267 /* We can now move to the desired byte. */
6268 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
6269 * GET_MODE_SIZE (wanted_inner_mode
);
6270 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6272 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6273 && is_mode
!= wanted_inner_mode
)
6274 offset
= (GET_MODE_SIZE (is_mode
)
6275 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6277 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
6280 /* If INNER is not memory, we can always get it into the proper mode. If we
6281 are changing its mode, POS must be a constant and smaller than the size
6283 else if (!MEM_P (inner
))
6285 if (GET_MODE (inner
) != wanted_inner_mode
6287 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6293 inner
= force_to_mode (inner
, wanted_inner_mode
,
6295 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6296 ? ~(unsigned HOST_WIDE_INT
) 0
6297 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6302 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6303 have to zero extend. Otherwise, we can just use a SUBREG. */
6305 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6307 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
6309 /* If we know that no extraneous bits are set, and that the high
6310 bit is not set, convert extraction to cheaper one - either
6311 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6313 if (flag_expensive_optimizations
6314 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6315 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6316 & ~(((unsigned HOST_WIDE_INT
)
6317 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6321 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6323 /* Prefer ZERO_EXTENSION, since it gives more information to
6325 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6330 else if (pos_rtx
!= 0
6331 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6332 pos_rtx
= gen_lowpart (pos_mode
, pos_rtx
);
6334 /* Make POS_RTX unless we already have it and it is correct. If we don't
6335 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6337 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6338 pos_rtx
= orig_pos_rtx
;
6340 else if (pos_rtx
== 0)
6341 pos_rtx
= GEN_INT (pos
);
6343 /* Make the required operation. See if we can use existing rtx. */
6344 new = gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6345 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6347 new = gen_lowpart (mode
, new);
6352 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6353 with any other operations in X. Return X without that shift if so. */
6356 extract_left_shift (rtx x
, int count
)
6358 enum rtx_code code
= GET_CODE (x
);
6359 enum machine_mode mode
= GET_MODE (x
);
6365 /* This is the shift itself. If it is wide enough, we will return
6366 either the value being shifted if the shift count is equal to
6367 COUNT or a shift for the difference. */
6368 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6369 && INTVAL (XEXP (x
, 1)) >= count
)
6370 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6371 INTVAL (XEXP (x
, 1)) - count
);
6375 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6376 return simplify_gen_unary (code
, mode
, tem
, mode
);
6380 case PLUS
: case IOR
: case XOR
: case AND
:
6381 /* If we can safely shift this constant and we find the inner shift,
6382 make a new operation. */
6383 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6384 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6385 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6386 return simplify_gen_binary (code
, mode
, tem
,
6387 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6398 /* Look at the expression rooted at X. Look for expressions
6399 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6400 Form these expressions.
6402 Return the new rtx, usually just X.
6404 Also, for machines like the VAX that don't have logical shift insns,
6405 try to convert logical to arithmetic shift operations in cases where
6406 they are equivalent. This undoes the canonicalizations to logical
6407 shifts done elsewhere.
6409 We try, as much as possible, to re-use rtl expressions to save memory.
6411 IN_CODE says what kind of expression we are processing. Normally, it is
6412 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6413 being kludges), it is MEM. When processing the arguments of a comparison
6414 or a COMPARE against zero, it is COMPARE. */
6417 make_compound_operation (rtx x
, enum rtx_code in_code
)
6419 enum rtx_code code
= GET_CODE (x
);
6420 enum machine_mode mode
= GET_MODE (x
);
6421 int mode_width
= GET_MODE_BITSIZE (mode
);
6423 enum rtx_code next_code
;
6429 /* Select the code to be used in recursive calls. Once we are inside an
6430 address, we stay there. If we have a comparison, set to COMPARE,
6431 but once inside, go back to our default of SET. */
6433 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6434 : ((code
== COMPARE
|| COMPARISON_P (x
))
6435 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6436 : in_code
== COMPARE
? SET
: in_code
);
6438 /* Process depending on the code of this operation. If NEW is set
6439 nonzero, it will be returned. */
6444 /* Convert shifts by constants into multiplications if inside
6446 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6447 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6448 && INTVAL (XEXP (x
, 1)) >= 0)
6450 new = make_compound_operation (XEXP (x
, 0), next_code
);
6451 new = gen_rtx_MULT (mode
, new,
6452 GEN_INT ((HOST_WIDE_INT
) 1
6453 << INTVAL (XEXP (x
, 1))));
6458 /* If the second operand is not a constant, we can't do anything
6460 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6463 /* If the constant is a power of two minus one and the first operand
6464 is a logical right shift, make an extraction. */
6465 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6466 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6468 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6469 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6470 0, in_code
== COMPARE
);
6473 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6474 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6475 && subreg_lowpart_p (XEXP (x
, 0))
6476 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6477 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6479 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6481 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6482 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6483 0, in_code
== COMPARE
);
6485 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6486 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6487 || GET_CODE (XEXP (x
, 0)) == IOR
)
6488 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6489 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6490 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6492 /* Apply the distributive law, and then try to make extractions. */
6493 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
6494 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6496 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6498 new = make_compound_operation (new, in_code
);
6501 /* If we are have (and (rotate X C) M) and C is larger than the number
6502 of bits in M, this is an extraction. */
6504 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6505 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6506 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6507 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6509 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6510 new = make_extraction (mode
, new,
6511 (GET_MODE_BITSIZE (mode
)
6512 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6513 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6516 /* On machines without logical shifts, if the operand of the AND is
6517 a logical shift and our mask turns off all the propagated sign
6518 bits, we can replace the logical shift with an arithmetic shift. */
6519 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6520 && !have_insn_for (LSHIFTRT
, mode
)
6521 && have_insn_for (ASHIFTRT
, mode
)
6522 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6523 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6524 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6525 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6527 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6529 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6530 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6532 gen_rtx_ASHIFTRT (mode
,
6533 make_compound_operation
6534 (XEXP (XEXP (x
, 0), 0), next_code
),
6535 XEXP (XEXP (x
, 0), 1)));
6538 /* If the constant is one less than a power of two, this might be
6539 representable by an extraction even if no shift is present.
6540 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6541 we are in a COMPARE. */
6542 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6543 new = make_extraction (mode
,
6544 make_compound_operation (XEXP (x
, 0),
6546 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6548 /* If we are in a comparison and this is an AND with a power of two,
6549 convert this into the appropriate bit extract. */
6550 else if (in_code
== COMPARE
6551 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6552 new = make_extraction (mode
,
6553 make_compound_operation (XEXP (x
, 0),
6555 i
, NULL_RTX
, 1, 1, 0, 1);
6560 /* If the sign bit is known to be zero, replace this with an
6561 arithmetic shift. */
6562 if (have_insn_for (ASHIFTRT
, mode
)
6563 && ! have_insn_for (LSHIFTRT
, mode
)
6564 && mode_width
<= HOST_BITS_PER_WIDE_INT
6565 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6567 new = gen_rtx_ASHIFTRT (mode
,
6568 make_compound_operation (XEXP (x
, 0),
6574 /* ... fall through ... */
6580 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6581 this is a SIGN_EXTRACT. */
6582 if (GET_CODE (rhs
) == CONST_INT
6583 && GET_CODE (lhs
) == ASHIFT
6584 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6585 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6587 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6588 new = make_extraction (mode
, new,
6589 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6590 NULL_RTX
, mode_width
- INTVAL (rhs
),
6591 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6595 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6596 If so, try to merge the shifts into a SIGN_EXTEND. We could
6597 also do this for some cases of SIGN_EXTRACT, but it doesn't
6598 seem worth the effort; the case checked for occurs on Alpha. */
6601 && ! (GET_CODE (lhs
) == SUBREG
6602 && (OBJECT_P (SUBREG_REG (lhs
))))
6603 && GET_CODE (rhs
) == CONST_INT
6604 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6605 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6606 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6607 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6608 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6613 /* Call ourselves recursively on the inner expression. If we are
6614 narrowing the object and it has a different RTL code from
6615 what it originally did, do this SUBREG as a force_to_mode. */
6617 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6621 simplified
= simplify_subreg (GET_MODE (x
), tem
, GET_MODE (tem
),
6627 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6628 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6629 && subreg_lowpart_p (x
))
6631 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6634 /* If we have something other than a SUBREG, we might have
6635 done an expansion, so rerun ourselves. */
6636 if (GET_CODE (newer
) != SUBREG
)
6637 newer
= make_compound_operation (newer
, in_code
);
6653 x
= gen_lowpart (mode
, new);
6654 code
= GET_CODE (x
);
6657 /* Now recursively process each operand of this operation. */
6658 fmt
= GET_RTX_FORMAT (code
);
6659 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6662 new = make_compound_operation (XEXP (x
, i
), next_code
);
6663 SUBST (XEXP (x
, i
), new);
6666 /* If this is a commutative operation, the changes to the operands
6667 may have made it noncanonical. */
6668 if (COMMUTATIVE_ARITH_P (x
)
6669 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
6672 SUBST (XEXP (x
, 0), XEXP (x
, 1));
6673 SUBST (XEXP (x
, 1), tem
);
6679 /* Given M see if it is a value that would select a field of bits
6680 within an item, but not the entire word. Return -1 if not.
6681 Otherwise, return the starting position of the field, where 0 is the
6684 *PLEN is set to the length of the field. */
6687 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
6689 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6690 int pos
= exact_log2 (m
& -m
);
6694 /* Now shift off the low-order zero bits and see if we have a
6695 power of two minus 1. */
6696 len
= exact_log2 ((m
>> pos
) + 1);
6705 /* If X refers to a register that equals REG in value, replace these
6706 references with REG. */
6708 canon_reg_for_combine (rtx x
, rtx reg
)
6715 enum rtx_code code
= GET_CODE (x
);
6716 switch (GET_RTX_CLASS (code
))
6719 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6720 if (op0
!= XEXP (x
, 0))
6721 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
6726 case RTX_COMM_ARITH
:
6727 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6728 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6729 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6730 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
6734 case RTX_COMM_COMPARE
:
6735 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6736 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6737 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6738 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
6739 GET_MODE (op0
), op0
, op1
);
6743 case RTX_BITFIELD_OPS
:
6744 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6745 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6746 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
6747 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
6748 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
6749 GET_MODE (op0
), op0
, op1
, op2
);
6754 if (rtx_equal_p (get_last_value (reg
), x
)
6755 || rtx_equal_p (reg
, get_last_value (x
)))
6764 fmt
= GET_RTX_FORMAT (code
);
6766 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6769 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
6770 if (op
!= XEXP (x
, i
))
6780 else if (fmt
[i
] == 'E')
6783 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
6785 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
6786 if (op
!= XVECEXP (x
, i
, j
))
6793 XVECEXP (x
, i
, j
) = op
;
6804 /* Return X converted to MODE. If the value is already truncated to
6805 MODE we can just return a subreg even though in the general case we
6806 would need an explicit truncation. */
6809 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
6811 if (GET_MODE_SIZE (GET_MODE (x
)) <= GET_MODE_SIZE (mode
)
6812 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
6813 GET_MODE_BITSIZE (GET_MODE (x
)))
6814 || (REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
6815 return gen_lowpart (mode
, x
);
6817 return simplify_gen_unary (TRUNCATE
, mode
, x
, GET_MODE (x
));
6820 /* See if X can be simplified knowing that we will only refer to it in
6821 MODE and will only refer to those bits that are nonzero in MASK.
6822 If other bits are being computed or if masking operations are done
6823 that select a superset of the bits in MASK, they can sometimes be
6826 Return a possibly simplified expression, but always convert X to
6827 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6829 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6830 are all off in X. This is used when X will be complemented, by either
6831 NOT, NEG, or XOR. */
6834 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
6837 enum rtx_code code
= GET_CODE (x
);
6838 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6839 enum machine_mode op_mode
;
6840 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6843 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6844 code below will do the wrong thing since the mode of such an
6845 expression is VOIDmode.
6847 Also do nothing if X is a CLOBBER; this can happen if X was
6848 the return value from a call to gen_lowpart. */
6849 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6852 /* We want to perform the operation is its present mode unless we know
6853 that the operation is valid in MODE, in which case we do the operation
6855 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6856 && have_insn_for (code
, mode
))
6857 ? mode
: GET_MODE (x
));
6859 /* It is not valid to do a right-shift in a narrower mode
6860 than the one it came in with. */
6861 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6862 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6863 op_mode
= GET_MODE (x
);
6865 /* Truncate MASK to fit OP_MODE. */
6867 mask
&= GET_MODE_MASK (op_mode
);
6869 /* When we have an arithmetic operation, or a shift whose count we
6870 do not know, we need to assume that all bits up to the highest-order
6871 bit in MASK will be needed. This is how we form such a mask. */
6872 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
6873 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
6875 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6878 /* Determine what bits of X are guaranteed to be (non)zero. */
6879 nonzero
= nonzero_bits (x
, mode
);
6881 /* If none of the bits in X are needed, return a zero. */
6882 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
6885 /* If X is a CONST_INT, return a new one. Do this here since the
6886 test below will fail. */
6887 if (GET_CODE (x
) == CONST_INT
)
6889 if (SCALAR_INT_MODE_P (mode
))
6890 return gen_int_mode (INTVAL (x
) & mask
, mode
);
6893 x
= GEN_INT (INTVAL (x
) & mask
);
6894 return gen_lowpart_common (mode
, x
);
6898 /* If X is narrower than MODE and we want all the bits in X's mode, just
6899 get X in the proper mode. */
6900 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6901 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6902 return gen_lowpart (mode
, x
);
6907 /* If X is a (clobber (const_int)), return it since we know we are
6908 generating something that won't match. */
6915 x
= expand_compound_operation (x
);
6916 if (GET_CODE (x
) != code
)
6917 return force_to_mode (x
, mode
, mask
, next_select
);
6921 if (subreg_lowpart_p (x
)
6922 /* We can ignore the effect of this SUBREG if it narrows the mode or
6923 if the constant masks to zero all the bits the mode doesn't
6925 && ((GET_MODE_SIZE (GET_MODE (x
))
6926 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6928 & GET_MODE_MASK (GET_MODE (x
))
6929 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6930 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
6934 /* If this is an AND with a constant, convert it into an AND
6935 whose constant is the AND of that constant with MASK. If it
6936 remains an AND of MASK, delete it since it is redundant. */
6938 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6940 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6941 mask
& INTVAL (XEXP (x
, 1)));
6943 /* If X is still an AND, see if it is an AND with a mask that
6944 is just some low-order bits. If so, and it is MASK, we don't
6947 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6948 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
6952 /* If it remains an AND, try making another AND with the bits
6953 in the mode mask that aren't in MASK turned on. If the
6954 constant in the AND is wide enough, this might make a
6955 cheaper constant. */
6957 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6958 && GET_MODE_MASK (GET_MODE (x
)) != mask
6959 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6961 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6962 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
6963 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6966 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6967 number, sign extend it. */
6968 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6969 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6970 cval
|= (HOST_WIDE_INT
) -1 << width
;
6972 y
= simplify_gen_binary (AND
, GET_MODE (x
),
6973 XEXP (x
, 0), GEN_INT (cval
));
6974 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6984 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6985 low-order bits (as in an alignment operation) and FOO is already
6986 aligned to that boundary, mask C1 to that boundary as well.
6987 This may eliminate that PLUS and, later, the AND. */
6990 unsigned int width
= GET_MODE_BITSIZE (mode
);
6991 unsigned HOST_WIDE_INT smask
= mask
;
6993 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6994 number, sign extend it. */
6996 if (width
< HOST_BITS_PER_WIDE_INT
6997 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6998 smask
|= (HOST_WIDE_INT
) -1 << width
;
7000 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7001 && exact_log2 (- smask
) >= 0
7002 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
7003 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
7004 return force_to_mode (plus_constant (XEXP (x
, 0),
7005 (INTVAL (XEXP (x
, 1)) & smask
)),
7006 mode
, smask
, next_select
);
7009 /* ... fall through ... */
7012 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7013 most significant bit in MASK since carries from those bits will
7014 affect the bits we are interested in. */
7019 /* If X is (minus C Y) where C's least set bit is larger than any bit
7020 in the mask, then we may replace with (neg Y). */
7021 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
7022 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
7023 & -INTVAL (XEXP (x
, 0))))
7026 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
7028 return force_to_mode (x
, mode
, mask
, next_select
);
7031 /* Similarly, if C contains every bit in the fuller_mask, then we may
7032 replace with (not Y). */
7033 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
7034 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) fuller_mask
)
7035 == INTVAL (XEXP (x
, 0))))
7037 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
7038 XEXP (x
, 1), GET_MODE (x
));
7039 return force_to_mode (x
, mode
, mask
, next_select
);
7047 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7048 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7049 operation which may be a bitfield extraction. Ensure that the
7050 constant we form is not wider than the mode of X. */
7052 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7053 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7054 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7055 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7056 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7057 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
7058 + floor_log2 (INTVAL (XEXP (x
, 1))))
7059 < GET_MODE_BITSIZE (GET_MODE (x
)))
7060 && (INTVAL (XEXP (x
, 1))
7061 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
7063 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
7064 << INTVAL (XEXP (XEXP (x
, 0), 1)));
7065 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
7066 XEXP (XEXP (x
, 0), 0), temp
);
7067 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
7068 XEXP (XEXP (x
, 0), 1));
7069 return force_to_mode (x
, mode
, mask
, next_select
);
7073 /* For most binary operations, just propagate into the operation and
7074 change the mode if we have an operation of that mode. */
7076 op0
= gen_lowpart_or_truncate (op_mode
,
7077 force_to_mode (XEXP (x
, 0), mode
, mask
,
7079 op1
= gen_lowpart_or_truncate (op_mode
,
7080 force_to_mode (XEXP (x
, 1), mode
, mask
,
7083 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7084 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
7088 /* For left shifts, do the same, but just for the first operand.
7089 However, we cannot do anything with shifts where we cannot
7090 guarantee that the counts are smaller than the size of the mode
7091 because such a count will have a different meaning in a
7094 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
7095 && INTVAL (XEXP (x
, 1)) >= 0
7096 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
7097 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
7098 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
7099 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
7102 /* If the shift count is a constant and we can do arithmetic in
7103 the mode of the shift, refine which bits we need. Otherwise, use the
7104 conservative form of the mask. */
7105 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7106 && INTVAL (XEXP (x
, 1)) >= 0
7107 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
7108 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7109 mask
>>= INTVAL (XEXP (x
, 1));
7113 op0
= gen_lowpart_or_truncate (op_mode
,
7114 force_to_mode (XEXP (x
, 0), op_mode
,
7115 mask
, next_select
));
7117 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7118 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
7122 /* Here we can only do something if the shift count is a constant,
7123 this shift constant is valid for the host, and we can do arithmetic
7126 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7127 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7128 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7130 rtx inner
= XEXP (x
, 0);
7131 unsigned HOST_WIDE_INT inner_mask
;
7133 /* Select the mask of the bits we need for the shift operand. */
7134 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
7136 /* We can only change the mode of the shift if we can do arithmetic
7137 in the mode of the shift and INNER_MASK is no wider than the
7138 width of X's mode. */
7139 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
7140 op_mode
= GET_MODE (x
);
7142 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
7144 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
7145 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
7148 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7149 shift and AND produces only copies of the sign bit (C2 is one less
7150 than a power of two), we can do this with just a shift. */
7152 if (GET_CODE (x
) == LSHIFTRT
7153 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7154 /* The shift puts one of the sign bit copies in the least significant
7156 && ((INTVAL (XEXP (x
, 1))
7157 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
7158 >= GET_MODE_BITSIZE (GET_MODE (x
)))
7159 && exact_log2 (mask
+ 1) >= 0
7160 /* Number of bits left after the shift must be more than the mask
7162 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
7163 <= GET_MODE_BITSIZE (GET_MODE (x
)))
7164 /* Must be more sign bit copies than the mask needs. */
7165 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7166 >= exact_log2 (mask
+ 1)))
7167 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7168 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
7169 - exact_log2 (mask
+ 1)));
7174 /* If we are just looking for the sign bit, we don't need this shift at
7175 all, even if it has a variable count. */
7176 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7177 && (mask
== ((unsigned HOST_WIDE_INT
) 1
7178 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7179 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
7181 /* If this is a shift by a constant, get a mask that contains those bits
7182 that are not copies of the sign bit. We then have two cases: If
7183 MASK only includes those bits, this can be a logical shift, which may
7184 allow simplifications. If MASK is a single-bit field not within
7185 those bits, we are requesting a copy of the sign bit and hence can
7186 shift the sign bit to the appropriate location. */
7188 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
7189 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
7193 /* If the considered data is wider than HOST_WIDE_INT, we can't
7194 represent a mask for all its bits in a single scalar.
7195 But we only care about the lower bits, so calculate these. */
7197 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
7199 nonzero
= ~(HOST_WIDE_INT
) 0;
7201 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7202 is the number of bits a full-width mask would have set.
7203 We need only shift if these are fewer than nonzero can
7204 hold. If not, we must keep all bits set in nonzero. */
7206 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
7207 < HOST_BITS_PER_WIDE_INT
)
7208 nonzero
>>= INTVAL (XEXP (x
, 1))
7209 + HOST_BITS_PER_WIDE_INT
7210 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
7214 nonzero
= GET_MODE_MASK (GET_MODE (x
));
7215 nonzero
>>= INTVAL (XEXP (x
, 1));
7218 if ((mask
& ~nonzero
) == 0)
7220 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
7221 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
7222 if (GET_CODE (x
) != ASHIFTRT
)
7223 return force_to_mode (x
, mode
, mask
, next_select
);
7226 else if ((i
= exact_log2 (mask
)) >= 0)
7228 x
= simplify_shift_const
7229 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7230 GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7232 if (GET_CODE (x
) != ASHIFTRT
)
7233 return force_to_mode (x
, mode
, mask
, next_select
);
7237 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7238 even if the shift count isn't a constant. */
7240 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
7241 XEXP (x
, 0), XEXP (x
, 1));
7245 /* If this is a zero- or sign-extension operation that just affects bits
7246 we don't care about, remove it. Be sure the call above returned
7247 something that is still a shift. */
7249 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7250 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7251 && INTVAL (XEXP (x
, 1)) >= 0
7252 && (INTVAL (XEXP (x
, 1))
7253 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7254 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7255 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
7256 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7263 /* If the shift count is constant and we can do computations
7264 in the mode of X, compute where the bits we care about are.
7265 Otherwise, we can't do anything. Don't change the mode of
7266 the shift or propagate MODE into the shift, though. */
7267 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7268 && INTVAL (XEXP (x
, 1)) >= 0)
7270 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7271 GET_MODE (x
), GEN_INT (mask
),
7273 if (temp
&& GET_CODE (temp
) == CONST_INT
)
7275 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7276 INTVAL (temp
), next_select
));
7281 /* If we just want the low-order bit, the NEG isn't needed since it
7282 won't change the low-order bit. */
7284 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
7286 /* We need any bits less significant than the most significant bit in
7287 MASK since carries from those bits will affect the bits we are
7293 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7294 same as the XOR case above. Ensure that the constant we form is not
7295 wider than the mode of X. */
7297 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7298 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7299 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7300 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7301 < GET_MODE_BITSIZE (GET_MODE (x
)))
7302 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7304 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
7306 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
7307 XEXP (XEXP (x
, 0), 0), temp
);
7308 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
7309 temp
, XEXP (XEXP (x
, 0), 1));
7311 return force_to_mode (x
, mode
, mask
, next_select
);
7314 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7315 use the full mask inside the NOT. */
7319 op0
= gen_lowpart_or_truncate (op_mode
,
7320 force_to_mode (XEXP (x
, 0), mode
, mask
,
7322 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7323 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
7327 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7328 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7329 which is equal to STORE_FLAG_VALUE. */
7330 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7331 && GET_MODE (XEXP (x
, 0)) == mode
7332 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7333 && (nonzero_bits (XEXP (x
, 0), mode
)
7334 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
7335 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
7340 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7341 written in a narrower mode. We play it safe and do not do so. */
7344 gen_lowpart_or_truncate (GET_MODE (x
),
7345 force_to_mode (XEXP (x
, 1), mode
,
7346 mask
, next_select
)));
7348 gen_lowpart_or_truncate (GET_MODE (x
),
7349 force_to_mode (XEXP (x
, 2), mode
,
7350 mask
, next_select
)));
7357 /* Ensure we return a value of the proper mode. */
7358 return gen_lowpart_or_truncate (mode
, x
);
7361 /* Return nonzero if X is an expression that has one of two values depending on
7362 whether some other value is zero or nonzero. In that case, we return the
7363 value that is being tested, *PTRUE is set to the value if the rtx being
7364 returned has a nonzero value, and *PFALSE is set to the other alternative.
7366 If we return zero, we set *PTRUE and *PFALSE to X. */
7369 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
7371 enum machine_mode mode
= GET_MODE (x
);
7372 enum rtx_code code
= GET_CODE (x
);
7373 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7374 unsigned HOST_WIDE_INT nz
;
7376 /* If we are comparing a value against zero, we are done. */
7377 if ((code
== NE
|| code
== EQ
)
7378 && XEXP (x
, 1) == const0_rtx
)
7380 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7381 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7385 /* If this is a unary operation whose operand has one of two values, apply
7386 our opcode to compute those values. */
7387 else if (UNARY_P (x
)
7388 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7390 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
7391 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
7392 GET_MODE (XEXP (x
, 0)));
7396 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7397 make can't possibly match and would suppress other optimizations. */
7398 else if (code
== COMPARE
)
7401 /* If this is a binary operation, see if either side has only one of two
7402 values. If either one does or if both do and they are conditional on
7403 the same value, compute the new true and false values. */
7404 else if (BINARY_P (x
))
7406 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7407 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7409 if ((cond0
!= 0 || cond1
!= 0)
7410 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7412 /* If if_then_else_cond returned zero, then true/false are the
7413 same rtl. We must copy one of them to prevent invalid rtl
7416 true0
= copy_rtx (true0
);
7417 else if (cond1
== 0)
7418 true1
= copy_rtx (true1
);
7420 if (COMPARISON_P (x
))
7422 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
7424 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
7429 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
7430 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
7433 return cond0
? cond0
: cond1
;
7436 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7437 operands is zero when the other is nonzero, and vice-versa,
7438 and STORE_FLAG_VALUE is 1 or -1. */
7440 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7441 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7443 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7445 rtx op0
= XEXP (XEXP (x
, 0), 1);
7446 rtx op1
= XEXP (XEXP (x
, 1), 1);
7448 cond0
= XEXP (XEXP (x
, 0), 0);
7449 cond1
= XEXP (XEXP (x
, 1), 0);
7451 if (COMPARISON_P (cond0
)
7452 && COMPARISON_P (cond1
)
7453 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
7454 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7455 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7456 || ((swap_condition (GET_CODE (cond0
))
7457 == reversed_comparison_code (cond1
, NULL
))
7458 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7459 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7460 && ! side_effects_p (x
))
7462 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7463 *pfalse
= simplify_gen_binary (MULT
, mode
,
7465 ? simplify_gen_unary (NEG
, mode
,
7473 /* Similarly for MULT, AND and UMIN, except that for these the result
7475 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7476 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7477 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7479 cond0
= XEXP (XEXP (x
, 0), 0);
7480 cond1
= XEXP (XEXP (x
, 1), 0);
7482 if (COMPARISON_P (cond0
)
7483 && COMPARISON_P (cond1
)
7484 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
7485 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7486 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7487 || ((swap_condition (GET_CODE (cond0
))
7488 == reversed_comparison_code (cond1
, NULL
))
7489 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7490 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7491 && ! side_effects_p (x
))
7493 *ptrue
= *pfalse
= const0_rtx
;
7499 else if (code
== IF_THEN_ELSE
)
7501 /* If we have IF_THEN_ELSE already, extract the condition and
7502 canonicalize it if it is NE or EQ. */
7503 cond0
= XEXP (x
, 0);
7504 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7505 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7506 return XEXP (cond0
, 0);
7507 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7509 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7510 return XEXP (cond0
, 0);
7516 /* If X is a SUBREG, we can narrow both the true and false values
7517 if the inner expression, if there is a condition. */
7518 else if (code
== SUBREG
7519 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7522 true0
= simplify_gen_subreg (mode
, true0
,
7523 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7524 false0
= simplify_gen_subreg (mode
, false0
,
7525 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7526 if (true0
&& false0
)
7534 /* If X is a constant, this isn't special and will cause confusions
7535 if we treat it as such. Likewise if it is equivalent to a constant. */
7536 else if (CONSTANT_P (x
)
7537 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7540 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7541 will be least confusing to the rest of the compiler. */
7542 else if (mode
== BImode
)
7544 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7548 /* If X is known to be either 0 or -1, those are the true and
7549 false values when testing X. */
7550 else if (x
== constm1_rtx
|| x
== const0_rtx
7551 || (mode
!= VOIDmode
7552 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7554 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7558 /* Likewise for 0 or a single bit. */
7559 else if (SCALAR_INT_MODE_P (mode
)
7560 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7561 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7563 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
7567 /* Otherwise fail; show no condition with true and false values the same. */
7568 *ptrue
= *pfalse
= x
;
7572 /* Return the value of expression X given the fact that condition COND
7573 is known to be true when applied to REG as its first operand and VAL
7574 as its second. X is known to not be shared and so can be modified in
7577 We only handle the simplest cases, and specifically those cases that
7578 arise with IF_THEN_ELSE expressions. */
7581 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
7583 enum rtx_code code
= GET_CODE (x
);
7588 if (side_effects_p (x
))
7591 /* If either operand of the condition is a floating point value,
7592 then we have to avoid collapsing an EQ comparison. */
7594 && rtx_equal_p (x
, reg
)
7595 && ! FLOAT_MODE_P (GET_MODE (x
))
7596 && ! FLOAT_MODE_P (GET_MODE (val
)))
7599 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7602 /* If X is (abs REG) and we know something about REG's relationship
7603 with zero, we may be able to simplify this. */
7605 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7608 case GE
: case GT
: case EQ
:
7611 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
7613 GET_MODE (XEXP (x
, 0)));
7618 /* The only other cases we handle are MIN, MAX, and comparisons if the
7619 operands are the same as REG and VAL. */
7621 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
7623 if (rtx_equal_p (XEXP (x
, 0), val
))
7624 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7626 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7628 if (COMPARISON_P (x
))
7630 if (comparison_dominates_p (cond
, code
))
7631 return const_true_rtx
;
7633 code
= reversed_comparison_code (x
, NULL
);
7635 && comparison_dominates_p (cond
, code
))
7640 else if (code
== SMAX
|| code
== SMIN
7641 || code
== UMIN
|| code
== UMAX
)
7643 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7645 /* Do not reverse the condition when it is NE or EQ.
7646 This is because we cannot conclude anything about
7647 the value of 'SMAX (x, y)' when x is not equal to y,
7648 but we can when x equals y. */
7649 if ((code
== SMAX
|| code
== UMAX
)
7650 && ! (cond
== EQ
|| cond
== NE
))
7651 cond
= reverse_condition (cond
);
7656 return unsignedp
? x
: XEXP (x
, 1);
7658 return unsignedp
? x
: XEXP (x
, 0);
7660 return unsignedp
? XEXP (x
, 1) : x
;
7662 return unsignedp
? XEXP (x
, 0) : x
;
7669 else if (code
== SUBREG
)
7671 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
7672 rtx
new, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
7674 if (SUBREG_REG (x
) != r
)
7676 /* We must simplify subreg here, before we lose track of the
7677 original inner_mode. */
7678 new = simplify_subreg (GET_MODE (x
), r
,
7679 inner_mode
, SUBREG_BYTE (x
));
7683 SUBST (SUBREG_REG (x
), r
);
7688 /* We don't have to handle SIGN_EXTEND here, because even in the
7689 case of replacing something with a modeless CONST_INT, a
7690 CONST_INT is already (supposed to be) a valid sign extension for
7691 its narrower mode, which implies it's already properly
7692 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7693 story is different. */
7694 else if (code
== ZERO_EXTEND
)
7696 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
7697 rtx
new, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
7699 if (XEXP (x
, 0) != r
)
7701 /* We must simplify the zero_extend here, before we lose
7702 track of the original inner_mode. */
7703 new = simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7708 SUBST (XEXP (x
, 0), r
);
7714 fmt
= GET_RTX_FORMAT (code
);
7715 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7718 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7719 else if (fmt
[i
] == 'E')
7720 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7721 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7728 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7729 assignment as a field assignment. */
7732 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
7734 if (x
== y
|| rtx_equal_p (x
, y
))
7737 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7740 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7741 Note that all SUBREGs of MEM are paradoxical; otherwise they
7742 would have been rewritten. */
7743 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
7744 && MEM_P (SUBREG_REG (y
))
7745 && rtx_equal_p (SUBREG_REG (y
),
7746 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
7749 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
7750 && MEM_P (SUBREG_REG (x
))
7751 && rtx_equal_p (SUBREG_REG (x
),
7752 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
7755 /* We used to see if get_last_value of X and Y were the same but that's
7756 not correct. In one direction, we'll cause the assignment to have
7757 the wrong destination and in the case, we'll import a register into this
7758 insn that might have already have been dead. So fail if none of the
7759 above cases are true. */
7763 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7764 Return that assignment if so.
7766 We only handle the most common cases. */
7769 make_field_assignment (rtx x
)
7771 rtx dest
= SET_DEST (x
);
7772 rtx src
= SET_SRC (x
);
7777 unsigned HOST_WIDE_INT len
;
7779 enum machine_mode mode
;
7781 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7782 a clear of a one-bit field. We will have changed it to
7783 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7786 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7787 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7788 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7789 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7791 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7794 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7798 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7799 && subreg_lowpart_p (XEXP (src
, 0))
7800 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7801 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7802 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7803 && GET_CODE (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == CONST_INT
7804 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7805 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7807 assign
= make_extraction (VOIDmode
, dest
, 0,
7808 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7811 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7815 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7817 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7818 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7819 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7821 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7824 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7828 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7829 SRC is an AND with all bits of that field set, then we can discard
7831 if (GET_CODE (dest
) == ZERO_EXTRACT
7832 && GET_CODE (XEXP (dest
, 1)) == CONST_INT
7833 && GET_CODE (src
) == AND
7834 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
7836 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
7837 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
7838 unsigned HOST_WIDE_INT ze_mask
;
7840 if (width
>= HOST_BITS_PER_WIDE_INT
)
7843 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
7845 /* Complete overlap. We can remove the source AND. */
7846 if ((and_mask
& ze_mask
) == ze_mask
)
7847 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
7849 /* Partial overlap. We can reduce the source AND. */
7850 if ((and_mask
& ze_mask
) != and_mask
)
7852 mode
= GET_MODE (src
);
7853 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
7854 gen_int_mode (and_mask
& ze_mask
, mode
));
7855 return gen_rtx_SET (VOIDmode
, dest
, src
);
7859 /* The other case we handle is assignments into a constant-position
7860 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7861 a mask that has all one bits except for a group of zero bits and
7862 OTHER is known to have zeros where C1 has ones, this is such an
7863 assignment. Compute the position and length from C1. Shift OTHER
7864 to the appropriate position, force it to the required mode, and
7865 make the extraction. Check for the AND in both operands. */
7867 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7870 rhs
= expand_compound_operation (XEXP (src
, 0));
7871 lhs
= expand_compound_operation (XEXP (src
, 1));
7873 if (GET_CODE (rhs
) == AND
7874 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7875 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7876 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7877 else if (GET_CODE (lhs
) == AND
7878 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7879 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7880 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7884 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7885 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7886 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7887 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7890 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7894 /* The mode to use for the source is the mode of the assignment, or of
7895 what is inside a possible STRICT_LOW_PART. */
7896 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7897 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7899 /* Shift OTHER right POS places and make it the source, restricting it
7900 to the proper length and mode. */
7902 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7906 src
= force_to_mode (src
, mode
,
7907 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7908 ? ~(unsigned HOST_WIDE_INT
) 0
7909 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7912 /* If SRC is masked by an AND that does not make a difference in
7913 the value being stored, strip it. */
7914 if (GET_CODE (assign
) == ZERO_EXTRACT
7915 && GET_CODE (XEXP (assign
, 1)) == CONST_INT
7916 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
7917 && GET_CODE (src
) == AND
7918 && GET_CODE (XEXP (src
, 1)) == CONST_INT
7919 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (src
, 1))
7920 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1))
7921 src
= XEXP (src
, 0);
7923 return gen_rtx_SET (VOIDmode
, assign
, src
);
7926 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7930 apply_distributive_law (rtx x
)
7932 enum rtx_code code
= GET_CODE (x
);
7933 enum rtx_code inner_code
;
7934 rtx lhs
, rhs
, other
;
7937 /* Distributivity is not true for floating point as it can change the
7938 value. So we don't do it unless -funsafe-math-optimizations. */
7939 if (FLOAT_MODE_P (GET_MODE (x
))
7940 && ! flag_unsafe_math_optimizations
)
7943 /* The outer operation can only be one of the following: */
7944 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7945 && code
!= PLUS
&& code
!= MINUS
)
7951 /* If either operand is a primitive we can't do anything, so get out
7953 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
7956 lhs
= expand_compound_operation (lhs
);
7957 rhs
= expand_compound_operation (rhs
);
7958 inner_code
= GET_CODE (lhs
);
7959 if (inner_code
!= GET_CODE (rhs
))
7962 /* See if the inner and outer operations distribute. */
7969 /* These all distribute except over PLUS. */
7970 if (code
== PLUS
|| code
== MINUS
)
7975 if (code
!= PLUS
&& code
!= MINUS
)
7980 /* This is also a multiply, so it distributes over everything. */
7984 /* Non-paradoxical SUBREGs distributes over all operations,
7985 provided the inner modes and byte offsets are the same, this
7986 is an extraction of a low-order part, we don't convert an fp
7987 operation to int or vice versa, this is not a vector mode,
7988 and we would not be converting a single-word operation into a
7989 multi-word operation. The latter test is not required, but
7990 it prevents generating unneeded multi-word operations. Some
7991 of the previous tests are redundant given the latter test,
7992 but are retained because they are required for correctness.
7994 We produce the result slightly differently in this case. */
7996 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7997 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
7998 || ! subreg_lowpart_p (lhs
)
7999 || (GET_MODE_CLASS (GET_MODE (lhs
))
8000 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
8001 || (GET_MODE_SIZE (GET_MODE (lhs
))
8002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
8003 || VECTOR_MODE_P (GET_MODE (lhs
))
8004 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
8005 /* Result might need to be truncated. Don't change mode if
8006 explicit truncation is needed. */
8007 || !TRULY_NOOP_TRUNCATION
8008 (GET_MODE_BITSIZE (GET_MODE (x
)),
8009 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs
)))))
8012 tem
= simplify_gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
8013 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
8014 return gen_lowpart (GET_MODE (x
), tem
);
8020 /* Set LHS and RHS to the inner operands (A and B in the example
8021 above) and set OTHER to the common operand (C in the example).
8022 There is only one way to do this unless the inner operation is
8024 if (COMMUTATIVE_ARITH_P (lhs
)
8025 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
8026 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
8027 else if (COMMUTATIVE_ARITH_P (lhs
)
8028 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
8029 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
8030 else if (COMMUTATIVE_ARITH_P (lhs
)
8031 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
8032 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
8033 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
8034 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
8038 /* Form the new inner operation, seeing if it simplifies first. */
8039 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
8041 /* There is one exception to the general way of distributing:
8042 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8043 if (code
== XOR
&& inner_code
== IOR
)
8046 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
8049 /* We may be able to continuing distributing the result, so call
8050 ourselves recursively on the inner operation before forming the
8051 outer operation, which we return. */
8052 return simplify_gen_binary (inner_code
, GET_MODE (x
),
8053 apply_distributive_law (tem
), other
);
8056 /* See if X is of the form (* (+ A B) C), and if so convert to
8057 (+ (* A C) (* B C)) and try to simplify.
8059 Most of the time, this results in no change. However, if some of
8060 the operands are the same or inverses of each other, simplifications
8063 For example, (and (ior A B) (not B)) can occur as the result of
8064 expanding a bit field assignment. When we apply the distributive
8065 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8066 which then simplifies to (and (A (not B))).
8068 Note that no checks happen on the validity of applying the inverse
8069 distributive law. This is pointless since we can do it in the
8070 few places where this routine is called.
8072 N is the index of the term that is decomposed (the arithmetic operation,
8073 i.e. (+ A B) in the first example above). !N is the index of the term that
8074 is distributed, i.e. of C in the first example above. */
8076 distribute_and_simplify_rtx (rtx x
, int n
)
8078 enum machine_mode mode
;
8079 enum rtx_code outer_code
, inner_code
;
8080 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
8082 decomposed
= XEXP (x
, n
);
8083 if (!ARITHMETIC_P (decomposed
))
8086 mode
= GET_MODE (x
);
8087 outer_code
= GET_CODE (x
);
8088 distributed
= XEXP (x
, !n
);
8090 inner_code
= GET_CODE (decomposed
);
8091 inner_op0
= XEXP (decomposed
, 0);
8092 inner_op1
= XEXP (decomposed
, 1);
8094 /* Special case (and (xor B C) (not A)), which is equivalent to
8095 (xor (ior A B) (ior A C)) */
8096 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
8098 distributed
= XEXP (distributed
, 0);
8104 /* Distribute the second term. */
8105 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
8106 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
8110 /* Distribute the first term. */
8111 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
8112 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
8115 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
8117 if (GET_CODE (tmp
) != outer_code
8118 && rtx_cost (tmp
, SET
) < rtx_cost (x
, SET
))
8124 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8125 in MODE. Return an equivalent form, if different from (and VAROP
8126 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8129 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
8130 unsigned HOST_WIDE_INT constop
)
8132 unsigned HOST_WIDE_INT nonzero
;
8133 unsigned HOST_WIDE_INT orig_constop
;
8138 orig_constop
= constop
;
8139 if (GET_CODE (varop
) == CLOBBER
)
8142 /* Simplify VAROP knowing that we will be only looking at some of the
8145 Note by passing in CONSTOP, we guarantee that the bits not set in
8146 CONSTOP are not significant and will never be examined. We must
8147 ensure that is the case by explicitly masking out those bits
8148 before returning. */
8149 varop
= force_to_mode (varop
, mode
, constop
, 0);
8151 /* If VAROP is a CLOBBER, we will fail so return it. */
8152 if (GET_CODE (varop
) == CLOBBER
)
8155 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8156 to VAROP and return the new constant. */
8157 if (GET_CODE (varop
) == CONST_INT
)
8158 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
8160 /* See what bits may be nonzero in VAROP. Unlike the general case of
8161 a call to nonzero_bits, here we don't care about bits outside
8164 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
8166 /* Turn off all bits in the constant that are known to already be zero.
8167 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8168 which is tested below. */
8172 /* If we don't have any bits left, return zero. */
8176 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8177 a power of two, we can replace this with an ASHIFT. */
8178 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
8179 && (i
= exact_log2 (constop
)) >= 0)
8180 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
8182 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8183 or XOR, then try to apply the distributive law. This may eliminate
8184 operations if either branch can be simplified because of the AND.
8185 It may also make some cases more complex, but those cases probably
8186 won't match a pattern either with or without this. */
8188 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
8192 apply_distributive_law
8193 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
8194 simplify_and_const_int (NULL_RTX
,
8198 simplify_and_const_int (NULL_RTX
,
8203 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8204 the AND and see if one of the operands simplifies to zero. If so, we
8205 may eliminate it. */
8207 if (GET_CODE (varop
) == PLUS
8208 && exact_log2 (constop
+ 1) >= 0)
8212 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
8213 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
8214 if (o0
== const0_rtx
)
8216 if (o1
== const0_rtx
)
8220 /* Make a SUBREG if necessary. If we can't make it, fail. */
8221 varop
= gen_lowpart (mode
, varop
);
8222 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
8225 /* If we are only masking insignificant bits, return VAROP. */
8226 if (constop
== nonzero
)
8229 if (varop
== orig_varop
&& constop
== orig_constop
)
8232 /* Otherwise, return an AND. */
8233 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
8237 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8240 Return an equivalent form, if different from X. Otherwise, return X. If
8241 X is zero, we are to always construct the equivalent form. */
8244 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
8245 unsigned HOST_WIDE_INT constop
)
8247 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
8252 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
8253 gen_int_mode (constop
, mode
));
8254 if (GET_MODE (x
) != mode
)
8255 x
= gen_lowpart (mode
, x
);
8259 /* Given a REG, X, compute which bits in X can be nonzero.
8260 We don't care about bits outside of those defined in MODE.
8262 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8263 a shift, AND, or zero_extract, we can do better. */
8266 reg_nonzero_bits_for_combine (rtx x
, enum machine_mode mode
,
8267 rtx known_x ATTRIBUTE_UNUSED
,
8268 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
8269 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
8270 unsigned HOST_WIDE_INT
*nonzero
)
8274 /* If X is a register whose nonzero bits value is current, use it.
8275 Otherwise, if X is a register whose value we can find, use that
8276 value. Otherwise, use the previously-computed global nonzero bits
8277 for this register. */
8279 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8280 && (reg_stat
[REGNO (x
)].last_set_mode
== mode
8281 || (GET_MODE_CLASS (reg_stat
[REGNO (x
)].last_set_mode
) == MODE_INT
8282 && GET_MODE_CLASS (mode
) == MODE_INT
))
8283 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8284 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8285 && REG_N_SETS (REGNO (x
)) == 1
8286 && ! REGNO_REG_SET_P
8287 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
8289 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8291 *nonzero
&= reg_stat
[REGNO (x
)].last_set_nonzero_bits
;
8295 tem
= get_last_value (x
);
8299 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8300 /* If X is narrower than MODE and TEM is a non-negative
8301 constant that would appear negative in the mode of X,
8302 sign-extend it for use in reg_nonzero_bits because some
8303 machines (maybe most) will actually do the sign-extension
8304 and this is the conservative approach.
8306 ??? For 2.5, try to tighten up the MD files in this regard
8307 instead of this kludge. */
8309 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
)
8310 && GET_CODE (tem
) == CONST_INT
8312 && 0 != (INTVAL (tem
)
8313 & ((HOST_WIDE_INT
) 1
8314 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
8315 tem
= GEN_INT (INTVAL (tem
)
8316 | ((HOST_WIDE_INT
) (-1)
8317 << GET_MODE_BITSIZE (GET_MODE (x
))));
8321 else if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].nonzero_bits
)
8323 unsigned HOST_WIDE_INT mask
= reg_stat
[REGNO (x
)].nonzero_bits
;
8325 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
))
8326 /* We don't know anything about the upper bits. */
8327 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
8334 /* Return the number of bits at the high-order end of X that are known to
8335 be equal to the sign bit. X will be used in mode MODE; if MODE is
8336 VOIDmode, X will be used in its own mode. The returned value will always
8337 be between 1 and the number of bits in MODE. */
8340 reg_num_sign_bit_copies_for_combine (rtx x
, enum machine_mode mode
,
8341 rtx known_x ATTRIBUTE_UNUSED
,
8342 enum machine_mode known_mode
8344 unsigned int known_ret ATTRIBUTE_UNUSED
,
8345 unsigned int *result
)
8349 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8350 && reg_stat
[REGNO (x
)].last_set_mode
== mode
8351 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8352 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8353 && REG_N_SETS (REGNO (x
)) == 1
8354 && ! REGNO_REG_SET_P
8355 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
8357 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8359 *result
= reg_stat
[REGNO (x
)].last_set_sign_bit_copies
;
8363 tem
= get_last_value (x
);
8367 if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].sign_bit_copies
!= 0
8368 && GET_MODE_BITSIZE (GET_MODE (x
)) == GET_MODE_BITSIZE (mode
))
8369 *result
= reg_stat
[REGNO (x
)].sign_bit_copies
;
8374 /* Return the number of "extended" bits there are in X, when interpreted
8375 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8376 unsigned quantities, this is the number of high-order zero bits.
8377 For signed quantities, this is the number of copies of the sign bit
8378 minus 1. In both case, this function returns the number of "spare"
8379 bits. For example, if two quantities for which this function returns
8380 at least 1 are added, the addition is known not to overflow.
8382 This function will always return 0 unless called during combine, which
8383 implies that it must be called from a define_split. */
8386 extended_count (rtx x
, enum machine_mode mode
, int unsignedp
)
8388 if (nonzero_sign_valid
== 0)
8392 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8393 ? (unsigned int) (GET_MODE_BITSIZE (mode
) - 1
8394 - floor_log2 (nonzero_bits (x
, mode
)))
8396 : num_sign_bit_copies (x
, mode
) - 1);
8399 /* This function is called from `simplify_shift_const' to merge two
8400 outer operations. Specifically, we have already found that we need
8401 to perform operation *POP0 with constant *PCONST0 at the outermost
8402 position. We would now like to also perform OP1 with constant CONST1
8403 (with *POP0 being done last).
8405 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8406 the resulting operation. *PCOMP_P is set to 1 if we would need to
8407 complement the innermost operand, otherwise it is unchanged.
8409 MODE is the mode in which the operation will be done. No bits outside
8410 the width of this mode matter. It is assumed that the width of this mode
8411 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8413 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8414 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8415 result is simply *PCONST0.
8417 If the resulting operation cannot be expressed as one operation, we
8418 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8421 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
8423 enum rtx_code op0
= *pop0
;
8424 HOST_WIDE_INT const0
= *pconst0
;
8426 const0
&= GET_MODE_MASK (mode
);
8427 const1
&= GET_MODE_MASK (mode
);
8429 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8433 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8436 if (op1
== UNKNOWN
|| op0
== SET
)
8439 else if (op0
== UNKNOWN
)
8440 op0
= op1
, const0
= const1
;
8442 else if (op0
== op1
)
8466 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8467 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8470 /* If the two constants aren't the same, we can't do anything. The
8471 remaining six cases can all be done. */
8472 else if (const0
!= const1
)
8480 /* (a & b) | b == b */
8482 else /* op1 == XOR */
8483 /* (a ^ b) | b == a | b */
8489 /* (a & b) ^ b == (~a) & b */
8490 op0
= AND
, *pcomp_p
= 1;
8491 else /* op1 == IOR */
8492 /* (a | b) ^ b == a & ~b */
8493 op0
= AND
, const0
= ~const0
;
8498 /* (a | b) & b == b */
8500 else /* op1 == XOR */
8501 /* (a ^ b) & b) == (~a) & b */
8508 /* Check for NO-OP cases. */
8509 const0
&= GET_MODE_MASK (mode
);
8511 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8513 else if (const0
== 0 && op0
== AND
)
8515 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8519 /* ??? Slightly redundant with the above mask, but not entirely.
8520 Moving this above means we'd have to sign-extend the mode mask
8521 for the final test. */
8522 const0
= trunc_int_for_mode (const0
, mode
);
8530 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8531 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8532 simplify it. Otherwise, return a simplified value.
8534 The shift is normally computed in the widest mode we find in VAROP, as
8535 long as it isn't a different number of words than RESULT_MODE. Exceptions
8536 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8539 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
8540 rtx varop
, int orig_count
)
8542 enum rtx_code orig_code
= code
;
8543 rtx orig_varop
= varop
;
8545 enum machine_mode mode
= result_mode
;
8546 enum machine_mode shift_mode
, tmode
;
8547 unsigned int mode_words
8548 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8549 /* We form (outer_op (code varop count) (outer_const)). */
8550 enum rtx_code outer_op
= UNKNOWN
;
8551 HOST_WIDE_INT outer_const
= 0;
8552 int complement_p
= 0;
8555 /* Make sure and truncate the "natural" shift on the way in. We don't
8556 want to do this inside the loop as it makes it more difficult to
8558 if (SHIFT_COUNT_TRUNCATED
)
8559 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
8561 /* If we were given an invalid count, don't do anything except exactly
8562 what was requested. */
8564 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_BITSIZE (mode
))
8569 /* Unless one of the branches of the `if' in this loop does a `continue',
8570 we will `break' the loop after the `if'. */
8574 /* If we have an operand of (clobber (const_int 0)), fail. */
8575 if (GET_CODE (varop
) == CLOBBER
)
8578 /* If we discovered we had to complement VAROP, leave. Making a NOT
8579 here would cause an infinite loop. */
8583 /* Convert ROTATERT to ROTATE. */
8584 if (code
== ROTATERT
)
8586 unsigned int bitsize
= GET_MODE_BITSIZE (result_mode
);;
8588 if (VECTOR_MODE_P (result_mode
))
8589 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
8591 count
= bitsize
- count
;
8594 /* We need to determine what mode we will do the shift in. If the
8595 shift is a right shift or a ROTATE, we must always do it in the mode
8596 it was originally done in. Otherwise, we can do it in MODE, the
8597 widest mode encountered. */
8599 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8600 ? result_mode
: mode
);
8602 /* Handle cases where the count is greater than the size of the mode
8603 minus 1. For ASHIFT, use the size minus one as the count (this can
8604 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8605 take the count modulo the size. For other shifts, the result is
8608 Since these shifts are being produced by the compiler by combining
8609 multiple operations, each of which are defined, we know what the
8610 result is supposed to be. */
8612 if (count
> (GET_MODE_BITSIZE (shift_mode
) - 1))
8614 if (code
== ASHIFTRT
)
8615 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8616 else if (code
== ROTATE
|| code
== ROTATERT
)
8617 count
%= GET_MODE_BITSIZE (shift_mode
);
8620 /* We can't simply return zero because there may be an
8628 /* An arithmetic right shift of a quantity known to be -1 or 0
8630 if (code
== ASHIFTRT
8631 && (num_sign_bit_copies (varop
, shift_mode
)
8632 == GET_MODE_BITSIZE (shift_mode
)))
8638 /* If we are doing an arithmetic right shift and discarding all but
8639 the sign bit copies, this is equivalent to doing a shift by the
8640 bitsize minus one. Convert it into that shift because it will often
8641 allow other simplifications. */
8643 if (code
== ASHIFTRT
8644 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
8645 >= GET_MODE_BITSIZE (shift_mode
)))
8646 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8648 /* We simplify the tests below and elsewhere by converting
8649 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8650 `make_compound_operation' will convert it to an ASHIFTRT for
8651 those machines (such as VAX) that don't have an LSHIFTRT. */
8652 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8654 && ((nonzero_bits (varop
, shift_mode
)
8655 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
8659 if (((code
== LSHIFTRT
8660 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8661 && !(nonzero_bits (varop
, shift_mode
) >> count
))
8663 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8664 && !((nonzero_bits (varop
, shift_mode
) << count
)
8665 & GET_MODE_MASK (shift_mode
))))
8666 && !side_effects_p (varop
))
8669 switch (GET_CODE (varop
))
8675 new = expand_compound_operation (varop
);
8684 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8685 minus the width of a smaller mode, we can do this with a
8686 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8687 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8688 && ! mode_dependent_address_p (XEXP (varop
, 0))
8689 && ! MEM_VOLATILE_P (varop
)
8690 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8691 MODE_INT
, 1)) != BLKmode
)
8693 new = adjust_address_nv (varop
, tmode
,
8694 BYTES_BIG_ENDIAN
? 0
8695 : count
/ BITS_PER_UNIT
);
8697 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8698 : ZERO_EXTEND
, mode
, new);
8705 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8706 the same number of words as what we've seen so far. Then store
8707 the widest mode in MODE. */
8708 if (subreg_lowpart_p (varop
)
8709 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8710 > GET_MODE_SIZE (GET_MODE (varop
)))
8711 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8712 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
8715 varop
= SUBREG_REG (varop
);
8716 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
8717 mode
= GET_MODE (varop
);
8723 /* Some machines use MULT instead of ASHIFT because MULT
8724 is cheaper. But it is still better on those machines to
8725 merge two shifts into one. */
8726 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8727 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8730 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
8732 GEN_INT (exact_log2 (
8733 INTVAL (XEXP (varop
, 1)))));
8739 /* Similar, for when divides are cheaper. */
8740 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8741 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8744 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
8746 GEN_INT (exact_log2 (
8747 INTVAL (XEXP (varop
, 1)))));
8753 /* If we are extracting just the sign bit of an arithmetic
8754 right shift, that shift is not needed. However, the sign
8755 bit of a wider mode may be different from what would be
8756 interpreted as the sign bit in a narrower mode, so, if
8757 the result is narrower, don't discard the shift. */
8758 if (code
== LSHIFTRT
8759 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
8760 && (GET_MODE_BITSIZE (result_mode
)
8761 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
8763 varop
= XEXP (varop
, 0);
8767 /* ... fall through ... */
8772 /* Here we have two nested shifts. The result is usually the
8773 AND of a new shift with a mask. We compute the result below. */
8774 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8775 && INTVAL (XEXP (varop
, 1)) >= 0
8776 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
8777 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8778 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8779 && !VECTOR_MODE_P (result_mode
))
8781 enum rtx_code first_code
= GET_CODE (varop
);
8782 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
8783 unsigned HOST_WIDE_INT mask
;
8786 /* We have one common special case. We can't do any merging if
8787 the inner code is an ASHIFTRT of a smaller mode. However, if
8788 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8789 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8790 we can convert it to
8791 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8792 This simplifies certain SIGN_EXTEND operations. */
8793 if (code
== ASHIFT
&& first_code
== ASHIFTRT
8794 && count
== (GET_MODE_BITSIZE (result_mode
)
8795 - GET_MODE_BITSIZE (GET_MODE (varop
))))
8797 /* C3 has the low-order C1 bits zero. */
8799 mask
= (GET_MODE_MASK (mode
)
8800 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
8802 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
8803 XEXP (varop
, 0), mask
);
8804 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
8806 count
= first_count
;
8811 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8812 than C1 high-order bits equal to the sign bit, we can convert
8813 this to either an ASHIFT or an ASHIFTRT depending on the
8816 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8818 if (code
== ASHIFTRT
&& first_code
== ASHIFT
8819 && GET_MODE (varop
) == shift_mode
8820 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
8823 varop
= XEXP (varop
, 0);
8824 count
-= first_count
;
8834 /* There are some cases we can't do. If CODE is ASHIFTRT,
8835 we can only do this if FIRST_CODE is also ASHIFTRT.
8837 We can't do the case when CODE is ROTATE and FIRST_CODE is
8840 If the mode of this shift is not the mode of the outer shift,
8841 we can't do this if either shift is a right shift or ROTATE.
8843 Finally, we can't do any of these if the mode is too wide
8844 unless the codes are the same.
8846 Handle the case where the shift codes are the same
8849 if (code
== first_code
)
8851 if (GET_MODE (varop
) != result_mode
8852 && (code
== ASHIFTRT
|| code
== LSHIFTRT
8856 count
+= first_count
;
8857 varop
= XEXP (varop
, 0);
8861 if (code
== ASHIFTRT
8862 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
8863 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
8864 || (GET_MODE (varop
) != result_mode
8865 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
8866 || first_code
== ROTATE
8867 || code
== ROTATE
)))
8870 /* To compute the mask to apply after the shift, shift the
8871 nonzero bits of the inner shift the same way the
8872 outer shift will. */
8874 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
8877 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
8880 /* Give up if we can't compute an outer operation to use. */
8882 || GET_CODE (mask_rtx
) != CONST_INT
8883 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
8885 result_mode
, &complement_p
))
8888 /* If the shifts are in the same direction, we add the
8889 counts. Otherwise, we subtract them. */
8890 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8891 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
8892 count
+= first_count
;
8894 count
-= first_count
;
8896 /* If COUNT is positive, the new shift is usually CODE,
8897 except for the two exceptions below, in which case it is
8898 FIRST_CODE. If the count is negative, FIRST_CODE should
8901 && ((first_code
== ROTATE
&& code
== ASHIFT
)
8902 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
8905 code
= first_code
, count
= -count
;
8907 varop
= XEXP (varop
, 0);
8911 /* If we have (A << B << C) for any shift, we can convert this to
8912 (A << C << B). This wins if A is a constant. Only try this if
8913 B is not a constant. */
8915 else if (GET_CODE (varop
) == code
8916 && GET_CODE (XEXP (varop
, 0)) == CONST_INT
8917 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
)
8919 rtx
new = simplify_const_binary_operation (code
, mode
,
8922 varop
= gen_rtx_fmt_ee (code
, mode
, new, XEXP (varop
, 1));
8929 /* Make this fit the case below. */
8930 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
8931 GEN_INT (GET_MODE_MASK (mode
)));
8937 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8938 with C the size of VAROP - 1 and the shift is logical if
8939 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8940 we have an (le X 0) operation. If we have an arithmetic shift
8941 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8942 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8944 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
8945 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
8946 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8947 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
8948 && count
== (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
8949 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
8952 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
8955 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
8956 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
8961 /* If we have (shift (logical)), move the logical to the outside
8962 to allow it to possibly combine with another logical and the
8963 shift to combine with another shift. This also canonicalizes to
8964 what a ZERO_EXTRACT looks like. Also, some machines have
8965 (and (shift)) insns. */
8967 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8968 /* We can't do this if we have (ashiftrt (xor)) and the
8969 constant has its sign bit set in shift_mode. */
8970 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8971 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8973 && (new = simplify_const_binary_operation (code
, result_mode
,
8975 GEN_INT (count
))) != 0
8976 && GET_CODE (new) == CONST_INT
8977 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
8978 INTVAL (new), result_mode
, &complement_p
))
8980 varop
= XEXP (varop
, 0);
8984 /* If we can't do that, try to simplify the shift in each arm of the
8985 logical expression, make a new logical expression, and apply
8986 the inverse distributive law. This also can't be done
8987 for some (ashiftrt (xor)). */
8988 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8989 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8990 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8993 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8994 XEXP (varop
, 0), count
);
8995 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8996 XEXP (varop
, 1), count
);
8998 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
9000 varop
= apply_distributive_law (varop
);
9008 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9009 says that the sign bit can be tested, FOO has mode MODE, C is
9010 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9011 that may be nonzero. */
9012 if (code
== LSHIFTRT
9013 && XEXP (varop
, 1) == const0_rtx
9014 && GET_MODE (XEXP (varop
, 0)) == result_mode
9015 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
9016 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9017 && STORE_FLAG_VALUE
== -1
9018 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9019 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9020 (HOST_WIDE_INT
) 1, result_mode
,
9023 varop
= XEXP (varop
, 0);
9030 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9031 than the number of bits in the mode is equivalent to A. */
9032 if (code
== LSHIFTRT
9033 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
9034 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
9036 varop
= XEXP (varop
, 0);
9041 /* NEG commutes with ASHIFT since it is multiplication. Move the
9042 NEG outside to allow shifts to combine. */
9044 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9045 (HOST_WIDE_INT
) 0, result_mode
,
9048 varop
= XEXP (varop
, 0);
9054 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9055 is one less than the number of bits in the mode is
9056 equivalent to (xor A 1). */
9057 if (code
== LSHIFTRT
9058 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
9059 && XEXP (varop
, 1) == constm1_rtx
9060 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9061 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9062 (HOST_WIDE_INT
) 1, result_mode
,
9066 varop
= XEXP (varop
, 0);
9070 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9071 that might be nonzero in BAR are those being shifted out and those
9072 bits are known zero in FOO, we can replace the PLUS with FOO.
9073 Similarly in the other operand order. This code occurs when
9074 we are computing the size of a variable-size array. */
9076 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9077 && count
< HOST_BITS_PER_WIDE_INT
9078 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9079 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9080 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9082 varop
= XEXP (varop
, 0);
9085 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9086 && count
< HOST_BITS_PER_WIDE_INT
9087 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9088 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9090 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9091 & nonzero_bits (XEXP (varop
, 1),
9094 varop
= XEXP (varop
, 1);
9098 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9100 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9101 && (new = simplify_const_binary_operation (ASHIFT
, result_mode
,
9103 GEN_INT (count
))) != 0
9104 && GET_CODE (new) == CONST_INT
9105 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9106 INTVAL (new), result_mode
, &complement_p
))
9108 varop
= XEXP (varop
, 0);
9112 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9113 signbit', and attempt to change the PLUS to an XOR and move it to
9114 the outer operation as is done above in the AND/IOR/XOR case
9115 leg for shift(logical). See details in logical handling above
9116 for reasoning in doing so. */
9117 if (code
== LSHIFTRT
9118 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9119 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
9120 && (new = simplify_const_binary_operation (code
, result_mode
,
9122 GEN_INT (count
))) != 0
9123 && GET_CODE (new) == CONST_INT
9124 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9125 INTVAL (new), result_mode
, &complement_p
))
9127 varop
= XEXP (varop
, 0);
9134 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9135 with C the size of VAROP - 1 and the shift is logical if
9136 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9137 we have a (gt X 0) operation. If the shift is arithmetic with
9138 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9139 we have a (neg (gt X 0)) operation. */
9141 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9142 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9143 && count
== (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
9144 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9145 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9146 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
9147 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9150 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
9153 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9154 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9161 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9162 if the truncate does not affect the value. */
9163 if (code
== LSHIFTRT
9164 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9165 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9166 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9167 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9168 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9170 rtx varop_inner
= XEXP (varop
, 0);
9173 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
9174 XEXP (varop_inner
, 0),
9176 (count
+ INTVAL (XEXP (varop_inner
, 1))));
9177 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
9190 /* We need to determine what mode to do the shift in. If the shift is
9191 a right shift or ROTATE, we must always do it in the mode it was
9192 originally done in. Otherwise, we can do it in MODE, the widest mode
9193 encountered. The code we care about is that of the shift that will
9194 actually be done, not the shift that was originally requested. */
9196 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9197 ? result_mode
: mode
);
9199 /* We have now finished analyzing the shift. The result should be
9200 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9201 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9202 to the result of the shift. OUTER_CONST is the relevant constant,
9203 but we must turn off all bits turned off in the shift. */
9205 if (outer_op
== UNKNOWN
9206 && orig_code
== code
&& orig_count
== count
9207 && varop
== orig_varop
9208 && shift_mode
== GET_MODE (varop
))
9211 /* Make a SUBREG if necessary. If we can't make it, fail. */
9212 varop
= gen_lowpart (shift_mode
, varop
);
9213 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9216 /* If we have an outer operation and we just made a shift, it is
9217 possible that we could have simplified the shift were it not
9218 for the outer operation. So try to do the simplification
9221 if (outer_op
!= UNKNOWN
)
9222 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
9227 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
9229 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9230 turn off all the bits that the shift would have turned off. */
9231 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9232 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9233 GET_MODE_MASK (result_mode
) >> orig_count
);
9235 /* Do the remainder of the processing in RESULT_MODE. */
9236 x
= gen_lowpart_or_truncate (result_mode
, x
);
9238 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9241 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
9243 if (outer_op
!= UNKNOWN
)
9245 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9246 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9248 if (outer_op
== AND
)
9249 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9250 else if (outer_op
== SET
)
9252 /* This means that we have determined that the result is
9253 equivalent to a constant. This should be rare. */
9254 if (!side_effects_p (x
))
9255 x
= GEN_INT (outer_const
);
9257 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
9258 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
9260 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
9261 GEN_INT (outer_const
));
9267 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9268 The result of the shift is RESULT_MODE. If we cannot simplify it,
9269 return X or, if it is NULL, synthesize the expression with
9270 simplify_gen_binary. Otherwise, return a simplified value.
9272 The shift is normally computed in the widest mode we find in VAROP, as
9273 long as it isn't a different number of words than RESULT_MODE. Exceptions
9274 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9277 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
9278 rtx varop
, int count
)
9280 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
9285 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
9286 if (GET_MODE (x
) != result_mode
)
9287 x
= gen_lowpart (result_mode
, x
);
9292 /* Like recog, but we receive the address of a pointer to a new pattern.
9293 We try to match the rtx that the pointer points to.
9294 If that fails, we may try to modify or replace the pattern,
9295 storing the replacement into the same pointer object.
9297 Modifications include deletion or addition of CLOBBERs.
9299 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9300 the CLOBBERs are placed.
9302 The value is the final insn code from the pattern ultimately matched,
9306 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
9309 int insn_code_number
;
9310 int num_clobbers_to_add
= 0;
9313 rtx old_notes
, old_pat
;
9315 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9316 we use to indicate that something didn't match. If we find such a
9317 thing, force rejection. */
9318 if (GET_CODE (pat
) == PARALLEL
)
9319 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9320 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9321 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9324 old_pat
= PATTERN (insn
);
9325 old_notes
= REG_NOTES (insn
);
9326 PATTERN (insn
) = pat
;
9327 REG_NOTES (insn
) = 0;
9329 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9331 /* If it isn't, there is the possibility that we previously had an insn
9332 that clobbered some register as a side effect, but the combined
9333 insn doesn't need to do that. So try once more without the clobbers
9334 unless this represents an ASM insn. */
9336 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9337 && GET_CODE (pat
) == PARALLEL
)
9341 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9342 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9345 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9349 SUBST_INT (XVECLEN (pat
, 0), pos
);
9352 pat
= XVECEXP (pat
, 0, 0);
9354 PATTERN (insn
) = pat
;
9355 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9357 PATTERN (insn
) = old_pat
;
9358 REG_NOTES (insn
) = old_notes
;
9360 /* Recognize all noop sets, these will be killed by followup pass. */
9361 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
9362 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
9364 /* If we had any clobbers to add, make a new pattern than contains
9365 them. Then check to make sure that all of them are dead. */
9366 if (num_clobbers_to_add
)
9368 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9369 rtvec_alloc (GET_CODE (pat
) == PARALLEL
9371 + num_clobbers_to_add
)
9372 : num_clobbers_to_add
+ 1));
9374 if (GET_CODE (pat
) == PARALLEL
)
9375 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9376 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9378 XVECEXP (newpat
, 0, 0) = pat
;
9380 add_clobbers (newpat
, insn_code_number
);
9382 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9383 i
< XVECLEN (newpat
, 0); i
++)
9385 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
9386 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9388 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9389 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9397 return insn_code_number
;
9400 /* Like gen_lowpart_general but for use by combine. In combine it
9401 is not possible to create any new pseudoregs. However, it is
9402 safe to create invalid memory addresses, because combine will
9403 try to recognize them and all they will do is make the combine
9406 If for some reason this cannot do its job, an rtx
9407 (clobber (const_int 0)) is returned.
9408 An insn containing that will not be recognized. */
9411 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
9413 enum machine_mode imode
= GET_MODE (x
);
9414 unsigned int osize
= GET_MODE_SIZE (omode
);
9415 unsigned int isize
= GET_MODE_SIZE (imode
);
9421 /* Return identity if this is a CONST or symbolic reference. */
9423 && (GET_CODE (x
) == CONST
9424 || GET_CODE (x
) == SYMBOL_REF
9425 || GET_CODE (x
) == LABEL_REF
))
9428 /* We can only support MODE being wider than a word if X is a
9429 constant integer or has a mode the same size. */
9430 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
9431 && ! ((imode
== VOIDmode
9432 && (GET_CODE (x
) == CONST_INT
9433 || GET_CODE (x
) == CONST_DOUBLE
))
9437 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9438 won't know what to do. So we will strip off the SUBREG here and
9439 process normally. */
9440 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
9444 /* For use in case we fall down into the address adjustments
9445 further below, we need to adjust the known mode and size of
9446 x; imode and isize, since we just adjusted x. */
9447 imode
= GET_MODE (x
);
9452 isize
= GET_MODE_SIZE (imode
);
9455 result
= gen_lowpart_common (omode
, x
);
9457 #ifdef CANNOT_CHANGE_MODE_CLASS
9458 if (result
!= 0 && GET_CODE (result
) == SUBREG
)
9459 record_subregs_of_mode (result
);
9469 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9471 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9474 /* If we want to refer to something bigger than the original memref,
9475 generate a paradoxical subreg instead. That will force a reload
9476 of the original memref X. */
9478 return gen_rtx_SUBREG (omode
, x
, 0);
9480 if (WORDS_BIG_ENDIAN
)
9481 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
9483 /* Adjust the address so that the address-after-the-data is
9485 if (BYTES_BIG_ENDIAN
)
9486 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
9488 return adjust_address_nv (x
, omode
, offset
);
9491 /* If X is a comparison operator, rewrite it in a new mode. This
9492 probably won't match, but may allow further simplifications. */
9493 else if (COMPARISON_P (x
))
9494 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
9496 /* If we couldn't simplify X any other way, just enclose it in a
9497 SUBREG. Normally, this SUBREG won't match, but some patterns may
9498 include an explicit SUBREG or we may simplify it further in combine. */
9504 offset
= subreg_lowpart_offset (omode
, imode
);
9505 if (imode
== VOIDmode
)
9507 imode
= int_mode_for_mode (omode
);
9508 x
= gen_lowpart_common (imode
, x
);
9512 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
9518 return gen_rtx_CLOBBER (imode
, const0_rtx
);
9521 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9522 comparison code that will be tested.
9524 The result is a possibly different comparison code to use. *POP0 and
9525 *POP1 may be updated.
9527 It is possible that we might detect that a comparison is either always
9528 true or always false. However, we do not perform general constant
9529 folding in combine, so this knowledge isn't useful. Such tautologies
9530 should have been detected earlier. Hence we ignore all such cases. */
9532 static enum rtx_code
9533 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
9539 enum machine_mode mode
, tmode
;
9541 /* Try a few ways of applying the same transformation to both operands. */
9544 #ifndef WORD_REGISTER_OPERATIONS
9545 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9546 so check specially. */
9547 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
9548 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
9549 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
9550 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
9551 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
9552 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
9553 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
9554 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
9555 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9556 && XEXP (op0
, 1) == XEXP (op1
, 1)
9557 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
9558 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
9559 && (INTVAL (XEXP (op0
, 1))
9560 == (GET_MODE_BITSIZE (GET_MODE (op0
))
9562 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
9564 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
9565 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
9569 /* If both operands are the same constant shift, see if we can ignore the
9570 shift. We can if the shift is a rotate or if the bits shifted out of
9571 this shift are known to be zero for both inputs and if the type of
9572 comparison is compatible with the shift. */
9573 if (GET_CODE (op0
) == GET_CODE (op1
)
9574 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
9575 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
9576 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
9577 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
9578 || (GET_CODE (op0
) == ASHIFTRT
9579 && (code
!= GTU
&& code
!= LTU
9580 && code
!= GEU
&& code
!= LEU
)))
9581 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9582 && INTVAL (XEXP (op0
, 1)) >= 0
9583 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
9584 && XEXP (op0
, 1) == XEXP (op1
, 1))
9586 enum machine_mode mode
= GET_MODE (op0
);
9587 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9588 int shift_count
= INTVAL (XEXP (op0
, 1));
9590 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
9591 mask
&= (mask
>> shift_count
) << shift_count
;
9592 else if (GET_CODE (op0
) == ASHIFT
)
9593 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
9595 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
9596 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
9597 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
9602 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9603 SUBREGs are of the same mode, and, in both cases, the AND would
9604 be redundant if the comparison was done in the narrower mode,
9605 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9606 and the operand's possibly nonzero bits are 0xffffff01; in that case
9607 if we only care about QImode, we don't need the AND). This case
9608 occurs if the output mode of an scc insn is not SImode and
9609 STORE_FLAG_VALUE == 1 (e.g., the 386).
9611 Similarly, check for a case where the AND's are ZERO_EXTEND
9612 operations from some narrower mode even though a SUBREG is not
9615 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
9616 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9617 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
9619 rtx inner_op0
= XEXP (op0
, 0);
9620 rtx inner_op1
= XEXP (op1
, 0);
9621 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
9622 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
9625 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
9626 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
9627 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
9628 && (GET_MODE (SUBREG_REG (inner_op0
))
9629 == GET_MODE (SUBREG_REG (inner_op1
)))
9630 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
9631 <= HOST_BITS_PER_WIDE_INT
)
9632 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
9633 GET_MODE (SUBREG_REG (inner_op0
)))))
9634 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
9635 GET_MODE (SUBREG_REG (inner_op1
))))))
9637 op0
= SUBREG_REG (inner_op0
);
9638 op1
= SUBREG_REG (inner_op1
);
9640 /* The resulting comparison is always unsigned since we masked
9641 off the original sign bit. */
9642 code
= unsigned_condition (code
);
9648 for (tmode
= GET_CLASS_NARROWEST_MODE
9649 (GET_MODE_CLASS (GET_MODE (op0
)));
9650 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
9651 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
9653 op0
= gen_lowpart (tmode
, inner_op0
);
9654 op1
= gen_lowpart (tmode
, inner_op1
);
9655 code
= unsigned_condition (code
);
9664 /* If both operands are NOT, we can strip off the outer operation
9665 and adjust the comparison code for swapped operands; similarly for
9666 NEG, except that this must be an equality comparison. */
9667 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
9668 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
9669 && (code
== EQ
|| code
== NE
)))
9670 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
9676 /* If the first operand is a constant, swap the operands and adjust the
9677 comparison code appropriately, but don't do this if the second operand
9678 is already a constant integer. */
9679 if (swap_commutative_operands_p (op0
, op1
))
9681 tem
= op0
, op0
= op1
, op1
= tem
;
9682 code
= swap_condition (code
);
9685 /* We now enter a loop during which we will try to simplify the comparison.
9686 For the most part, we only are concerned with comparisons with zero,
9687 but some things may really be comparisons with zero but not start
9688 out looking that way. */
9690 while (GET_CODE (op1
) == CONST_INT
)
9692 enum machine_mode mode
= GET_MODE (op0
);
9693 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
9694 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9695 int equality_comparison_p
;
9696 int sign_bit_comparison_p
;
9697 int unsigned_comparison_p
;
9698 HOST_WIDE_INT const_op
;
9700 /* We only want to handle integral modes. This catches VOIDmode,
9701 CCmode, and the floating-point modes. An exception is that we
9702 can handle VOIDmode if OP0 is a COMPARE or a comparison
9705 if (GET_MODE_CLASS (mode
) != MODE_INT
9706 && ! (mode
== VOIDmode
9707 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
9710 /* Get the constant we are comparing against and turn off all bits
9711 not on in our mode. */
9712 const_op
= INTVAL (op1
);
9713 if (mode
!= VOIDmode
)
9714 const_op
= trunc_int_for_mode (const_op
, mode
);
9715 op1
= GEN_INT (const_op
);
9717 /* If we are comparing against a constant power of two and the value
9718 being compared can only have that single bit nonzero (e.g., it was
9719 `and'ed with that bit), we can replace this with a comparison
9722 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
9723 || code
== LT
|| code
== LTU
)
9724 && mode_width
<= HOST_BITS_PER_WIDE_INT
9725 && exact_log2 (const_op
) >= 0
9726 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
9728 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
9729 op1
= const0_rtx
, const_op
= 0;
9732 /* Similarly, if we are comparing a value known to be either -1 or
9733 0 with -1, change it to the opposite comparison against zero. */
9736 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
9737 || code
== GEU
|| code
== LTU
)
9738 && num_sign_bit_copies (op0
, mode
) == mode_width
)
9740 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
9741 op1
= const0_rtx
, const_op
= 0;
9744 /* Do some canonicalizations based on the comparison code. We prefer
9745 comparisons against zero and then prefer equality comparisons.
9746 If we can reduce the size of a constant, we will do that too. */
9751 /* < C is equivalent to <= (C - 1) */
9755 op1
= GEN_INT (const_op
);
9757 /* ... fall through to LE case below. */
9763 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9767 op1
= GEN_INT (const_op
);
9771 /* If we are doing a <= 0 comparison on a value known to have
9772 a zero sign bit, we can replace this with == 0. */
9773 else if (const_op
== 0
9774 && mode_width
<= HOST_BITS_PER_WIDE_INT
9775 && (nonzero_bits (op0
, mode
)
9776 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9781 /* >= C is equivalent to > (C - 1). */
9785 op1
= GEN_INT (const_op
);
9787 /* ... fall through to GT below. */
9793 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9797 op1
= GEN_INT (const_op
);
9801 /* If we are doing a > 0 comparison on a value known to have
9802 a zero sign bit, we can replace this with != 0. */
9803 else if (const_op
== 0
9804 && mode_width
<= HOST_BITS_PER_WIDE_INT
9805 && (nonzero_bits (op0
, mode
)
9806 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9811 /* < C is equivalent to <= (C - 1). */
9815 op1
= GEN_INT (const_op
);
9817 /* ... fall through ... */
9820 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9821 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9822 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9824 const_op
= 0, op1
= const0_rtx
;
9832 /* unsigned <= 0 is equivalent to == 0 */
9836 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9837 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9838 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9840 const_op
= 0, op1
= const0_rtx
;
9846 /* >= C is equivalent to > (C - 1). */
9850 op1
= GEN_INT (const_op
);
9852 /* ... fall through ... */
9855 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9856 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9857 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9859 const_op
= 0, op1
= const0_rtx
;
9867 /* unsigned > 0 is equivalent to != 0 */
9871 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9872 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9873 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9875 const_op
= 0, op1
= const0_rtx
;
9884 /* Compute some predicates to simplify code below. */
9886 equality_comparison_p
= (code
== EQ
|| code
== NE
);
9887 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
9888 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
9891 /* If this is a sign bit comparison and we can do arithmetic in
9892 MODE, say that we will only be needing the sign bit of OP0. */
9893 if (sign_bit_comparison_p
9894 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9895 op0
= force_to_mode (op0
, mode
,
9897 << (GET_MODE_BITSIZE (mode
) - 1)),
9900 /* Now try cases based on the opcode of OP0. If none of the cases
9901 does a "continue", we exit this loop immediately after the
9904 switch (GET_CODE (op0
))
9907 /* If we are extracting a single bit from a variable position in
9908 a constant that has only a single bit set and are comparing it
9909 with zero, we can convert this into an equality comparison
9910 between the position and the location of the single bit. */
9911 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9912 have already reduced the shift count modulo the word size. */
9913 if (!SHIFT_COUNT_TRUNCATED
9914 && GET_CODE (XEXP (op0
, 0)) == CONST_INT
9915 && XEXP (op0
, 1) == const1_rtx
9916 && equality_comparison_p
&& const_op
== 0
9917 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
9919 if (BITS_BIG_ENDIAN
)
9921 enum machine_mode new_mode
9922 = mode_for_extraction (EP_extzv
, 1);
9923 if (new_mode
== MAX_MACHINE_MODE
)
9924 i
= BITS_PER_WORD
- 1 - i
;
9928 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
9932 op0
= XEXP (op0
, 2);
9936 /* Result is nonzero iff shift count is equal to I. */
9937 code
= reverse_condition (code
);
9941 /* ... fall through ... */
9944 tem
= expand_compound_operation (op0
);
9953 /* If testing for equality, we can take the NOT of the constant. */
9954 if (equality_comparison_p
9955 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
9957 op0
= XEXP (op0
, 0);
9962 /* If just looking at the sign bit, reverse the sense of the
9964 if (sign_bit_comparison_p
)
9966 op0
= XEXP (op0
, 0);
9967 code
= (code
== GE
? LT
: GE
);
9973 /* If testing for equality, we can take the NEG of the constant. */
9974 if (equality_comparison_p
9975 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
9977 op0
= XEXP (op0
, 0);
9982 /* The remaining cases only apply to comparisons with zero. */
9986 /* When X is ABS or is known positive,
9987 (neg X) is < 0 if and only if X != 0. */
9989 if (sign_bit_comparison_p
9990 && (GET_CODE (XEXP (op0
, 0)) == ABS
9991 || (mode_width
<= HOST_BITS_PER_WIDE_INT
9992 && (nonzero_bits (XEXP (op0
, 0), mode
)
9993 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
9995 op0
= XEXP (op0
, 0);
9996 code
= (code
== LT
? NE
: EQ
);
10000 /* If we have NEG of something whose two high-order bits are the
10001 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10002 if (num_sign_bit_copies (op0
, mode
) >= 2)
10004 op0
= XEXP (op0
, 0);
10005 code
= swap_condition (code
);
10011 /* If we are testing equality and our count is a constant, we
10012 can perform the inverse operation on our RHS. */
10013 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10014 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
10015 op1
, XEXP (op0
, 1))) != 0)
10017 op0
= XEXP (op0
, 0);
10022 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10023 a particular bit. Convert it to an AND of a constant of that
10024 bit. This will be converted into a ZERO_EXTRACT. */
10025 if (const_op
== 0 && sign_bit_comparison_p
10026 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10027 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10029 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10032 - INTVAL (XEXP (op0
, 1)))));
10033 code
= (code
== LT
? NE
: EQ
);
10037 /* Fall through. */
10040 /* ABS is ignorable inside an equality comparison with zero. */
10041 if (const_op
== 0 && equality_comparison_p
)
10043 op0
= XEXP (op0
, 0);
10049 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10050 (compare FOO CONST) if CONST fits in FOO's mode and we
10051 are either testing inequality or have an unsigned
10052 comparison with ZERO_EXTEND or a signed comparison with
10053 SIGN_EXTEND. But don't do it if we don't have a compare
10054 insn of the given mode, since we'd have to revert it
10055 later on, and then we wouldn't know whether to sign- or
10057 mode
= GET_MODE (XEXP (op0
, 0));
10058 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10059 && ! unsigned_comparison_p
10060 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10061 && ((unsigned HOST_WIDE_INT
) const_op
10062 < (((unsigned HOST_WIDE_INT
) 1
10063 << (GET_MODE_BITSIZE (mode
) - 1))))
10064 && cmp_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
10066 op0
= XEXP (op0
, 0);
10072 /* Check for the case where we are comparing A - C1 with C2, that is
10074 (subreg:MODE (plus (A) (-C1))) op (C2)
10076 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10077 comparison in the wider mode. One of the following two conditions
10078 must be true in order for this to be valid:
10080 1. The mode extension results in the same bit pattern being added
10081 on both sides and the comparison is equality or unsigned. As
10082 C2 has been truncated to fit in MODE, the pattern can only be
10085 2. The mode extension results in the sign bit being copied on
10088 The difficulty here is that we have predicates for A but not for
10089 (A - C1) so we need to check that C1 is within proper bounds so
10090 as to perturbate A as little as possible. */
10092 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10093 && subreg_lowpart_p (op0
)
10094 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) > mode_width
10095 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10096 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
)
10098 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
10099 rtx a
= XEXP (SUBREG_REG (op0
), 0);
10100 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
10103 && (unsigned HOST_WIDE_INT
) c1
10104 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
10105 && (equality_comparison_p
|| unsigned_comparison_p
)
10106 /* (A - C1) zero-extends if it is positive and sign-extends
10107 if it is negative, C2 both zero- and sign-extends. */
10108 && ((0 == (nonzero_bits (a
, inner_mode
)
10109 & ~GET_MODE_MASK (mode
))
10111 /* (A - C1) sign-extends if it is positive and 1-extends
10112 if it is negative, C2 both sign- and 1-extends. */
10113 || (num_sign_bit_copies (a
, inner_mode
)
10114 > (unsigned int) (GET_MODE_BITSIZE (inner_mode
)
10117 || ((unsigned HOST_WIDE_INT
) c1
10118 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
10119 /* (A - C1) always sign-extends, like C2. */
10120 && num_sign_bit_copies (a
, inner_mode
)
10121 > (unsigned int) (GET_MODE_BITSIZE (inner_mode
)
10122 - (mode_width
- 1))))
10124 op0
= SUBREG_REG (op0
);
10129 /* If the inner mode is narrower and we are extracting the low part,
10130 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10131 if (subreg_lowpart_p (op0
)
10132 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10133 /* Fall through */ ;
10137 /* ... fall through ... */
10140 mode
= GET_MODE (XEXP (op0
, 0));
10141 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10142 && (unsigned_comparison_p
|| equality_comparison_p
)
10143 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10144 && ((unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
))
10145 && cmp_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
10147 op0
= XEXP (op0
, 0);
10153 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10154 this for equality comparisons due to pathological cases involving
10156 if (equality_comparison_p
10157 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10158 op1
, XEXP (op0
, 1))))
10160 op0
= XEXP (op0
, 0);
10165 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10166 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10167 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10169 op0
= XEXP (XEXP (op0
, 0), 0);
10170 code
= (code
== LT
? EQ
: NE
);
10176 /* We used to optimize signed comparisons against zero, but that
10177 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10178 arrive here as equality comparisons, or (GEU, LTU) are
10179 optimized away. No need to special-case them. */
10181 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10182 (eq B (minus A C)), whichever simplifies. We can only do
10183 this for equality comparisons due to pathological cases involving
10185 if (equality_comparison_p
10186 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10187 XEXP (op0
, 1), op1
)))
10189 op0
= XEXP (op0
, 0);
10194 if (equality_comparison_p
10195 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10196 XEXP (op0
, 0), op1
)))
10198 op0
= XEXP (op0
, 1);
10203 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10204 of bits in X minus 1, is one iff X > 0. */
10205 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10206 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10207 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (op0
, 0), 1))
10209 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10211 op0
= XEXP (op0
, 1);
10212 code
= (code
== GE
? LE
: GT
);
10218 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10219 if C is zero or B is a constant. */
10220 if (equality_comparison_p
10221 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10222 XEXP (op0
, 1), op1
)))
10224 op0
= XEXP (op0
, 0);
10231 case UNEQ
: case LTGT
:
10232 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10233 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10234 case UNORDERED
: case ORDERED
:
10235 /* We can't do anything if OP0 is a condition code value, rather
10236 than an actual data value. */
10238 || CC0_P (XEXP (op0
, 0))
10239 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10242 /* Get the two operands being compared. */
10243 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10244 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10246 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10248 /* Check for the cases where we simply want the result of the
10249 earlier test or the opposite of that result. */
10250 if (code
== NE
|| code
== EQ
10251 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10252 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10253 && (STORE_FLAG_VALUE
10254 & (((HOST_WIDE_INT
) 1
10255 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10256 && (code
== LT
|| code
== GE
)))
10258 enum rtx_code new_code
;
10259 if (code
== LT
|| code
== NE
)
10260 new_code
= GET_CODE (op0
);
10262 new_code
= reversed_comparison_code (op0
, NULL
);
10264 if (new_code
!= UNKNOWN
)
10275 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10277 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10278 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10279 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10281 op0
= XEXP (op0
, 1);
10282 code
= (code
== GE
? GT
: LE
);
10288 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10289 will be converted to a ZERO_EXTRACT later. */
10290 if (const_op
== 0 && equality_comparison_p
10291 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10292 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10294 op0
= simplify_and_const_int
10295 (NULL_RTX
, mode
, gen_rtx_LSHIFTRT (mode
,
10297 XEXP (XEXP (op0
, 0), 1)),
10298 (HOST_WIDE_INT
) 1);
10302 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10303 zero and X is a comparison and C1 and C2 describe only bits set
10304 in STORE_FLAG_VALUE, we can compare with X. */
10305 if (const_op
== 0 && equality_comparison_p
10306 && mode_width
<= HOST_BITS_PER_WIDE_INT
10307 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10308 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10309 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10310 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10311 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10313 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10314 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10315 if ((~STORE_FLAG_VALUE
& mask
) == 0
10316 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
10317 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10318 && COMPARISON_P (tem
))))
10320 op0
= XEXP (XEXP (op0
, 0), 0);
10325 /* If we are doing an equality comparison of an AND of a bit equal
10326 to the sign bit, replace this with a LT or GE comparison of
10327 the underlying value. */
10328 if (equality_comparison_p
10330 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10331 && mode_width
<= HOST_BITS_PER_WIDE_INT
10332 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10333 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10335 op0
= XEXP (op0
, 0);
10336 code
= (code
== EQ
? GE
: LT
);
10340 /* If this AND operation is really a ZERO_EXTEND from a narrower
10341 mode, the constant fits within that mode, and this is either an
10342 equality or unsigned comparison, try to do this comparison in
10347 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10348 -> (ne:DI (reg:SI 4) (const_int 0))
10350 unless TRULY_NOOP_TRUNCATION allows it or the register is
10351 known to hold a value of the required mode the
10352 transformation is invalid. */
10353 if ((equality_comparison_p
|| unsigned_comparison_p
)
10354 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10355 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10356 & GET_MODE_MASK (mode
))
10358 && const_op
>> i
== 0
10359 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
10360 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode
),
10361 GET_MODE_BITSIZE (GET_MODE (op0
)))
10362 || (REG_P (XEXP (op0
, 0))
10363 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
10365 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
10369 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10370 fits in both M1 and M2 and the SUBREG is either paradoxical
10371 or represents the low part, permute the SUBREG and the AND
10373 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
10375 unsigned HOST_WIDE_INT c1
;
10376 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
10377 /* Require an integral mode, to avoid creating something like
10379 if (SCALAR_INT_MODE_P (tmode
)
10380 /* It is unsafe to commute the AND into the SUBREG if the
10381 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10382 not defined. As originally written the upper bits
10383 have a defined value due to the AND operation.
10384 However, if we commute the AND inside the SUBREG then
10385 they no longer have defined values and the meaning of
10386 the code has been changed. */
10388 #ifdef WORD_REGISTER_OPERATIONS
10389 || (mode_width
> GET_MODE_BITSIZE (tmode
)
10390 && mode_width
<= BITS_PER_WORD
)
10392 || (mode_width
<= GET_MODE_BITSIZE (tmode
)
10393 && subreg_lowpart_p (XEXP (op0
, 0))))
10394 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10395 && mode_width
<= HOST_BITS_PER_WIDE_INT
10396 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
10397 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
10398 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
10400 && c1
!= GET_MODE_MASK (tmode
))
10402 op0
= simplify_gen_binary (AND
, tmode
,
10403 SUBREG_REG (XEXP (op0
, 0)),
10404 gen_int_mode (c1
, tmode
));
10405 op0
= gen_lowpart (mode
, op0
);
10410 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10411 if (const_op
== 0 && equality_comparison_p
10412 && XEXP (op0
, 1) == const1_rtx
10413 && GET_CODE (XEXP (op0
, 0)) == NOT
)
10415 op0
= simplify_and_const_int
10416 (NULL_RTX
, mode
, XEXP (XEXP (op0
, 0), 0), (HOST_WIDE_INT
) 1);
10417 code
= (code
== NE
? EQ
: NE
);
10421 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10422 (eq (and (lshiftrt X) 1) 0).
10423 Also handle the case where (not X) is expressed using xor. */
10424 if (const_op
== 0 && equality_comparison_p
10425 && XEXP (op0
, 1) == const1_rtx
10426 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
10428 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
10429 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
10431 if (GET_CODE (shift_op
) == NOT
10432 || (GET_CODE (shift_op
) == XOR
10433 && GET_CODE (XEXP (shift_op
, 1)) == CONST_INT
10434 && GET_CODE (shift_count
) == CONST_INT
10435 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
10436 && (INTVAL (XEXP (shift_op
, 1))
10437 == (HOST_WIDE_INT
) 1 << INTVAL (shift_count
))))
10439 op0
= simplify_and_const_int
10441 gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
),
10442 (HOST_WIDE_INT
) 1);
10443 code
= (code
== NE
? EQ
: NE
);
10450 /* If we have (compare (ashift FOO N) (const_int C)) and
10451 the high order N bits of FOO (N+1 if an inequality comparison)
10452 are known to be zero, we can do this by comparing FOO with C
10453 shifted right N bits so long as the low-order N bits of C are
10455 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10456 && INTVAL (XEXP (op0
, 1)) >= 0
10457 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10458 < HOST_BITS_PER_WIDE_INT
)
10460 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10461 && mode_width
<= HOST_BITS_PER_WIDE_INT
10462 && (nonzero_bits (XEXP (op0
, 0), mode
)
10463 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
10464 + ! equality_comparison_p
))) == 0)
10466 /* We must perform a logical shift, not an arithmetic one,
10467 as we want the top N bits of C to be zero. */
10468 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10470 temp
>>= INTVAL (XEXP (op0
, 1));
10471 op1
= gen_int_mode (temp
, mode
);
10472 op0
= XEXP (op0
, 0);
10476 /* If we are doing a sign bit comparison, it means we are testing
10477 a particular bit. Convert it to the appropriate AND. */
10478 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10479 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10481 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10484 - INTVAL (XEXP (op0
, 1)))));
10485 code
= (code
== LT
? NE
: EQ
);
10489 /* If this an equality comparison with zero and we are shifting
10490 the low bit to the sign bit, we can convert this to an AND of the
10492 if (const_op
== 0 && equality_comparison_p
10493 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10494 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10497 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10498 (HOST_WIDE_INT
) 1);
10504 /* If this is an equality comparison with zero, we can do this
10505 as a logical shift, which might be much simpler. */
10506 if (equality_comparison_p
&& const_op
== 0
10507 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10509 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10511 INTVAL (XEXP (op0
, 1)));
10515 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10516 do the comparison in a narrower mode. */
10517 if (! unsigned_comparison_p
10518 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10519 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10520 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10521 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10522 MODE_INT
, 1)) != BLKmode
10523 && (((unsigned HOST_WIDE_INT
) const_op
10524 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10525 <= GET_MODE_MASK (tmode
)))
10527 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
10531 /* Likewise if OP0 is a PLUS of a sign extension with a
10532 constant, which is usually represented with the PLUS
10533 between the shifts. */
10534 if (! unsigned_comparison_p
10535 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10536 && GET_CODE (XEXP (op0
, 0)) == PLUS
10537 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10538 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10539 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10540 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10541 MODE_INT
, 1)) != BLKmode
10542 && (((unsigned HOST_WIDE_INT
) const_op
10543 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10544 <= GET_MODE_MASK (tmode
)))
10546 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10547 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10548 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
10549 add_const
, XEXP (op0
, 1));
10551 op0
= simplify_gen_binary (PLUS
, tmode
,
10552 gen_lowpart (tmode
, inner
),
10557 /* ... fall through ... */
10559 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10560 the low order N bits of FOO are known to be zero, we can do this
10561 by comparing FOO with C shifted left N bits so long as no
10562 overflow occurs. */
10563 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10564 && INTVAL (XEXP (op0
, 1)) >= 0
10565 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10566 && mode_width
<= HOST_BITS_PER_WIDE_INT
10567 && (nonzero_bits (XEXP (op0
, 0), mode
)
10568 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10569 && (((unsigned HOST_WIDE_INT
) const_op
10570 + (GET_CODE (op0
) != LSHIFTRT
10571 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
10574 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
10576 /* If the shift was logical, then we must make the condition
10578 if (GET_CODE (op0
) == LSHIFTRT
)
10579 code
= unsigned_condition (code
);
10581 const_op
<<= INTVAL (XEXP (op0
, 1));
10582 op1
= GEN_INT (const_op
);
10583 op0
= XEXP (op0
, 0);
10587 /* If we are using this shift to extract just the sign bit, we
10588 can replace this with an LT or GE comparison. */
10590 && (equality_comparison_p
|| sign_bit_comparison_p
)
10591 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10592 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10595 op0
= XEXP (op0
, 0);
10596 code
= (code
== NE
|| code
== GT
? LT
: GE
);
10608 /* Now make any compound operations involved in this comparison. Then,
10609 check for an outmost SUBREG on OP0 that is not doing anything or is
10610 paradoxical. The latter transformation must only be performed when
10611 it is known that the "extra" bits will be the same in op0 and op1 or
10612 that they don't matter. There are three cases to consider:
10614 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10615 care bits and we can assume they have any convenient value. So
10616 making the transformation is safe.
10618 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10619 In this case the upper bits of op0 are undefined. We should not make
10620 the simplification in that case as we do not know the contents of
10623 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10624 UNKNOWN. In that case we know those bits are zeros or ones. We must
10625 also be sure that they are the same as the upper bits of op1.
10627 We can never remove a SUBREG for a non-equality comparison because
10628 the sign bit is in a different place in the underlying object. */
10630 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
10631 op1
= make_compound_operation (op1
, SET
);
10633 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10634 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10635 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
10636 && (code
== NE
|| code
== EQ
))
10638 if (GET_MODE_SIZE (GET_MODE (op0
))
10639 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
10641 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10643 if (REG_P (SUBREG_REG (op0
)))
10645 op0
= SUBREG_REG (op0
);
10646 op1
= gen_lowpart (GET_MODE (op0
), op1
);
10649 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10650 <= HOST_BITS_PER_WIDE_INT
)
10651 && (nonzero_bits (SUBREG_REG (op0
),
10652 GET_MODE (SUBREG_REG (op0
)))
10653 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10655 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
10657 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
10658 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10659 op0
= SUBREG_REG (op0
), op1
= tem
;
10663 /* We now do the opposite procedure: Some machines don't have compare
10664 insns in all modes. If OP0's mode is an integer mode smaller than a
10665 word and we can't do a compare in that mode, see if there is a larger
10666 mode for which we can do the compare. There are a number of cases in
10667 which we can use the wider mode. */
10669 mode
= GET_MODE (op0
);
10670 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10671 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
10672 && ! have_insn_for (COMPARE
, mode
))
10673 for (tmode
= GET_MODE_WIDER_MODE (mode
);
10675 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
10676 tmode
= GET_MODE_WIDER_MODE (tmode
))
10677 if (have_insn_for (COMPARE
, tmode
))
10681 /* If the only nonzero bits in OP0 and OP1 are those in the
10682 narrower mode and this is an equality or unsigned comparison,
10683 we can use the wider mode. Similarly for sign-extended
10684 values, in which case it is true for all comparisons. */
10685 zero_extended
= ((code
== EQ
|| code
== NE
10686 || code
== GEU
|| code
== GTU
10687 || code
== LEU
|| code
== LTU
)
10688 && (nonzero_bits (op0
, tmode
)
10689 & ~GET_MODE_MASK (mode
)) == 0
10690 && ((GET_CODE (op1
) == CONST_INT
10691 || (nonzero_bits (op1
, tmode
)
10692 & ~GET_MODE_MASK (mode
)) == 0)));
10695 || ((num_sign_bit_copies (op0
, tmode
)
10696 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10697 - GET_MODE_BITSIZE (mode
)))
10698 && (num_sign_bit_copies (op1
, tmode
)
10699 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10700 - GET_MODE_BITSIZE (mode
)))))
10702 /* If OP0 is an AND and we don't have an AND in MODE either,
10703 make a new AND in the proper mode. */
10704 if (GET_CODE (op0
) == AND
10705 && !have_insn_for (AND
, mode
))
10706 op0
= simplify_gen_binary (AND
, tmode
,
10707 gen_lowpart (tmode
,
10709 gen_lowpart (tmode
,
10712 op0
= gen_lowpart (tmode
, op0
);
10713 if (zero_extended
&& GET_CODE (op1
) == CONST_INT
)
10714 op1
= GEN_INT (INTVAL (op1
) & GET_MODE_MASK (mode
));
10715 op1
= gen_lowpart (tmode
, op1
);
10719 /* If this is a test for negative, we can make an explicit
10720 test of the sign bit. */
10722 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
10723 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10725 op0
= simplify_gen_binary (AND
, tmode
,
10726 gen_lowpart (tmode
, op0
),
10727 GEN_INT ((HOST_WIDE_INT
) 1
10728 << (GET_MODE_BITSIZE (mode
)
10730 code
= (code
== LT
) ? NE
: EQ
;
10735 #ifdef CANONICALIZE_COMPARISON
10736 /* If this machine only supports a subset of valid comparisons, see if we
10737 can convert an unsupported one into a supported one. */
10738 CANONICALIZE_COMPARISON (code
, op0
, op1
);
10747 /* Utility function for record_value_for_reg. Count number of
10752 enum rtx_code code
= GET_CODE (x
);
10756 if (GET_RTX_CLASS (code
) == '2'
10757 || GET_RTX_CLASS (code
) == 'c')
10759 rtx x0
= XEXP (x
, 0);
10760 rtx x1
= XEXP (x
, 1);
10763 return 1 + 2 * count_rtxs (x0
);
10765 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
10766 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
10767 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
10768 return 2 + 2 * count_rtxs (x0
)
10769 + count_rtxs (x
== XEXP (x1
, 0)
10770 ? XEXP (x1
, 1) : XEXP (x1
, 0));
10772 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
10773 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
10774 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
10775 return 2 + 2 * count_rtxs (x1
)
10776 + count_rtxs (x
== XEXP (x0
, 0)
10777 ? XEXP (x0
, 1) : XEXP (x0
, 0));
10780 fmt
= GET_RTX_FORMAT (code
);
10781 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10783 ret
+= count_rtxs (XEXP (x
, i
));
10788 /* Utility function for following routine. Called when X is part of a value
10789 being stored into last_set_value. Sets last_set_table_tick
10790 for each register mentioned. Similar to mention_regs in cse.c */
10793 update_table_tick (rtx x
)
10795 enum rtx_code code
= GET_CODE (x
);
10796 const char *fmt
= GET_RTX_FORMAT (code
);
10801 unsigned int regno
= REGNO (x
);
10802 unsigned int endregno
10803 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10804 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
10807 for (r
= regno
; r
< endregno
; r
++)
10808 reg_stat
[r
].last_set_table_tick
= label_tick
;
10813 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10814 /* Note that we can't have an "E" in values stored; see
10815 get_last_value_validate. */
10818 /* Check for identical subexpressions. If x contains
10819 identical subexpression we only have to traverse one of
10821 if (i
== 0 && ARITHMETIC_P (x
))
10823 /* Note that at this point x1 has already been
10825 rtx x0
= XEXP (x
, 0);
10826 rtx x1
= XEXP (x
, 1);
10828 /* If x0 and x1 are identical then there is no need to
10833 /* If x0 is identical to a subexpression of x1 then while
10834 processing x1, x0 has already been processed. Thus we
10835 are done with x. */
10836 if (ARITHMETIC_P (x1
)
10837 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
10840 /* If x1 is identical to a subexpression of x0 then we
10841 still have to process the rest of x0. */
10842 if (ARITHMETIC_P (x0
)
10843 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
10845 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
10850 update_table_tick (XEXP (x
, i
));
10854 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10855 are saying that the register is clobbered and we no longer know its
10856 value. If INSN is zero, don't update reg_stat[].last_set; this is
10857 only permitted with VALUE also zero and is used to invalidate the
10861 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
10863 unsigned int regno
= REGNO (reg
);
10864 unsigned int endregno
10865 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10866 ? hard_regno_nregs
[regno
][GET_MODE (reg
)] : 1);
10869 /* If VALUE contains REG and we have a previous value for REG, substitute
10870 the previous value. */
10871 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
10875 /* Set things up so get_last_value is allowed to see anything set up to
10877 subst_low_cuid
= INSN_CUID (insn
);
10878 tem
= get_last_value (reg
);
10880 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10881 it isn't going to be useful and will take a lot of time to process,
10882 so just use the CLOBBER. */
10886 if (ARITHMETIC_P (tem
)
10887 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
10888 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
10889 tem
= XEXP (tem
, 0);
10890 else if (count_occurrences (value
, reg
, 1) >= 2)
10892 /* If there are two or more occurrences of REG in VALUE,
10893 prevent the value from growing too much. */
10894 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
10895 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
10898 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
10902 /* For each register modified, show we don't know its value, that
10903 we don't know about its bitwise content, that its value has been
10904 updated, and that we don't know the location of the death of the
10906 for (i
= regno
; i
< endregno
; i
++)
10909 reg_stat
[i
].last_set
= insn
;
10911 reg_stat
[i
].last_set_value
= 0;
10912 reg_stat
[i
].last_set_mode
= 0;
10913 reg_stat
[i
].last_set_nonzero_bits
= 0;
10914 reg_stat
[i
].last_set_sign_bit_copies
= 0;
10915 reg_stat
[i
].last_death
= 0;
10916 reg_stat
[i
].truncated_to_mode
= 0;
10919 /* Mark registers that are being referenced in this value. */
10921 update_table_tick (value
);
10923 /* Now update the status of each register being set.
10924 If someone is using this register in this block, set this register
10925 to invalid since we will get confused between the two lives in this
10926 basic block. This makes using this register always invalid. In cse, we
10927 scan the table to invalidate all entries using this register, but this
10928 is too much work for us. */
10930 for (i
= regno
; i
< endregno
; i
++)
10932 reg_stat
[i
].last_set_label
= label_tick
;
10933 if (!insn
|| (value
&& reg_stat
[i
].last_set_table_tick
== label_tick
))
10934 reg_stat
[i
].last_set_invalid
= 1;
10936 reg_stat
[i
].last_set_invalid
= 0;
10939 /* The value being assigned might refer to X (like in "x++;"). In that
10940 case, we must replace it with (clobber (const_int 0)) to prevent
10942 if (value
&& ! get_last_value_validate (&value
, insn
,
10943 reg_stat
[regno
].last_set_label
, 0))
10945 value
= copy_rtx (value
);
10946 if (! get_last_value_validate (&value
, insn
,
10947 reg_stat
[regno
].last_set_label
, 1))
10951 /* For the main register being modified, update the value, the mode, the
10952 nonzero bits, and the number of sign bit copies. */
10954 reg_stat
[regno
].last_set_value
= value
;
10958 enum machine_mode mode
= GET_MODE (reg
);
10959 subst_low_cuid
= INSN_CUID (insn
);
10960 reg_stat
[regno
].last_set_mode
= mode
;
10961 if (GET_MODE_CLASS (mode
) == MODE_INT
10962 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10963 mode
= nonzero_bits_mode
;
10964 reg_stat
[regno
].last_set_nonzero_bits
= nonzero_bits (value
, mode
);
10965 reg_stat
[regno
].last_set_sign_bit_copies
10966 = num_sign_bit_copies (value
, GET_MODE (reg
));
10970 /* Called via note_stores from record_dead_and_set_regs to handle one
10971 SET or CLOBBER in an insn. DATA is the instruction in which the
10972 set is occurring. */
10975 record_dead_and_set_regs_1 (rtx dest
, rtx setter
, void *data
)
10977 rtx record_dead_insn
= (rtx
) data
;
10979 if (GET_CODE (dest
) == SUBREG
)
10980 dest
= SUBREG_REG (dest
);
10982 if (!record_dead_insn
)
10985 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
10991 /* If we are setting the whole register, we know its value. Otherwise
10992 show that we don't know the value. We can handle SUBREG in
10994 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
10995 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
10996 else if (GET_CODE (setter
) == SET
10997 && GET_CODE (SET_DEST (setter
)) == SUBREG
10998 && SUBREG_REG (SET_DEST (setter
)) == dest
10999 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
11000 && subreg_lowpart_p (SET_DEST (setter
)))
11001 record_value_for_reg (dest
, record_dead_insn
,
11002 gen_lowpart (GET_MODE (dest
),
11003 SET_SRC (setter
)));
11005 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
11007 else if (MEM_P (dest
)
11008 /* Ignore pushes, they clobber nothing. */
11009 && ! push_operand (dest
, GET_MODE (dest
)))
11010 mem_last_set
= INSN_CUID (record_dead_insn
);
11013 /* Update the records of when each REG was most recently set or killed
11014 for the things done by INSN. This is the last thing done in processing
11015 INSN in the combiner loop.
11017 We update reg_stat[], in particular fields last_set, last_set_value,
11018 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11019 last_death, and also the similar information mem_last_set (which insn
11020 most recently modified memory) and last_call_cuid (which insn was the
11021 most recent subroutine call). */
11024 record_dead_and_set_regs (rtx insn
)
11029 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
11031 if (REG_NOTE_KIND (link
) == REG_DEAD
11032 && REG_P (XEXP (link
, 0)))
11034 unsigned int regno
= REGNO (XEXP (link
, 0));
11035 unsigned int endregno
11036 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11037 ? hard_regno_nregs
[regno
][GET_MODE (XEXP (link
, 0))]
11040 for (i
= regno
; i
< endregno
; i
++)
11041 reg_stat
[i
].last_death
= insn
;
11043 else if (REG_NOTE_KIND (link
) == REG_INC
)
11044 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11049 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11050 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
11052 reg_stat
[i
].last_set_value
= 0;
11053 reg_stat
[i
].last_set_mode
= 0;
11054 reg_stat
[i
].last_set_nonzero_bits
= 0;
11055 reg_stat
[i
].last_set_sign_bit_copies
= 0;
11056 reg_stat
[i
].last_death
= 0;
11057 reg_stat
[i
].truncated_to_mode
= 0;
11060 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11062 /* We can't combine into a call pattern. Remember, though, that
11063 the return value register is set at this CUID. We could
11064 still replace a register with the return value from the
11065 wrong subroutine call! */
11066 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
11069 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11072 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11073 register present in the SUBREG, so for each such SUBREG go back and
11074 adjust nonzero and sign bit information of the registers that are
11075 known to have some zero/sign bits set.
11077 This is needed because when combine blows the SUBREGs away, the
11078 information on zero/sign bits is lost and further combines can be
11079 missed because of that. */
11082 record_promoted_value (rtx insn
, rtx subreg
)
11085 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
11086 enum machine_mode mode
= GET_MODE (subreg
);
11088 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
11091 for (links
= LOG_LINKS (insn
); links
;)
11093 insn
= XEXP (links
, 0);
11094 set
= single_set (insn
);
11096 if (! set
|| !REG_P (SET_DEST (set
))
11097 || REGNO (SET_DEST (set
)) != regno
11098 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11100 links
= XEXP (links
, 1);
11104 if (reg_stat
[regno
].last_set
== insn
)
11106 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
11107 reg_stat
[regno
].last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
11110 if (REG_P (SET_SRC (set
)))
11112 regno
= REGNO (SET_SRC (set
));
11113 links
= LOG_LINKS (insn
);
11120 /* Check if X, a register, is known to contain a value already
11121 truncated to MODE. In this case we can use a subreg to refer to
11122 the truncated value even though in the generic case we would need
11123 an explicit truncation. */
11126 reg_truncated_to_mode (enum machine_mode mode
, rtx x
)
11128 enum machine_mode truncated
= reg_stat
[REGNO (x
)].truncated_to_mode
;
11130 if (truncated
== 0 || reg_stat
[REGNO (x
)].truncation_label
!= label_tick
)
11132 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
11134 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
11135 GET_MODE_BITSIZE (truncated
)))
11140 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11141 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11142 a truncate into a subreg using this information. */
11145 record_truncated_value (rtx x
)
11147 enum machine_mode truncated_mode
;
11149 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
11151 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
11152 truncated_mode
= GET_MODE (x
);
11154 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
11157 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode
),
11158 GET_MODE_BITSIZE (original_mode
)))
11161 x
= SUBREG_REG (x
);
11163 /* ??? For hard-regs we now record everything. We might be able to
11164 optimize this using last_set_mode. */
11165 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
11166 truncated_mode
= GET_MODE (x
);
11170 if (reg_stat
[REGNO (x
)].truncated_to_mode
== 0
11171 || reg_stat
[REGNO (x
)].truncation_label
< label_tick
11172 || (GET_MODE_SIZE (truncated_mode
)
11173 < GET_MODE_SIZE (reg_stat
[REGNO (x
)].truncated_to_mode
)))
11175 reg_stat
[REGNO (x
)].truncated_to_mode
= truncated_mode
;
11176 reg_stat
[REGNO (x
)].truncation_label
= label_tick
;
11180 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11181 found, note what it implies to the registers used in it. */
11184 check_conversions (rtx insn
, rtx x
)
11186 if (GET_CODE (x
) == SUBREG
|| REG_P (x
))
11188 if (GET_CODE (x
) == SUBREG
11189 && SUBREG_PROMOTED_VAR_P (x
)
11190 && REG_P (SUBREG_REG (x
)))
11191 record_promoted_value (insn
, x
);
11193 record_truncated_value (x
);
11197 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11200 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11204 check_conversions (insn
, XEXP (x
, i
));
11208 if (XVEC (x
, i
) != 0)
11209 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11210 check_conversions (insn
, XVECEXP (x
, i
, j
));
11216 /* Utility routine for the following function. Verify that all the registers
11217 mentioned in *LOC are valid when *LOC was part of a value set when
11218 label_tick == TICK. Return 0 if some are not.
11220 If REPLACE is nonzero, replace the invalid reference with
11221 (clobber (const_int 0)) and return 1. This replacement is useful because
11222 we often can get useful information about the form of a value (e.g., if
11223 it was produced by a shift that always produces -1 or 0) even though
11224 we don't know exactly what registers it was produced from. */
11227 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
11230 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11231 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11236 unsigned int regno
= REGNO (x
);
11237 unsigned int endregno
11238 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11239 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11242 for (j
= regno
; j
< endregno
; j
++)
11243 if (reg_stat
[j
].last_set_invalid
11244 /* If this is a pseudo-register that was only set once and not
11245 live at the beginning of the function, it is always valid. */
11246 || (! (regno
>= FIRST_PSEUDO_REGISTER
11247 && REG_N_SETS (regno
) == 1
11248 && (! REGNO_REG_SET_P
11249 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
11251 && reg_stat
[j
].last_set_label
> tick
))
11254 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11260 /* If this is a memory reference, make sure that there were
11261 no stores after it that might have clobbered the value. We don't
11262 have alias info, so we assume any store invalidates it. */
11263 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
11264 && INSN_CUID (insn
) <= mem_last_set
)
11267 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11271 for (i
= 0; i
< len
; i
++)
11275 /* Check for identical subexpressions. If x contains
11276 identical subexpression we only have to traverse one of
11278 if (i
== 1 && ARITHMETIC_P (x
))
11280 /* Note that at this point x0 has already been checked
11281 and found valid. */
11282 rtx x0
= XEXP (x
, 0);
11283 rtx x1
= XEXP (x
, 1);
11285 /* If x0 and x1 are identical then x is also valid. */
11289 /* If x1 is identical to a subexpression of x0 then
11290 while checking x0, x1 has already been checked. Thus
11291 it is valid and so as x. */
11292 if (ARITHMETIC_P (x0
)
11293 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
11296 /* If x0 is identical to a subexpression of x1 then x is
11297 valid iff the rest of x1 is valid. */
11298 if (ARITHMETIC_P (x1
)
11299 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
11301 get_last_value_validate (&XEXP (x1
,
11302 x0
== XEXP (x1
, 0) ? 1 : 0),
11303 insn
, tick
, replace
);
11306 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
11310 /* Don't bother with these. They shouldn't occur anyway. */
11311 else if (fmt
[i
] == 'E')
11315 /* If we haven't found a reason for it to be invalid, it is valid. */
11319 /* Get the last value assigned to X, if known. Some registers
11320 in the value may be replaced with (clobber (const_int 0)) if their value
11321 is known longer known reliably. */
11324 get_last_value (rtx x
)
11326 unsigned int regno
;
11329 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11330 then convert it to the desired mode. If this is a paradoxical SUBREG,
11331 we cannot predict what values the "extra" bits might have. */
11332 if (GET_CODE (x
) == SUBREG
11333 && subreg_lowpart_p (x
)
11334 && (GET_MODE_SIZE (GET_MODE (x
))
11335 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11336 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11337 return gen_lowpart (GET_MODE (x
), value
);
11343 value
= reg_stat
[regno
].last_set_value
;
11345 /* If we don't have a value, or if it isn't for this basic block and
11346 it's either a hard register, set more than once, or it's a live
11347 at the beginning of the function, return 0.
11349 Because if it's not live at the beginning of the function then the reg
11350 is always set before being used (is never used without being set).
11351 And, if it's set only once, and it's always set before use, then all
11352 uses must have the same last value, even if it's not from this basic
11356 || (reg_stat
[regno
].last_set_label
!= label_tick
11357 && (regno
< FIRST_PSEUDO_REGISTER
11358 || REG_N_SETS (regno
) != 1
11359 || (REGNO_REG_SET_P
11360 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
11364 /* If the value was set in a later insn than the ones we are processing,
11365 we can't use it even if the register was only set once. */
11366 if (INSN_CUID (reg_stat
[regno
].last_set
) >= subst_low_cuid
)
11369 /* If the value has all its registers valid, return it. */
11370 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11371 reg_stat
[regno
].last_set_label
, 0))
11374 /* Otherwise, make a copy and replace any invalid register with
11375 (clobber (const_int 0)). If that fails for some reason, return 0. */
11377 value
= copy_rtx (value
);
11378 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11379 reg_stat
[regno
].last_set_label
, 1))
11385 /* Return nonzero if expression X refers to a REG or to memory
11386 that is set in an instruction more recent than FROM_CUID. */
11389 use_crosses_set_p (rtx x
, int from_cuid
)
11393 enum rtx_code code
= GET_CODE (x
);
11397 unsigned int regno
= REGNO (x
);
11398 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11399 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11401 #ifdef PUSH_ROUNDING
11402 /* Don't allow uses of the stack pointer to be moved,
11403 because we don't know whether the move crosses a push insn. */
11404 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11407 for (; regno
< endreg
; regno
++)
11408 if (reg_stat
[regno
].last_set
11409 && INSN_CUID (reg_stat
[regno
].last_set
) > from_cuid
)
11414 if (code
== MEM
&& mem_last_set
> from_cuid
)
11417 fmt
= GET_RTX_FORMAT (code
);
11419 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11424 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11425 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11428 else if (fmt
[i
] == 'e'
11429 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11435 /* Define three variables used for communication between the following
11438 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11439 static int reg_dead_flag
;
11441 /* Function called via note_stores from reg_dead_at_p.
11443 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11444 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11447 reg_dead_at_p_1 (rtx dest
, rtx x
, void *data ATTRIBUTE_UNUSED
)
11449 unsigned int regno
, endregno
;
11454 regno
= REGNO (dest
);
11455 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11456 ? hard_regno_nregs
[regno
][GET_MODE (dest
)] : 1);
11458 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11459 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11462 /* Return nonzero if REG is known to be dead at INSN.
11464 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11465 referencing REG, it is dead. If we hit a SET referencing REG, it is
11466 live. Otherwise, see if it is live or dead at the start of the basic
11467 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11468 must be assumed to be always live. */
11471 reg_dead_at_p (rtx reg
, rtx insn
)
11476 /* Set variables for reg_dead_at_p_1. */
11477 reg_dead_regno
= REGNO (reg
);
11478 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11479 ? hard_regno_nregs
[reg_dead_regno
]
11485 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11486 we allow the machine description to decide whether use-and-clobber
11487 patterns are OK. */
11488 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11490 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11491 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11495 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11496 beginning of function. */
11497 for (; insn
&& !LABEL_P (insn
) && !BARRIER_P (insn
);
11498 insn
= prev_nonnote_insn (insn
))
11500 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11502 return reg_dead_flag
== 1 ? 1 : 0;
11504 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11508 /* Get the basic block that we were in. */
11510 block
= ENTRY_BLOCK_PTR
->next_bb
;
11513 FOR_EACH_BB (block
)
11514 if (insn
== BB_HEAD (block
))
11517 if (block
== EXIT_BLOCK_PTR
)
11521 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11522 if (REGNO_REG_SET_P (block
->il
.rtl
->global_live_at_start
, i
))
11528 /* Note hard registers in X that are used. This code is similar to
11529 that in flow.c, but much simpler since we don't care about pseudos. */
11532 mark_used_regs_combine (rtx x
)
11534 RTX_CODE code
= GET_CODE (x
);
11535 unsigned int regno
;
11548 case ADDR_DIFF_VEC
:
11551 /* CC0 must die in the insn after it is set, so we don't need to take
11552 special note of it here. */
11558 /* If we are clobbering a MEM, mark any hard registers inside the
11559 address as used. */
11560 if (MEM_P (XEXP (x
, 0)))
11561 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11566 /* A hard reg in a wide mode may really be multiple registers.
11567 If so, mark all of them just like the first. */
11568 if (regno
< FIRST_PSEUDO_REGISTER
)
11570 unsigned int endregno
, r
;
11572 /* None of this applies to the stack, frame or arg pointers. */
11573 if (regno
== STACK_POINTER_REGNUM
11574 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11575 || regno
== HARD_FRAME_POINTER_REGNUM
11577 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11578 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11580 || regno
== FRAME_POINTER_REGNUM
)
11583 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11584 for (r
= regno
; r
< endregno
; r
++)
11585 SET_HARD_REG_BIT (newpat_used_regs
, r
);
11591 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11593 rtx testreg
= SET_DEST (x
);
11595 while (GET_CODE (testreg
) == SUBREG
11596 || GET_CODE (testreg
) == ZERO_EXTRACT
11597 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11598 testreg
= XEXP (testreg
, 0);
11600 if (MEM_P (testreg
))
11601 mark_used_regs_combine (XEXP (testreg
, 0));
11603 mark_used_regs_combine (SET_SRC (x
));
11611 /* Recursively scan the operands of this expression. */
11614 const char *fmt
= GET_RTX_FORMAT (code
);
11616 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11619 mark_used_regs_combine (XEXP (x
, i
));
11620 else if (fmt
[i
] == 'E')
11624 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11625 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11631 /* Remove register number REGNO from the dead registers list of INSN.
11633 Return the note used to record the death, if there was one. */
11636 remove_death (unsigned int regno
, rtx insn
)
11638 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11642 REG_N_DEATHS (regno
)--;
11643 remove_note (insn
, note
);
11649 /* For each register (hardware or pseudo) used within expression X, if its
11650 death is in an instruction with cuid between FROM_CUID (inclusive) and
11651 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11652 list headed by PNOTES.
11654 That said, don't move registers killed by maybe_kill_insn.
11656 This is done when X is being merged by combination into TO_INSN. These
11657 notes will then be distributed as needed. */
11660 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_cuid
, rtx to_insn
,
11665 enum rtx_code code
= GET_CODE (x
);
11669 unsigned int regno
= REGNO (x
);
11670 rtx where_dead
= reg_stat
[regno
].last_death
;
11671 rtx before_dead
, after_dead
;
11673 /* Don't move the register if it gets killed in between from and to. */
11674 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11675 && ! reg_referenced_p (x
, maybe_kill_insn
))
11678 /* WHERE_DEAD could be a USE insn made by combine, so first we
11679 make sure that we have insns with valid INSN_CUID values. */
11680 before_dead
= where_dead
;
11681 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11682 before_dead
= PREV_INSN (before_dead
);
11684 after_dead
= where_dead
;
11685 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11686 after_dead
= NEXT_INSN (after_dead
);
11688 if (before_dead
&& after_dead
11689 && INSN_CUID (before_dead
) >= from_cuid
11690 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11691 || (where_dead
!= after_dead
11692 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11694 rtx note
= remove_death (regno
, where_dead
);
11696 /* It is possible for the call above to return 0. This can occur
11697 when last_death points to I2 or I1 that we combined with.
11698 In that case make a new note.
11700 We must also check for the case where X is a hard register
11701 and NOTE is a death note for a range of hard registers
11702 including X. In that case, we must put REG_DEAD notes for
11703 the remaining registers in place of NOTE. */
11705 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11706 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11707 > GET_MODE_SIZE (GET_MODE (x
))))
11709 unsigned int deadregno
= REGNO (XEXP (note
, 0));
11710 unsigned int deadend
11711 = (deadregno
+ hard_regno_nregs
[deadregno
]
11712 [GET_MODE (XEXP (note
, 0))]);
11713 unsigned int ourend
11714 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11717 for (i
= deadregno
; i
< deadend
; i
++)
11718 if (i
< regno
|| i
>= ourend
)
11719 REG_NOTES (where_dead
)
11720 = gen_rtx_EXPR_LIST (REG_DEAD
,
11722 REG_NOTES (where_dead
));
11725 /* If we didn't find any note, or if we found a REG_DEAD note that
11726 covers only part of the given reg, and we have a multi-reg hard
11727 register, then to be safe we must check for REG_DEAD notes
11728 for each register other than the first. They could have
11729 their own REG_DEAD notes lying around. */
11730 else if ((note
== 0
11732 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11733 < GET_MODE_SIZE (GET_MODE (x
)))))
11734 && regno
< FIRST_PSEUDO_REGISTER
11735 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
11737 unsigned int ourend
11738 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11739 unsigned int i
, offset
;
11743 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
11747 for (i
= regno
+ offset
; i
< ourend
; i
++)
11748 move_deaths (regno_reg_rtx
[i
],
11749 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11752 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11754 XEXP (note
, 1) = *pnotes
;
11758 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
11760 REG_N_DEATHS (regno
)++;
11766 else if (GET_CODE (x
) == SET
)
11768 rtx dest
= SET_DEST (x
);
11770 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11772 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11773 that accesses one word of a multi-word item, some
11774 piece of everything register in the expression is used by
11775 this insn, so remove any old death. */
11776 /* ??? So why do we test for equality of the sizes? */
11778 if (GET_CODE (dest
) == ZERO_EXTRACT
11779 || GET_CODE (dest
) == STRICT_LOW_PART
11780 || (GET_CODE (dest
) == SUBREG
11781 && (((GET_MODE_SIZE (GET_MODE (dest
))
11782 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
11783 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
11784 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
11786 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11790 /* If this is some other SUBREG, we know it replaces the entire
11791 value, so use that as the destination. */
11792 if (GET_CODE (dest
) == SUBREG
)
11793 dest
= SUBREG_REG (dest
);
11795 /* If this is a MEM, adjust deaths of anything used in the address.
11796 For a REG (the only other possibility), the entire value is
11797 being replaced so the old value is not used in this insn. */
11800 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
11805 else if (GET_CODE (x
) == CLOBBER
)
11808 len
= GET_RTX_LENGTH (code
);
11809 fmt
= GET_RTX_FORMAT (code
);
11811 for (i
= 0; i
< len
; i
++)
11816 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11817 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
11820 else if (fmt
[i
] == 'e')
11821 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11825 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11826 pattern of an insn. X must be a REG. */
11829 reg_bitfield_target_p (rtx x
, rtx body
)
11833 if (GET_CODE (body
) == SET
)
11835 rtx dest
= SET_DEST (body
);
11837 unsigned int regno
, tregno
, endregno
, endtregno
;
11839 if (GET_CODE (dest
) == ZERO_EXTRACT
)
11840 target
= XEXP (dest
, 0);
11841 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
11842 target
= SUBREG_REG (XEXP (dest
, 0));
11846 if (GET_CODE (target
) == SUBREG
)
11847 target
= SUBREG_REG (target
);
11849 if (!REG_P (target
))
11852 tregno
= REGNO (target
), regno
= REGNO (x
);
11853 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
11854 return target
== x
;
11856 endtregno
= tregno
+ hard_regno_nregs
[tregno
][GET_MODE (target
)];
11857 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11859 return endregno
> tregno
&& regno
< endtregno
;
11862 else if (GET_CODE (body
) == PARALLEL
)
11863 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
11864 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
11870 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11871 as appropriate. I3 and I2 are the insns resulting from the combination
11872 insns including FROM (I2 may be zero).
11874 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11875 not need REG_DEAD notes because they are being substituted for. This
11876 saves searching in the most common cases.
11878 Each note in the list is either ignored or placed on some insns, depending
11879 on the type of note. */
11882 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
11885 rtx note
, next_note
;
11888 for (note
= notes
; note
; note
= next_note
)
11890 rtx place
= 0, place2
= 0;
11892 next_note
= XEXP (note
, 1);
11893 switch (REG_NOTE_KIND (note
))
11897 /* Doesn't matter much where we put this, as long as it's somewhere.
11898 It is preferable to keep these notes on branches, which is most
11899 likely to be i3. */
11903 case REG_VALUE_PROFILE
:
11904 /* Just get rid of this note, as it is unused later anyway. */
11907 case REG_NON_LOCAL_GOTO
:
11912 gcc_assert (i2
&& JUMP_P (i2
));
11917 case REG_EH_REGION
:
11918 /* These notes must remain with the call or trapping instruction. */
11921 else if (i2
&& CALL_P (i2
))
11925 gcc_assert (flag_non_call_exceptions
);
11926 if (may_trap_p (i3
))
11928 else if (i2
&& may_trap_p (i2
))
11930 /* ??? Otherwise assume we've combined things such that we
11931 can now prove that the instructions can't trap. Drop the
11932 note in this case. */
11938 /* These notes must remain with the call. It should not be
11939 possible for both I2 and I3 to be a call. */
11944 gcc_assert (i2
&& CALL_P (i2
));
11950 /* Any clobbers for i3 may still exist, and so we must process
11951 REG_UNUSED notes from that insn.
11953 Any clobbers from i2 or i1 can only exist if they were added by
11954 recog_for_combine. In that case, recog_for_combine created the
11955 necessary REG_UNUSED notes. Trying to keep any original
11956 REG_UNUSED notes from these insns can cause incorrect output
11957 if it is for the same register as the original i3 dest.
11958 In that case, we will notice that the register is set in i3,
11959 and then add a REG_UNUSED note for the destination of i3, which
11960 is wrong. However, it is possible to have REG_UNUSED notes from
11961 i2 or i1 for register which were both used and clobbered, so
11962 we keep notes from i2 or i1 if they will turn into REG_DEAD
11965 /* If this register is set or clobbered in I3, put the note there
11966 unless there is one already. */
11967 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
11969 if (from_insn
!= i3
)
11972 if (! (REG_P (XEXP (note
, 0))
11973 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
11974 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
11977 /* Otherwise, if this register is used by I3, then this register
11978 now dies here, so we must put a REG_DEAD note here unless there
11980 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
11981 && ! (REG_P (XEXP (note
, 0))
11982 ? find_regno_note (i3
, REG_DEAD
,
11983 REGNO (XEXP (note
, 0)))
11984 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
11986 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
11994 /* These notes say something about results of an insn. We can
11995 only support them if they used to be on I3 in which case they
11996 remain on I3. Otherwise they are ignored.
11998 If the note refers to an expression that is not a constant, we
11999 must also ignore the note since we cannot tell whether the
12000 equivalence is still true. It might be possible to do
12001 slightly better than this (we only have a problem if I2DEST
12002 or I1DEST is present in the expression), but it doesn't
12003 seem worth the trouble. */
12005 if (from_insn
== i3
12006 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
12011 case REG_NO_CONFLICT
:
12012 /* These notes say something about how a register is used. They must
12013 be present on any use of the register in I2 or I3. */
12014 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
12017 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
12027 /* This can show up in several ways -- either directly in the
12028 pattern, or hidden off in the constant pool with (or without?)
12029 a REG_EQUAL note. */
12030 /* ??? Ignore the without-reg_equal-note problem for now. */
12031 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
12032 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
12033 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12034 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
12038 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
12039 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
12040 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12041 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
12049 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12050 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12051 if (place
&& JUMP_P (place
))
12053 rtx label
= JUMP_LABEL (place
);
12056 JUMP_LABEL (place
) = XEXP (note
, 0);
12059 gcc_assert (label
== XEXP (note
, 0));
12060 if (LABEL_P (label
))
12061 LABEL_NUSES (label
)--;
12065 if (place2
&& JUMP_P (place2
))
12067 rtx label
= JUMP_LABEL (place2
);
12070 JUMP_LABEL (place2
) = XEXP (note
, 0);
12073 gcc_assert (label
== XEXP (note
, 0));
12074 if (LABEL_P (label
))
12075 LABEL_NUSES (label
)--;
12082 /* This note says something about the value of a register prior
12083 to the execution of an insn. It is too much trouble to see
12084 if the note is still correct in all situations. It is better
12085 to simply delete it. */
12089 /* If the insn previously containing this note still exists,
12090 put it back where it was. Otherwise move it to the previous
12091 insn. Adjust the corresponding REG_LIBCALL note. */
12092 if (!NOTE_P (from_insn
))
12096 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12097 place
= prev_real_insn (from_insn
);
12099 XEXP (tem
, 0) = place
;
12100 /* If we're deleting the last remaining instruction of a
12101 libcall sequence, don't add the notes. */
12102 else if (XEXP (note
, 0) == from_insn
)
12104 /* Don't add the dangling REG_RETVAL note. */
12111 /* This is handled similarly to REG_RETVAL. */
12112 if (!NOTE_P (from_insn
))
12116 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12117 place
= next_real_insn (from_insn
);
12119 XEXP (tem
, 0) = place
;
12120 /* If we're deleting the last remaining instruction of a
12121 libcall sequence, don't add the notes. */
12122 else if (XEXP (note
, 0) == from_insn
)
12124 /* Don't add the dangling REG_LIBCALL note. */
12131 /* If we replaced the right hand side of FROM_INSN with a
12132 REG_EQUAL note, the original use of the dying register
12133 will not have been combined into I3 and I2. In such cases,
12134 FROM_INSN is guaranteed to be the first of the combined
12135 instructions, so we simply need to search back before
12136 FROM_INSN for the previous use or set of this register,
12137 then alter the notes there appropriately.
12139 If the register is used as an input in I3, it dies there.
12140 Similarly for I2, if it is nonzero and adjacent to I3.
12142 If the register is not used as an input in either I3 or I2
12143 and it is not one of the registers we were supposed to eliminate,
12144 there are two possibilities. We might have a non-adjacent I2
12145 or we might have somehow eliminated an additional register
12146 from a computation. For example, we might have had A & B where
12147 we discover that B will always be zero. In this case we will
12148 eliminate the reference to A.
12150 In both cases, we must search to see if we can find a previous
12151 use of A and put the death note there. */
12154 && from_insn
== i2mod
12155 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
12160 && CALL_P (from_insn
)
12161 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12163 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12165 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12166 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12168 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
12170 && reg_overlap_mentioned_p (XEXP (note
, 0),
12172 || rtx_equal_p (XEXP (note
, 0), elim_i1
))
12179 basic_block bb
= this_basic_block
;
12181 for (tem
= PREV_INSN (tem
); place
== 0; tem
= PREV_INSN (tem
))
12183 if (! INSN_P (tem
))
12185 if (tem
== BB_HEAD (bb
))
12190 /* If the register is being set at TEM, see if that is all
12191 TEM is doing. If so, delete TEM. Otherwise, make this
12192 into a REG_UNUSED note instead. Don't delete sets to
12193 global register vars. */
12194 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
12195 || !global_regs
[REGNO (XEXP (note
, 0))])
12196 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12198 rtx set
= single_set (tem
);
12199 rtx inner_dest
= 0;
12201 rtx cc0_setter
= NULL_RTX
;
12205 for (inner_dest
= SET_DEST (set
);
12206 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12207 || GET_CODE (inner_dest
) == SUBREG
12208 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12209 inner_dest
= XEXP (inner_dest
, 0))
12212 /* Verify that it was the set, and not a clobber that
12213 modified the register.
12215 CC0 targets must be careful to maintain setter/user
12216 pairs. If we cannot delete the setter due to side
12217 effects, mark the user with an UNUSED note instead
12220 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12221 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12223 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12224 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12225 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12229 /* Move the notes and links of TEM elsewhere.
12230 This might delete other dead insns recursively.
12231 First set the pattern to something that won't use
12233 rtx old_notes
= REG_NOTES (tem
);
12235 PATTERN (tem
) = pc_rtx
;
12236 REG_NOTES (tem
) = NULL
;
12238 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
12239 NULL_RTX
, NULL_RTX
);
12240 distribute_links (LOG_LINKS (tem
));
12242 SET_INSN_DELETED (tem
);
12245 /* Delete the setter too. */
12248 PATTERN (cc0_setter
) = pc_rtx
;
12249 old_notes
= REG_NOTES (cc0_setter
);
12250 REG_NOTES (cc0_setter
) = NULL
;
12252 distribute_notes (old_notes
, cc0_setter
,
12253 cc0_setter
, NULL_RTX
,
12254 NULL_RTX
, NULL_RTX
);
12255 distribute_links (LOG_LINKS (cc0_setter
));
12257 SET_INSN_DELETED (cc0_setter
);
12263 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12265 /* If there isn't already a REG_UNUSED note, put one
12266 here. Do not place a REG_DEAD note, even if
12267 the register is also used here; that would not
12268 match the algorithm used in lifetime analysis
12269 and can cause the consistency check in the
12270 scheduler to fail. */
12271 if (! find_regno_note (tem
, REG_UNUSED
,
12272 REGNO (XEXP (note
, 0))))
12277 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12279 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12283 /* If we are doing a 3->2 combination, and we have a
12284 register which formerly died in i3 and was not used
12285 by i2, which now no longer dies in i3 and is used in
12286 i2 but does not die in i2, and place is between i2
12287 and i3, then we may need to move a link from place to
12289 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12290 && INSN_CUID (place
) > INSN_CUID (i2
)
12292 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12293 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12295 rtx links
= LOG_LINKS (place
);
12296 LOG_LINKS (place
) = 0;
12297 distribute_links (links
);
12302 if (tem
== BB_HEAD (bb
))
12306 /* We haven't found an insn for the death note and it
12307 is still a REG_DEAD note, but we have hit the beginning
12308 of the block. If the existing life info says the reg
12309 was dead, there's nothing left to do. Otherwise, we'll
12310 need to do a global life update after combine. */
12311 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12312 && REGNO_REG_SET_P (bb
->il
.rtl
->global_live_at_start
,
12313 REGNO (XEXP (note
, 0))))
12314 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12317 /* If the register is set or already dead at PLACE, we needn't do
12318 anything with this note if it is still a REG_DEAD note.
12319 We check here if it is set at all, not if is it totally replaced,
12320 which is what `dead_or_set_p' checks, so also check for it being
12323 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12325 unsigned int regno
= REGNO (XEXP (note
, 0));
12327 /* Similarly, if the instruction on which we want to place
12328 the note is a noop, we'll need do a global live update
12329 after we remove them in delete_noop_moves. */
12330 if (noop_move_p (place
))
12331 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12333 if (dead_or_set_p (place
, XEXP (note
, 0))
12334 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12336 /* Unless the register previously died in PLACE, clear
12337 last_death. [I no longer understand why this is
12339 if (reg_stat
[regno
].last_death
!= place
)
12340 reg_stat
[regno
].last_death
= 0;
12344 reg_stat
[regno
].last_death
= place
;
12346 /* If this is a death note for a hard reg that is occupying
12347 multiple registers, ensure that we are still using all
12348 parts of the object. If we find a piece of the object
12349 that is unused, we must arrange for an appropriate REG_DEAD
12350 note to be added for it. However, we can't just emit a USE
12351 and tag the note to it, since the register might actually
12352 be dead; so we recourse, and the recursive call then finds
12353 the previous insn that used this register. */
12355 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12356 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
12358 unsigned int endregno
12359 = regno
+ hard_regno_nregs
[regno
]
12360 [GET_MODE (XEXP (note
, 0))];
12364 for (i
= regno
; i
< endregno
; i
++)
12365 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12366 && ! find_regno_fusage (place
, USE
, i
))
12367 || dead_or_set_regno_p (place
, i
))
12372 /* Put only REG_DEAD notes for pieces that are
12373 not already dead or set. */
12375 for (i
= regno
; i
< endregno
;
12376 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
12378 rtx piece
= regno_reg_rtx
[i
];
12379 basic_block bb
= this_basic_block
;
12381 if (! dead_or_set_p (place
, piece
)
12382 && ! reg_bitfield_target_p (piece
,
12386 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12388 distribute_notes (new_note
, place
, place
,
12389 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12391 else if (! refers_to_regno_p (i
, i
+ 1,
12392 PATTERN (place
), 0)
12393 && ! find_regno_fusage (place
, USE
, i
))
12394 for (tem
= PREV_INSN (place
); ;
12395 tem
= PREV_INSN (tem
))
12397 if (! INSN_P (tem
))
12399 if (tem
== BB_HEAD (bb
))
12401 SET_BIT (refresh_blocks
,
12402 this_basic_block
->index
);
12407 if (dead_or_set_p (tem
, piece
)
12408 || reg_bitfield_target_p (piece
,
12412 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12427 /* Any other notes should not be present at this point in the
12429 gcc_unreachable ();
12434 XEXP (note
, 1) = REG_NOTES (place
);
12435 REG_NOTES (place
) = note
;
12437 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12438 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12439 && REG_P (XEXP (note
, 0)))
12440 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12444 if ((REG_NOTE_KIND (note
) == REG_DEAD
12445 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12446 && REG_P (XEXP (note
, 0)))
12447 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12449 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12452 REG_NOTES (place2
));
12457 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12458 I3, I2, and I1 to new locations. This is also called to add a link
12459 pointing at I3 when I3's destination is changed. */
12462 distribute_links (rtx links
)
12464 rtx link
, next_link
;
12466 for (link
= links
; link
; link
= next_link
)
12472 next_link
= XEXP (link
, 1);
12474 /* If the insn that this link points to is a NOTE or isn't a single
12475 set, ignore it. In the latter case, it isn't clear what we
12476 can do other than ignore the link, since we can't tell which
12477 register it was for. Such links wouldn't be used by combine
12480 It is not possible for the destination of the target of the link to
12481 have been changed by combine. The only potential of this is if we
12482 replace I3, I2, and I1 by I3 and I2. But in that case the
12483 destination of I2 also remains unchanged. */
12485 if (NOTE_P (XEXP (link
, 0))
12486 || (set
= single_set (XEXP (link
, 0))) == 0)
12489 reg
= SET_DEST (set
);
12490 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12491 || GET_CODE (reg
) == STRICT_LOW_PART
)
12492 reg
= XEXP (reg
, 0);
12494 /* A LOG_LINK is defined as being placed on the first insn that uses
12495 a register and points to the insn that sets the register. Start
12496 searching at the next insn after the target of the link and stop
12497 when we reach a set of the register or the end of the basic block.
12499 Note that this correctly handles the link that used to point from
12500 I3 to I2. Also note that not much searching is typically done here
12501 since most links don't point very far away. */
12503 for (insn
= NEXT_INSN (XEXP (link
, 0));
12504 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
12505 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
12506 insn
= NEXT_INSN (insn
))
12507 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12509 if (reg_referenced_p (reg
, PATTERN (insn
)))
12513 else if (CALL_P (insn
)
12514 && find_reg_fusage (insn
, USE
, reg
))
12519 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
12522 /* If we found a place to put the link, place it there unless there
12523 is already a link to the same insn as LINK at that point. */
12529 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12530 if (XEXP (link2
, 0) == XEXP (link
, 0))
12535 XEXP (link
, 1) = LOG_LINKS (place
);
12536 LOG_LINKS (place
) = link
;
12538 /* Set added_links_insn to the earliest insn we added a
12540 if (added_links_insn
== 0
12541 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12542 added_links_insn
= place
;
12548 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12549 Check whether the expression pointer to by LOC is a register or
12550 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12551 Otherwise return zero. */
12554 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
12559 && (REG_P (x
) || MEM_P (x
))
12560 && ! reg_mentioned_p (x
, (rtx
) expr
))
12565 /* Check for any register or memory mentioned in EQUIV that is not
12566 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12567 of EXPR where some registers may have been replaced by constants. */
12570 unmentioned_reg_p (rtx equiv
, rtx expr
)
12572 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
12575 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12578 insn_cuid (rtx insn
)
12580 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12581 && NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
)
12582 insn
= NEXT_INSN (insn
);
12584 gcc_assert (INSN_UID (insn
) <= max_uid_cuid
);
12586 return INSN_CUID (insn
);
12590 dump_combine_stats (FILE *file
)
12594 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12595 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12599 dump_combine_total_stats (FILE *file
)
12603 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12604 total_attempts
, total_merges
, total_extras
, total_successes
);
12609 gate_handle_combine (void)
12611 return (optimize
> 0);
12614 /* Try combining insns through substitution. */
12615 static unsigned int
12616 rest_of_handle_combine (void)
12618 int rebuild_jump_labels_after_combine
12619 = combine_instructions (get_insns (), max_reg_num ());
12621 /* Combining insns may have turned an indirect jump into a
12622 direct jump. Rebuild the JUMP_LABEL fields of jumping
12624 if (rebuild_jump_labels_after_combine
)
12626 timevar_push (TV_JUMP
);
12627 rebuild_jump_labels (get_insns ());
12628 timevar_pop (TV_JUMP
);
12630 delete_dead_jumptables ();
12631 cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_UPDATE_LIFE
);
12636 struct tree_opt_pass pass_combine
=
12638 "combine", /* name */
12639 gate_handle_combine
, /* gate */
12640 rest_of_handle_combine
, /* execute */
12643 0, /* static_pass_number */
12644 TV_COMBINE
, /* tv_id */
12645 0, /* properties_required */
12646 0, /* properties_provided */
12647 0, /* properties_destroyed */
12648 0, /* todo_flags_start */
12650 TODO_ggc_collect
, /* todo_flags_finish */