1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
27 #include "hard-reg-set.h"
34 #include "insn-attr.h"
39 #include "tree-pass.h"
41 /* Target register optimizations - these are performed after reload. */
43 typedef struct btr_def_group_s
45 struct btr_def_group_s
*next
;
47 struct btr_def_s
*members
;
50 typedef struct btr_user_s
52 struct btr_user_s
*next
;
56 /* If INSN has a single use of a single branch register, then
57 USE points to it within INSN. If there is more than
58 one branch register use, or the use is in some way ambiguous,
62 int first_reaching_def
;
63 char other_use_this_block
;
66 /* btr_def structs appear on three lists:
67 1. A list of all btr_def structures (head is
68 ALL_BTR_DEFS, linked by the NEXT field).
69 2. A list of branch reg definitions per basic block (head is
70 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
71 3. A list of all branch reg definitions belonging to the same
72 group (head is in a BTR_DEF_GROUP struct, linked by
73 NEXT_THIS_GROUP field). */
75 typedef struct btr_def_s
77 struct btr_def_s
*next_this_bb
;
78 struct btr_def_s
*next_this_group
;
84 /* For a branch register setting insn that has a constant
85 source (i.e. a label), group links together all the
86 insns with the same source. For other branch register
87 setting insns, group is NULL. */
90 /* If this def has a reaching use which is not a simple use
91 in a branch instruction, then has_ambiguous_use will be true,
92 and we will not attempt to migrate this definition. */
93 char has_ambiguous_use
;
94 /* live_range is an approximation to the true live range for this
95 def/use web, because it records the set of blocks that contain
96 the live range. There could be other live ranges for the same
97 branch register in that set of blocks, either in the block
98 containing the def (before the def), or in a block containing
99 a use (after the use). If there are such other live ranges, then
100 other_btr_uses_before_def or other_btr_uses_after_use must be set true
102 char other_btr_uses_before_def
;
103 char other_btr_uses_after_use
;
104 /* We set own_end when we have moved a definition into a dominator.
105 Thus, when a later combination removes this definition again, we know
106 to clear out trs_live_at_end again. */
111 static int issue_rate
;
113 static int basic_block_freq (basic_block
);
114 static int insn_sets_btr_p (rtx
, int, int *);
115 static rtx
*find_btr_use (rtx
);
116 static int btr_referenced_p (rtx
, rtx
*);
117 static int find_btr_reference (rtx
*, void *);
118 static void find_btr_def_group (btr_def_group
*, btr_def
);
119 static btr_def
add_btr_def (fibheap_t
, basic_block
, int, rtx
,
120 unsigned int, int, btr_def_group
*);
121 static btr_user
new_btr_user (basic_block
, int, rtx
);
122 static void dump_hard_reg_set (HARD_REG_SET
);
123 static void dump_btrs_live (int);
124 static void note_other_use_this_block (unsigned int, btr_user
);
125 static void compute_defs_uses_and_gen (fibheap_t
, btr_def
*,btr_user
*,
126 sbitmap
*, sbitmap
*, HARD_REG_SET
*);
127 static void compute_kill (sbitmap
*, sbitmap
*, HARD_REG_SET
*);
128 static void compute_out (sbitmap
*bb_out
, sbitmap
*, sbitmap
*, int);
129 static void link_btr_uses (btr_def
*, btr_user
*, sbitmap
*, sbitmap
*, int);
130 static void build_btr_def_use_webs (fibheap_t
);
131 static int block_at_edge_of_live_range_p (int, btr_def
);
132 static void clear_btr_from_live_range (btr_def def
);
133 static void add_btr_to_live_range (btr_def
, int);
134 static void augment_live_range (bitmap
, HARD_REG_SET
*, basic_block
,
136 static int choose_btr (HARD_REG_SET
);
137 static void combine_btr_defs (btr_def
, HARD_REG_SET
*);
138 static void btr_def_live_range (btr_def
, HARD_REG_SET
*);
139 static void move_btr_def (basic_block
, int, btr_def
, bitmap
, HARD_REG_SET
*);
140 static int migrate_btr_def (btr_def
, int);
141 static void migrate_btr_defs (enum reg_class
, int);
142 static int can_move_up (basic_block
, rtx
, int);
143 static void note_btr_set (rtx
, rtx
, void *);
145 /* The following code performs code motion of target load instructions
146 (instructions that set branch target registers), to move them
147 forward away from the branch instructions and out of loops (or,
148 more generally, from a more frequently executed place to a less
149 frequently executed place).
150 Moving target load instructions further in front of the branch
151 instruction that uses the target register value means that the hardware
152 has a better chance of preloading the instructions at the branch
153 target by the time the branch is reached. This avoids bubbles
154 when a taken branch needs to flush out the pipeline.
155 Moving target load instructions out of loops means they are executed
158 /* An obstack to hold the def-use web data structures built up for
159 migrating branch target load instructions. */
160 static struct obstack migrate_btrl_obstack
;
162 /* Array indexed by basic block number, giving the set of registers
163 live in that block. */
164 static HARD_REG_SET
*btrs_live
;
166 /* Array indexed by basic block number, giving the set of registers live at
167 the end of that block, including any uses by a final jump insn, if any. */
168 static HARD_REG_SET
*btrs_live_at_end
;
170 /* Set of all target registers that we are willing to allocate. */
171 static HARD_REG_SET all_btrs
;
173 /* Provide lower and upper bounds for target register numbers, so that
174 we don't need to search through all the hard registers all the time. */
175 static int first_btr
, last_btr
;
179 /* Return an estimate of the frequency of execution of block bb. */
181 basic_block_freq (basic_block bb
)
183 return bb
->frequency
;
186 static rtx
*btr_reference_found
;
188 /* A subroutine of btr_referenced_p, called through for_each_rtx.
189 PREG is a pointer to an rtx that is to be excluded from the
190 traversal. If we find a reference to a target register anywhere
191 else, return 1, and put a pointer to it into btr_reference_found. */
193 find_btr_reference (rtx
*px
, void *preg
)
204 for (i
= hard_regno_nregs
[regno
][GET_MODE (x
)] - 1; i
>= 0; i
--)
205 if (TEST_HARD_REG_BIT (all_btrs
, regno
+i
))
207 btr_reference_found
= px
;
213 /* Return nonzero if X references (sets or reads) any branch target register.
214 If EXCLUDEP is set, disregard any references within the rtx pointed to
215 by it. If returning nonzero, also set btr_reference_found as above. */
217 btr_referenced_p (rtx x
, rtx
*excludep
)
219 return for_each_rtx (&x
, find_btr_reference
, excludep
);
222 /* Return true if insn is an instruction that sets a target register.
223 if CHECK_CONST is true, only return true if the source is constant.
224 If such a set is found and REGNO is nonzero, assign the register number
225 of the destination register to *REGNO. */
227 insn_sets_btr_p (rtx insn
, int check_const
, int *regno
)
231 if (NONJUMP_INSN_P (insn
)
232 && (set
= single_set (insn
)))
234 rtx dest
= SET_DEST (set
);
235 rtx src
= SET_SRC (set
);
237 if (GET_CODE (dest
) == SUBREG
)
238 dest
= XEXP (dest
, 0);
241 && TEST_HARD_REG_BIT (all_btrs
, REGNO (dest
)))
243 gcc_assert (!btr_referenced_p (src
, NULL
));
245 if (!check_const
|| CONSTANT_P (src
))
248 *regno
= REGNO (dest
);
256 /* Find and return a use of a target register within an instruction INSN. */
258 find_btr_use (rtx insn
)
260 return btr_referenced_p (insn
, NULL
) ? btr_reference_found
: NULL
;
263 /* Find the group that the target register definition DEF belongs
264 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
265 group exists, create one. Add def to the group. */
267 find_btr_def_group (btr_def_group
*all_btr_def_groups
, btr_def def
)
269 if (insn_sets_btr_p (def
->insn
, 1, NULL
))
271 btr_def_group this_group
;
272 rtx def_src
= SET_SRC (single_set (def
->insn
));
274 /* ?? This linear search is an efficiency concern, particularly
275 as the search will almost always fail to find a match. */
276 for (this_group
= *all_btr_def_groups
;
278 this_group
= this_group
->next
)
279 if (rtx_equal_p (def_src
, this_group
->src
))
284 this_group
= obstack_alloc (&migrate_btrl_obstack
,
285 sizeof (struct btr_def_group_s
));
286 this_group
->src
= def_src
;
287 this_group
->members
= NULL
;
288 this_group
->next
= *all_btr_def_groups
;
289 *all_btr_def_groups
= this_group
;
291 def
->group
= this_group
;
292 def
->next_this_group
= this_group
->members
;
293 this_group
->members
= def
;
299 /* Create a new target register definition structure, for a definition in
300 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
301 the new definition. */
303 add_btr_def (fibheap_t all_btr_defs
, basic_block bb
, int insn_luid
, rtx insn
,
304 unsigned int dest_reg
, int other_btr_uses_before_def
,
305 btr_def_group
*all_btr_def_groups
)
308 = obstack_alloc (&migrate_btrl_obstack
, sizeof (struct btr_def_s
));
310 this->luid
= insn_luid
;
312 this->btr
= dest_reg
;
313 this->cost
= basic_block_freq (bb
);
314 this->has_ambiguous_use
= 0;
315 this->other_btr_uses_before_def
= other_btr_uses_before_def
;
316 this->other_btr_uses_after_use
= 0;
317 this->next_this_bb
= NULL
;
318 this->next_this_group
= NULL
;
320 this->live_range
= NULL
;
321 find_btr_def_group (all_btr_def_groups
, this);
323 fibheap_insert (all_btr_defs
, -this->cost
, this);
327 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
328 dest_reg
, bb
->index
, INSN_UID (insn
), (this->group
? "" : ":not const"),
334 /* Create a new target register user structure, for a use in block BB,
335 instruction INSN. Return the new user. */
337 new_btr_user (basic_block bb
, int insn_luid
, rtx insn
)
339 /* This instruction reads target registers. We need
340 to decide whether we can replace all target register
343 rtx
*usep
= find_btr_use (PATTERN (insn
));
345 btr_user user
= NULL
;
349 int unambiguous_single_use
;
351 /* We want to ensure that USE is the only use of a target
352 register in INSN, so that we know that to rewrite INSN to use
353 a different target register, all we have to do is replace USE. */
354 unambiguous_single_use
= !btr_referenced_p (PATTERN (insn
), usep
);
355 if (!unambiguous_single_use
)
358 use
= usep
? *usep
: NULL_RTX
;
359 user
= obstack_alloc (&migrate_btrl_obstack
, sizeof (struct btr_user_s
));
361 user
->luid
= insn_luid
;
364 user
->other_use_this_block
= 0;
366 user
->n_reaching_defs
= 0;
367 user
->first_reaching_def
= -1;
371 fprintf (dump_file
, "Uses target reg: { bb %d, insn %d }",
372 bb
->index
, INSN_UID (insn
));
375 fprintf (dump_file
, ": unambiguous use of reg %d\n",
382 /* Write the contents of S to the dump file. */
384 dump_hard_reg_set (HARD_REG_SET s
)
387 for (reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
388 if (TEST_HARD_REG_BIT (s
, reg
))
389 fprintf (dump_file
, " %d", reg
);
392 /* Write the set of target regs live in block BB to the dump file. */
394 dump_btrs_live (int bb
)
396 fprintf (dump_file
, "BB%d live:", bb
);
397 dump_hard_reg_set (btrs_live
[bb
]);
398 fprintf (dump_file
, "\n");
401 /* REGNO is the number of a branch target register that is being used or
402 set. USERS_THIS_BB is a list of preceding branch target register users;
403 If any of them use the same register, set their other_use_this_block
406 note_other_use_this_block (unsigned int regno
, btr_user users_this_bb
)
410 for (user
= users_this_bb
; user
!= NULL
; user
= user
->next
)
411 if (user
->use
&& REGNO (user
->use
) == regno
)
412 user
->other_use_this_block
= 1;
416 btr_user users_this_bb
;
417 HARD_REG_SET btrs_written_in_block
;
418 HARD_REG_SET btrs_live_in_block
;
423 /* Called via note_stores or directly to register stores into /
424 clobbers of a branch target register DEST that are not recognized as
425 straightforward definitions. DATA points to information about the
426 current basic block that needs updating. */
428 note_btr_set (rtx dest
, rtx set ATTRIBUTE_UNUSED
, void *data
)
430 defs_uses_info
*info
= data
;
431 int regno
, end_regno
;
435 regno
= REGNO (dest
);
436 end_regno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (dest
)];
437 for (; regno
< end_regno
; regno
++)
438 if (TEST_HARD_REG_BIT (all_btrs
, regno
))
440 note_other_use_this_block (regno
, info
->users_this_bb
);
441 SET_HARD_REG_BIT (info
->btrs_written_in_block
, regno
);
442 SET_HARD_REG_BIT (info
->btrs_live_in_block
, regno
);
443 sbitmap_difference (info
->bb_gen
, info
->bb_gen
,
444 info
->btr_defset
[regno
- first_btr
]);
449 compute_defs_uses_and_gen (fibheap_t all_btr_defs
, btr_def
*def_array
,
450 btr_user
*use_array
, sbitmap
*btr_defset
,
451 sbitmap
*bb_gen
, HARD_REG_SET
*btrs_written
)
453 /* Scan the code building up the set of all defs and all uses.
454 For each target register, build the set of defs of that register.
455 For each block, calculate the set of target registers
456 written in that block.
457 Also calculate the set of btrs ever live in that block.
461 btr_def_group all_btr_def_groups
= NULL
;
464 sbitmap_vector_zero (bb_gen
, n_basic_blocks
);
465 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
467 basic_block bb
= BASIC_BLOCK (i
);
469 btr_def defs_this_bb
= NULL
;
474 info
.users_this_bb
= NULL
;
475 info
.bb_gen
= bb_gen
[i
];
476 info
.btr_defset
= btr_defset
;
478 CLEAR_HARD_REG_SET (info
.btrs_live_in_block
);
479 CLEAR_HARD_REG_SET (info
.btrs_written_in_block
);
480 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
481 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
482 && REGNO_REG_SET_P (bb
->il
.rtl
->global_live_at_start
, reg
))
483 SET_HARD_REG_BIT (info
.btrs_live_in_block
, reg
);
485 for (insn
= BB_HEAD (bb
), last
= NEXT_INSN (BB_END (bb
));
487 insn
= NEXT_INSN (insn
), insn_luid
++)
492 int insn_uid
= INSN_UID (insn
);
494 if (insn_sets_btr_p (insn
, 0, ®no
))
496 btr_def def
= add_btr_def (
497 all_btr_defs
, bb
, insn_luid
, insn
, regno
,
498 TEST_HARD_REG_BIT (info
.btrs_live_in_block
, regno
),
499 &all_btr_def_groups
);
501 def_array
[insn_uid
] = def
;
502 SET_HARD_REG_BIT (info
.btrs_written_in_block
, regno
);
503 SET_HARD_REG_BIT (info
.btrs_live_in_block
, regno
);
504 sbitmap_difference (bb_gen
[i
], bb_gen
[i
],
505 btr_defset
[regno
- first_btr
]);
506 SET_BIT (bb_gen
[i
], insn_uid
);
507 def
->next_this_bb
= defs_this_bb
;
509 SET_BIT (btr_defset
[regno
- first_btr
], insn_uid
);
510 note_other_use_this_block (regno
, info
.users_this_bb
);
512 /* Check for the blockage emitted by expand_nl_goto_receiver. */
513 else if (current_function_has_nonlocal_label
514 && GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
518 /* Do the equivalent of calling note_other_use_this_block
519 for every target register. */
520 for (user
= info
.users_this_bb
; user
!= NULL
;
523 user
->other_use_this_block
= 1;
524 IOR_HARD_REG_SET (info
.btrs_written_in_block
, all_btrs
);
525 IOR_HARD_REG_SET (info
.btrs_live_in_block
, all_btrs
);
526 sbitmap_zero (info
.bb_gen
);
530 if (btr_referenced_p (PATTERN (insn
), NULL
))
532 btr_user user
= new_btr_user (bb
, insn_luid
, insn
);
534 use_array
[insn_uid
] = user
;
536 SET_HARD_REG_BIT (info
.btrs_live_in_block
,
541 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
542 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
543 && refers_to_regno_p (reg
, reg
+ 1, user
->insn
,
546 note_other_use_this_block (reg
,
548 SET_HARD_REG_BIT (info
.btrs_live_in_block
, reg
);
550 note_stores (PATTERN (insn
), note_btr_set
, &info
);
552 user
->next
= info
.users_this_bb
;
553 info
.users_this_bb
= user
;
557 HARD_REG_SET
*clobbered
= &call_used_reg_set
;
558 HARD_REG_SET call_saved
;
559 rtx pat
= PATTERN (insn
);
562 /* Check for sibcall. */
563 if (GET_CODE (pat
) == PARALLEL
)
564 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
565 if (GET_CODE (XVECEXP (pat
, 0, i
)) == RETURN
)
567 COMPL_HARD_REG_SET (call_saved
,
569 clobbered
= &call_saved
;
572 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
573 if (TEST_HARD_REG_BIT (*clobbered
, regno
))
574 note_btr_set (regno_reg_rtx
[regno
], NULL_RTX
, &info
);
580 COPY_HARD_REG_SET (btrs_live
[i
], info
.btrs_live_in_block
);
581 COPY_HARD_REG_SET (btrs_written
[i
], info
.btrs_written_in_block
);
583 REG_SET_TO_HARD_REG_SET (btrs_live_at_end
[i
], bb
->il
.rtl
->global_live_at_end
);
584 /* If this block ends in a jump insn, add any uses or even clobbers
585 of branch target registers that it might have. */
586 for (insn
= BB_END (bb
); insn
!= BB_HEAD (bb
) && ! INSN_P (insn
); )
587 insn
= PREV_INSN (insn
);
588 /* ??? for the fall-through edge, it would make sense to insert the
589 btr set on the edge, but that would require to split the block
590 early on so that we can distinguish between dominance from the fall
591 through edge - which can use the call-clobbered registers - from
592 dominance by the throw edge. */
593 if (can_throw_internal (insn
))
597 COPY_HARD_REG_SET (tmp
, call_used_reg_set
);
598 AND_HARD_REG_SET (tmp
, all_btrs
);
599 IOR_HARD_REG_SET (btrs_live_at_end
[i
], tmp
);
602 if (can_throw
|| JUMP_P (insn
))
606 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
607 if (refers_to_regno_p (regno
, regno
+1, insn
, NULL
))
608 SET_HARD_REG_BIT (btrs_live_at_end
[i
], regno
);
617 compute_kill (sbitmap
*bb_kill
, sbitmap
*btr_defset
,
618 HARD_REG_SET
*btrs_written
)
623 /* For each basic block, form the set BB_KILL - the set
624 of definitions that the block kills. */
625 sbitmap_vector_zero (bb_kill
, n_basic_blocks
);
626 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
628 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
629 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
630 && TEST_HARD_REG_BIT (btrs_written
[i
], regno
))
631 sbitmap_a_or_b (bb_kill
[i
], bb_kill
[i
],
632 btr_defset
[regno
- first_btr
]);
637 compute_out (sbitmap
*bb_out
, sbitmap
*bb_gen
, sbitmap
*bb_kill
, int max_uid
)
639 /* Perform iterative dataflow:
640 Initially, for all blocks, BB_OUT = BB_GEN.
642 BB_IN = union over predecessors of BB_OUT(pred)
643 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
644 Iterate until the bb_out sets stop growing. */
647 sbitmap bb_in
= sbitmap_alloc (max_uid
);
649 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
650 sbitmap_copy (bb_out
[i
], bb_gen
[i
]);
656 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
658 sbitmap_union_of_preds (bb_in
, bb_out
, i
);
659 changed
|= sbitmap_union_of_diff_cg (bb_out
[i
], bb_gen
[i
],
663 sbitmap_free (bb_in
);
667 link_btr_uses (btr_def
*def_array
, btr_user
*use_array
, sbitmap
*bb_out
,
668 sbitmap
*btr_defset
, int max_uid
)
671 sbitmap reaching_defs
= sbitmap_alloc (max_uid
);
673 /* Link uses to the uses lists of all of their reaching defs.
674 Count up the number of reaching defs of each use. */
675 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
677 basic_block bb
= BASIC_BLOCK (i
);
681 sbitmap_union_of_preds (reaching_defs
, bb_out
, i
);
682 for (insn
= BB_HEAD (bb
), last
= NEXT_INSN (BB_END (bb
));
684 insn
= NEXT_INSN (insn
))
688 int insn_uid
= INSN_UID (insn
);
690 btr_def def
= def_array
[insn_uid
];
691 btr_user user
= use_array
[insn_uid
];
694 /* Remove all reaching defs of regno except
696 sbitmap_difference (reaching_defs
, reaching_defs
,
697 btr_defset
[def
->btr
- first_btr
]);
698 SET_BIT(reaching_defs
, insn_uid
);
703 /* Find all the reaching defs for this use. */
704 sbitmap reaching_defs_of_reg
= sbitmap_alloc(max_uid
);
705 unsigned int uid
= 0;
706 sbitmap_iterator sbi
;
710 reaching_defs_of_reg
,
712 btr_defset
[REGNO (user
->use
) - first_btr
]);
717 sbitmap_zero (reaching_defs_of_reg
);
718 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
719 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
720 && refers_to_regno_p (reg
, reg
+ 1, user
->insn
,
722 sbitmap_a_or_b_and_c (reaching_defs_of_reg
,
723 reaching_defs_of_reg
,
725 btr_defset
[reg
- first_btr
]);
727 EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg
, 0, uid
, sbi
)
729 btr_def def
= def_array
[uid
];
731 /* We now know that def reaches user. */
735 "Def in insn %d reaches use in insn %d\n",
738 user
->n_reaching_defs
++;
740 def
->has_ambiguous_use
= 1;
741 if (user
->first_reaching_def
!= -1)
742 { /* There is more than one reaching def. This is
743 a rare case, so just give up on this def/use
744 web when it occurs. */
745 def
->has_ambiguous_use
= 1;
746 def_array
[user
->first_reaching_def
]
747 ->has_ambiguous_use
= 1;
750 "(use %d has multiple reaching defs)\n",
754 user
->first_reaching_def
= uid
;
755 if (user
->other_use_this_block
)
756 def
->other_btr_uses_after_use
= 1;
757 user
->next
= def
->uses
;
760 sbitmap_free (reaching_defs_of_reg
);
767 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
768 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
769 && TEST_HARD_REG_BIT (call_used_reg_set
, regno
))
770 sbitmap_difference (reaching_defs
, reaching_defs
,
771 btr_defset
[regno
- first_btr
]);
776 sbitmap_free (reaching_defs
);
780 build_btr_def_use_webs (fibheap_t all_btr_defs
)
782 const int max_uid
= get_max_uid ();
783 btr_def
*def_array
= XCNEWVEC (btr_def
, max_uid
);
784 btr_user
*use_array
= XCNEWVEC (btr_user
, max_uid
);
785 sbitmap
*btr_defset
= sbitmap_vector_alloc (
786 (last_btr
- first_btr
) + 1, max_uid
);
787 sbitmap
*bb_gen
= sbitmap_vector_alloc (n_basic_blocks
, max_uid
);
788 HARD_REG_SET
*btrs_written
= XCNEWVEC (HARD_REG_SET
, n_basic_blocks
);
792 sbitmap_vector_zero (btr_defset
, (last_btr
- first_btr
) + 1);
794 compute_defs_uses_and_gen (all_btr_defs
, def_array
, use_array
, btr_defset
,
795 bb_gen
, btrs_written
);
797 bb_kill
= sbitmap_vector_alloc (n_basic_blocks
, max_uid
);
798 compute_kill (bb_kill
, btr_defset
, btrs_written
);
801 bb_out
= sbitmap_vector_alloc (n_basic_blocks
, max_uid
);
802 compute_out (bb_out
, bb_gen
, bb_kill
, max_uid
);
804 sbitmap_vector_free (bb_gen
);
805 sbitmap_vector_free (bb_kill
);
807 link_btr_uses (def_array
, use_array
, bb_out
, btr_defset
, max_uid
);
809 sbitmap_vector_free (bb_out
);
810 sbitmap_vector_free (btr_defset
);
815 /* Return true if basic block BB contains the start or end of the
816 live range of the definition DEF, AND there are other live
817 ranges of the same target register that include BB. */
819 block_at_edge_of_live_range_p (int bb
, btr_def def
)
821 if (def
->other_btr_uses_before_def
&& BASIC_BLOCK (bb
) == def
->bb
)
823 else if (def
->other_btr_uses_after_use
)
826 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
827 if (BASIC_BLOCK (bb
) == user
->bb
)
833 /* We are removing the def/use web DEF. The target register
834 used in this web is therefore no longer live in the live range
835 of this web, so remove it from the live set of all basic blocks
836 in the live range of the web.
837 Blocks at the boundary of the live range may contain other live
838 ranges for the same target register, so we have to be careful
839 to remove the target register from the live set of these blocks
840 only if they do not contain other live ranges for the same register. */
842 clear_btr_from_live_range (btr_def def
)
847 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
849 if ((!def
->other_btr_uses_before_def
850 && !def
->other_btr_uses_after_use
)
851 || !block_at_edge_of_live_range_p (bb
, def
))
853 CLEAR_HARD_REG_BIT (btrs_live
[bb
], def
->btr
);
854 CLEAR_HARD_REG_BIT (btrs_live_at_end
[bb
], def
->btr
);
860 CLEAR_HARD_REG_BIT (btrs_live_at_end
[def
->bb
->index
], def
->btr
);
864 /* We are adding the def/use web DEF. Add the target register used
865 in this web to the live set of all of the basic blocks that contain
866 the live range of the web.
867 If OWN_END is set, also show that the register is live from our
868 definitions at the end of the basic block where it is defined. */
870 add_btr_to_live_range (btr_def def
, int own_end
)
875 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
877 SET_HARD_REG_BIT (btrs_live
[bb
], def
->btr
);
878 SET_HARD_REG_BIT (btrs_live_at_end
[bb
], def
->btr
);
884 SET_HARD_REG_BIT (btrs_live_at_end
[def
->bb
->index
], def
->btr
);
889 /* Update a live range to contain the basic block NEW_BLOCK, and all
890 blocks on paths between the existing live range and NEW_BLOCK.
891 HEAD is a block contained in the existing live range that dominates
892 all other blocks in the existing live range.
893 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
894 are live in the blocks that we add to the live range.
895 If FULL_RANGE is set, include the full live range of NEW_BB;
896 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
897 are life at the end of NEW_BB for NEW_BB itself.
898 It is a precondition that either NEW_BLOCK dominates HEAD,or
899 HEAD dom NEW_BLOCK. This is used to speed up the
900 implementation of this function. */
902 augment_live_range (bitmap live_range
, HARD_REG_SET
*btrs_live_in_range
,
903 basic_block head_bb
, basic_block new_bb
, int full_range
)
905 basic_block
*worklist
, *tos
;
907 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks
+ 1);
909 if (dominated_by_p (CDI_DOMINATORS
, new_bb
, head_bb
))
911 if (new_bb
== head_bb
)
914 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[new_bb
->index
]);
924 int new_block
= new_bb
->index
;
926 gcc_assert (dominated_by_p (CDI_DOMINATORS
, head_bb
, new_bb
));
928 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[head_bb
->index
]);
929 bitmap_set_bit (live_range
, new_block
);
930 /* A previous btr migration could have caused a register to be
931 live just at the end of new_block which we need in full, so
932 use trs_live_at_end even if full_range is set. */
933 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live_at_end
[new_block
]);
935 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[new_block
]);
939 "Adding end of block %d and rest of %d to live range\n",
940 new_block
, head_bb
->index
);
941 fprintf (dump_file
,"Now live btrs are ");
942 dump_hard_reg_set (*btrs_live_in_range
);
943 fprintf (dump_file
, "\n");
945 FOR_EACH_EDGE (e
, ei
, head_bb
->preds
)
949 while (tos
!= worklist
)
951 basic_block bb
= *--tos
;
952 if (!bitmap_bit_p (live_range
, bb
->index
))
957 bitmap_set_bit (live_range
, bb
->index
);
958 IOR_HARD_REG_SET (*btrs_live_in_range
,
959 btrs_live
[bb
->index
]);
960 /* A previous btr migration could have caused a register to be
961 live just at the end of a block which we need in full. */
962 IOR_HARD_REG_SET (*btrs_live_in_range
,
963 btrs_live_at_end
[bb
->index
]);
967 "Adding block %d to live range\n", bb
->index
);
968 fprintf (dump_file
,"Now live btrs are ");
969 dump_hard_reg_set (*btrs_live_in_range
);
970 fprintf (dump_file
, "\n");
973 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
975 basic_block pred
= e
->src
;
976 if (!bitmap_bit_p (live_range
, pred
->index
))
985 /* Return the most desirable target register that is not in
986 the set USED_BTRS. */
988 choose_btr (HARD_REG_SET used_btrs
)
991 GO_IF_HARD_REG_SUBSET (all_btrs
, used_btrs
, give_up
);
993 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
995 #ifdef REG_ALLOC_ORDER
996 int regno
= reg_alloc_order
[i
];
1000 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
1001 && !TEST_HARD_REG_BIT (used_btrs
, regno
))
1008 /* Calculate the set of basic blocks that contain the live range of
1009 the def/use web DEF.
1010 Also calculate the set of target registers that are live at time
1011 in this live range, but ignore the live range represented by DEF
1012 when calculating this set. */
1014 btr_def_live_range (btr_def def
, HARD_REG_SET
*btrs_live_in_range
)
1016 if (!def
->live_range
)
1020 def
->live_range
= BITMAP_ALLOC (NULL
);
1022 bitmap_set_bit (def
->live_range
, def
->bb
->index
);
1023 COPY_HARD_REG_SET (*btrs_live_in_range
,
1024 (flag_btr_bb_exclusive
1025 ? btrs_live
: btrs_live_at_end
)[def
->bb
->index
]);
1027 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1028 augment_live_range (def
->live_range
, btrs_live_in_range
,
1030 (flag_btr_bb_exclusive
1031 || user
->insn
!= BB_END (def
->bb
)
1032 || !JUMP_P (user
->insn
)));
1036 /* def->live_range is accurate, but we need to recompute
1037 the set of target registers live over it, because migration
1038 of other PT instructions may have affected it.
1041 unsigned def_bb
= flag_btr_bb_exclusive
? -1 : def
->bb
->index
;
1044 CLEAR_HARD_REG_SET (*btrs_live_in_range
);
1045 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
1047 IOR_HARD_REG_SET (*btrs_live_in_range
,
1049 ? btrs_live_at_end
: btrs_live
) [bb
]);
1052 if (!def
->other_btr_uses_before_def
&&
1053 !def
->other_btr_uses_after_use
)
1054 CLEAR_HARD_REG_BIT (*btrs_live_in_range
, def
->btr
);
1057 /* Merge into the def/use web DEF any other def/use webs in the same
1058 group that are dominated by DEF, provided that there is a target
1059 register available to allocate to the merged web. */
1061 combine_btr_defs (btr_def def
, HARD_REG_SET
*btrs_live_in_range
)
1065 for (other_def
= def
->group
->members
;
1067 other_def
= other_def
->next_this_group
)
1069 if (other_def
!= def
1070 && other_def
->uses
!= NULL
1071 && ! other_def
->has_ambiguous_use
1072 && dominated_by_p (CDI_DOMINATORS
, other_def
->bb
, def
->bb
))
1074 /* def->bb dominates the other def, so def and other_def could
1076 /* Merge their live ranges, and get the set of
1077 target registers live over the merged range. */
1079 HARD_REG_SET combined_btrs_live
;
1080 bitmap combined_live_range
= BITMAP_ALLOC (NULL
);
1083 if (other_def
->live_range
== NULL
)
1085 HARD_REG_SET dummy_btrs_live_in_range
;
1086 btr_def_live_range (other_def
, &dummy_btrs_live_in_range
);
1088 COPY_HARD_REG_SET (combined_btrs_live
, *btrs_live_in_range
);
1089 bitmap_copy (combined_live_range
, def
->live_range
);
1091 for (user
= other_def
->uses
; user
!= NULL
; user
= user
->next
)
1092 augment_live_range (combined_live_range
, &combined_btrs_live
,
1094 (flag_btr_bb_exclusive
1095 || user
->insn
!= BB_END (def
->bb
)
1096 || !JUMP_P (user
->insn
)));
1098 btr
= choose_btr (combined_btrs_live
);
1101 /* We can combine them. */
1104 "Combining def in insn %d with def in insn %d\n",
1105 INSN_UID (other_def
->insn
), INSN_UID (def
->insn
));
1108 user
= other_def
->uses
;
1109 while (user
!= NULL
)
1111 btr_user next
= user
->next
;
1113 user
->next
= def
->uses
;
1117 /* Combining def/use webs can make target registers live
1118 after uses where they previously were not. This means
1119 some REG_DEAD notes may no longer be correct. We could
1120 be more precise about this if we looked at the combined
1121 live range, but here I just delete any REG_DEAD notes
1122 in case they are no longer correct. */
1123 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1124 remove_note (user
->insn
,
1125 find_regno_note (user
->insn
, REG_DEAD
,
1126 REGNO (user
->use
)));
1127 clear_btr_from_live_range (other_def
);
1128 other_def
->uses
= NULL
;
1129 bitmap_copy (def
->live_range
, combined_live_range
);
1130 if (other_def
->btr
== btr
&& other_def
->other_btr_uses_after_use
)
1131 def
->other_btr_uses_after_use
= 1;
1132 COPY_HARD_REG_SET (*btrs_live_in_range
, combined_btrs_live
);
1134 /* Delete the old target register initialization. */
1135 delete_insn (other_def
->insn
);
1138 BITMAP_FREE (combined_live_range
);
1143 /* Move the definition DEF from its current position to basic
1144 block NEW_DEF_BB, and modify it to use branch target register BTR.
1145 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1146 Update all reaching uses of DEF in the RTL to use BTR.
1147 If this new position means that other defs in the
1148 same group can be combined with DEF then combine them. */
1150 move_btr_def (basic_block new_def_bb
, int btr
, btr_def def
, bitmap live_range
,
1151 HARD_REG_SET
*btrs_live_in_range
)
1153 /* We can move the instruction.
1154 Set a target register in block NEW_DEF_BB to the value
1155 needed for this target register definition.
1156 Replace all uses of the old target register definition by
1157 uses of the new definition. Delete the old definition. */
1158 basic_block b
= new_def_bb
;
1159 rtx insp
= BB_HEAD (b
);
1160 rtx old_insn
= def
->insn
;
1164 enum machine_mode btr_mode
;
1169 fprintf(dump_file
, "migrating to basic block %d, using reg %d\n",
1170 new_def_bb
->index
, btr
);
1172 clear_btr_from_live_range (def
);
1174 def
->bb
= new_def_bb
;
1176 def
->cost
= basic_block_freq (new_def_bb
);
1177 bitmap_copy (def
->live_range
, live_range
);
1178 combine_btr_defs (def
, btrs_live_in_range
);
1180 def
->other_btr_uses_before_def
1181 = TEST_HARD_REG_BIT (btrs_live
[b
->index
], btr
) ? 1 : 0;
1182 add_btr_to_live_range (def
, 1);
1184 insp
= NEXT_INSN (insp
);
1185 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1186 optimizations can result in insp being both first and last insn of
1188 /* ?? some assertions to check that insp is sensible? */
1190 if (def
->other_btr_uses_before_def
)
1193 for (insp
= BB_END (b
); ! INSN_P (insp
); insp
= PREV_INSN (insp
))
1194 gcc_assert (insp
!= BB_HEAD (b
));
1196 if (JUMP_P (insp
) || can_throw_internal (insp
))
1197 insp
= PREV_INSN (insp
);
1200 set
= single_set (old_insn
);
1201 src
= SET_SRC (set
);
1202 btr_mode
= GET_MODE (SET_DEST (set
));
1203 btr_rtx
= gen_rtx_REG (btr_mode
, btr
);
1205 new_insn
= gen_move_insn (btr_rtx
, src
);
1207 /* Insert target register initialization at head of basic block. */
1208 def
->insn
= emit_insn_after (new_insn
, insp
);
1210 regs_ever_live
[btr
] = 1;
1213 fprintf (dump_file
, "New pt is insn %d, inserted after insn %d\n",
1214 INSN_UID (def
->insn
), INSN_UID (insp
));
1216 /* Delete the old target register initialization. */
1217 delete_insn (old_insn
);
1219 /* Replace each use of the old target register by a use of the new target
1221 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1223 /* Some extra work here to ensure consistent modes, because
1224 it seems that a target register REG rtx can be given a different
1225 mode depending on the context (surely that should not be
1227 rtx replacement_rtx
;
1228 if (GET_MODE (user
->use
) == GET_MODE (btr_rtx
)
1229 || GET_MODE (user
->use
) == VOIDmode
)
1230 replacement_rtx
= btr_rtx
;
1232 replacement_rtx
= gen_rtx_REG (GET_MODE (user
->use
), btr
);
1233 replace_rtx (user
->insn
, user
->use
, replacement_rtx
);
1234 user
->use
= replacement_rtx
;
1238 /* We anticipate intra-block scheduling to be done. See if INSN could move
1239 up within BB by N_INSNS. */
1241 can_move_up (basic_block bb
, rtx insn
, int n_insns
)
1243 while (insn
!= BB_HEAD (bb
) && n_insns
> 0)
1245 insn
= PREV_INSN (insn
);
1246 /* ??? What if we have an anti-dependency that actually prevents the
1247 scheduler from doing the move? We'd like to re-allocate the register,
1248 but not necessarily put the load into another basic block. */
1252 return n_insns
<= 0;
1255 /* Attempt to migrate the target register definition DEF to an
1256 earlier point in the flowgraph.
1258 It is a precondition of this function that DEF is migratable:
1259 i.e. it has a constant source, and all uses are unambiguous.
1261 Only migrations that reduce the cost of DEF will be made.
1262 MIN_COST is the lower bound on the cost of the DEF after migration.
1263 If we migrate DEF so that its cost falls below MIN_COST,
1264 then we do not attempt to migrate further. The idea is that
1265 we migrate definitions in a priority order based on their cost,
1266 when the cost of this definition falls below MIN_COST, then
1267 there is another definition with cost == MIN_COST which now
1268 has a higher priority than this definition.
1270 Return nonzero if there may be benefit from attempting to
1271 migrate this DEF further (i.e. we have reduced the cost below
1272 MIN_COST, but we may be able to reduce it further).
1273 Return zero if no further migration is possible. */
1275 migrate_btr_def (btr_def def
, int min_cost
)
1278 HARD_REG_SET btrs_live_in_range
;
1279 int btr_used_near_def
= 0;
1280 int def_basic_block_freq
;
1289 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1290 INSN_UID (def
->insn
), def
->cost
, min_cost
);
1292 if (!def
->group
|| def
->has_ambiguous_use
)
1293 /* These defs are not migratable. */
1296 fprintf (dump_file
, "it's not migratable\n");
1301 /* We have combined this def with another in the same group, so
1302 no need to consider it further.
1306 fprintf (dump_file
, "it's already combined with another pt\n");
1310 btr_def_live_range (def
, &btrs_live_in_range
);
1311 live_range
= BITMAP_ALLOC (NULL
);
1312 bitmap_copy (live_range
, def
->live_range
);
1314 #ifdef INSN_SCHEDULING
1315 def_latency
= insn_default_latency (def
->insn
) * issue_rate
;
1317 def_latency
= issue_rate
;
1320 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1322 if (user
->bb
== def
->bb
1323 && user
->luid
> def
->luid
1324 && (def
->luid
+ def_latency
) > user
->luid
1325 && ! can_move_up (def
->bb
, def
->insn
,
1326 (def
->luid
+ def_latency
) - user
->luid
))
1328 btr_used_near_def
= 1;
1333 def_basic_block_freq
= basic_block_freq (def
->bb
);
1335 for (try = get_immediate_dominator (CDI_DOMINATORS
, def
->bb
);
1336 !give_up
&& try && try != ENTRY_BLOCK_PTR
&& def
->cost
>= min_cost
;
1337 try = get_immediate_dominator (CDI_DOMINATORS
, try))
1339 /* Try to move the instruction that sets the target register into
1341 int try_freq
= basic_block_freq (try);
1345 /* If TRY has abnormal edges, skip it. */
1346 FOR_EACH_EDGE (e
, ei
, try->succs
)
1347 if (e
->flags
& EDGE_COMPLEX
)
1353 fprintf (dump_file
, "trying block %d ...", try->index
);
1355 if (try_freq
< def_basic_block_freq
1356 || (try_freq
== def_basic_block_freq
&& btr_used_near_def
))
1359 augment_live_range (live_range
, &btrs_live_in_range
, def
->bb
, try,
1360 flag_btr_bb_exclusive
);
1363 fprintf (dump_file
, "Now btrs live in range are: ");
1364 dump_hard_reg_set (btrs_live_in_range
);
1365 fprintf (dump_file
, "\n");
1367 btr
= choose_btr (btrs_live_in_range
);
1370 move_btr_def (try, btr
, def
, live_range
, &btrs_live_in_range
);
1371 bitmap_copy(live_range
, def
->live_range
);
1372 btr_used_near_def
= 0;
1374 def_basic_block_freq
= basic_block_freq (def
->bb
);
1378 /* There are no free target registers available to move
1379 this far forward, so give up */
1383 "giving up because there are no free target registers\n");
1392 fprintf (dump_file
, "failed to move\n");
1394 BITMAP_FREE (live_range
);
1398 /* Attempt to move instructions that set target registers earlier
1399 in the flowgraph, away from their corresponding uses. */
1401 migrate_btr_defs (enum reg_class btr_class
, int allow_callee_save
)
1403 fibheap_t all_btr_defs
= fibheap_new ();
1406 gcc_obstack_init (&migrate_btrl_obstack
);
1411 for (i
= NUM_FIXED_BLOCKS
; i
< n_basic_blocks
; i
++)
1413 basic_block bb
= BASIC_BLOCK (i
);
1415 "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1416 " loop-depth = %d idom = %d\n",
1417 i
, (HOST_WIDEST_INT
) bb
->count
, bb
->loop_depth
,
1418 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
1422 CLEAR_HARD_REG_SET (all_btrs
);
1423 for (first_btr
= -1, reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
1424 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) btr_class
], reg
)
1425 && (allow_callee_save
|| call_used_regs
[reg
] || regs_ever_live
[reg
]))
1427 SET_HARD_REG_BIT (all_btrs
, reg
);
1433 btrs_live
= xcalloc (n_basic_blocks
, sizeof (HARD_REG_SET
));
1434 btrs_live_at_end
= xcalloc (n_basic_blocks
, sizeof (HARD_REG_SET
));
1436 build_btr_def_use_webs (all_btr_defs
);
1438 while (!fibheap_empty (all_btr_defs
))
1440 btr_def def
= fibheap_extract_min (all_btr_defs
);
1441 int min_cost
= -fibheap_min_key (all_btr_defs
);
1442 if (migrate_btr_def (def
, min_cost
))
1444 fibheap_insert (all_btr_defs
, -def
->cost
, (void *) def
);
1448 "Putting insn %d back on queue with priority %d\n",
1449 INSN_UID (def
->insn
), def
->cost
);
1453 BITMAP_FREE (def
->live_range
);
1457 free (btrs_live_at_end
);
1458 obstack_free (&migrate_btrl_obstack
, NULL
);
1459 fibheap_delete (all_btr_defs
);
1463 branch_target_load_optimize (bool after_prologue_epilogue_gen
)
1465 enum reg_class
class = targetm
.branch_target_register_class ();
1466 if (class != NO_REGS
)
1468 /* Initialize issue_rate. */
1469 if (targetm
.sched
.issue_rate
)
1470 issue_rate
= targetm
.sched
.issue_rate ();
1474 /* Build the CFG for migrate_btr_defs. */
1476 /* This may or may not be needed, depending on where we
1478 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
1483 /* Dominator info is also needed for migrate_btr_def. */
1484 calculate_dominance_info (CDI_DOMINATORS
);
1485 migrate_btr_defs (class,
1486 (targetm
.branch_target_register_callee_saved
1487 (after_prologue_epilogue_gen
)));
1489 free_dominance_info (CDI_DOMINATORS
);
1491 update_life_info (NULL
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
1492 PROP_DEATH_NOTES
| PROP_REG_INFO
);
1497 gate_handle_branch_target_load_optimize (void)
1499 return (optimize
> 0 && flag_branch_target_load_optimize2
);
1504 rest_of_handle_branch_target_load_optimize (void)
1506 static int warned
= 0;
1508 /* Leave this a warning for now so that it is possible to experiment
1509 with running this pass twice. In 3.6, we should either make this
1510 an error, or use separate dump files. */
1511 if (flag_branch_target_load_optimize
1512 && flag_branch_target_load_optimize2
1515 warning (0, "branch target register load optimization is not intended "
1521 branch_target_load_optimize (epilogue_completed
);
1525 struct tree_opt_pass pass_branch_target_load_optimize
=
1528 gate_handle_branch_target_load_optimize
, /* gate */
1529 rest_of_handle_branch_target_load_optimize
, /* execute */
1532 0, /* static_pass_number */
1534 0, /* properties_required */
1535 0, /* properties_provided */
1536 0, /* properties_destroyed */
1537 0, /* todo_flags_start */
1539 TODO_ggc_collect
, /* todo_flags_finish */