uml: remove unused x86_64 code
[firewire-audio.git] / drivers / mtd / nand / cafe.c
blobc328a7514510d836e843b6657e4bf1f71340389b
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6 */
8 #define DEBUG
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
18 #include <asm/io.h>
20 #define CAFE_NAND_CTRL1 0x00
21 #define CAFE_NAND_CTRL2 0x04
22 #define CAFE_NAND_CTRL3 0x08
23 #define CAFE_NAND_STATUS 0x0c
24 #define CAFE_NAND_IRQ 0x10
25 #define CAFE_NAND_IRQ_MASK 0x14
26 #define CAFE_NAND_DATA_LEN 0x18
27 #define CAFE_NAND_ADDR1 0x1c
28 #define CAFE_NAND_ADDR2 0x20
29 #define CAFE_NAND_TIMING1 0x24
30 #define CAFE_NAND_TIMING2 0x28
31 #define CAFE_NAND_TIMING3 0x2c
32 #define CAFE_NAND_NONMEM 0x30
33 #define CAFE_NAND_ECC_RESULT 0x3C
34 #define CAFE_NAND_DMA_CTRL 0x40
35 #define CAFE_NAND_DMA_ADDR0 0x44
36 #define CAFE_NAND_DMA_ADDR1 0x48
37 #define CAFE_NAND_ECC_SYN01 0x50
38 #define CAFE_NAND_ECC_SYN23 0x54
39 #define CAFE_NAND_ECC_SYN45 0x58
40 #define CAFE_NAND_ECC_SYN67 0x5c
41 #define CAFE_NAND_READ_DATA 0x1000
42 #define CAFE_NAND_WRITE_DATA 0x2000
44 #define CAFE_GLOBAL_CTRL 0x3004
45 #define CAFE_GLOBAL_IRQ 0x3008
46 #define CAFE_GLOBAL_IRQ_MASK 0x300c
47 #define CAFE_NAND_RESET 0x3034
49 int cafe_correct_ecc(unsigned char *buf,
50 unsigned short *chk_syndrome_list);
52 struct cafe_priv {
53 struct nand_chip nand;
54 struct pci_dev *pdev;
55 void __iomem *mmio;
56 uint32_t ctl1;
57 uint32_t ctl2;
58 int datalen;
59 int nr_data;
60 int data_pos;
61 int page_addr;
62 dma_addr_t dmaaddr;
63 unsigned char *dmabuf;
66 static int usedma = 1;
67 module_param(usedma, int, 0644);
69 static int skipbbt = 0;
70 module_param(skipbbt, int, 0644);
72 static int debug = 0;
73 module_param(debug, int, 0644);
75 static int regdebug = 0;
76 module_param(regdebug, int, 0644);
78 static int checkecc = 1;
79 module_param(checkecc, int, 0644);
81 static int numtimings;
82 static int timing[3];
83 module_param_array(timing, int, &numtimings, 0644);
85 /* Hrm. Why isn't this already conditional on something in the struct device? */
86 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
88 /* Make it easier to switch to PIO if we need to */
89 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
90 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
92 static int cafe_device_ready(struct mtd_info *mtd)
94 struct cafe_priv *cafe = mtd->priv;
95 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
96 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
98 cafe_writel(cafe, irqs, NAND_IRQ);
100 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
101 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
102 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
104 return result;
108 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
110 struct cafe_priv *cafe = mtd->priv;
112 if (usedma)
113 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
114 else
115 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
117 cafe->datalen += len;
119 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
120 len, cafe->datalen);
123 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
125 struct cafe_priv *cafe = mtd->priv;
127 if (usedma)
128 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
129 else
130 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
132 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
133 len, cafe->datalen);
134 cafe->datalen += len;
137 static uint8_t cafe_read_byte(struct mtd_info *mtd)
139 struct cafe_priv *cafe = mtd->priv;
140 uint8_t d;
142 cafe_read_buf(mtd, &d, 1);
143 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
145 return d;
148 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
149 int column, int page_addr)
151 struct cafe_priv *cafe = mtd->priv;
152 int adrbytes = 0;
153 uint32_t ctl1;
154 uint32_t doneint = 0x80000000;
156 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
157 command, column, page_addr);
159 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
160 /* Second half of a command we already calculated */
161 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
162 ctl1 = cafe->ctl1;
163 cafe->ctl2 &= ~(1<<30);
164 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
165 cafe->ctl1, cafe->nr_data);
166 goto do_command;
168 /* Reset ECC engine */
169 cafe_writel(cafe, 0, NAND_CTRL2);
171 /* Emulate NAND_CMD_READOOB on large-page chips */
172 if (mtd->writesize > 512 &&
173 command == NAND_CMD_READOOB) {
174 column += mtd->writesize;
175 command = NAND_CMD_READ0;
178 /* FIXME: Do we need to send read command before sending data
179 for small-page chips, to position the buffer correctly? */
181 if (column != -1) {
182 cafe_writel(cafe, column, NAND_ADDR1);
183 adrbytes = 2;
184 if (page_addr != -1)
185 goto write_adr2;
186 } else if (page_addr != -1) {
187 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
188 page_addr >>= 16;
189 write_adr2:
190 cafe_writel(cafe, page_addr, NAND_ADDR2);
191 adrbytes += 2;
192 if (mtd->size > mtd->writesize << 16)
193 adrbytes++;
196 cafe->data_pos = cafe->datalen = 0;
198 /* Set command valid bit */
199 ctl1 = 0x80000000 | command;
201 /* Set RD or WR bits as appropriate */
202 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
203 ctl1 |= (1<<26); /* rd */
204 /* Always 5 bytes, for now */
205 cafe->datalen = 4;
206 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
207 adrbytes = 1;
208 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
209 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
210 ctl1 |= 1<<26; /* rd */
211 /* For now, assume just read to end of page */
212 cafe->datalen = mtd->writesize + mtd->oobsize - column;
213 } else if (command == NAND_CMD_SEQIN)
214 ctl1 |= 1<<25; /* wr */
216 /* Set number of address bytes */
217 if (adrbytes)
218 ctl1 |= ((adrbytes-1)|8) << 27;
220 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
221 /* Ignore the first command of a pair; the hardware
222 deals with them both at once, later */
223 cafe->ctl1 = ctl1;
224 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
225 cafe->ctl1, cafe->datalen);
226 return;
228 /* RNDOUT and READ0 commands need a following byte */
229 if (command == NAND_CMD_RNDOUT)
230 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
231 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
232 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
234 do_command:
235 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
236 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
238 /* NB: The datasheet lies -- we really should be subtracting 1 here */
239 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
240 cafe_writel(cafe, 0x90000000, NAND_IRQ);
241 if (usedma && (ctl1 & (3<<25))) {
242 uint32_t dmactl = 0xc0000000 + cafe->datalen;
243 /* If WR or RD bits set, set up DMA */
244 if (ctl1 & (1<<26)) {
245 /* It's a read */
246 dmactl |= (1<<29);
247 /* ... so it's done when the DMA is done, not just
248 the command. */
249 doneint = 0x10000000;
251 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
253 cafe->datalen = 0;
255 if (unlikely(regdebug)) {
256 int i;
257 printk("About to write command %08x to register 0\n", ctl1);
258 for (i=4; i< 0x5c; i+=4)
259 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
262 cafe_writel(cafe, ctl1, NAND_CTRL1);
263 /* Apply this short delay always to ensure that we do wait tWB in
264 * any case on any machine. */
265 ndelay(100);
267 if (1) {
268 int c;
269 uint32_t irqs;
271 for (c = 500000; c != 0; c--) {
272 irqs = cafe_readl(cafe, NAND_IRQ);
273 if (irqs & doneint)
274 break;
275 udelay(1);
276 if (!(c % 100000))
277 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
278 cpu_relax();
280 cafe_writel(cafe, doneint, NAND_IRQ);
281 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
282 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
285 WARN_ON(cafe->ctl2 & (1<<30));
287 switch (command) {
289 case NAND_CMD_CACHEDPROG:
290 case NAND_CMD_PAGEPROG:
291 case NAND_CMD_ERASE1:
292 case NAND_CMD_ERASE2:
293 case NAND_CMD_SEQIN:
294 case NAND_CMD_RNDIN:
295 case NAND_CMD_STATUS:
296 case NAND_CMD_DEPLETE1:
297 case NAND_CMD_RNDOUT:
298 case NAND_CMD_STATUS_ERROR:
299 case NAND_CMD_STATUS_ERROR0:
300 case NAND_CMD_STATUS_ERROR1:
301 case NAND_CMD_STATUS_ERROR2:
302 case NAND_CMD_STATUS_ERROR3:
303 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
304 return;
306 nand_wait_ready(mtd);
307 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
310 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
312 //struct cafe_priv *cafe = mtd->priv;
313 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
316 static int cafe_nand_interrupt(int irq, void *id)
318 struct mtd_info *mtd = id;
319 struct cafe_priv *cafe = mtd->priv;
320 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
321 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
322 if (!irqs)
323 return IRQ_NONE;
325 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
326 return IRQ_HANDLED;
329 static void cafe_nand_bug(struct mtd_info *mtd)
331 BUG();
334 static int cafe_nand_write_oob(struct mtd_info *mtd,
335 struct nand_chip *chip, int page)
337 int status = 0;
339 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
340 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
341 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
342 status = chip->waitfunc(mtd, chip);
344 return status & NAND_STATUS_FAIL ? -EIO : 0;
347 /* Don't use -- use nand_read_oob_std for now */
348 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
349 int page, int sndcmd)
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
352 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
353 return 1;
356 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
357 * @mtd: mtd info structure
358 * @chip: nand chip info structure
359 * @buf: buffer to store read data
361 * The hw generator calculates the error syndrome automatically. Therefor
362 * we need a special oob layout and handling.
364 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
365 uint8_t *buf)
367 struct cafe_priv *cafe = mtd->priv;
369 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
370 cafe_readl(cafe, NAND_ECC_RESULT),
371 cafe_readl(cafe, NAND_ECC_SYN01));
373 chip->read_buf(mtd, buf, mtd->writesize);
374 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
376 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
377 unsigned short syn[8];
378 int i;
380 for (i=0; i<8; i+=2) {
381 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
382 syn[i] = tmp & 0xfff;
383 syn[i+1] = (tmp >> 16) & 0xfff;
386 if ((i = cafe_correct_ecc(buf, syn)) < 0) {
387 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
388 cafe_readl(cafe, NAND_ADDR2) * 2048);
389 for (i=0; i< 0x5c; i+=4)
390 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
391 mtd->ecc_stats.failed++;
392 } else {
393 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
394 mtd->ecc_stats.corrected += i;
399 return 0;
402 static struct nand_ecclayout cafe_oobinfo_2048 = {
403 .eccbytes = 14,
404 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
405 .oobfree = {{14, 50}}
408 /* Ick. The BBT code really ought to be able to work this bit out
409 for itself from the above, at least for the 2KiB case */
410 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
411 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
413 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
414 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
417 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
418 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
419 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
420 .offs = 14,
421 .len = 4,
422 .veroffs = 18,
423 .maxblocks = 4,
424 .pattern = cafe_bbt_pattern_2048
427 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
428 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
429 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
430 .offs = 14,
431 .len = 4,
432 .veroffs = 18,
433 .maxblocks = 4,
434 .pattern = cafe_mirror_pattern_2048
437 static struct nand_ecclayout cafe_oobinfo_512 = {
438 .eccbytes = 14,
439 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
440 .oobfree = {{14, 2}}
443 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
444 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
445 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
446 .offs = 14,
447 .len = 1,
448 .veroffs = 15,
449 .maxblocks = 4,
450 .pattern = cafe_bbt_pattern_512
453 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
454 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
455 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
456 .offs = 14,
457 .len = 1,
458 .veroffs = 15,
459 .maxblocks = 4,
460 .pattern = cafe_mirror_pattern_512
464 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
465 struct nand_chip *chip, const uint8_t *buf)
467 struct cafe_priv *cafe = mtd->priv;
469 chip->write_buf(mtd, buf, mtd->writesize);
470 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
472 /* Set up ECC autogeneration */
473 cafe->ctl2 |= (1<<30);
476 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
477 const uint8_t *buf, int page, int cached, int raw)
479 int status;
481 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
483 if (unlikely(raw))
484 chip->ecc.write_page_raw(mtd, chip, buf);
485 else
486 chip->ecc.write_page(mtd, chip, buf);
489 * Cached progamming disabled for now, Not sure if its worth the
490 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
492 cached = 0;
494 if (!cached || !(chip->options & NAND_CACHEPRG)) {
496 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
497 status = chip->waitfunc(mtd, chip);
499 * See if operation failed and additional status checks are
500 * available
502 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
503 status = chip->errstat(mtd, chip, FL_WRITING, status,
504 page);
506 if (status & NAND_STATUS_FAIL)
507 return -EIO;
508 } else {
509 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
510 status = chip->waitfunc(mtd, chip);
513 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
514 /* Send command to read back the data */
515 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
517 if (chip->verify_buf(mtd, buf, mtd->writesize))
518 return -EIO;
519 #endif
520 return 0;
523 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
525 return 0;
528 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
529 const struct pci_device_id *ent)
531 struct mtd_info *mtd;
532 struct cafe_priv *cafe;
533 uint32_t ctrl;
534 int err = 0;
536 err = pci_enable_device(pdev);
537 if (err)
538 return err;
540 pci_set_master(pdev);
542 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
543 if (!mtd) {
544 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
545 return -ENOMEM;
547 cafe = (void *)(&mtd[1]);
549 mtd->priv = cafe;
550 mtd->owner = THIS_MODULE;
552 cafe->pdev = pdev;
553 cafe->mmio = pci_iomap(pdev, 0, 0);
554 if (!cafe->mmio) {
555 dev_warn(&pdev->dev, "failed to iomap\n");
556 err = -ENOMEM;
557 goto out_free_mtd;
559 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
560 &cafe->dmaaddr, GFP_KERNEL);
561 if (!cafe->dmabuf) {
562 err = -ENOMEM;
563 goto out_ior;
565 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
567 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
568 cafe->nand.dev_ready = cafe_device_ready;
569 cafe->nand.read_byte = cafe_read_byte;
570 cafe->nand.read_buf = cafe_read_buf;
571 cafe->nand.write_buf = cafe_write_buf;
572 cafe->nand.select_chip = cafe_select_chip;
574 cafe->nand.chip_delay = 0;
576 /* Enable the following for a flash based bad block table */
577 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
579 if (skipbbt) {
580 cafe->nand.options |= NAND_SKIP_BBTSCAN;
581 cafe->nand.block_bad = cafe_nand_block_bad;
584 if (numtimings && numtimings != 3) {
585 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
588 if (numtimings == 3) {
589 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
590 timing[0], timing[1], timing[2]);
591 } else {
592 timing[0] = cafe_readl(cafe, NAND_TIMING1);
593 timing[1] = cafe_readl(cafe, NAND_TIMING2);
594 timing[2] = cafe_readl(cafe, NAND_TIMING3);
596 if (timing[0] | timing[1] | timing[2]) {
597 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
598 timing[0], timing[1], timing[2]);
599 } else {
600 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
601 timing[0] = timing[1] = timing[2] = 0xffffffff;
605 /* Start off by resetting the NAND controller completely */
606 cafe_writel(cafe, 1, NAND_RESET);
607 cafe_writel(cafe, 0, NAND_RESET);
609 cafe_writel(cafe, timing[0], NAND_TIMING1);
610 cafe_writel(cafe, timing[1], NAND_TIMING2);
611 cafe_writel(cafe, timing[2], NAND_TIMING3);
613 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
614 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
615 "CAFE NAND", mtd);
616 if (err) {
617 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
618 goto out_free_dma;
621 /* Disable master reset, enable NAND clock */
622 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
623 ctrl &= 0xffffeff0;
624 ctrl |= 0x00007000;
625 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
626 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
627 cafe_writel(cafe, 0, NAND_DMA_CTRL);
629 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
630 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
632 /* Set up DMA address */
633 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
634 if (sizeof(cafe->dmaaddr) > 4)
635 /* Shift in two parts to shut the compiler up */
636 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
637 else
638 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
640 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
641 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
643 /* Enable NAND IRQ in global IRQ mask register */
644 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
645 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
646 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
648 /* Scan to find existence of the device */
649 if (nand_scan_ident(mtd, 1)) {
650 err = -ENXIO;
651 goto out_irq;
654 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
655 if (mtd->writesize == 2048)
656 cafe->ctl2 |= 1<<29; /* 2KiB page size */
658 /* Set up ECC according to the type of chip we found */
659 if (mtd->writesize == 2048) {
660 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
661 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
662 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
663 } else if (mtd->writesize == 512) {
664 cafe->nand.ecc.layout = &cafe_oobinfo_512;
665 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
666 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
667 } else {
668 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
669 mtd->writesize);
670 goto out_irq;
672 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
673 cafe->nand.ecc.size = mtd->writesize;
674 cafe->nand.ecc.bytes = 14;
675 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
676 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
677 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
678 cafe->nand.write_page = cafe_nand_write_page;
679 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
680 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
681 cafe->nand.ecc.read_page = cafe_nand_read_page;
682 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
684 err = nand_scan_tail(mtd);
685 if (err)
686 goto out_irq;
688 pci_set_drvdata(pdev, mtd);
689 add_mtd_device(mtd);
690 goto out;
692 out_irq:
693 /* Disable NAND IRQ in global IRQ mask register */
694 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
695 free_irq(pdev->irq, mtd);
696 out_free_dma:
697 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
698 out_ior:
699 pci_iounmap(pdev, cafe->mmio);
700 out_free_mtd:
701 kfree(mtd);
702 out:
703 return err;
706 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
708 struct mtd_info *mtd = pci_get_drvdata(pdev);
709 struct cafe_priv *cafe = mtd->priv;
711 del_mtd_device(mtd);
712 /* Disable NAND IRQ in global IRQ mask register */
713 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
714 free_irq(pdev->irq, mtd);
715 nand_release(mtd);
716 pci_iounmap(pdev, cafe->mmio);
717 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
718 kfree(mtd);
721 static struct pci_device_id cafe_nand_tbl[] = {
722 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
725 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
727 static struct pci_driver cafe_nand_pci_driver = {
728 .name = "CAFÉ NAND",
729 .id_table = cafe_nand_tbl,
730 .probe = cafe_nand_probe,
731 .remove = __devexit_p(cafe_nand_remove),
732 #ifdef CONFIG_PMx
733 .suspend = cafe_nand_suspend,
734 .resume = cafe_nand_resume,
735 #endif
738 static int cafe_nand_init(void)
740 return pci_register_driver(&cafe_nand_pci_driver);
743 static void cafe_nand_exit(void)
745 pci_unregister_driver(&cafe_nand_pci_driver);
747 module_init(cafe_nand_init);
748 module_exit(cafe_nand_exit);
750 MODULE_LICENSE("GPL");
751 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
752 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");