[PATCH] ppc64: don't create spurious symlinks under node0 sysdev
[firewire-audio.git] / net / ipv4 / tcp.c
blob882436da9a3a74da59e22def22723fb208928a6b
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Fixes:
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
27 * (tcp_err()).
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
38 * unknown sockets.
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * syn rule wrong]
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
47 * escape still
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
51 * facilities
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * bit to skb ops.
57 * Alan Cox : Tidied tcp_data to avoid a potential
58 * nasty.
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
70 * sockets.
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
74 * state ack error.
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
79 * fixes
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
85 * completely
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
93 * (not yet usable)
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
106 * all cases.
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
111 * works now.
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * BSD api.
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
121 * fixed ports.
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
127 * socket close.
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
132 * accept.
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * close.
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
149 * comments.
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
157 * resemble the RFC.
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
162 * generates them.
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
175 * but it's a start!
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
196 * improvement.
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * to shutdown
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/config.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/smp_lock.h>
257 #include <linux/fs.h>
258 #include <linux/random.h>
259 #include <linux/bootmem.h>
261 #include <net/icmp.h>
262 #include <net/tcp.h>
263 #include <net/xfrm.h>
264 #include <net/ip.h>
267 #include <asm/uaccess.h>
268 #include <asm/ioctls.h>
270 int sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
272 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics);
274 kmem_cache_t *tcp_bucket_cachep;
275 kmem_cache_t *tcp_timewait_cachep;
277 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
279 int sysctl_tcp_mem[3];
280 int sysctl_tcp_wmem[3] = { 4 * 1024, 16 * 1024, 128 * 1024 };
281 int sysctl_tcp_rmem[3] = { 4 * 1024, 87380, 87380 * 2 };
283 EXPORT_SYMBOL(sysctl_tcp_mem);
284 EXPORT_SYMBOL(sysctl_tcp_rmem);
285 EXPORT_SYMBOL(sysctl_tcp_wmem);
287 atomic_t tcp_memory_allocated; /* Current allocated memory. */
288 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 EXPORT_SYMBOL(tcp_sockets_allocated);
294 * Pressure flag: try to collapse.
295 * Technical note: it is used by multiple contexts non atomically.
296 * All the sk_stream_mem_schedule() is of this nature: accounting
297 * is strict, actions are advisory and have some latency.
299 int tcp_memory_pressure;
301 EXPORT_SYMBOL(tcp_memory_pressure);
303 void tcp_enter_memory_pressure(void)
305 if (!tcp_memory_pressure) {
306 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
307 tcp_memory_pressure = 1;
311 EXPORT_SYMBOL(tcp_enter_memory_pressure);
314 * LISTEN is a special case for poll..
316 static __inline__ unsigned int tcp_listen_poll(struct sock *sk,
317 poll_table *wait)
319 return !reqsk_queue_empty(&tcp_sk(sk)->accept_queue) ? (POLLIN | POLLRDNORM) : 0;
323 * Wait for a TCP event.
325 * Note that we don't need to lock the socket, as the upper poll layers
326 * take care of normal races (between the test and the event) and we don't
327 * go look at any of the socket buffers directly.
329 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
331 unsigned int mask;
332 struct sock *sk = sock->sk;
333 struct tcp_sock *tp = tcp_sk(sk);
335 poll_wait(file, sk->sk_sleep, wait);
336 if (sk->sk_state == TCP_LISTEN)
337 return tcp_listen_poll(sk, wait);
339 /* Socket is not locked. We are protected from async events
340 by poll logic and correct handling of state changes
341 made by another threads is impossible in any case.
344 mask = 0;
345 if (sk->sk_err)
346 mask = POLLERR;
349 * POLLHUP is certainly not done right. But poll() doesn't
350 * have a notion of HUP in just one direction, and for a
351 * socket the read side is more interesting.
353 * Some poll() documentation says that POLLHUP is incompatible
354 * with the POLLOUT/POLLWR flags, so somebody should check this
355 * all. But careful, it tends to be safer to return too many
356 * bits than too few, and you can easily break real applications
357 * if you don't tell them that something has hung up!
359 * Check-me.
361 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
362 * our fs/select.c). It means that after we received EOF,
363 * poll always returns immediately, making impossible poll() on write()
364 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
365 * if and only if shutdown has been made in both directions.
366 * Actually, it is interesting to look how Solaris and DUX
367 * solve this dilemma. I would prefer, if PULLHUP were maskable,
368 * then we could set it on SND_SHUTDOWN. BTW examples given
369 * in Stevens' books assume exactly this behaviour, it explains
370 * why PULLHUP is incompatible with POLLOUT. --ANK
372 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
373 * blocking on fresh not-connected or disconnected socket. --ANK
375 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
376 mask |= POLLHUP;
377 if (sk->sk_shutdown & RCV_SHUTDOWN)
378 mask |= POLLIN | POLLRDNORM;
380 /* Connected? */
381 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
382 /* Potential race condition. If read of tp below will
383 * escape above sk->sk_state, we can be illegally awaken
384 * in SYN_* states. */
385 if ((tp->rcv_nxt != tp->copied_seq) &&
386 (tp->urg_seq != tp->copied_seq ||
387 tp->rcv_nxt != tp->copied_seq + 1 ||
388 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
389 mask |= POLLIN | POLLRDNORM;
391 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
392 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
393 mask |= POLLOUT | POLLWRNORM;
394 } else { /* send SIGIO later */
395 set_bit(SOCK_ASYNC_NOSPACE,
396 &sk->sk_socket->flags);
397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
399 /* Race breaker. If space is freed after
400 * wspace test but before the flags are set,
401 * IO signal will be lost.
403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
404 mask |= POLLOUT | POLLWRNORM;
408 if (tp->urg_data & TCP_URG_VALID)
409 mask |= POLLPRI;
411 return mask;
414 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
416 struct tcp_sock *tp = tcp_sk(sk);
417 int answ;
419 switch (cmd) {
420 case SIOCINQ:
421 if (sk->sk_state == TCP_LISTEN)
422 return -EINVAL;
424 lock_sock(sk);
425 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
426 answ = 0;
427 else if (sock_flag(sk, SOCK_URGINLINE) ||
428 !tp->urg_data ||
429 before(tp->urg_seq, tp->copied_seq) ||
430 !before(tp->urg_seq, tp->rcv_nxt)) {
431 answ = tp->rcv_nxt - tp->copied_seq;
433 /* Subtract 1, if FIN is in queue. */
434 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
435 answ -=
436 ((struct sk_buff *)sk->sk_receive_queue.prev)->h.th->fin;
437 } else
438 answ = tp->urg_seq - tp->copied_seq;
439 release_sock(sk);
440 break;
441 case SIOCATMARK:
442 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
443 break;
444 case SIOCOUTQ:
445 if (sk->sk_state == TCP_LISTEN)
446 return -EINVAL;
448 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
449 answ = 0;
450 else
451 answ = tp->write_seq - tp->snd_una;
452 break;
453 default:
454 return -ENOIOCTLCMD;
457 return put_user(answ, (int __user *)arg);
461 int tcp_listen_start(struct sock *sk)
463 struct inet_sock *inet = inet_sk(sk);
464 struct tcp_sock *tp = tcp_sk(sk);
465 int rc = reqsk_queue_alloc(&tp->accept_queue, TCP_SYNQ_HSIZE);
467 if (rc != 0)
468 return rc;
470 sk->sk_max_ack_backlog = 0;
471 sk->sk_ack_backlog = 0;
472 tcp_delack_init(tp);
474 /* There is race window here: we announce ourselves listening,
475 * but this transition is still not validated by get_port().
476 * It is OK, because this socket enters to hash table only
477 * after validation is complete.
479 sk->sk_state = TCP_LISTEN;
480 if (!sk->sk_prot->get_port(sk, inet->num)) {
481 inet->sport = htons(inet->num);
483 sk_dst_reset(sk);
484 sk->sk_prot->hash(sk);
486 return 0;
489 sk->sk_state = TCP_CLOSE;
490 reqsk_queue_destroy(&tp->accept_queue);
491 return -EADDRINUSE;
495 * This routine closes sockets which have been at least partially
496 * opened, but not yet accepted.
499 static void tcp_listen_stop (struct sock *sk)
501 struct tcp_sock *tp = tcp_sk(sk);
502 struct listen_sock *lopt;
503 struct request_sock *acc_req;
504 struct request_sock *req;
505 int i;
507 tcp_delete_keepalive_timer(sk);
509 /* make all the listen_opt local to us */
510 lopt = reqsk_queue_yank_listen_sk(&tp->accept_queue);
511 acc_req = reqsk_queue_yank_acceptq(&tp->accept_queue);
513 if (lopt->qlen) {
514 for (i = 0; i < TCP_SYNQ_HSIZE; i++) {
515 while ((req = lopt->syn_table[i]) != NULL) {
516 lopt->syn_table[i] = req->dl_next;
517 lopt->qlen--;
518 reqsk_free(req);
520 /* Following specs, it would be better either to send FIN
521 * (and enter FIN-WAIT-1, it is normal close)
522 * or to send active reset (abort).
523 * Certainly, it is pretty dangerous while synflood, but it is
524 * bad justification for our negligence 8)
525 * To be honest, we are not able to make either
526 * of the variants now. --ANK
531 BUG_TRAP(!lopt->qlen);
533 kfree(lopt);
535 while ((req = acc_req) != NULL) {
536 struct sock *child = req->sk;
538 acc_req = req->dl_next;
540 local_bh_disable();
541 bh_lock_sock(child);
542 BUG_TRAP(!sock_owned_by_user(child));
543 sock_hold(child);
545 tcp_disconnect(child, O_NONBLOCK);
547 sock_orphan(child);
549 atomic_inc(&tcp_orphan_count);
551 tcp_destroy_sock(child);
553 bh_unlock_sock(child);
554 local_bh_enable();
555 sock_put(child);
557 sk_acceptq_removed(sk);
558 __reqsk_free(req);
560 BUG_TRAP(!sk->sk_ack_backlog);
563 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
565 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
566 tp->pushed_seq = tp->write_seq;
569 static inline int forced_push(struct tcp_sock *tp)
571 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
574 static inline void skb_entail(struct sock *sk, struct tcp_sock *tp,
575 struct sk_buff *skb)
577 skb->csum = 0;
578 TCP_SKB_CB(skb)->seq = tp->write_seq;
579 TCP_SKB_CB(skb)->end_seq = tp->write_seq;
580 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
581 TCP_SKB_CB(skb)->sacked = 0;
582 skb_header_release(skb);
583 __skb_queue_tail(&sk->sk_write_queue, skb);
584 sk_charge_skb(sk, skb);
585 if (!sk->sk_send_head)
586 sk->sk_send_head = skb;
587 else if (tp->nonagle&TCP_NAGLE_PUSH)
588 tp->nonagle &= ~TCP_NAGLE_PUSH;
591 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
592 struct sk_buff *skb)
594 if (flags & MSG_OOB) {
595 tp->urg_mode = 1;
596 tp->snd_up = tp->write_seq;
597 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
601 static inline void tcp_push(struct sock *sk, struct tcp_sock *tp, int flags,
602 int mss_now, int nonagle)
604 if (sk->sk_send_head) {
605 struct sk_buff *skb = sk->sk_write_queue.prev;
606 if (!(flags & MSG_MORE) || forced_push(tp))
607 tcp_mark_push(tp, skb);
608 tcp_mark_urg(tp, flags, skb);
609 __tcp_push_pending_frames(sk, tp, mss_now,
610 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
614 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
615 size_t psize, int flags)
617 struct tcp_sock *tp = tcp_sk(sk);
618 int mss_now;
619 int err;
620 ssize_t copied;
621 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
623 /* Wait for a connection to finish. */
624 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
625 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
626 goto out_err;
628 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
630 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
631 copied = 0;
633 err = -EPIPE;
634 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
635 goto do_error;
637 while (psize > 0) {
638 struct sk_buff *skb = sk->sk_write_queue.prev;
639 struct page *page = pages[poffset / PAGE_SIZE];
640 int copy, i, can_coalesce;
641 int offset = poffset % PAGE_SIZE;
642 int size = min_t(size_t, psize, PAGE_SIZE - offset);
644 if (!sk->sk_send_head || (copy = mss_now - skb->len) <= 0) {
645 new_segment:
646 if (!sk_stream_memory_free(sk))
647 goto wait_for_sndbuf;
649 skb = sk_stream_alloc_pskb(sk, 0, 0,
650 sk->sk_allocation);
651 if (!skb)
652 goto wait_for_memory;
654 skb_entail(sk, tp, skb);
655 copy = mss_now;
658 if (copy > size)
659 copy = size;
661 i = skb_shinfo(skb)->nr_frags;
662 can_coalesce = skb_can_coalesce(skb, i, page, offset);
663 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
664 tcp_mark_push(tp, skb);
665 goto new_segment;
667 if (sk->sk_forward_alloc < copy &&
668 !sk_stream_mem_schedule(sk, copy, 0))
669 goto wait_for_memory;
671 if (can_coalesce) {
672 skb_shinfo(skb)->frags[i - 1].size += copy;
673 } else {
674 get_page(page);
675 skb_fill_page_desc(skb, i, page, offset, copy);
678 skb->len += copy;
679 skb->data_len += copy;
680 skb->truesize += copy;
681 sk->sk_wmem_queued += copy;
682 sk->sk_forward_alloc -= copy;
683 skb->ip_summed = CHECKSUM_HW;
684 tp->write_seq += copy;
685 TCP_SKB_CB(skb)->end_seq += copy;
686 skb_shinfo(skb)->tso_segs = 0;
688 if (!copied)
689 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
691 copied += copy;
692 poffset += copy;
693 if (!(psize -= copy))
694 goto out;
696 if (skb->len != mss_now || (flags & MSG_OOB))
697 continue;
699 if (forced_push(tp)) {
700 tcp_mark_push(tp, skb);
701 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
702 } else if (skb == sk->sk_send_head)
703 tcp_push_one(sk, mss_now);
704 continue;
706 wait_for_sndbuf:
707 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
708 wait_for_memory:
709 if (copied)
710 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
712 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
713 goto do_error;
715 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
718 out:
719 if (copied)
720 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
721 return copied;
723 do_error:
724 if (copied)
725 goto out;
726 out_err:
727 return sk_stream_error(sk, flags, err);
730 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
731 size_t size, int flags)
733 ssize_t res;
734 struct sock *sk = sock->sk;
736 #define TCP_ZC_CSUM_FLAGS (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
738 if (!(sk->sk_route_caps & NETIF_F_SG) ||
739 !(sk->sk_route_caps & TCP_ZC_CSUM_FLAGS))
740 return sock_no_sendpage(sock, page, offset, size, flags);
742 #undef TCP_ZC_CSUM_FLAGS
744 lock_sock(sk);
745 TCP_CHECK_TIMER(sk);
746 res = do_tcp_sendpages(sk, &page, offset, size, flags);
747 TCP_CHECK_TIMER(sk);
748 release_sock(sk);
749 return res;
752 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
753 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
755 static inline int select_size(struct sock *sk, struct tcp_sock *tp)
757 int tmp = tp->mss_cache_std;
759 if (sk->sk_route_caps & NETIF_F_SG) {
760 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
762 if (tmp >= pgbreak &&
763 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
764 tmp = pgbreak;
766 return tmp;
769 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
770 size_t size)
772 struct iovec *iov;
773 struct tcp_sock *tp = tcp_sk(sk);
774 struct sk_buff *skb;
775 int iovlen, flags;
776 int mss_now;
777 int err, copied;
778 long timeo;
780 lock_sock(sk);
781 TCP_CHECK_TIMER(sk);
783 flags = msg->msg_flags;
784 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
786 /* Wait for a connection to finish. */
787 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
788 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
789 goto out_err;
791 /* This should be in poll */
792 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
794 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
796 /* Ok commence sending. */
797 iovlen = msg->msg_iovlen;
798 iov = msg->msg_iov;
799 copied = 0;
801 err = -EPIPE;
802 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
803 goto do_error;
805 while (--iovlen >= 0) {
806 int seglen = iov->iov_len;
807 unsigned char __user *from = iov->iov_base;
809 iov++;
811 while (seglen > 0) {
812 int copy;
814 skb = sk->sk_write_queue.prev;
816 if (!sk->sk_send_head ||
817 (copy = mss_now - skb->len) <= 0) {
819 new_segment:
820 /* Allocate new segment. If the interface is SG,
821 * allocate skb fitting to single page.
823 if (!sk_stream_memory_free(sk))
824 goto wait_for_sndbuf;
826 skb = sk_stream_alloc_pskb(sk, select_size(sk, tp),
827 0, sk->sk_allocation);
828 if (!skb)
829 goto wait_for_memory;
832 * Check whether we can use HW checksum.
834 if (sk->sk_route_caps &
835 (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM |
836 NETIF_F_HW_CSUM))
837 skb->ip_summed = CHECKSUM_HW;
839 skb_entail(sk, tp, skb);
840 copy = mss_now;
843 /* Try to append data to the end of skb. */
844 if (copy > seglen)
845 copy = seglen;
847 /* Where to copy to? */
848 if (skb_tailroom(skb) > 0) {
849 /* We have some space in skb head. Superb! */
850 if (copy > skb_tailroom(skb))
851 copy = skb_tailroom(skb);
852 if ((err = skb_add_data(skb, from, copy)) != 0)
853 goto do_fault;
854 } else {
855 int merge = 0;
856 int i = skb_shinfo(skb)->nr_frags;
857 struct page *page = TCP_PAGE(sk);
858 int off = TCP_OFF(sk);
860 if (skb_can_coalesce(skb, i, page, off) &&
861 off != PAGE_SIZE) {
862 /* We can extend the last page
863 * fragment. */
864 merge = 1;
865 } else if (i == MAX_SKB_FRAGS ||
866 (!i &&
867 !(sk->sk_route_caps & NETIF_F_SG))) {
868 /* Need to add new fragment and cannot
869 * do this because interface is non-SG,
870 * or because all the page slots are
871 * busy. */
872 tcp_mark_push(tp, skb);
873 goto new_segment;
874 } else if (page) {
875 /* If page is cached, align
876 * offset to L1 cache boundary
878 off = (off + L1_CACHE_BYTES - 1) &
879 ~(L1_CACHE_BYTES - 1);
880 if (off == PAGE_SIZE) {
881 put_page(page);
882 TCP_PAGE(sk) = page = NULL;
886 if (!page) {
887 /* Allocate new cache page. */
888 if (!(page = sk_stream_alloc_page(sk)))
889 goto wait_for_memory;
890 off = 0;
893 if (copy > PAGE_SIZE - off)
894 copy = PAGE_SIZE - off;
896 /* Time to copy data. We are close to
897 * the end! */
898 err = skb_copy_to_page(sk, from, skb, page,
899 off, copy);
900 if (err) {
901 /* If this page was new, give it to the
902 * socket so it does not get leaked.
904 if (!TCP_PAGE(sk)) {
905 TCP_PAGE(sk) = page;
906 TCP_OFF(sk) = 0;
908 goto do_error;
911 /* Update the skb. */
912 if (merge) {
913 skb_shinfo(skb)->frags[i - 1].size +=
914 copy;
915 } else {
916 skb_fill_page_desc(skb, i, page, off, copy);
917 if (TCP_PAGE(sk)) {
918 get_page(page);
919 } else if (off + copy < PAGE_SIZE) {
920 get_page(page);
921 TCP_PAGE(sk) = page;
925 TCP_OFF(sk) = off + copy;
928 if (!copied)
929 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
931 tp->write_seq += copy;
932 TCP_SKB_CB(skb)->end_seq += copy;
933 skb_shinfo(skb)->tso_segs = 0;
935 from += copy;
936 copied += copy;
937 if ((seglen -= copy) == 0 && iovlen == 0)
938 goto out;
940 if (skb->len != mss_now || (flags & MSG_OOB))
941 continue;
943 if (forced_push(tp)) {
944 tcp_mark_push(tp, skb);
945 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
946 } else if (skb == sk->sk_send_head)
947 tcp_push_one(sk, mss_now);
948 continue;
950 wait_for_sndbuf:
951 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
952 wait_for_memory:
953 if (copied)
954 tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
956 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
957 goto do_error;
959 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
963 out:
964 if (copied)
965 tcp_push(sk, tp, flags, mss_now, tp->nonagle);
966 TCP_CHECK_TIMER(sk);
967 release_sock(sk);
968 return copied;
970 do_fault:
971 if (!skb->len) {
972 if (sk->sk_send_head == skb)
973 sk->sk_send_head = NULL;
974 __skb_unlink(skb, skb->list);
975 sk_stream_free_skb(sk, skb);
978 do_error:
979 if (copied)
980 goto out;
981 out_err:
982 err = sk_stream_error(sk, flags, err);
983 TCP_CHECK_TIMER(sk);
984 release_sock(sk);
985 return err;
989 * Handle reading urgent data. BSD has very simple semantics for
990 * this, no blocking and very strange errors 8)
993 static int tcp_recv_urg(struct sock *sk, long timeo,
994 struct msghdr *msg, int len, int flags,
995 int *addr_len)
997 struct tcp_sock *tp = tcp_sk(sk);
999 /* No URG data to read. */
1000 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1001 tp->urg_data == TCP_URG_READ)
1002 return -EINVAL; /* Yes this is right ! */
1004 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1005 return -ENOTCONN;
1007 if (tp->urg_data & TCP_URG_VALID) {
1008 int err = 0;
1009 char c = tp->urg_data;
1011 if (!(flags & MSG_PEEK))
1012 tp->urg_data = TCP_URG_READ;
1014 /* Read urgent data. */
1015 msg->msg_flags |= MSG_OOB;
1017 if (len > 0) {
1018 if (!(flags & MSG_TRUNC))
1019 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1020 len = 1;
1021 } else
1022 msg->msg_flags |= MSG_TRUNC;
1024 return err ? -EFAULT : len;
1027 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1028 return 0;
1030 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1031 * the available implementations agree in this case:
1032 * this call should never block, independent of the
1033 * blocking state of the socket.
1034 * Mike <pall@rz.uni-karlsruhe.de>
1036 return -EAGAIN;
1039 /* Clean up the receive buffer for full frames taken by the user,
1040 * then send an ACK if necessary. COPIED is the number of bytes
1041 * tcp_recvmsg has given to the user so far, it speeds up the
1042 * calculation of whether or not we must ACK for the sake of
1043 * a window update.
1045 static void cleanup_rbuf(struct sock *sk, int copied)
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 int time_to_ack = 0;
1050 #if TCP_DEBUG
1051 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1053 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1054 #endif
1056 if (tcp_ack_scheduled(tp)) {
1057 /* Delayed ACKs frequently hit locked sockets during bulk
1058 * receive. */
1059 if (tp->ack.blocked ||
1060 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1061 tp->rcv_nxt - tp->rcv_wup > tp->ack.rcv_mss ||
1063 * If this read emptied read buffer, we send ACK, if
1064 * connection is not bidirectional, user drained
1065 * receive buffer and there was a small segment
1066 * in queue.
1068 (copied > 0 && (tp->ack.pending & TCP_ACK_PUSHED) &&
1069 !tp->ack.pingpong && !atomic_read(&sk->sk_rmem_alloc)))
1070 time_to_ack = 1;
1073 /* We send an ACK if we can now advertise a non-zero window
1074 * which has been raised "significantly".
1076 * Even if window raised up to infinity, do not send window open ACK
1077 * in states, where we will not receive more. It is useless.
1079 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1080 __u32 rcv_window_now = tcp_receive_window(tp);
1082 /* Optimize, __tcp_select_window() is not cheap. */
1083 if (2*rcv_window_now <= tp->window_clamp) {
1084 __u32 new_window = __tcp_select_window(sk);
1086 /* Send ACK now, if this read freed lots of space
1087 * in our buffer. Certainly, new_window is new window.
1088 * We can advertise it now, if it is not less than current one.
1089 * "Lots" means "at least twice" here.
1091 if (new_window && new_window >= 2 * rcv_window_now)
1092 time_to_ack = 1;
1095 if (time_to_ack)
1096 tcp_send_ack(sk);
1099 static void tcp_prequeue_process(struct sock *sk)
1101 struct sk_buff *skb;
1102 struct tcp_sock *tp = tcp_sk(sk);
1104 NET_ADD_STATS_USER(LINUX_MIB_TCPPREQUEUED, skb_queue_len(&tp->ucopy.prequeue));
1106 /* RX process wants to run with disabled BHs, though it is not
1107 * necessary */
1108 local_bh_disable();
1109 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1110 sk->sk_backlog_rcv(sk, skb);
1111 local_bh_enable();
1113 /* Clear memory counter. */
1114 tp->ucopy.memory = 0;
1117 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1119 struct sk_buff *skb;
1120 u32 offset;
1122 skb_queue_walk(&sk->sk_receive_queue, skb) {
1123 offset = seq - TCP_SKB_CB(skb)->seq;
1124 if (skb->h.th->syn)
1125 offset--;
1126 if (offset < skb->len || skb->h.th->fin) {
1127 *off = offset;
1128 return skb;
1131 return NULL;
1135 * This routine provides an alternative to tcp_recvmsg() for routines
1136 * that would like to handle copying from skbuffs directly in 'sendfile'
1137 * fashion.
1138 * Note:
1139 * - It is assumed that the socket was locked by the caller.
1140 * - The routine does not block.
1141 * - At present, there is no support for reading OOB data
1142 * or for 'peeking' the socket using this routine
1143 * (although both would be easy to implement).
1145 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1146 sk_read_actor_t recv_actor)
1148 struct sk_buff *skb;
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 u32 seq = tp->copied_seq;
1151 u32 offset;
1152 int copied = 0;
1154 if (sk->sk_state == TCP_LISTEN)
1155 return -ENOTCONN;
1156 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1157 if (offset < skb->len) {
1158 size_t used, len;
1160 len = skb->len - offset;
1161 /* Stop reading if we hit a patch of urgent data */
1162 if (tp->urg_data) {
1163 u32 urg_offset = tp->urg_seq - seq;
1164 if (urg_offset < len)
1165 len = urg_offset;
1166 if (!len)
1167 break;
1169 used = recv_actor(desc, skb, offset, len);
1170 if (used <= len) {
1171 seq += used;
1172 copied += used;
1173 offset += used;
1175 if (offset != skb->len)
1176 break;
1178 if (skb->h.th->fin) {
1179 sk_eat_skb(sk, skb);
1180 ++seq;
1181 break;
1183 sk_eat_skb(sk, skb);
1184 if (!desc->count)
1185 break;
1187 tp->copied_seq = seq;
1189 tcp_rcv_space_adjust(sk);
1191 /* Clean up data we have read: This will do ACK frames. */
1192 if (copied)
1193 cleanup_rbuf(sk, copied);
1194 return copied;
1198 * This routine copies from a sock struct into the user buffer.
1200 * Technical note: in 2.3 we work on _locked_ socket, so that
1201 * tricks with *seq access order and skb->users are not required.
1202 * Probably, code can be easily improved even more.
1205 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1206 size_t len, int nonblock, int flags, int *addr_len)
1208 struct tcp_sock *tp = tcp_sk(sk);
1209 int copied = 0;
1210 u32 peek_seq;
1211 u32 *seq;
1212 unsigned long used;
1213 int err;
1214 int target; /* Read at least this many bytes */
1215 long timeo;
1216 struct task_struct *user_recv = NULL;
1218 lock_sock(sk);
1220 TCP_CHECK_TIMER(sk);
1222 err = -ENOTCONN;
1223 if (sk->sk_state == TCP_LISTEN)
1224 goto out;
1226 timeo = sock_rcvtimeo(sk, nonblock);
1228 /* Urgent data needs to be handled specially. */
1229 if (flags & MSG_OOB)
1230 goto recv_urg;
1232 seq = &tp->copied_seq;
1233 if (flags & MSG_PEEK) {
1234 peek_seq = tp->copied_seq;
1235 seq = &peek_seq;
1238 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1240 do {
1241 struct sk_buff *skb;
1242 u32 offset;
1244 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1245 if (tp->urg_data && tp->urg_seq == *seq) {
1246 if (copied)
1247 break;
1248 if (signal_pending(current)) {
1249 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1250 break;
1254 /* Next get a buffer. */
1256 skb = skb_peek(&sk->sk_receive_queue);
1257 do {
1258 if (!skb)
1259 break;
1261 /* Now that we have two receive queues this
1262 * shouldn't happen.
1264 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1265 printk(KERN_INFO "recvmsg bug: copied %X "
1266 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1267 break;
1269 offset = *seq - TCP_SKB_CB(skb)->seq;
1270 if (skb->h.th->syn)
1271 offset--;
1272 if (offset < skb->len)
1273 goto found_ok_skb;
1274 if (skb->h.th->fin)
1275 goto found_fin_ok;
1276 BUG_TRAP(flags & MSG_PEEK);
1277 skb = skb->next;
1278 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1280 /* Well, if we have backlog, try to process it now yet. */
1282 if (copied >= target && !sk->sk_backlog.tail)
1283 break;
1285 if (copied) {
1286 if (sk->sk_err ||
1287 sk->sk_state == TCP_CLOSE ||
1288 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1289 !timeo ||
1290 signal_pending(current) ||
1291 (flags & MSG_PEEK))
1292 break;
1293 } else {
1294 if (sock_flag(sk, SOCK_DONE))
1295 break;
1297 if (sk->sk_err) {
1298 copied = sock_error(sk);
1299 break;
1302 if (sk->sk_shutdown & RCV_SHUTDOWN)
1303 break;
1305 if (sk->sk_state == TCP_CLOSE) {
1306 if (!sock_flag(sk, SOCK_DONE)) {
1307 /* This occurs when user tries to read
1308 * from never connected socket.
1310 copied = -ENOTCONN;
1311 break;
1313 break;
1316 if (!timeo) {
1317 copied = -EAGAIN;
1318 break;
1321 if (signal_pending(current)) {
1322 copied = sock_intr_errno(timeo);
1323 break;
1327 cleanup_rbuf(sk, copied);
1329 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1330 /* Install new reader */
1331 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1332 user_recv = current;
1333 tp->ucopy.task = user_recv;
1334 tp->ucopy.iov = msg->msg_iov;
1337 tp->ucopy.len = len;
1339 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1340 (flags & (MSG_PEEK | MSG_TRUNC)));
1342 /* Ugly... If prequeue is not empty, we have to
1343 * process it before releasing socket, otherwise
1344 * order will be broken at second iteration.
1345 * More elegant solution is required!!!
1347 * Look: we have the following (pseudo)queues:
1349 * 1. packets in flight
1350 * 2. backlog
1351 * 3. prequeue
1352 * 4. receive_queue
1354 * Each queue can be processed only if the next ones
1355 * are empty. At this point we have empty receive_queue.
1356 * But prequeue _can_ be not empty after 2nd iteration,
1357 * when we jumped to start of loop because backlog
1358 * processing added something to receive_queue.
1359 * We cannot release_sock(), because backlog contains
1360 * packets arrived _after_ prequeued ones.
1362 * Shortly, algorithm is clear --- to process all
1363 * the queues in order. We could make it more directly,
1364 * requeueing packets from backlog to prequeue, if
1365 * is not empty. It is more elegant, but eats cycles,
1366 * unfortunately.
1368 if (skb_queue_len(&tp->ucopy.prequeue))
1369 goto do_prequeue;
1371 /* __ Set realtime policy in scheduler __ */
1374 if (copied >= target) {
1375 /* Do not sleep, just process backlog. */
1376 release_sock(sk);
1377 lock_sock(sk);
1378 } else
1379 sk_wait_data(sk, &timeo);
1381 if (user_recv) {
1382 int chunk;
1384 /* __ Restore normal policy in scheduler __ */
1386 if ((chunk = len - tp->ucopy.len) != 0) {
1387 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1388 len -= chunk;
1389 copied += chunk;
1392 if (tp->rcv_nxt == tp->copied_seq &&
1393 skb_queue_len(&tp->ucopy.prequeue)) {
1394 do_prequeue:
1395 tcp_prequeue_process(sk);
1397 if ((chunk = len - tp->ucopy.len) != 0) {
1398 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1399 len -= chunk;
1400 copied += chunk;
1404 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1405 if (net_ratelimit())
1406 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1407 current->comm, current->pid);
1408 peek_seq = tp->copied_seq;
1410 continue;
1412 found_ok_skb:
1413 /* Ok so how much can we use? */
1414 used = skb->len - offset;
1415 if (len < used)
1416 used = len;
1418 /* Do we have urgent data here? */
1419 if (tp->urg_data) {
1420 u32 urg_offset = tp->urg_seq - *seq;
1421 if (urg_offset < used) {
1422 if (!urg_offset) {
1423 if (!sock_flag(sk, SOCK_URGINLINE)) {
1424 ++*seq;
1425 offset++;
1426 used--;
1427 if (!used)
1428 goto skip_copy;
1430 } else
1431 used = urg_offset;
1435 if (!(flags & MSG_TRUNC)) {
1436 err = skb_copy_datagram_iovec(skb, offset,
1437 msg->msg_iov, used);
1438 if (err) {
1439 /* Exception. Bailout! */
1440 if (!copied)
1441 copied = -EFAULT;
1442 break;
1446 *seq += used;
1447 copied += used;
1448 len -= used;
1450 tcp_rcv_space_adjust(sk);
1452 skip_copy:
1453 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1454 tp->urg_data = 0;
1455 tcp_fast_path_check(sk, tp);
1457 if (used + offset < skb->len)
1458 continue;
1460 if (skb->h.th->fin)
1461 goto found_fin_ok;
1462 if (!(flags & MSG_PEEK))
1463 sk_eat_skb(sk, skb);
1464 continue;
1466 found_fin_ok:
1467 /* Process the FIN. */
1468 ++*seq;
1469 if (!(flags & MSG_PEEK))
1470 sk_eat_skb(sk, skb);
1471 break;
1472 } while (len > 0);
1474 if (user_recv) {
1475 if (skb_queue_len(&tp->ucopy.prequeue)) {
1476 int chunk;
1478 tp->ucopy.len = copied > 0 ? len : 0;
1480 tcp_prequeue_process(sk);
1482 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1483 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1484 len -= chunk;
1485 copied += chunk;
1489 tp->ucopy.task = NULL;
1490 tp->ucopy.len = 0;
1493 /* According to UNIX98, msg_name/msg_namelen are ignored
1494 * on connected socket. I was just happy when found this 8) --ANK
1497 /* Clean up data we have read: This will do ACK frames. */
1498 cleanup_rbuf(sk, copied);
1500 TCP_CHECK_TIMER(sk);
1501 release_sock(sk);
1502 return copied;
1504 out:
1505 TCP_CHECK_TIMER(sk);
1506 release_sock(sk);
1507 return err;
1509 recv_urg:
1510 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1511 goto out;
1515 * State processing on a close. This implements the state shift for
1516 * sending our FIN frame. Note that we only send a FIN for some
1517 * states. A shutdown() may have already sent the FIN, or we may be
1518 * closed.
1521 static unsigned char new_state[16] = {
1522 /* current state: new state: action: */
1523 /* (Invalid) */ TCP_CLOSE,
1524 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1525 /* TCP_SYN_SENT */ TCP_CLOSE,
1526 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1527 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1528 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1529 /* TCP_TIME_WAIT */ TCP_CLOSE,
1530 /* TCP_CLOSE */ TCP_CLOSE,
1531 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1532 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1533 /* TCP_LISTEN */ TCP_CLOSE,
1534 /* TCP_CLOSING */ TCP_CLOSING,
1537 static int tcp_close_state(struct sock *sk)
1539 int next = (int)new_state[sk->sk_state];
1540 int ns = next & TCP_STATE_MASK;
1542 tcp_set_state(sk, ns);
1544 return next & TCP_ACTION_FIN;
1548 * Shutdown the sending side of a connection. Much like close except
1549 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1552 void tcp_shutdown(struct sock *sk, int how)
1554 /* We need to grab some memory, and put together a FIN,
1555 * and then put it into the queue to be sent.
1556 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1558 if (!(how & SEND_SHUTDOWN))
1559 return;
1561 /* If we've already sent a FIN, or it's a closed state, skip this. */
1562 if ((1 << sk->sk_state) &
1563 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1564 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1565 /* Clear out any half completed packets. FIN if needed. */
1566 if (tcp_close_state(sk))
1567 tcp_send_fin(sk);
1572 * At this point, there should be no process reference to this
1573 * socket, and thus no user references at all. Therefore we
1574 * can assume the socket waitqueue is inactive and nobody will
1575 * try to jump onto it.
1577 void tcp_destroy_sock(struct sock *sk)
1579 BUG_TRAP(sk->sk_state == TCP_CLOSE);
1580 BUG_TRAP(sock_flag(sk, SOCK_DEAD));
1582 /* It cannot be in hash table! */
1583 BUG_TRAP(sk_unhashed(sk));
1585 /* If it has not 0 inet_sk(sk)->num, it must be bound */
1586 BUG_TRAP(!inet_sk(sk)->num || tcp_sk(sk)->bind_hash);
1588 sk->sk_prot->destroy(sk);
1590 sk_stream_kill_queues(sk);
1592 xfrm_sk_free_policy(sk);
1594 #ifdef INET_REFCNT_DEBUG
1595 if (atomic_read(&sk->sk_refcnt) != 1) {
1596 printk(KERN_DEBUG "Destruction TCP %p delayed, c=%d\n",
1597 sk, atomic_read(&sk->sk_refcnt));
1599 #endif
1601 atomic_dec(&tcp_orphan_count);
1602 sock_put(sk);
1605 void tcp_close(struct sock *sk, long timeout)
1607 struct sk_buff *skb;
1608 int data_was_unread = 0;
1610 lock_sock(sk);
1611 sk->sk_shutdown = SHUTDOWN_MASK;
1613 if (sk->sk_state == TCP_LISTEN) {
1614 tcp_set_state(sk, TCP_CLOSE);
1616 /* Special case. */
1617 tcp_listen_stop(sk);
1619 goto adjudge_to_death;
1622 /* We need to flush the recv. buffs. We do this only on the
1623 * descriptor close, not protocol-sourced closes, because the
1624 * reader process may not have drained the data yet!
1626 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1627 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1628 skb->h.th->fin;
1629 data_was_unread += len;
1630 __kfree_skb(skb);
1633 sk_stream_mem_reclaim(sk);
1635 /* As outlined in draft-ietf-tcpimpl-prob-03.txt, section
1636 * 3.10, we send a RST here because data was lost. To
1637 * witness the awful effects of the old behavior of always
1638 * doing a FIN, run an older 2.1.x kernel or 2.0.x, start
1639 * a bulk GET in an FTP client, suspend the process, wait
1640 * for the client to advertise a zero window, then kill -9
1641 * the FTP client, wheee... Note: timeout is always zero
1642 * in such a case.
1644 if (data_was_unread) {
1645 /* Unread data was tossed, zap the connection. */
1646 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1647 tcp_set_state(sk, TCP_CLOSE);
1648 tcp_send_active_reset(sk, GFP_KERNEL);
1649 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1650 /* Check zero linger _after_ checking for unread data. */
1651 sk->sk_prot->disconnect(sk, 0);
1652 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1653 } else if (tcp_close_state(sk)) {
1654 /* We FIN if the application ate all the data before
1655 * zapping the connection.
1658 /* RED-PEN. Formally speaking, we have broken TCP state
1659 * machine. State transitions:
1661 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1662 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1663 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1665 * are legal only when FIN has been sent (i.e. in window),
1666 * rather than queued out of window. Purists blame.
1668 * F.e. "RFC state" is ESTABLISHED,
1669 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1671 * The visible declinations are that sometimes
1672 * we enter time-wait state, when it is not required really
1673 * (harmless), do not send active resets, when they are
1674 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1675 * they look as CLOSING or LAST_ACK for Linux)
1676 * Probably, I missed some more holelets.
1677 * --ANK
1679 tcp_send_fin(sk);
1682 sk_stream_wait_close(sk, timeout);
1684 adjudge_to_death:
1685 /* It is the last release_sock in its life. It will remove backlog. */
1686 release_sock(sk);
1689 /* Now socket is owned by kernel and we acquire BH lock
1690 to finish close. No need to check for user refs.
1692 local_bh_disable();
1693 bh_lock_sock(sk);
1694 BUG_TRAP(!sock_owned_by_user(sk));
1696 sock_hold(sk);
1697 sock_orphan(sk);
1699 /* This is a (useful) BSD violating of the RFC. There is a
1700 * problem with TCP as specified in that the other end could
1701 * keep a socket open forever with no application left this end.
1702 * We use a 3 minute timeout (about the same as BSD) then kill
1703 * our end. If they send after that then tough - BUT: long enough
1704 * that we won't make the old 4*rto = almost no time - whoops
1705 * reset mistake.
1707 * Nope, it was not mistake. It is really desired behaviour
1708 * f.e. on http servers, when such sockets are useless, but
1709 * consume significant resources. Let's do it with special
1710 * linger2 option. --ANK
1713 if (sk->sk_state == TCP_FIN_WAIT2) {
1714 struct tcp_sock *tp = tcp_sk(sk);
1715 if (tp->linger2 < 0) {
1716 tcp_set_state(sk, TCP_CLOSE);
1717 tcp_send_active_reset(sk, GFP_ATOMIC);
1718 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1719 } else {
1720 int tmo = tcp_fin_time(tp);
1722 if (tmo > TCP_TIMEWAIT_LEN) {
1723 tcp_reset_keepalive_timer(sk, tcp_fin_time(tp));
1724 } else {
1725 atomic_inc(&tcp_orphan_count);
1726 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1727 goto out;
1731 if (sk->sk_state != TCP_CLOSE) {
1732 sk_stream_mem_reclaim(sk);
1733 if (atomic_read(&tcp_orphan_count) > sysctl_tcp_max_orphans ||
1734 (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
1735 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])) {
1736 if (net_ratelimit())
1737 printk(KERN_INFO "TCP: too many of orphaned "
1738 "sockets\n");
1739 tcp_set_state(sk, TCP_CLOSE);
1740 tcp_send_active_reset(sk, GFP_ATOMIC);
1741 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1744 atomic_inc(&tcp_orphan_count);
1746 if (sk->sk_state == TCP_CLOSE)
1747 tcp_destroy_sock(sk);
1748 /* Otherwise, socket is reprieved until protocol close. */
1750 out:
1751 bh_unlock_sock(sk);
1752 local_bh_enable();
1753 sock_put(sk);
1756 /* These states need RST on ABORT according to RFC793 */
1758 static inline int tcp_need_reset(int state)
1760 return (1 << state) &
1761 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1762 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1765 int tcp_disconnect(struct sock *sk, int flags)
1767 struct inet_sock *inet = inet_sk(sk);
1768 struct tcp_sock *tp = tcp_sk(sk);
1769 int err = 0;
1770 int old_state = sk->sk_state;
1772 if (old_state != TCP_CLOSE)
1773 tcp_set_state(sk, TCP_CLOSE);
1775 /* ABORT function of RFC793 */
1776 if (old_state == TCP_LISTEN) {
1777 tcp_listen_stop(sk);
1778 } else if (tcp_need_reset(old_state) ||
1779 (tp->snd_nxt != tp->write_seq &&
1780 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1781 /* The last check adjusts for discrepance of Linux wrt. RFC
1782 * states
1784 tcp_send_active_reset(sk, gfp_any());
1785 sk->sk_err = ECONNRESET;
1786 } else if (old_state == TCP_SYN_SENT)
1787 sk->sk_err = ECONNRESET;
1789 tcp_clear_xmit_timers(sk);
1790 __skb_queue_purge(&sk->sk_receive_queue);
1791 sk_stream_writequeue_purge(sk);
1792 __skb_queue_purge(&tp->out_of_order_queue);
1794 inet->dport = 0;
1796 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1797 inet_reset_saddr(sk);
1799 sk->sk_shutdown = 0;
1800 sock_reset_flag(sk, SOCK_DONE);
1801 tp->srtt = 0;
1802 if ((tp->write_seq += tp->max_window + 2) == 0)
1803 tp->write_seq = 1;
1804 tp->backoff = 0;
1805 tp->snd_cwnd = 2;
1806 tp->probes_out = 0;
1807 tp->packets_out = 0;
1808 tp->snd_ssthresh = 0x7fffffff;
1809 tp->snd_cwnd_cnt = 0;
1810 tcp_set_ca_state(tp, TCP_CA_Open);
1811 tcp_clear_retrans(tp);
1812 tcp_delack_init(tp);
1813 sk->sk_send_head = NULL;
1814 tp->rx_opt.saw_tstamp = 0;
1815 tcp_sack_reset(&tp->rx_opt);
1816 __sk_dst_reset(sk);
1818 BUG_TRAP(!inet->num || tp->bind_hash);
1820 sk->sk_error_report(sk);
1821 return err;
1825 * Wait for an incoming connection, avoid race
1826 * conditions. This must be called with the socket locked.
1828 static int wait_for_connect(struct sock *sk, long timeo)
1830 struct tcp_sock *tp = tcp_sk(sk);
1831 DEFINE_WAIT(wait);
1832 int err;
1835 * True wake-one mechanism for incoming connections: only
1836 * one process gets woken up, not the 'whole herd'.
1837 * Since we do not 'race & poll' for established sockets
1838 * anymore, the common case will execute the loop only once.
1840 * Subtle issue: "add_wait_queue_exclusive()" will be added
1841 * after any current non-exclusive waiters, and we know that
1842 * it will always _stay_ after any new non-exclusive waiters
1843 * because all non-exclusive waiters are added at the
1844 * beginning of the wait-queue. As such, it's ok to "drop"
1845 * our exclusiveness temporarily when we get woken up without
1846 * having to remove and re-insert us on the wait queue.
1848 for (;;) {
1849 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
1850 TASK_INTERRUPTIBLE);
1851 release_sock(sk);
1852 if (reqsk_queue_empty(&tp->accept_queue))
1853 timeo = schedule_timeout(timeo);
1854 lock_sock(sk);
1855 err = 0;
1856 if (!reqsk_queue_empty(&tp->accept_queue))
1857 break;
1858 err = -EINVAL;
1859 if (sk->sk_state != TCP_LISTEN)
1860 break;
1861 err = sock_intr_errno(timeo);
1862 if (signal_pending(current))
1863 break;
1864 err = -EAGAIN;
1865 if (!timeo)
1866 break;
1868 finish_wait(sk->sk_sleep, &wait);
1869 return err;
1873 * This will accept the next outstanding connection.
1876 struct sock *tcp_accept(struct sock *sk, int flags, int *err)
1878 struct tcp_sock *tp = tcp_sk(sk);
1879 struct sock *newsk;
1880 int error;
1882 lock_sock(sk);
1884 /* We need to make sure that this socket is listening,
1885 * and that it has something pending.
1887 error = -EINVAL;
1888 if (sk->sk_state != TCP_LISTEN)
1889 goto out_err;
1891 /* Find already established connection */
1892 if (reqsk_queue_empty(&tp->accept_queue)) {
1893 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
1895 /* If this is a non blocking socket don't sleep */
1896 error = -EAGAIN;
1897 if (!timeo)
1898 goto out_err;
1900 error = wait_for_connect(sk, timeo);
1901 if (error)
1902 goto out_err;
1905 newsk = reqsk_queue_get_child(&tp->accept_queue, sk);
1906 BUG_TRAP(newsk->sk_state != TCP_SYN_RECV);
1907 out:
1908 release_sock(sk);
1909 return newsk;
1910 out_err:
1911 newsk = NULL;
1912 *err = error;
1913 goto out;
1917 * Socket option code for TCP.
1919 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1920 int optlen)
1922 struct tcp_sock *tp = tcp_sk(sk);
1923 int val;
1924 int err = 0;
1926 if (level != SOL_TCP)
1927 return tp->af_specific->setsockopt(sk, level, optname,
1928 optval, optlen);
1930 /* This is a string value all the others are int's */
1931 if (optname == TCP_CONGESTION) {
1932 char name[TCP_CA_NAME_MAX];
1934 if (optlen < 1)
1935 return -EINVAL;
1937 val = strncpy_from_user(name, optval,
1938 min(TCP_CA_NAME_MAX-1, optlen));
1939 if (val < 0)
1940 return -EFAULT;
1941 name[val] = 0;
1943 lock_sock(sk);
1944 err = tcp_set_congestion_control(tp, name);
1945 release_sock(sk);
1946 return err;
1949 if (optlen < sizeof(int))
1950 return -EINVAL;
1952 if (get_user(val, (int __user *)optval))
1953 return -EFAULT;
1955 lock_sock(sk);
1957 switch (optname) {
1958 case TCP_MAXSEG:
1959 /* Values greater than interface MTU won't take effect. However
1960 * at the point when this call is done we typically don't yet
1961 * know which interface is going to be used */
1962 if (val < 8 || val > MAX_TCP_WINDOW) {
1963 err = -EINVAL;
1964 break;
1966 tp->rx_opt.user_mss = val;
1967 break;
1969 case TCP_NODELAY:
1970 if (val) {
1971 /* TCP_NODELAY is weaker than TCP_CORK, so that
1972 * this option on corked socket is remembered, but
1973 * it is not activated until cork is cleared.
1975 * However, when TCP_NODELAY is set we make
1976 * an explicit push, which overrides even TCP_CORK
1977 * for currently queued segments.
1979 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1980 tcp_push_pending_frames(sk, tp);
1981 } else {
1982 tp->nonagle &= ~TCP_NAGLE_OFF;
1984 break;
1986 case TCP_CORK:
1987 /* When set indicates to always queue non-full frames.
1988 * Later the user clears this option and we transmit
1989 * any pending partial frames in the queue. This is
1990 * meant to be used alongside sendfile() to get properly
1991 * filled frames when the user (for example) must write
1992 * out headers with a write() call first and then use
1993 * sendfile to send out the data parts.
1995 * TCP_CORK can be set together with TCP_NODELAY and it is
1996 * stronger than TCP_NODELAY.
1998 if (val) {
1999 tp->nonagle |= TCP_NAGLE_CORK;
2000 } else {
2001 tp->nonagle &= ~TCP_NAGLE_CORK;
2002 if (tp->nonagle&TCP_NAGLE_OFF)
2003 tp->nonagle |= TCP_NAGLE_PUSH;
2004 tcp_push_pending_frames(sk, tp);
2006 break;
2008 case TCP_KEEPIDLE:
2009 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2010 err = -EINVAL;
2011 else {
2012 tp->keepalive_time = val * HZ;
2013 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2014 !((1 << sk->sk_state) &
2015 (TCPF_CLOSE | TCPF_LISTEN))) {
2016 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2017 if (tp->keepalive_time > elapsed)
2018 elapsed = tp->keepalive_time - elapsed;
2019 else
2020 elapsed = 0;
2021 tcp_reset_keepalive_timer(sk, elapsed);
2024 break;
2025 case TCP_KEEPINTVL:
2026 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2027 err = -EINVAL;
2028 else
2029 tp->keepalive_intvl = val * HZ;
2030 break;
2031 case TCP_KEEPCNT:
2032 if (val < 1 || val > MAX_TCP_KEEPCNT)
2033 err = -EINVAL;
2034 else
2035 tp->keepalive_probes = val;
2036 break;
2037 case TCP_SYNCNT:
2038 if (val < 1 || val > MAX_TCP_SYNCNT)
2039 err = -EINVAL;
2040 else
2041 tp->syn_retries = val;
2042 break;
2044 case TCP_LINGER2:
2045 if (val < 0)
2046 tp->linger2 = -1;
2047 else if (val > sysctl_tcp_fin_timeout / HZ)
2048 tp->linger2 = 0;
2049 else
2050 tp->linger2 = val * HZ;
2051 break;
2053 case TCP_DEFER_ACCEPT:
2054 tp->defer_accept = 0;
2055 if (val > 0) {
2056 /* Translate value in seconds to number of
2057 * retransmits */
2058 while (tp->defer_accept < 32 &&
2059 val > ((TCP_TIMEOUT_INIT / HZ) <<
2060 tp->defer_accept))
2061 tp->defer_accept++;
2062 tp->defer_accept++;
2064 break;
2066 case TCP_WINDOW_CLAMP:
2067 if (!val) {
2068 if (sk->sk_state != TCP_CLOSE) {
2069 err = -EINVAL;
2070 break;
2072 tp->window_clamp = 0;
2073 } else
2074 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2075 SOCK_MIN_RCVBUF / 2 : val;
2076 break;
2078 case TCP_QUICKACK:
2079 if (!val) {
2080 tp->ack.pingpong = 1;
2081 } else {
2082 tp->ack.pingpong = 0;
2083 if ((1 << sk->sk_state) &
2084 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2085 tcp_ack_scheduled(tp)) {
2086 tp->ack.pending |= TCP_ACK_PUSHED;
2087 cleanup_rbuf(sk, 1);
2088 if (!(val & 1))
2089 tp->ack.pingpong = 1;
2092 break;
2094 default:
2095 err = -ENOPROTOOPT;
2096 break;
2098 release_sock(sk);
2099 return err;
2102 /* Return information about state of tcp endpoint in API format. */
2103 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2105 struct tcp_sock *tp = tcp_sk(sk);
2106 u32 now = tcp_time_stamp;
2108 memset(info, 0, sizeof(*info));
2110 info->tcpi_state = sk->sk_state;
2111 info->tcpi_ca_state = tp->ca_state;
2112 info->tcpi_retransmits = tp->retransmits;
2113 info->tcpi_probes = tp->probes_out;
2114 info->tcpi_backoff = tp->backoff;
2116 if (tp->rx_opt.tstamp_ok)
2117 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2118 if (tp->rx_opt.sack_ok)
2119 info->tcpi_options |= TCPI_OPT_SACK;
2120 if (tp->rx_opt.wscale_ok) {
2121 info->tcpi_options |= TCPI_OPT_WSCALE;
2122 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2123 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2126 if (tp->ecn_flags&TCP_ECN_OK)
2127 info->tcpi_options |= TCPI_OPT_ECN;
2129 info->tcpi_rto = jiffies_to_usecs(tp->rto);
2130 info->tcpi_ato = jiffies_to_usecs(tp->ack.ato);
2131 info->tcpi_snd_mss = tp->mss_cache_std;
2132 info->tcpi_rcv_mss = tp->ack.rcv_mss;
2134 info->tcpi_unacked = tp->packets_out;
2135 info->tcpi_sacked = tp->sacked_out;
2136 info->tcpi_lost = tp->lost_out;
2137 info->tcpi_retrans = tp->retrans_out;
2138 info->tcpi_fackets = tp->fackets_out;
2140 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2141 info->tcpi_last_data_recv = jiffies_to_msecs(now - tp->ack.lrcvtime);
2142 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2144 info->tcpi_pmtu = tp->pmtu_cookie;
2145 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2146 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2147 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2148 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2149 info->tcpi_snd_cwnd = tp->snd_cwnd;
2150 info->tcpi_advmss = tp->advmss;
2151 info->tcpi_reordering = tp->reordering;
2153 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2154 info->tcpi_rcv_space = tp->rcvq_space.space;
2156 info->tcpi_total_retrans = tp->total_retrans;
2159 EXPORT_SYMBOL_GPL(tcp_get_info);
2161 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2162 int __user *optlen)
2164 struct tcp_sock *tp = tcp_sk(sk);
2165 int val, len;
2167 if (level != SOL_TCP)
2168 return tp->af_specific->getsockopt(sk, level, optname,
2169 optval, optlen);
2171 if (get_user(len, optlen))
2172 return -EFAULT;
2174 len = min_t(unsigned int, len, sizeof(int));
2176 if (len < 0)
2177 return -EINVAL;
2179 switch (optname) {
2180 case TCP_MAXSEG:
2181 val = tp->mss_cache_std;
2182 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2183 val = tp->rx_opt.user_mss;
2184 break;
2185 case TCP_NODELAY:
2186 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2187 break;
2188 case TCP_CORK:
2189 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2190 break;
2191 case TCP_KEEPIDLE:
2192 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2193 break;
2194 case TCP_KEEPINTVL:
2195 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2196 break;
2197 case TCP_KEEPCNT:
2198 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2199 break;
2200 case TCP_SYNCNT:
2201 val = tp->syn_retries ? : sysctl_tcp_syn_retries;
2202 break;
2203 case TCP_LINGER2:
2204 val = tp->linger2;
2205 if (val >= 0)
2206 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2207 break;
2208 case TCP_DEFER_ACCEPT:
2209 val = !tp->defer_accept ? 0 : ((TCP_TIMEOUT_INIT / HZ) <<
2210 (tp->defer_accept - 1));
2211 break;
2212 case TCP_WINDOW_CLAMP:
2213 val = tp->window_clamp;
2214 break;
2215 case TCP_INFO: {
2216 struct tcp_info info;
2218 if (get_user(len, optlen))
2219 return -EFAULT;
2221 tcp_get_info(sk, &info);
2223 len = min_t(unsigned int, len, sizeof(info));
2224 if (put_user(len, optlen))
2225 return -EFAULT;
2226 if (copy_to_user(optval, &info, len))
2227 return -EFAULT;
2228 return 0;
2230 case TCP_QUICKACK:
2231 val = !tp->ack.pingpong;
2232 break;
2234 case TCP_CONGESTION:
2235 if (get_user(len, optlen))
2236 return -EFAULT;
2237 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2238 if (put_user(len, optlen))
2239 return -EFAULT;
2240 if (copy_to_user(optval, tp->ca_ops->name, len))
2241 return -EFAULT;
2242 return 0;
2243 default:
2244 return -ENOPROTOOPT;
2247 if (put_user(len, optlen))
2248 return -EFAULT;
2249 if (copy_to_user(optval, &val, len))
2250 return -EFAULT;
2251 return 0;
2255 extern void __skb_cb_too_small_for_tcp(int, int);
2256 extern struct tcp_congestion_ops tcp_reno;
2258 static __initdata unsigned long thash_entries;
2259 static int __init set_thash_entries(char *str)
2261 if (!str)
2262 return 0;
2263 thash_entries = simple_strtoul(str, &str, 0);
2264 return 1;
2266 __setup("thash_entries=", set_thash_entries);
2268 void __init tcp_init(void)
2270 struct sk_buff *skb = NULL;
2271 int order, i;
2273 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2274 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2275 sizeof(skb->cb));
2277 tcp_bucket_cachep = kmem_cache_create("tcp_bind_bucket",
2278 sizeof(struct tcp_bind_bucket),
2279 0, SLAB_HWCACHE_ALIGN,
2280 NULL, NULL);
2281 if (!tcp_bucket_cachep)
2282 panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
2284 tcp_timewait_cachep = kmem_cache_create("tcp_tw_bucket",
2285 sizeof(struct tcp_tw_bucket),
2286 0, SLAB_HWCACHE_ALIGN,
2287 NULL, NULL);
2288 if (!tcp_timewait_cachep)
2289 panic("tcp_init: Cannot alloc tcp_tw_bucket cache.");
2291 /* Size and allocate the main established and bind bucket
2292 * hash tables.
2294 * The methodology is similar to that of the buffer cache.
2296 tcp_ehash = (struct tcp_ehash_bucket *)
2297 alloc_large_system_hash("TCP established",
2298 sizeof(struct tcp_ehash_bucket),
2299 thash_entries,
2300 (num_physpages >= 128 * 1024) ?
2301 (25 - PAGE_SHIFT) :
2302 (27 - PAGE_SHIFT),
2303 HASH_HIGHMEM,
2304 &tcp_ehash_size,
2305 NULL,
2307 tcp_ehash_size = (1 << tcp_ehash_size) >> 1;
2308 for (i = 0; i < (tcp_ehash_size << 1); i++) {
2309 rwlock_init(&tcp_ehash[i].lock);
2310 INIT_HLIST_HEAD(&tcp_ehash[i].chain);
2313 tcp_bhash = (struct tcp_bind_hashbucket *)
2314 alloc_large_system_hash("TCP bind",
2315 sizeof(struct tcp_bind_hashbucket),
2316 tcp_ehash_size,
2317 (num_physpages >= 128 * 1024) ?
2318 (25 - PAGE_SHIFT) :
2319 (27 - PAGE_SHIFT),
2320 HASH_HIGHMEM,
2321 &tcp_bhash_size,
2322 NULL,
2323 64 * 1024);
2324 tcp_bhash_size = 1 << tcp_bhash_size;
2325 for (i = 0; i < tcp_bhash_size; i++) {
2326 spin_lock_init(&tcp_bhash[i].lock);
2327 INIT_HLIST_HEAD(&tcp_bhash[i].chain);
2330 /* Try to be a bit smarter and adjust defaults depending
2331 * on available memory.
2333 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2334 (tcp_bhash_size * sizeof(struct tcp_bind_hashbucket));
2335 order++)
2337 if (order >= 4) {
2338 sysctl_local_port_range[0] = 32768;
2339 sysctl_local_port_range[1] = 61000;
2340 sysctl_tcp_max_tw_buckets = 180000;
2341 sysctl_tcp_max_orphans = 4096 << (order - 4);
2342 sysctl_max_syn_backlog = 1024;
2343 } else if (order < 3) {
2344 sysctl_local_port_range[0] = 1024 * (3 - order);
2345 sysctl_tcp_max_tw_buckets >>= (3 - order);
2346 sysctl_tcp_max_orphans >>= (3 - order);
2347 sysctl_max_syn_backlog = 128;
2349 tcp_port_rover = sysctl_local_port_range[0] - 1;
2351 sysctl_tcp_mem[0] = 768 << order;
2352 sysctl_tcp_mem[1] = 1024 << order;
2353 sysctl_tcp_mem[2] = 1536 << order;
2355 if (order < 3) {
2356 sysctl_tcp_wmem[2] = 64 * 1024;
2357 sysctl_tcp_rmem[0] = PAGE_SIZE;
2358 sysctl_tcp_rmem[1] = 43689;
2359 sysctl_tcp_rmem[2] = 2 * 43689;
2362 printk(KERN_INFO "TCP: Hash tables configured "
2363 "(established %d bind %d)\n",
2364 tcp_ehash_size << 1, tcp_bhash_size);
2366 tcp_register_congestion_control(&tcp_reno);
2369 EXPORT_SYMBOL(tcp_accept);
2370 EXPORT_SYMBOL(tcp_close);
2371 EXPORT_SYMBOL(tcp_destroy_sock);
2372 EXPORT_SYMBOL(tcp_disconnect);
2373 EXPORT_SYMBOL(tcp_getsockopt);
2374 EXPORT_SYMBOL(tcp_ioctl);
2375 EXPORT_SYMBOL(tcp_poll);
2376 EXPORT_SYMBOL(tcp_read_sock);
2377 EXPORT_SYMBOL(tcp_recvmsg);
2378 EXPORT_SYMBOL(tcp_sendmsg);
2379 EXPORT_SYMBOL(tcp_sendpage);
2380 EXPORT_SYMBOL(tcp_setsockopt);
2381 EXPORT_SYMBOL(tcp_shutdown);
2382 EXPORT_SYMBOL(tcp_statistics);
2383 EXPORT_SYMBOL(tcp_timewait_cachep);