[POWERPC] Move serial_dev_init to device_initcall()
[firewire-audio.git] / drivers / net / macmace.c
blob9a343b965975eb469a133cdbd133c1faee74831c
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@redhat.com>
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
16 * Copyright (C) 2007 Finn Thain
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/macintosh.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
41 static char mac_mace_string[] = "macmace";
42 static struct platform_device *mac_mace_device;
44 #define N_TX_BUFF_ORDER 0
45 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
46 #define N_RX_BUFF_ORDER 3
47 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
49 #define TX_TIMEOUT HZ
51 #define MACE_BUFF_SIZE 0x800
53 /* Chip rev needs workaround on HW & multicast addr change */
54 #define BROKEN_ADDRCHG_REV 0x0941
56 /* The MACE is simply wired down on a Mac68K box */
58 #define MACE_BASE (void *)(0x50F1C000)
59 #define MACE_PROM (void *)(0x50F08001)
61 struct mace_data {
62 volatile struct mace *mace;
63 unsigned char *tx_ring;
64 dma_addr_t tx_ring_phys;
65 unsigned char *rx_ring;
66 dma_addr_t rx_ring_phys;
67 int dma_intr;
68 struct net_device_stats stats;
69 int rx_slot, rx_tail;
70 int tx_slot, tx_sloti, tx_count;
71 int chipid;
72 struct device *device;
75 struct mace_frame {
76 u8 rcvcnt;
77 u8 pad1;
78 u8 rcvsts;
79 u8 pad2;
80 u8 rntpc;
81 u8 pad3;
82 u8 rcvcc;
83 u8 pad4;
84 u32 pad5;
85 u32 pad6;
86 u8 data[1];
87 /* And frame continues.. */
90 #define PRIV_BYTES sizeof(struct mace_data)
92 static int mace_open(struct net_device *dev);
93 static int mace_close(struct net_device *dev);
94 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
95 static struct net_device_stats *mace_stats(struct net_device *dev);
96 static void mace_set_multicast(struct net_device *dev);
97 static int mace_set_address(struct net_device *dev, void *addr);
98 static void mace_reset(struct net_device *dev);
99 static irqreturn_t mace_interrupt(int irq, void *dev_id);
100 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
101 static void mace_tx_timeout(struct net_device *dev);
102 static void __mace_set_address(struct net_device *dev, void *addr);
105 * Load a receive DMA channel with a base address and ring length
108 static void mace_load_rxdma_base(struct net_device *dev, int set)
110 struct mace_data *mp = netdev_priv(dev);
112 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
113 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
114 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
115 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
116 mp->rx_tail = 0;
120 * Reset the receive DMA subsystem
123 static void mace_rxdma_reset(struct net_device *dev)
125 struct mace_data *mp = netdev_priv(dev);
126 volatile struct mace *mace = mp->mace;
127 u8 maccc = mace->maccc;
129 mace->maccc = maccc & ~ENRCV;
131 psc_write_word(PSC_ENETRD_CTL, 0x8800);
132 mace_load_rxdma_base(dev, 0x00);
133 psc_write_word(PSC_ENETRD_CTL, 0x0400);
135 psc_write_word(PSC_ENETRD_CTL, 0x8800);
136 mace_load_rxdma_base(dev, 0x10);
137 psc_write_word(PSC_ENETRD_CTL, 0x0400);
139 mace->maccc = maccc;
140 mp->rx_slot = 0;
142 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
143 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
147 * Reset the transmit DMA subsystem
150 static void mace_txdma_reset(struct net_device *dev)
152 struct mace_data *mp = netdev_priv(dev);
153 volatile struct mace *mace = mp->mace;
154 u8 maccc;
156 psc_write_word(PSC_ENETWR_CTL, 0x8800);
158 maccc = mace->maccc;
159 mace->maccc = maccc & ~ENXMT;
161 mp->tx_slot = mp->tx_sloti = 0;
162 mp->tx_count = N_TX_RING;
164 psc_write_word(PSC_ENETWR_CTL, 0x0400);
165 mace->maccc = maccc;
169 * Disable DMA
172 static void mace_dma_off(struct net_device *dev)
174 psc_write_word(PSC_ENETRD_CTL, 0x8800);
175 psc_write_word(PSC_ENETRD_CTL, 0x1000);
176 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
177 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
179 psc_write_word(PSC_ENETWR_CTL, 0x8800);
180 psc_write_word(PSC_ENETWR_CTL, 0x1000);
181 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
182 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
186 * Not really much of a probe. The hardware table tells us if this
187 * model of Macintrash has a MACE (AV macintoshes)
190 static int __devinit mace_probe(struct platform_device *pdev)
192 int j;
193 struct mace_data *mp;
194 unsigned char *addr;
195 struct net_device *dev;
196 unsigned char checksum = 0;
197 static int found = 0;
198 int err;
200 if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
201 return -ENODEV;
203 found = 1; /* prevent 'finding' one on every device probe */
205 dev = alloc_etherdev(PRIV_BYTES);
206 if (!dev)
207 return -ENOMEM;
209 mp = netdev_priv(dev);
211 mp->device = &pdev->dev;
212 SET_NETDEV_DEV(dev, &pdev->dev);
213 SET_MODULE_OWNER(dev);
215 dev->base_addr = (u32)MACE_BASE;
216 mp->mace = (volatile struct mace *) MACE_BASE;
218 dev->irq = IRQ_MAC_MACE;
219 mp->dma_intr = IRQ_MAC_MACE_DMA;
221 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
224 * The PROM contains 8 bytes which total 0xFF when XOR'd
225 * together. Due to the usual peculiar apple brain damage
226 * the bytes are spaced out in a strange boundary and the
227 * bits are reversed.
230 addr = (void *)MACE_PROM;
232 for (j = 0; j < 6; ++j) {
233 u8 v = bitrev8(addr[j<<4]);
234 checksum ^= v;
235 dev->dev_addr[j] = v;
237 for (; j < 8; ++j) {
238 checksum ^= bitrev8(addr[j<<4]);
241 if (checksum != 0xFF) {
242 free_netdev(dev);
243 return -ENODEV;
246 memset(&mp->stats, 0, sizeof(mp->stats));
248 dev->open = mace_open;
249 dev->stop = mace_close;
250 dev->hard_start_xmit = mace_xmit_start;
251 dev->tx_timeout = mace_tx_timeout;
252 dev->watchdog_timeo = TX_TIMEOUT;
253 dev->get_stats = mace_stats;
254 dev->set_multicast_list = mace_set_multicast;
255 dev->set_mac_address = mace_set_address;
257 printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]);
258 for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]);
259 printk("\n");
261 err = register_netdev(dev);
262 if (!err)
263 return 0;
265 free_netdev(dev);
266 return err;
270 * Reset the chip.
273 static void mace_reset(struct net_device *dev)
275 struct mace_data *mp = netdev_priv(dev);
276 volatile struct mace *mb = mp->mace;
277 int i;
279 /* soft-reset the chip */
280 i = 200;
281 while (--i) {
282 mb->biucc = SWRST;
283 if (mb->biucc & SWRST) {
284 udelay(10);
285 continue;
287 break;
289 if (!i) {
290 printk(KERN_ERR "macmace: cannot reset chip!\n");
291 return;
294 mb->maccc = 0; /* turn off tx, rx */
295 mb->imr = 0xFF; /* disable all intrs for now */
296 i = mb->ir;
298 mb->biucc = XMTSP_64;
299 mb->utr = RTRD;
300 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
302 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
303 mb->rcvfc = 0;
305 /* load up the hardware address */
306 __mace_set_address(dev, dev->dev_addr);
308 /* clear the multicast filter */
309 if (mp->chipid == BROKEN_ADDRCHG_REV)
310 mb->iac = LOGADDR;
311 else {
312 mb->iac = ADDRCHG | LOGADDR;
313 while ((mb->iac & ADDRCHG) != 0)
316 for (i = 0; i < 8; ++i)
317 mb->ladrf = 0;
319 /* done changing address */
320 if (mp->chipid != BROKEN_ADDRCHG_REV)
321 mb->iac = 0;
323 mb->plscc = PORTSEL_AUI;
327 * Load the address on a mace controller.
330 static void __mace_set_address(struct net_device *dev, void *addr)
332 struct mace_data *mp = netdev_priv(dev);
333 volatile struct mace *mb = mp->mace;
334 unsigned char *p = addr;
335 int i;
337 /* load up the hardware address */
338 if (mp->chipid == BROKEN_ADDRCHG_REV)
339 mb->iac = PHYADDR;
340 else {
341 mb->iac = ADDRCHG | PHYADDR;
342 while ((mb->iac & ADDRCHG) != 0)
345 for (i = 0; i < 6; ++i)
346 mb->padr = dev->dev_addr[i] = p[i];
347 if (mp->chipid != BROKEN_ADDRCHG_REV)
348 mb->iac = 0;
351 static int mace_set_address(struct net_device *dev, void *addr)
353 struct mace_data *mp = netdev_priv(dev);
354 volatile struct mace *mb = mp->mace;
355 unsigned long flags;
356 u8 maccc;
358 local_irq_save(flags);
360 maccc = mb->maccc;
362 __mace_set_address(dev, addr);
364 mb->maccc = maccc;
366 local_irq_restore(flags);
368 return 0;
372 * Open the Macintosh MACE. Most of this is playing with the DMA
373 * engine. The ethernet chip is quite friendly.
376 static int mace_open(struct net_device *dev)
378 struct mace_data *mp = netdev_priv(dev);
379 volatile struct mace *mb = mp->mace;
381 /* reset the chip */
382 mace_reset(dev);
384 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
385 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
386 return -EAGAIN;
388 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
389 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
390 free_irq(dev->irq, dev);
391 return -EAGAIN;
394 /* Allocate the DMA ring buffers */
396 mp->tx_ring = dma_alloc_coherent(mp->device,
397 N_TX_RING * MACE_BUFF_SIZE,
398 &mp->tx_ring_phys, GFP_KERNEL);
399 if (mp->tx_ring == NULL) {
400 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
401 goto out1;
404 mp->rx_ring = dma_alloc_coherent(mp->device,
405 N_RX_RING * MACE_BUFF_SIZE,
406 &mp->rx_ring_phys, GFP_KERNEL);
407 if (mp->rx_ring == NULL) {
408 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
409 goto out2;
412 mace_dma_off(dev);
414 /* Not sure what these do */
416 psc_write_word(PSC_ENETWR_CTL, 0x9000);
417 psc_write_word(PSC_ENETRD_CTL, 0x9000);
418 psc_write_word(PSC_ENETWR_CTL, 0x0400);
419 psc_write_word(PSC_ENETRD_CTL, 0x0400);
421 mace_rxdma_reset(dev);
422 mace_txdma_reset(dev);
424 /* turn it on! */
425 mb->maccc = ENXMT | ENRCV;
426 /* enable all interrupts except receive interrupts */
427 mb->imr = RCVINT;
428 return 0;
430 out2:
431 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
432 mp->tx_ring, mp->tx_ring_phys);
433 out1:
434 free_irq(dev->irq, dev);
435 free_irq(mp->dma_intr, dev);
436 return -ENOMEM;
440 * Shut down the mace and its interrupt channel
443 static int mace_close(struct net_device *dev)
445 struct mace_data *mp = netdev_priv(dev);
446 volatile struct mace *mb = mp->mace;
448 mb->maccc = 0; /* disable rx and tx */
449 mb->imr = 0xFF; /* disable all irqs */
450 mace_dma_off(dev); /* disable rx and tx dma */
452 return 0;
456 * Transmit a frame
459 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
461 struct mace_data *mp = netdev_priv(dev);
462 unsigned long flags;
464 /* Stop the queue since there's only the one buffer */
466 local_irq_save(flags);
467 netif_stop_queue(dev);
468 if (!mp->tx_count) {
469 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
470 local_irq_restore(flags);
471 return NETDEV_TX_BUSY;
473 mp->tx_count--;
474 local_irq_restore(flags);
476 mp->stats.tx_packets++;
477 mp->stats.tx_bytes += skb->len;
479 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
480 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
482 /* load the Tx DMA and fire it off */
484 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
485 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
486 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
488 mp->tx_slot ^= 0x10;
490 dev_kfree_skb(skb);
492 dev->trans_start = jiffies;
493 return NETDEV_TX_OK;
496 static struct net_device_stats *mace_stats(struct net_device *dev)
498 struct mace_data *mp = netdev_priv(dev);
499 return &mp->stats;
502 static void mace_set_multicast(struct net_device *dev)
504 struct mace_data *mp = netdev_priv(dev);
505 volatile struct mace *mb = mp->mace;
506 int i, j;
507 u32 crc;
508 u8 maccc;
509 unsigned long flags;
511 local_irq_save(flags);
512 maccc = mb->maccc;
513 mb->maccc &= ~PROM;
515 if (dev->flags & IFF_PROMISC) {
516 mb->maccc |= PROM;
517 } else {
518 unsigned char multicast_filter[8];
519 struct dev_mc_list *dmi = dev->mc_list;
521 if (dev->flags & IFF_ALLMULTI) {
522 for (i = 0; i < 8; i++) {
523 multicast_filter[i] = 0xFF;
525 } else {
526 for (i = 0; i < 8; i++)
527 multicast_filter[i] = 0;
528 for (i = 0; i < dev->mc_count; i++) {
529 crc = ether_crc_le(6, dmi->dmi_addr);
530 j = crc >> 26; /* bit number in multicast_filter */
531 multicast_filter[j >> 3] |= 1 << (j & 7);
532 dmi = dmi->next;
536 if (mp->chipid == BROKEN_ADDRCHG_REV)
537 mb->iac = LOGADDR;
538 else {
539 mb->iac = ADDRCHG | LOGADDR;
540 while ((mb->iac & ADDRCHG) != 0)
543 for (i = 0; i < 8; ++i)
544 mb->ladrf = multicast_filter[i];
545 if (mp->chipid != BROKEN_ADDRCHG_REV)
546 mb->iac = 0;
549 mb->maccc = maccc;
550 local_irq_restore(flags);
553 static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
555 volatile struct mace *mb = mp->mace;
556 static int mace_babbles, mace_jabbers;
558 if (intr & MPCO)
559 mp->stats.rx_missed_errors += 256;
560 mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */
561 if (intr & RNTPCO)
562 mp->stats.rx_length_errors += 256;
563 mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */
564 if (intr & CERR)
565 ++mp->stats.tx_heartbeat_errors;
566 if (intr & BABBLE)
567 if (mace_babbles++ < 4)
568 printk(KERN_DEBUG "macmace: babbling transmitter\n");
569 if (intr & JABBER)
570 if (mace_jabbers++ < 4)
571 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
574 static irqreturn_t mace_interrupt(int irq, void *dev_id)
576 struct net_device *dev = (struct net_device *) dev_id;
577 struct mace_data *mp = netdev_priv(dev);
578 volatile struct mace *mb = mp->mace;
579 int intr, fs;
580 unsigned long flags;
582 /* don't want the dma interrupt handler to fire */
583 local_irq_save(flags);
585 intr = mb->ir; /* read interrupt register */
586 mace_handle_misc_intrs(mp, intr);
588 if (intr & XMTINT) {
589 fs = mb->xmtfs;
590 if ((fs & XMTSV) == 0) {
591 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
592 mace_reset(dev);
594 * XXX mace likes to hang the machine after a xmtfs error.
595 * This is hard to reproduce, reseting *may* help
598 /* dma should have finished */
599 if (!mp->tx_count) {
600 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
602 /* Update stats */
603 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
604 ++mp->stats.tx_errors;
605 if (fs & LCAR)
606 ++mp->stats.tx_carrier_errors;
607 else if (fs & (UFLO|LCOL|RTRY)) {
608 ++mp->stats.tx_aborted_errors;
609 if (mb->xmtfs & UFLO) {
610 printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
611 mp->stats.tx_fifo_errors++;
612 mace_txdma_reset(dev);
618 if (mp->tx_count)
619 netif_wake_queue(dev);
621 local_irq_restore(flags);
623 return IRQ_HANDLED;
626 static void mace_tx_timeout(struct net_device *dev)
628 struct mace_data *mp = netdev_priv(dev);
629 volatile struct mace *mb = mp->mace;
630 unsigned long flags;
632 local_irq_save(flags);
634 /* turn off both tx and rx and reset the chip */
635 mb->maccc = 0;
636 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
637 mace_txdma_reset(dev);
638 mace_reset(dev);
640 /* restart rx dma */
641 mace_rxdma_reset(dev);
643 mp->tx_count = N_TX_RING;
644 netif_wake_queue(dev);
646 /* turn it on! */
647 mb->maccc = ENXMT | ENRCV;
648 /* enable all interrupts except receive interrupts */
649 mb->imr = RCVINT;
651 local_irq_restore(flags);
655 * Handle a newly arrived frame
658 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
660 struct mace_data *mp = netdev_priv(dev);
661 struct sk_buff *skb;
662 unsigned int frame_status = mf->rcvsts;
664 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
665 mp->stats.rx_errors++;
666 if (frame_status & RS_OFLO) {
667 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
668 mp->stats.rx_fifo_errors++;
670 if (frame_status & RS_CLSN)
671 mp->stats.collisions++;
672 if (frame_status & RS_FRAMERR)
673 mp->stats.rx_frame_errors++;
674 if (frame_status & RS_FCSERR)
675 mp->stats.rx_crc_errors++;
676 } else {
677 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
679 skb = dev_alloc_skb(frame_length + 2);
680 if (!skb) {
681 mp->stats.rx_dropped++;
682 return;
684 skb_reserve(skb, 2);
685 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
687 skb->protocol = eth_type_trans(skb, dev);
688 netif_rx(skb);
689 dev->last_rx = jiffies;
690 mp->stats.rx_packets++;
691 mp->stats.rx_bytes += frame_length;
696 * The PSC has passed us a DMA interrupt event.
699 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
701 struct net_device *dev = (struct net_device *) dev_id;
702 struct mace_data *mp = netdev_priv(dev);
703 int left, head;
704 u16 status;
705 u32 baka;
707 /* Not sure what this does */
709 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
710 if (!(baka & 0x60000000)) return IRQ_NONE;
713 * Process the read queue
716 status = psc_read_word(PSC_ENETRD_CTL);
718 if (status & 0x2000) {
719 mace_rxdma_reset(dev);
720 } else if (status & 0x0100) {
721 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
723 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
724 head = N_RX_RING - left;
726 /* Loop through the ring buffer and process new packages */
728 while (mp->rx_tail < head) {
729 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
730 + (mp->rx_tail * MACE_BUFF_SIZE)));
731 mp->rx_tail++;
734 /* If we're out of buffers in this ring then switch to */
735 /* the other set, otherwise just reactivate this one. */
737 if (!left) {
738 mace_load_rxdma_base(dev, mp->rx_slot);
739 mp->rx_slot ^= 0x10;
740 } else {
741 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
746 * Process the write queue
749 status = psc_read_word(PSC_ENETWR_CTL);
751 if (status & 0x2000) {
752 mace_txdma_reset(dev);
753 } else if (status & 0x0100) {
754 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
755 mp->tx_sloti ^= 0x10;
756 mp->tx_count++;
758 return IRQ_HANDLED;
761 MODULE_LICENSE("GPL");
762 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
764 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
766 struct net_device *dev = platform_get_drvdata(pdev);
767 struct mace_data *mp = netdev_priv(dev);
769 unregister_netdev(dev);
771 free_irq(dev->irq, dev);
772 free_irq(IRQ_MAC_MACE_DMA, dev);
774 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
775 mp->rx_ring, mp->rx_ring_phys);
776 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
777 mp->tx_ring, mp->tx_ring_phys);
779 free_netdev(dev);
781 return 0;
784 static struct platform_driver mac_mace_driver = {
785 .probe = mace_probe,
786 .remove = __devexit_p(mac_mace_device_remove),
787 .driver = {
788 .name = mac_mace_string,
792 static int __init mac_mace_init_module(void)
794 int err;
796 if ((err = platform_driver_register(&mac_mace_driver))) {
797 printk(KERN_ERR "Driver registration failed\n");
798 return err;
801 mac_mace_device = platform_device_alloc(mac_mace_string, 0);
802 if (!mac_mace_device)
803 goto out_unregister;
805 if (platform_device_add(mac_mace_device)) {
806 platform_device_put(mac_mace_device);
807 mac_mace_device = NULL;
810 return 0;
812 out_unregister:
813 platform_driver_unregister(&mac_mace_driver);
815 return -ENOMEM;
818 static void __exit mac_mace_cleanup_module(void)
820 platform_driver_unregister(&mac_mace_driver);
822 if (mac_mace_device) {
823 platform_device_unregister(mac_mace_device);
824 mac_mace_device = NULL;
828 module_init(mac_mace_init_module);
829 module_exit(mac_mace_cleanup_module);