firewire: allocate broadcast channel in hardware
[firewire-audio.git] / drivers / firewire / ohci.c
blob51a55808d88a8ec9f47d13cf4ad26d1fb7286fc9
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
49 #include "core.h"
50 #include "ohci.h"
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
95 struct context;
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
123 struct list_head buffer_list;
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
129 struct descriptor_buffer *buffer_tail;
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
135 struct descriptor *last;
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
141 struct descriptor *prev;
143 descriptor_callback_t callback;
145 struct tasklet_struct tasklet;
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
163 #define CONFIG_ROM_SIZE 1024
165 struct fw_ohci {
166 struct fw_card card;
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
173 unsigned int pri_req_max;
174 unsigned int features;
175 u32 bus_time;
176 bool is_root;
179 * Spinlock for accessing fw_ohci data. Never call out of
180 * this driver with this lock held.
182 spinlock_t lock;
184 struct ar_context ar_request_ctx;
185 struct ar_context ar_response_ctx;
186 struct context at_request_ctx;
187 struct context at_response_ctx;
189 u32 it_context_mask;
190 struct iso_context *it_context_list;
191 u64 ir_context_channels;
192 u32 ir_context_mask;
193 struct iso_context *ir_context_list;
195 __be32 *config_rom;
196 dma_addr_t config_rom_bus;
197 __be32 *next_config_rom;
198 dma_addr_t next_config_rom_bus;
199 __be32 next_header;
201 __le32 *self_id_cpu;
202 dma_addr_t self_id_bus;
203 struct tasklet_struct bus_reset_tasklet;
205 u32 self_id_buffer[512];
208 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 return container_of(card, struct fw_ohci, card);
213 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
214 #define IR_CONTEXT_BUFFER_FILL 0x80000000
215 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
216 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
217 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
218 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
220 #define CONTEXT_RUN 0x8000
221 #define CONTEXT_WAKE 0x1000
222 #define CONTEXT_DEAD 0x0800
223 #define CONTEXT_ACTIVE 0x0400
225 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
226 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
227 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
229 #define OHCI1394_REGISTER_SIZE 0x800
230 #define OHCI_LOOP_COUNT 500
231 #define OHCI1394_PCI_HCI_Control 0x40
232 #define SELF_ID_BUF_SIZE 0x800
233 #define OHCI_TCODE_PHY_PACKET 0x0e
234 #define OHCI_VERSION_1_1 0x010010
236 static char ohci_driver_name[] = KBUILD_MODNAME;
238 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
239 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
241 #define QUIRK_CYCLE_TIMER 1
242 #define QUIRK_RESET_PACKET 2
243 #define QUIRK_BE_HEADERS 4
244 #define QUIRK_NO_1394A 8
245 #define QUIRK_NO_MSI 16
247 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
248 static const struct {
249 unsigned short vendor, device, flags;
250 } ohci_quirks[] = {
251 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
252 QUIRK_RESET_PACKET |
253 QUIRK_NO_1394A},
254 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
255 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
256 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
257 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
258 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
259 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
262 /* This overrides anything that was found in ohci_quirks[]. */
263 static int param_quirks;
264 module_param_named(quirks, param_quirks, int, 0644);
265 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
266 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
267 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
268 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
269 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
270 ", disable MSI = " __stringify(QUIRK_NO_MSI)
271 ")");
273 #define OHCI_PARAM_DEBUG_AT_AR 1
274 #define OHCI_PARAM_DEBUG_SELFIDS 2
275 #define OHCI_PARAM_DEBUG_IRQS 4
276 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
278 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
280 static int param_debug;
281 module_param_named(debug, param_debug, int, 0644);
282 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
283 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
284 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
285 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
286 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
287 ", or a combination, or all = -1)");
289 static void log_irqs(u32 evt)
291 if (likely(!(param_debug &
292 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
293 return;
295 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
296 !(evt & OHCI1394_busReset))
297 return;
299 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
300 evt & OHCI1394_selfIDComplete ? " selfID" : "",
301 evt & OHCI1394_RQPkt ? " AR_req" : "",
302 evt & OHCI1394_RSPkt ? " AR_resp" : "",
303 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
304 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
305 evt & OHCI1394_isochRx ? " IR" : "",
306 evt & OHCI1394_isochTx ? " IT" : "",
307 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
308 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
309 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
310 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
311 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
312 evt & OHCI1394_busReset ? " busReset" : "",
313 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
314 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
315 OHCI1394_respTxComplete | OHCI1394_isochRx |
316 OHCI1394_isochTx | OHCI1394_postedWriteErr |
317 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
318 OHCI1394_cycleInconsistent |
319 OHCI1394_regAccessFail | OHCI1394_busReset)
320 ? " ?" : "");
323 static const char *speed[] = {
324 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
326 static const char *power[] = {
327 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
328 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
330 static const char port[] = { '.', '-', 'p', 'c', };
332 static char _p(u32 *s, int shift)
334 return port[*s >> shift & 3];
337 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
339 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
340 return;
342 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
343 self_id_count, generation, node_id);
345 for (; self_id_count--; ++s)
346 if ((*s & 1 << 23) == 0)
347 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
348 "%s gc=%d %s %s%s%s\n",
349 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
350 speed[*s >> 14 & 3], *s >> 16 & 63,
351 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
352 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
353 else
354 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
355 *s, *s >> 24 & 63,
356 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
357 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
360 static const char *evts[] = {
361 [0x00] = "evt_no_status", [0x01] = "-reserved-",
362 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
363 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
364 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
365 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
366 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
367 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
368 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
369 [0x10] = "-reserved-", [0x11] = "ack_complete",
370 [0x12] = "ack_pending ", [0x13] = "-reserved-",
371 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
372 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
373 [0x18] = "-reserved-", [0x19] = "-reserved-",
374 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
375 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
376 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
377 [0x20] = "pending/cancelled",
379 static const char *tcodes[] = {
380 [0x0] = "QW req", [0x1] = "BW req",
381 [0x2] = "W resp", [0x3] = "-reserved-",
382 [0x4] = "QR req", [0x5] = "BR req",
383 [0x6] = "QR resp", [0x7] = "BR resp",
384 [0x8] = "cycle start", [0x9] = "Lk req",
385 [0xa] = "async stream packet", [0xb] = "Lk resp",
386 [0xc] = "-reserved-", [0xd] = "-reserved-",
387 [0xe] = "link internal", [0xf] = "-reserved-",
389 static const char *phys[] = {
390 [0x0] = "phy config packet", [0x1] = "link-on packet",
391 [0x2] = "self-id packet", [0x3] = "-reserved-",
394 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
396 int tcode = header[0] >> 4 & 0xf;
397 char specific[12];
399 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
400 return;
402 if (unlikely(evt >= ARRAY_SIZE(evts)))
403 evt = 0x1f;
405 if (evt == OHCI1394_evt_bus_reset) {
406 fw_notify("A%c evt_bus_reset, generation %d\n",
407 dir, (header[2] >> 16) & 0xff);
408 return;
411 if (header[0] == ~header[1]) {
412 fw_notify("A%c %s, %s, %08x\n",
413 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
414 return;
417 switch (tcode) {
418 case 0x0: case 0x6: case 0x8:
419 snprintf(specific, sizeof(specific), " = %08x",
420 be32_to_cpu((__force __be32)header[3]));
421 break;
422 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
423 snprintf(specific, sizeof(specific), " %x,%x",
424 header[3] >> 16, header[3] & 0xffff);
425 break;
426 default:
427 specific[0] = '\0';
430 switch (tcode) {
431 case 0xe: case 0xa:
432 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
433 break;
434 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
435 fw_notify("A%c spd %x tl %02x, "
436 "%04x -> %04x, %s, "
437 "%s, %04x%08x%s\n",
438 dir, speed, header[0] >> 10 & 0x3f,
439 header[1] >> 16, header[0] >> 16, evts[evt],
440 tcodes[tcode], header[1] & 0xffff, header[2], specific);
441 break;
442 default:
443 fw_notify("A%c spd %x tl %02x, "
444 "%04x -> %04x, %s, "
445 "%s%s\n",
446 dir, speed, header[0] >> 10 & 0x3f,
447 header[1] >> 16, header[0] >> 16, evts[evt],
448 tcodes[tcode], specific);
452 #else
454 #define param_debug 0
455 static inline void log_irqs(u32 evt) {}
456 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
457 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
459 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
461 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
463 writel(data, ohci->registers + offset);
466 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
468 return readl(ohci->registers + offset);
471 static inline void flush_writes(const struct fw_ohci *ohci)
473 /* Do a dummy read to flush writes. */
474 reg_read(ohci, OHCI1394_Version);
477 static int read_phy_reg(struct fw_ohci *ohci, int addr)
479 u32 val;
480 int i;
482 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
483 for (i = 0; i < 3 + 100; i++) {
484 val = reg_read(ohci, OHCI1394_PhyControl);
485 if (val & OHCI1394_PhyControl_ReadDone)
486 return OHCI1394_PhyControl_ReadData(val);
489 * Try a few times without waiting. Sleeping is necessary
490 * only when the link/PHY interface is busy.
492 if (i >= 3)
493 msleep(1);
495 fw_error("failed to read phy reg\n");
497 return -EBUSY;
500 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
502 int i;
504 reg_write(ohci, OHCI1394_PhyControl,
505 OHCI1394_PhyControl_Write(addr, val));
506 for (i = 0; i < 3 + 100; i++) {
507 val = reg_read(ohci, OHCI1394_PhyControl);
508 if (!(val & OHCI1394_PhyControl_WritePending))
509 return 0;
511 if (i >= 3)
512 msleep(1);
514 fw_error("failed to write phy reg\n");
516 return -EBUSY;
519 static int ohci_update_phy_reg(struct fw_card *card, int addr,
520 int clear_bits, int set_bits)
522 struct fw_ohci *ohci = fw_ohci(card);
523 int ret;
525 ret = read_phy_reg(ohci, addr);
526 if (ret < 0)
527 return ret;
530 * The interrupt status bits are cleared by writing a one bit.
531 * Avoid clearing them unless explicitly requested in set_bits.
533 if (addr == 5)
534 clear_bits |= PHY_INT_STATUS_BITS;
536 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
539 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541 int ret;
543 ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
544 if (ret < 0)
545 return ret;
547 return read_phy_reg(ohci, addr);
550 static int ar_context_add_page(struct ar_context *ctx)
552 struct device *dev = ctx->ohci->card.device;
553 struct ar_buffer *ab;
554 dma_addr_t uninitialized_var(ab_bus);
555 size_t offset;
557 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
558 if (ab == NULL)
559 return -ENOMEM;
561 ab->next = NULL;
562 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
563 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
564 DESCRIPTOR_STATUS |
565 DESCRIPTOR_BRANCH_ALWAYS);
566 offset = offsetof(struct ar_buffer, data);
567 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
568 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
569 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
570 ab->descriptor.branch_address = 0;
572 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
573 ctx->last_buffer->next = ab;
574 ctx->last_buffer = ab;
576 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
577 flush_writes(ctx->ohci);
579 return 0;
582 static void ar_context_release(struct ar_context *ctx)
584 struct ar_buffer *ab, *ab_next;
585 size_t offset;
586 dma_addr_t ab_bus;
588 for (ab = ctx->current_buffer; ab; ab = ab_next) {
589 ab_next = ab->next;
590 offset = offsetof(struct ar_buffer, data);
591 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
592 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
593 ab, ab_bus);
597 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
598 #define cond_le32_to_cpu(v) \
599 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
600 #else
601 #define cond_le32_to_cpu(v) le32_to_cpu(v)
602 #endif
604 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
606 struct fw_ohci *ohci = ctx->ohci;
607 struct fw_packet p;
608 u32 status, length, tcode;
609 int evt;
611 p.header[0] = cond_le32_to_cpu(buffer[0]);
612 p.header[1] = cond_le32_to_cpu(buffer[1]);
613 p.header[2] = cond_le32_to_cpu(buffer[2]);
615 tcode = (p.header[0] >> 4) & 0x0f;
616 switch (tcode) {
617 case TCODE_WRITE_QUADLET_REQUEST:
618 case TCODE_READ_QUADLET_RESPONSE:
619 p.header[3] = (__force __u32) buffer[3];
620 p.header_length = 16;
621 p.payload_length = 0;
622 break;
624 case TCODE_READ_BLOCK_REQUEST :
625 p.header[3] = cond_le32_to_cpu(buffer[3]);
626 p.header_length = 16;
627 p.payload_length = 0;
628 break;
630 case TCODE_WRITE_BLOCK_REQUEST:
631 case TCODE_READ_BLOCK_RESPONSE:
632 case TCODE_LOCK_REQUEST:
633 case TCODE_LOCK_RESPONSE:
634 p.header[3] = cond_le32_to_cpu(buffer[3]);
635 p.header_length = 16;
636 p.payload_length = p.header[3] >> 16;
637 break;
639 case TCODE_WRITE_RESPONSE:
640 case TCODE_READ_QUADLET_REQUEST:
641 case OHCI_TCODE_PHY_PACKET:
642 p.header_length = 12;
643 p.payload_length = 0;
644 break;
646 default:
647 /* FIXME: Stop context, discard everything, and restart? */
648 p.header_length = 0;
649 p.payload_length = 0;
652 p.payload = (void *) buffer + p.header_length;
654 /* FIXME: What to do about evt_* errors? */
655 length = (p.header_length + p.payload_length + 3) / 4;
656 status = cond_le32_to_cpu(buffer[length]);
657 evt = (status >> 16) & 0x1f;
659 p.ack = evt - 16;
660 p.speed = (status >> 21) & 0x7;
661 p.timestamp = status & 0xffff;
662 p.generation = ohci->request_generation;
664 log_ar_at_event('R', p.speed, p.header, evt);
667 * The OHCI bus reset handler synthesizes a phy packet with
668 * the new generation number when a bus reset happens (see
669 * section 8.4.2.3). This helps us determine when a request
670 * was received and make sure we send the response in the same
671 * generation. We only need this for requests; for responses
672 * we use the unique tlabel for finding the matching
673 * request.
675 * Alas some chips sometimes emit bus reset packets with a
676 * wrong generation. We set the correct generation for these
677 * at a slightly incorrect time (in bus_reset_tasklet).
679 if (evt == OHCI1394_evt_bus_reset) {
680 if (!(ohci->quirks & QUIRK_RESET_PACKET))
681 ohci->request_generation = (p.header[2] >> 16) & 0xff;
682 } else if (ctx == &ohci->ar_request_ctx) {
683 fw_core_handle_request(&ohci->card, &p);
684 } else {
685 fw_core_handle_response(&ohci->card, &p);
688 return buffer + length + 1;
691 static void ar_context_tasklet(unsigned long data)
693 struct ar_context *ctx = (struct ar_context *)data;
694 struct fw_ohci *ohci = ctx->ohci;
695 struct ar_buffer *ab;
696 struct descriptor *d;
697 void *buffer, *end;
699 ab = ctx->current_buffer;
700 d = &ab->descriptor;
702 if (d->res_count == 0) {
703 size_t size, rest, offset;
704 dma_addr_t start_bus;
705 void *start;
708 * This descriptor is finished and we may have a
709 * packet split across this and the next buffer. We
710 * reuse the page for reassembling the split packet.
713 offset = offsetof(struct ar_buffer, data);
714 start = buffer = ab;
715 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
717 ab = ab->next;
718 d = &ab->descriptor;
719 size = buffer + PAGE_SIZE - ctx->pointer;
720 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
721 memmove(buffer, ctx->pointer, size);
722 memcpy(buffer + size, ab->data, rest);
723 ctx->current_buffer = ab;
724 ctx->pointer = (void *) ab->data + rest;
725 end = buffer + size + rest;
727 while (buffer < end)
728 buffer = handle_ar_packet(ctx, buffer);
730 dma_free_coherent(ohci->card.device, PAGE_SIZE,
731 start, start_bus);
732 ar_context_add_page(ctx);
733 } else {
734 buffer = ctx->pointer;
735 ctx->pointer = end =
736 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
738 while (buffer < end)
739 buffer = handle_ar_packet(ctx, buffer);
743 static int ar_context_init(struct ar_context *ctx,
744 struct fw_ohci *ohci, u32 regs)
746 struct ar_buffer ab;
748 ctx->regs = regs;
749 ctx->ohci = ohci;
750 ctx->last_buffer = &ab;
751 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
753 ar_context_add_page(ctx);
754 ar_context_add_page(ctx);
755 ctx->current_buffer = ab.next;
756 ctx->pointer = ctx->current_buffer->data;
758 return 0;
761 static void ar_context_run(struct ar_context *ctx)
763 struct ar_buffer *ab = ctx->current_buffer;
764 dma_addr_t ab_bus;
765 size_t offset;
767 offset = offsetof(struct ar_buffer, data);
768 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
770 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
771 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
772 flush_writes(ctx->ohci);
775 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
777 int b, key;
779 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
780 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
782 /* figure out which descriptor the branch address goes in */
783 if (z == 2 && (b == 3 || key == 2))
784 return d;
785 else
786 return d + z - 1;
789 static void context_tasklet(unsigned long data)
791 struct context *ctx = (struct context *) data;
792 struct descriptor *d, *last;
793 u32 address;
794 int z;
795 struct descriptor_buffer *desc;
797 desc = list_entry(ctx->buffer_list.next,
798 struct descriptor_buffer, list);
799 last = ctx->last;
800 while (last->branch_address != 0) {
801 struct descriptor_buffer *old_desc = desc;
802 address = le32_to_cpu(last->branch_address);
803 z = address & 0xf;
804 address &= ~0xf;
806 /* If the branch address points to a buffer outside of the
807 * current buffer, advance to the next buffer. */
808 if (address < desc->buffer_bus ||
809 address >= desc->buffer_bus + desc->used)
810 desc = list_entry(desc->list.next,
811 struct descriptor_buffer, list);
812 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
813 last = find_branch_descriptor(d, z);
815 if (!ctx->callback(ctx, d, last))
816 break;
818 if (old_desc != desc) {
819 /* If we've advanced to the next buffer, move the
820 * previous buffer to the free list. */
821 unsigned long flags;
822 old_desc->used = 0;
823 spin_lock_irqsave(&ctx->ohci->lock, flags);
824 list_move_tail(&old_desc->list, &ctx->buffer_list);
825 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
827 ctx->last = last;
832 * Allocate a new buffer and add it to the list of free buffers for this
833 * context. Must be called with ohci->lock held.
835 static int context_add_buffer(struct context *ctx)
837 struct descriptor_buffer *desc;
838 dma_addr_t uninitialized_var(bus_addr);
839 int offset;
842 * 16MB of descriptors should be far more than enough for any DMA
843 * program. This will catch run-away userspace or DoS attacks.
845 if (ctx->total_allocation >= 16*1024*1024)
846 return -ENOMEM;
848 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
849 &bus_addr, GFP_ATOMIC);
850 if (!desc)
851 return -ENOMEM;
853 offset = (void *)&desc->buffer - (void *)desc;
854 desc->buffer_size = PAGE_SIZE - offset;
855 desc->buffer_bus = bus_addr + offset;
856 desc->used = 0;
858 list_add_tail(&desc->list, &ctx->buffer_list);
859 ctx->total_allocation += PAGE_SIZE;
861 return 0;
864 static int context_init(struct context *ctx, struct fw_ohci *ohci,
865 u32 regs, descriptor_callback_t callback)
867 ctx->ohci = ohci;
868 ctx->regs = regs;
869 ctx->total_allocation = 0;
871 INIT_LIST_HEAD(&ctx->buffer_list);
872 if (context_add_buffer(ctx) < 0)
873 return -ENOMEM;
875 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
876 struct descriptor_buffer, list);
878 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
879 ctx->callback = callback;
882 * We put a dummy descriptor in the buffer that has a NULL
883 * branch address and looks like it's been sent. That way we
884 * have a descriptor to append DMA programs to.
886 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
887 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
888 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
889 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
890 ctx->last = ctx->buffer_tail->buffer;
891 ctx->prev = ctx->buffer_tail->buffer;
893 return 0;
896 static void context_release(struct context *ctx)
898 struct fw_card *card = &ctx->ohci->card;
899 struct descriptor_buffer *desc, *tmp;
901 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
902 dma_free_coherent(card->device, PAGE_SIZE, desc,
903 desc->buffer_bus -
904 ((void *)&desc->buffer - (void *)desc));
907 /* Must be called with ohci->lock held */
908 static struct descriptor *context_get_descriptors(struct context *ctx,
909 int z, dma_addr_t *d_bus)
911 struct descriptor *d = NULL;
912 struct descriptor_buffer *desc = ctx->buffer_tail;
914 if (z * sizeof(*d) > desc->buffer_size)
915 return NULL;
917 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
918 /* No room for the descriptor in this buffer, so advance to the
919 * next one. */
921 if (desc->list.next == &ctx->buffer_list) {
922 /* If there is no free buffer next in the list,
923 * allocate one. */
924 if (context_add_buffer(ctx) < 0)
925 return NULL;
927 desc = list_entry(desc->list.next,
928 struct descriptor_buffer, list);
929 ctx->buffer_tail = desc;
932 d = desc->buffer + desc->used / sizeof(*d);
933 memset(d, 0, z * sizeof(*d));
934 *d_bus = desc->buffer_bus + desc->used;
936 return d;
939 static void context_run(struct context *ctx, u32 extra)
941 struct fw_ohci *ohci = ctx->ohci;
943 reg_write(ohci, COMMAND_PTR(ctx->regs),
944 le32_to_cpu(ctx->last->branch_address));
945 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
946 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
947 flush_writes(ohci);
950 static void context_append(struct context *ctx,
951 struct descriptor *d, int z, int extra)
953 dma_addr_t d_bus;
954 struct descriptor_buffer *desc = ctx->buffer_tail;
956 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
958 desc->used += (z + extra) * sizeof(*d);
959 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
960 ctx->prev = find_branch_descriptor(d, z);
962 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
963 flush_writes(ctx->ohci);
966 static void context_stop(struct context *ctx)
968 u32 reg;
969 int i;
971 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
972 flush_writes(ctx->ohci);
974 for (i = 0; i < 10; i++) {
975 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
976 if ((reg & CONTEXT_ACTIVE) == 0)
977 return;
979 mdelay(1);
981 fw_error("Error: DMA context still active (0x%08x)\n", reg);
984 struct driver_data {
985 struct fw_packet *packet;
989 * This function apppends a packet to the DMA queue for transmission.
990 * Must always be called with the ochi->lock held to ensure proper
991 * generation handling and locking around packet queue manipulation.
993 static int at_context_queue_packet(struct context *ctx,
994 struct fw_packet *packet)
996 struct fw_ohci *ohci = ctx->ohci;
997 dma_addr_t d_bus, uninitialized_var(payload_bus);
998 struct driver_data *driver_data;
999 struct descriptor *d, *last;
1000 __le32 *header;
1001 int z, tcode;
1002 u32 reg;
1004 d = context_get_descriptors(ctx, 4, &d_bus);
1005 if (d == NULL) {
1006 packet->ack = RCODE_SEND_ERROR;
1007 return -1;
1010 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1011 d[0].res_count = cpu_to_le16(packet->timestamp);
1014 * The DMA format for asyncronous link packets is different
1015 * from the IEEE1394 layout, so shift the fields around
1016 * accordingly. If header_length is 8, it's a PHY packet, to
1017 * which we need to prepend an extra quadlet.
1020 header = (__le32 *) &d[1];
1021 switch (packet->header_length) {
1022 case 16:
1023 case 12:
1024 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1025 (packet->speed << 16));
1026 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1027 (packet->header[0] & 0xffff0000));
1028 header[2] = cpu_to_le32(packet->header[2]);
1030 tcode = (packet->header[0] >> 4) & 0x0f;
1031 if (TCODE_IS_BLOCK_PACKET(tcode))
1032 header[3] = cpu_to_le32(packet->header[3]);
1033 else
1034 header[3] = (__force __le32) packet->header[3];
1036 d[0].req_count = cpu_to_le16(packet->header_length);
1037 break;
1039 case 8:
1040 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1041 (packet->speed << 16));
1042 header[1] = cpu_to_le32(packet->header[0]);
1043 header[2] = cpu_to_le32(packet->header[1]);
1044 d[0].req_count = cpu_to_le16(12);
1045 break;
1047 case 4:
1048 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1049 (packet->speed << 16));
1050 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1051 d[0].req_count = cpu_to_le16(8);
1052 break;
1054 default:
1055 /* BUG(); */
1056 packet->ack = RCODE_SEND_ERROR;
1057 return -1;
1060 driver_data = (struct driver_data *) &d[3];
1061 driver_data->packet = packet;
1062 packet->driver_data = driver_data;
1064 if (packet->payload_length > 0) {
1065 payload_bus =
1066 dma_map_single(ohci->card.device, packet->payload,
1067 packet->payload_length, DMA_TO_DEVICE);
1068 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1069 packet->ack = RCODE_SEND_ERROR;
1070 return -1;
1072 packet->payload_bus = payload_bus;
1073 packet->payload_mapped = true;
1075 d[2].req_count = cpu_to_le16(packet->payload_length);
1076 d[2].data_address = cpu_to_le32(payload_bus);
1077 last = &d[2];
1078 z = 3;
1079 } else {
1080 last = &d[0];
1081 z = 2;
1084 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1085 DESCRIPTOR_IRQ_ALWAYS |
1086 DESCRIPTOR_BRANCH_ALWAYS);
1089 * If the controller and packet generations don't match, we need to
1090 * bail out and try again. If IntEvent.busReset is set, the AT context
1091 * is halted, so appending to the context and trying to run it is
1092 * futile. Most controllers do the right thing and just flush the AT
1093 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1094 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1095 * up stalling out. So we just bail out in software and try again
1096 * later, and everyone is happy.
1097 * FIXME: Document how the locking works.
1099 if (ohci->generation != packet->generation ||
1100 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1101 if (packet->payload_mapped)
1102 dma_unmap_single(ohci->card.device, payload_bus,
1103 packet->payload_length, DMA_TO_DEVICE);
1104 packet->ack = RCODE_GENERATION;
1105 return -1;
1108 context_append(ctx, d, z, 4 - z);
1110 /* If the context isn't already running, start it up. */
1111 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1112 if ((reg & CONTEXT_RUN) == 0)
1113 context_run(ctx, 0);
1115 return 0;
1118 static int handle_at_packet(struct context *context,
1119 struct descriptor *d,
1120 struct descriptor *last)
1122 struct driver_data *driver_data;
1123 struct fw_packet *packet;
1124 struct fw_ohci *ohci = context->ohci;
1125 int evt;
1127 if (last->transfer_status == 0)
1128 /* This descriptor isn't done yet, stop iteration. */
1129 return 0;
1131 driver_data = (struct driver_data *) &d[3];
1132 packet = driver_data->packet;
1133 if (packet == NULL)
1134 /* This packet was cancelled, just continue. */
1135 return 1;
1137 if (packet->payload_mapped)
1138 dma_unmap_single(ohci->card.device, packet->payload_bus,
1139 packet->payload_length, DMA_TO_DEVICE);
1141 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1142 packet->timestamp = le16_to_cpu(last->res_count);
1144 log_ar_at_event('T', packet->speed, packet->header, evt);
1146 switch (evt) {
1147 case OHCI1394_evt_timeout:
1148 /* Async response transmit timed out. */
1149 packet->ack = RCODE_CANCELLED;
1150 break;
1152 case OHCI1394_evt_flushed:
1154 * The packet was flushed should give same error as
1155 * when we try to use a stale generation count.
1157 packet->ack = RCODE_GENERATION;
1158 break;
1160 case OHCI1394_evt_missing_ack:
1162 * Using a valid (current) generation count, but the
1163 * node is not on the bus or not sending acks.
1165 packet->ack = RCODE_NO_ACK;
1166 break;
1168 case ACK_COMPLETE + 0x10:
1169 case ACK_PENDING + 0x10:
1170 case ACK_BUSY_X + 0x10:
1171 case ACK_BUSY_A + 0x10:
1172 case ACK_BUSY_B + 0x10:
1173 case ACK_DATA_ERROR + 0x10:
1174 case ACK_TYPE_ERROR + 0x10:
1175 packet->ack = evt - 0x10;
1176 break;
1178 default:
1179 packet->ack = RCODE_SEND_ERROR;
1180 break;
1183 packet->callback(packet, &ohci->card, packet->ack);
1185 return 1;
1188 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1189 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1190 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1191 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1192 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1194 static void handle_local_rom(struct fw_ohci *ohci,
1195 struct fw_packet *packet, u32 csr)
1197 struct fw_packet response;
1198 int tcode, length, i;
1200 tcode = HEADER_GET_TCODE(packet->header[0]);
1201 if (TCODE_IS_BLOCK_PACKET(tcode))
1202 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1203 else
1204 length = 4;
1206 i = csr - CSR_CONFIG_ROM;
1207 if (i + length > CONFIG_ROM_SIZE) {
1208 fw_fill_response(&response, packet->header,
1209 RCODE_ADDRESS_ERROR, NULL, 0);
1210 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1211 fw_fill_response(&response, packet->header,
1212 RCODE_TYPE_ERROR, NULL, 0);
1213 } else {
1214 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1215 (void *) ohci->config_rom + i, length);
1218 fw_core_handle_response(&ohci->card, &response);
1221 static void handle_local_lock(struct fw_ohci *ohci,
1222 struct fw_packet *packet, u32 csr)
1224 struct fw_packet response;
1225 int tcode, length, ext_tcode, sel;
1226 __be32 *payload, lock_old;
1227 u32 lock_arg, lock_data;
1229 tcode = HEADER_GET_TCODE(packet->header[0]);
1230 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1231 payload = packet->payload;
1232 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1234 if (tcode == TCODE_LOCK_REQUEST &&
1235 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1236 lock_arg = be32_to_cpu(payload[0]);
1237 lock_data = be32_to_cpu(payload[1]);
1238 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1239 lock_arg = 0;
1240 lock_data = 0;
1241 } else {
1242 fw_fill_response(&response, packet->header,
1243 RCODE_TYPE_ERROR, NULL, 0);
1244 goto out;
1247 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1248 reg_write(ohci, OHCI1394_CSRData, lock_data);
1249 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1250 reg_write(ohci, OHCI1394_CSRControl, sel);
1252 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1253 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1254 else
1255 fw_notify("swap not done yet\n");
1257 fw_fill_response(&response, packet->header,
1258 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1259 out:
1260 fw_core_handle_response(&ohci->card, &response);
1263 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1265 u64 offset;
1266 u32 csr;
1268 if (ctx == &ctx->ohci->at_request_ctx) {
1269 packet->ack = ACK_PENDING;
1270 packet->callback(packet, &ctx->ohci->card, packet->ack);
1273 offset =
1274 ((unsigned long long)
1275 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1276 packet->header[2];
1277 csr = offset - CSR_REGISTER_BASE;
1279 /* Handle config rom reads. */
1280 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1281 handle_local_rom(ctx->ohci, packet, csr);
1282 else switch (csr) {
1283 case CSR_BUS_MANAGER_ID:
1284 case CSR_BANDWIDTH_AVAILABLE:
1285 case CSR_CHANNELS_AVAILABLE_HI:
1286 case CSR_CHANNELS_AVAILABLE_LO:
1287 handle_local_lock(ctx->ohci, packet, csr);
1288 break;
1289 default:
1290 if (ctx == &ctx->ohci->at_request_ctx)
1291 fw_core_handle_request(&ctx->ohci->card, packet);
1292 else
1293 fw_core_handle_response(&ctx->ohci->card, packet);
1294 break;
1297 if (ctx == &ctx->ohci->at_response_ctx) {
1298 packet->ack = ACK_COMPLETE;
1299 packet->callback(packet, &ctx->ohci->card, packet->ack);
1303 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1305 unsigned long flags;
1306 int ret;
1308 spin_lock_irqsave(&ctx->ohci->lock, flags);
1310 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1311 ctx->ohci->generation == packet->generation) {
1312 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1313 handle_local_request(ctx, packet);
1314 return;
1317 ret = at_context_queue_packet(ctx, packet);
1318 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1320 if (ret < 0)
1321 packet->callback(packet, &ctx->ohci->card, packet->ack);
1325 static u32 cycle_timer_ticks(u32 cycle_timer)
1327 u32 ticks;
1329 ticks = cycle_timer & 0xfff;
1330 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1331 ticks += (3072 * 8000) * (cycle_timer >> 25);
1333 return ticks;
1337 * Some controllers exhibit one or more of the following bugs when updating the
1338 * iso cycle timer register:
1339 * - When the lowest six bits are wrapping around to zero, a read that happens
1340 * at the same time will return garbage in the lowest ten bits.
1341 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1342 * not incremented for about 60 ns.
1343 * - Occasionally, the entire register reads zero.
1345 * To catch these, we read the register three times and ensure that the
1346 * difference between each two consecutive reads is approximately the same, i.e.
1347 * less than twice the other. Furthermore, any negative difference indicates an
1348 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1349 * execute, so we have enough precision to compute the ratio of the differences.)
1351 static u32 get_cycle_time(struct fw_ohci *ohci)
1353 u32 c0, c1, c2;
1354 u32 t0, t1, t2;
1355 s32 diff01, diff12;
1356 int i;
1358 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1360 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1361 i = 0;
1362 c1 = c2;
1363 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1364 do {
1365 c0 = c1;
1366 c1 = c2;
1367 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1368 t0 = cycle_timer_ticks(c0);
1369 t1 = cycle_timer_ticks(c1);
1370 t2 = cycle_timer_ticks(c2);
1371 diff01 = t1 - t0;
1372 diff12 = t2 - t1;
1373 } while ((diff01 <= 0 || diff12 <= 0 ||
1374 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1375 && i++ < 20);
1378 return c2;
1382 * This function has to be called at least every 64 seconds. The bus_time
1383 * field stores not only the upper 25 bits of the BUS_TIME register but also
1384 * the most significant bit of the cycle timer in bit 6 so that we can detect
1385 * changes in this bit.
1387 static u32 update_bus_time(struct fw_ohci *ohci)
1389 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1391 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1392 ohci->bus_time += 0x40;
1394 return ohci->bus_time | cycle_time_seconds;
1397 static void bus_reset_tasklet(unsigned long data)
1399 struct fw_ohci *ohci = (struct fw_ohci *)data;
1400 int self_id_count, i, j, reg;
1401 int generation, new_generation;
1402 unsigned long flags;
1403 void *free_rom = NULL;
1404 dma_addr_t free_rom_bus = 0;
1405 bool is_new_root;
1407 reg = reg_read(ohci, OHCI1394_NodeID);
1408 if (!(reg & OHCI1394_NodeID_idValid)) {
1409 fw_notify("node ID not valid, new bus reset in progress\n");
1410 return;
1412 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1413 fw_notify("malconfigured bus\n");
1414 return;
1416 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1417 OHCI1394_NodeID_nodeNumber);
1419 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1420 if (!(ohci->is_root && is_new_root))
1421 reg_write(ohci, OHCI1394_LinkControlSet,
1422 OHCI1394_LinkControl_cycleMaster);
1423 ohci->is_root = is_new_root;
1425 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1426 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1427 fw_notify("inconsistent self IDs\n");
1428 return;
1431 * The count in the SelfIDCount register is the number of
1432 * bytes in the self ID receive buffer. Since we also receive
1433 * the inverted quadlets and a header quadlet, we shift one
1434 * bit extra to get the actual number of self IDs.
1436 self_id_count = (reg >> 3) & 0xff;
1437 if (self_id_count == 0 || self_id_count > 252) {
1438 fw_notify("inconsistent self IDs\n");
1439 return;
1441 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1442 rmb();
1444 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1445 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1446 fw_notify("inconsistent self IDs\n");
1447 return;
1449 ohci->self_id_buffer[j] =
1450 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1452 rmb();
1455 * Check the consistency of the self IDs we just read. The
1456 * problem we face is that a new bus reset can start while we
1457 * read out the self IDs from the DMA buffer. If this happens,
1458 * the DMA buffer will be overwritten with new self IDs and we
1459 * will read out inconsistent data. The OHCI specification
1460 * (section 11.2) recommends a technique similar to
1461 * linux/seqlock.h, where we remember the generation of the
1462 * self IDs in the buffer before reading them out and compare
1463 * it to the current generation after reading them out. If
1464 * the two generations match we know we have a consistent set
1465 * of self IDs.
1468 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1469 if (new_generation != generation) {
1470 fw_notify("recursive bus reset detected, "
1471 "discarding self ids\n");
1472 return;
1475 /* FIXME: Document how the locking works. */
1476 spin_lock_irqsave(&ohci->lock, flags);
1478 ohci->generation = generation;
1479 context_stop(&ohci->at_request_ctx);
1480 context_stop(&ohci->at_response_ctx);
1481 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1483 if (ohci->quirks & QUIRK_RESET_PACKET)
1484 ohci->request_generation = generation;
1487 * This next bit is unrelated to the AT context stuff but we
1488 * have to do it under the spinlock also. If a new config rom
1489 * was set up before this reset, the old one is now no longer
1490 * in use and we can free it. Update the config rom pointers
1491 * to point to the current config rom and clear the
1492 * next_config_rom pointer so a new udpate can take place.
1495 if (ohci->next_config_rom != NULL) {
1496 if (ohci->next_config_rom != ohci->config_rom) {
1497 free_rom = ohci->config_rom;
1498 free_rom_bus = ohci->config_rom_bus;
1500 ohci->config_rom = ohci->next_config_rom;
1501 ohci->config_rom_bus = ohci->next_config_rom_bus;
1502 ohci->next_config_rom = NULL;
1505 * Restore config_rom image and manually update
1506 * config_rom registers. Writing the header quadlet
1507 * will indicate that the config rom is ready, so we
1508 * do that last.
1510 reg_write(ohci, OHCI1394_BusOptions,
1511 be32_to_cpu(ohci->config_rom[2]));
1512 ohci->config_rom[0] = ohci->next_header;
1513 reg_write(ohci, OHCI1394_ConfigROMhdr,
1514 be32_to_cpu(ohci->next_header));
1517 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1518 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1519 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1520 #endif
1522 spin_unlock_irqrestore(&ohci->lock, flags);
1524 if (free_rom)
1525 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1526 free_rom, free_rom_bus);
1528 log_selfids(ohci->node_id, generation,
1529 self_id_count, ohci->self_id_buffer);
1531 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1532 self_id_count, ohci->self_id_buffer);
1535 static irqreturn_t irq_handler(int irq, void *data)
1537 struct fw_ohci *ohci = data;
1538 u32 event, iso_event;
1539 int i;
1541 event = reg_read(ohci, OHCI1394_IntEventClear);
1543 if (!event || !~event)
1544 return IRQ_NONE;
1546 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1547 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1548 log_irqs(event);
1550 if (event & OHCI1394_selfIDComplete)
1551 tasklet_schedule(&ohci->bus_reset_tasklet);
1553 if (event & OHCI1394_RQPkt)
1554 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1556 if (event & OHCI1394_RSPkt)
1557 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1559 if (event & OHCI1394_reqTxComplete)
1560 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1562 if (event & OHCI1394_respTxComplete)
1563 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1565 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1566 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1568 while (iso_event) {
1569 i = ffs(iso_event) - 1;
1570 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1571 iso_event &= ~(1 << i);
1574 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1575 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1577 while (iso_event) {
1578 i = ffs(iso_event) - 1;
1579 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1580 iso_event &= ~(1 << i);
1583 if (unlikely(event & OHCI1394_regAccessFail))
1584 fw_error("Register access failure - "
1585 "please notify linux1394-devel@lists.sf.net\n");
1587 if (unlikely(event & OHCI1394_postedWriteErr))
1588 fw_error("PCI posted write error\n");
1590 if (unlikely(event & OHCI1394_cycleTooLong)) {
1591 if (printk_ratelimit())
1592 fw_notify("isochronous cycle too long\n");
1593 reg_write(ohci, OHCI1394_LinkControlSet,
1594 OHCI1394_LinkControl_cycleMaster);
1597 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1599 * We need to clear this event bit in order to make
1600 * cycleMatch isochronous I/O work. In theory we should
1601 * stop active cycleMatch iso contexts now and restart
1602 * them at least two cycles later. (FIXME?)
1604 if (printk_ratelimit())
1605 fw_notify("isochronous cycle inconsistent\n");
1608 if (event & OHCI1394_cycle64Seconds) {
1609 spin_lock(&ohci->lock);
1610 update_bus_time(ohci);
1611 spin_unlock(&ohci->lock);
1614 return IRQ_HANDLED;
1617 static int software_reset(struct fw_ohci *ohci)
1619 int i;
1621 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1623 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1624 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1625 OHCI1394_HCControl_softReset) == 0)
1626 return 0;
1627 msleep(1);
1630 return -EBUSY;
1633 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1635 size_t size = length * 4;
1637 memcpy(dest, src, size);
1638 if (size < CONFIG_ROM_SIZE)
1639 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1642 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1644 bool enable_1394a;
1645 int ret, clear, set, offset;
1647 /* Check if the driver should configure link and PHY. */
1648 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1649 OHCI1394_HCControl_programPhyEnable))
1650 return 0;
1652 /* Paranoia: check whether the PHY supports 1394a, too. */
1653 enable_1394a = false;
1654 ret = read_phy_reg(ohci, 2);
1655 if (ret < 0)
1656 return ret;
1657 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1658 ret = read_paged_phy_reg(ohci, 1, 8);
1659 if (ret < 0)
1660 return ret;
1661 if (ret >= 1)
1662 enable_1394a = true;
1665 if (ohci->quirks & QUIRK_NO_1394A)
1666 enable_1394a = false;
1668 /* Configure PHY and link consistently. */
1669 if (enable_1394a) {
1670 clear = 0;
1671 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1672 } else {
1673 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1674 set = 0;
1676 ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1677 if (ret < 0)
1678 return ret;
1680 if (enable_1394a)
1681 offset = OHCI1394_HCControlSet;
1682 else
1683 offset = OHCI1394_HCControlClear;
1684 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1686 /* Clean up: configuration has been taken care of. */
1687 reg_write(ohci, OHCI1394_HCControlClear,
1688 OHCI1394_HCControl_programPhyEnable);
1690 return 0;
1693 static int ohci_enable(struct fw_card *card,
1694 const __be32 *config_rom, size_t length)
1696 struct fw_ohci *ohci = fw_ohci(card);
1697 struct pci_dev *dev = to_pci_dev(card->device);
1698 u32 lps, seconds, version, irqs;
1699 int i, ret;
1701 if (software_reset(ohci)) {
1702 fw_error("Failed to reset ohci card.\n");
1703 return -EBUSY;
1707 * Now enable LPS, which we need in order to start accessing
1708 * most of the registers. In fact, on some cards (ALI M5251),
1709 * accessing registers in the SClk domain without LPS enabled
1710 * will lock up the machine. Wait 50msec to make sure we have
1711 * full link enabled. However, with some cards (well, at least
1712 * a JMicron PCIe card), we have to try again sometimes.
1714 reg_write(ohci, OHCI1394_HCControlSet,
1715 OHCI1394_HCControl_LPS |
1716 OHCI1394_HCControl_postedWriteEnable);
1717 flush_writes(ohci);
1719 for (lps = 0, i = 0; !lps && i < 3; i++) {
1720 msleep(50);
1721 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1722 OHCI1394_HCControl_LPS;
1725 if (!lps) {
1726 fw_error("Failed to set Link Power Status\n");
1727 return -EIO;
1730 reg_write(ohci, OHCI1394_HCControlClear,
1731 OHCI1394_HCControl_noByteSwapData);
1733 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1734 reg_write(ohci, OHCI1394_LinkControlClear,
1735 OHCI1394_LinkControl_rcvPhyPkt);
1736 reg_write(ohci, OHCI1394_LinkControlSet,
1737 OHCI1394_LinkControl_rcvSelfID |
1738 OHCI1394_LinkControl_cycleTimerEnable |
1739 OHCI1394_LinkControl_cycleMaster);
1741 reg_write(ohci, OHCI1394_ATRetries,
1742 OHCI1394_MAX_AT_REQ_RETRIES |
1743 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1744 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1745 (200 << 16));
1747 seconds = lower_32_bits(get_seconds());
1748 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1749 ohci->bus_time = seconds & ~0x3f;
1751 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1752 if (version >= OHCI_VERSION_1_1) {
1753 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1754 0xfffffffe);
1755 ohci->features |= FEATURE_CHANNEL_31_ALLOCATED;
1758 /* Get implemented bits of the priority arbitration request counter. */
1759 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1760 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1761 reg_write(ohci, OHCI1394_FairnessControl, 0);
1762 if (ohci->pri_req_max != 0)
1763 ohci->features |= FEATURE_PRIORITY_BUDGET;
1765 ar_context_run(&ohci->ar_request_ctx);
1766 ar_context_run(&ohci->ar_response_ctx);
1768 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1769 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1770 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1772 ret = configure_1394a_enhancements(ohci);
1773 if (ret < 0)
1774 return ret;
1776 /* Activate link_on bit and contender bit in our self ID packets.*/
1777 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1778 if (ret < 0)
1779 return ret;
1782 * When the link is not yet enabled, the atomic config rom
1783 * update mechanism described below in ohci_set_config_rom()
1784 * is not active. We have to update ConfigRomHeader and
1785 * BusOptions manually, and the write to ConfigROMmap takes
1786 * effect immediately. We tie this to the enabling of the
1787 * link, so we have a valid config rom before enabling - the
1788 * OHCI requires that ConfigROMhdr and BusOptions have valid
1789 * values before enabling.
1791 * However, when the ConfigROMmap is written, some controllers
1792 * always read back quadlets 0 and 2 from the config rom to
1793 * the ConfigRomHeader and BusOptions registers on bus reset.
1794 * They shouldn't do that in this initial case where the link
1795 * isn't enabled. This means we have to use the same
1796 * workaround here, setting the bus header to 0 and then write
1797 * the right values in the bus reset tasklet.
1800 if (config_rom) {
1801 ohci->next_config_rom =
1802 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1803 &ohci->next_config_rom_bus,
1804 GFP_KERNEL);
1805 if (ohci->next_config_rom == NULL)
1806 return -ENOMEM;
1808 copy_config_rom(ohci->next_config_rom, config_rom, length);
1809 } else {
1811 * In the suspend case, config_rom is NULL, which
1812 * means that we just reuse the old config rom.
1814 ohci->next_config_rom = ohci->config_rom;
1815 ohci->next_config_rom_bus = ohci->config_rom_bus;
1818 ohci->next_header = ohci->next_config_rom[0];
1819 ohci->next_config_rom[0] = 0;
1820 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1821 reg_write(ohci, OHCI1394_BusOptions,
1822 be32_to_cpu(ohci->next_config_rom[2]));
1823 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1825 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1827 if (!(ohci->quirks & QUIRK_NO_MSI))
1828 pci_enable_msi(dev);
1829 if (request_irq(dev->irq, irq_handler,
1830 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1831 ohci_driver_name, ohci)) {
1832 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1833 pci_disable_msi(dev);
1834 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1835 ohci->config_rom, ohci->config_rom_bus);
1836 return -EIO;
1839 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1840 OHCI1394_RQPkt | OHCI1394_RSPkt |
1841 OHCI1394_isochTx | OHCI1394_isochRx |
1842 OHCI1394_postedWriteErr |
1843 OHCI1394_selfIDComplete |
1844 OHCI1394_regAccessFail |
1845 OHCI1394_cycle64Seconds |
1846 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1847 OHCI1394_masterIntEnable;
1848 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1849 irqs |= OHCI1394_busReset;
1850 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1852 reg_write(ohci, OHCI1394_HCControlSet,
1853 OHCI1394_HCControl_linkEnable |
1854 OHCI1394_HCControl_BIBimageValid);
1855 flush_writes(ohci);
1858 * We are ready to go, initiate bus reset to finish the
1859 * initialization.
1862 fw_core_initiate_bus_reset(&ohci->card, 1);
1864 return 0;
1867 static int ohci_set_config_rom(struct fw_card *card,
1868 const __be32 *config_rom, size_t length)
1870 struct fw_ohci *ohci;
1871 unsigned long flags;
1872 int ret = -EBUSY;
1873 __be32 *next_config_rom;
1874 dma_addr_t uninitialized_var(next_config_rom_bus);
1876 ohci = fw_ohci(card);
1879 * When the OHCI controller is enabled, the config rom update
1880 * mechanism is a bit tricky, but easy enough to use. See
1881 * section 5.5.6 in the OHCI specification.
1883 * The OHCI controller caches the new config rom address in a
1884 * shadow register (ConfigROMmapNext) and needs a bus reset
1885 * for the changes to take place. When the bus reset is
1886 * detected, the controller loads the new values for the
1887 * ConfigRomHeader and BusOptions registers from the specified
1888 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1889 * shadow register. All automatically and atomically.
1891 * Now, there's a twist to this story. The automatic load of
1892 * ConfigRomHeader and BusOptions doesn't honor the
1893 * noByteSwapData bit, so with a be32 config rom, the
1894 * controller will load be32 values in to these registers
1895 * during the atomic update, even on litte endian
1896 * architectures. The workaround we use is to put a 0 in the
1897 * header quadlet; 0 is endian agnostic and means that the
1898 * config rom isn't ready yet. In the bus reset tasklet we
1899 * then set up the real values for the two registers.
1901 * We use ohci->lock to avoid racing with the code that sets
1902 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1905 next_config_rom =
1906 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1907 &next_config_rom_bus, GFP_KERNEL);
1908 if (next_config_rom == NULL)
1909 return -ENOMEM;
1911 spin_lock_irqsave(&ohci->lock, flags);
1913 if (ohci->next_config_rom == NULL) {
1914 ohci->next_config_rom = next_config_rom;
1915 ohci->next_config_rom_bus = next_config_rom_bus;
1917 copy_config_rom(ohci->next_config_rom, config_rom, length);
1919 ohci->next_header = config_rom[0];
1920 ohci->next_config_rom[0] = 0;
1922 reg_write(ohci, OHCI1394_ConfigROMmap,
1923 ohci->next_config_rom_bus);
1924 ret = 0;
1927 spin_unlock_irqrestore(&ohci->lock, flags);
1930 * Now initiate a bus reset to have the changes take
1931 * effect. We clean up the old config rom memory and DMA
1932 * mappings in the bus reset tasklet, since the OHCI
1933 * controller could need to access it before the bus reset
1934 * takes effect.
1936 if (ret == 0)
1937 fw_core_initiate_bus_reset(&ohci->card, 1);
1938 else
1939 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1940 next_config_rom, next_config_rom_bus);
1942 return ret;
1945 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1947 struct fw_ohci *ohci = fw_ohci(card);
1949 at_context_transmit(&ohci->at_request_ctx, packet);
1952 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1954 struct fw_ohci *ohci = fw_ohci(card);
1956 at_context_transmit(&ohci->at_response_ctx, packet);
1959 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1961 struct fw_ohci *ohci = fw_ohci(card);
1962 struct context *ctx = &ohci->at_request_ctx;
1963 struct driver_data *driver_data = packet->driver_data;
1964 int ret = -ENOENT;
1966 tasklet_disable(&ctx->tasklet);
1968 if (packet->ack != 0)
1969 goto out;
1971 if (packet->payload_mapped)
1972 dma_unmap_single(ohci->card.device, packet->payload_bus,
1973 packet->payload_length, DMA_TO_DEVICE);
1975 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1976 driver_data->packet = NULL;
1977 packet->ack = RCODE_CANCELLED;
1978 packet->callback(packet, &ohci->card, packet->ack);
1979 ret = 0;
1980 out:
1981 tasklet_enable(&ctx->tasklet);
1983 return ret;
1986 static int ohci_enable_phys_dma(struct fw_card *card,
1987 int node_id, int generation)
1989 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1990 return 0;
1991 #else
1992 struct fw_ohci *ohci = fw_ohci(card);
1993 unsigned long flags;
1994 int n, ret = 0;
1997 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1998 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2001 spin_lock_irqsave(&ohci->lock, flags);
2003 if (ohci->generation != generation) {
2004 ret = -ESTALE;
2005 goto out;
2009 * Note, if the node ID contains a non-local bus ID, physical DMA is
2010 * enabled for _all_ nodes on remote buses.
2013 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2014 if (n < 32)
2015 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2016 else
2017 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2019 flush_writes(ohci);
2020 out:
2021 spin_unlock_irqrestore(&ohci->lock, flags);
2023 return ret;
2024 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2027 static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
2029 struct fw_ohci *ohci = fw_ohci(card);
2030 unsigned long flags;
2031 u32 value;
2033 switch (csr_offset) {
2034 case CSR_STATE_CLEAR:
2035 case CSR_STATE_SET:
2036 /* the controller driver handles only the cmstr bit */
2037 if (ohci->is_root &&
2038 (reg_read(ohci, OHCI1394_LinkControlSet) &
2039 OHCI1394_LinkControl_cycleMaster))
2040 return CSR_STATE_BIT_CMSTR;
2041 else
2042 return 0;
2044 case CSR_NODE_IDS:
2045 return reg_read(ohci, OHCI1394_NodeID) << 16;
2047 case CSR_CYCLE_TIME:
2048 return get_cycle_time(ohci);
2050 case CSR_BUS_TIME:
2052 * We might be called just after the cycle timer has wrapped
2053 * around but just before the cycle64Seconds handler, so we
2054 * better check here, too, if the bus time needs to be updated.
2056 spin_lock_irqsave(&ohci->lock, flags);
2057 value = update_bus_time(ohci);
2058 spin_unlock_irqrestore(&ohci->lock, flags);
2059 return value;
2061 case CSR_BUSY_TIMEOUT:
2062 value = reg_read(ohci, OHCI1394_ATRetries);
2063 return (value >> 4) & 0x0ffff00f;
2065 case CSR_PRIORITY_BUDGET:
2066 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2067 (ohci->pri_req_max << 8);
2069 default:
2070 WARN_ON(1);
2071 return 0;
2075 static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
2077 struct fw_ohci *ohci = fw_ohci(card);
2078 unsigned long flags;
2080 switch (csr_offset) {
2081 case CSR_STATE_CLEAR:
2082 /* the controller driver handles only the cmstr bit */
2083 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2084 reg_write(ohci, OHCI1394_LinkControlClear,
2085 OHCI1394_LinkControl_cycleMaster);
2086 flush_writes(ohci);
2088 break;
2090 case CSR_STATE_SET:
2091 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2092 reg_write(ohci, OHCI1394_LinkControlSet,
2093 OHCI1394_LinkControl_cycleMaster);
2094 flush_writes(ohci);
2096 break;
2098 case CSR_NODE_IDS:
2099 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2100 flush_writes(ohci);
2101 break;
2103 case CSR_CYCLE_TIME:
2104 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2105 reg_write(ohci, OHCI1394_IntEventSet,
2106 OHCI1394_cycleInconsistent);
2107 flush_writes(ohci);
2108 break;
2110 case CSR_BUS_TIME:
2111 spin_lock_irqsave(&ohci->lock, flags);
2112 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2113 spin_unlock_irqrestore(&ohci->lock, flags);
2114 break;
2116 case CSR_BUSY_TIMEOUT:
2117 value = (value & 0xf) | ((value & 0xf) << 4) |
2118 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2119 reg_write(ohci, OHCI1394_ATRetries, value);
2120 flush_writes(ohci);
2121 break;
2123 case CSR_PRIORITY_BUDGET:
2124 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2125 flush_writes(ohci);
2126 break;
2128 default:
2129 WARN_ON(1);
2130 break;
2134 static unsigned int ohci_get_features(struct fw_card *card)
2136 struct fw_ohci *ohci = fw_ohci(card);
2138 return ohci->features;
2141 static void copy_iso_headers(struct iso_context *ctx, void *p)
2143 int i = ctx->header_length;
2145 if (i + ctx->base.header_size > PAGE_SIZE)
2146 return;
2149 * The iso header is byteswapped to little endian by
2150 * the controller, but the remaining header quadlets
2151 * are big endian. We want to present all the headers
2152 * as big endian, so we have to swap the first quadlet.
2154 if (ctx->base.header_size > 0)
2155 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2156 if (ctx->base.header_size > 4)
2157 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2158 if (ctx->base.header_size > 8)
2159 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2160 ctx->header_length += ctx->base.header_size;
2163 static int handle_ir_packet_per_buffer(struct context *context,
2164 struct descriptor *d,
2165 struct descriptor *last)
2167 struct iso_context *ctx =
2168 container_of(context, struct iso_context, context);
2169 struct descriptor *pd;
2170 __le32 *ir_header;
2171 void *p;
2173 for (pd = d; pd <= last; pd++) {
2174 if (pd->transfer_status)
2175 break;
2177 if (pd > last)
2178 /* Descriptor(s) not done yet, stop iteration */
2179 return 0;
2181 p = last + 1;
2182 copy_iso_headers(ctx, p);
2184 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2185 ir_header = (__le32 *) p;
2186 ctx->base.callback(&ctx->base,
2187 le32_to_cpu(ir_header[0]) & 0xffff,
2188 ctx->header_length, ctx->header,
2189 ctx->base.callback_data);
2190 ctx->header_length = 0;
2193 return 1;
2196 static int handle_it_packet(struct context *context,
2197 struct descriptor *d,
2198 struct descriptor *last)
2200 struct iso_context *ctx =
2201 container_of(context, struct iso_context, context);
2202 int i;
2203 struct descriptor *pd;
2205 for (pd = d; pd <= last; pd++)
2206 if (pd->transfer_status)
2207 break;
2208 if (pd > last)
2209 /* Descriptor(s) not done yet, stop iteration */
2210 return 0;
2212 i = ctx->header_length;
2213 if (i + 4 < PAGE_SIZE) {
2214 /* Present this value as big-endian to match the receive code */
2215 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2216 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2217 le16_to_cpu(pd->res_count));
2218 ctx->header_length += 4;
2220 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2221 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2222 ctx->header_length, ctx->header,
2223 ctx->base.callback_data);
2224 ctx->header_length = 0;
2226 return 1;
2229 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2230 int type, int channel, size_t header_size)
2232 struct fw_ohci *ohci = fw_ohci(card);
2233 struct iso_context *ctx, *list;
2234 descriptor_callback_t callback;
2235 u64 *channels, dont_care = ~0ULL;
2236 u32 *mask, regs;
2237 unsigned long flags;
2238 int index, ret = -ENOMEM;
2240 if (type == FW_ISO_CONTEXT_TRANSMIT) {
2241 channels = &dont_care;
2242 mask = &ohci->it_context_mask;
2243 list = ohci->it_context_list;
2244 callback = handle_it_packet;
2245 } else {
2246 channels = &ohci->ir_context_channels;
2247 mask = &ohci->ir_context_mask;
2248 list = ohci->ir_context_list;
2249 callback = handle_ir_packet_per_buffer;
2252 spin_lock_irqsave(&ohci->lock, flags);
2253 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2254 if (index >= 0) {
2255 *channels &= ~(1ULL << channel);
2256 *mask &= ~(1 << index);
2258 spin_unlock_irqrestore(&ohci->lock, flags);
2260 if (index < 0)
2261 return ERR_PTR(-EBUSY);
2263 if (type == FW_ISO_CONTEXT_TRANSMIT)
2264 regs = OHCI1394_IsoXmitContextBase(index);
2265 else
2266 regs = OHCI1394_IsoRcvContextBase(index);
2268 ctx = &list[index];
2269 memset(ctx, 0, sizeof(*ctx));
2270 ctx->header_length = 0;
2271 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2272 if (ctx->header == NULL)
2273 goto out;
2275 ret = context_init(&ctx->context, ohci, regs, callback);
2276 if (ret < 0)
2277 goto out_with_header;
2279 return &ctx->base;
2281 out_with_header:
2282 free_page((unsigned long)ctx->header);
2283 out:
2284 spin_lock_irqsave(&ohci->lock, flags);
2285 *mask |= 1 << index;
2286 spin_unlock_irqrestore(&ohci->lock, flags);
2288 return ERR_PTR(ret);
2291 static int ohci_start_iso(struct fw_iso_context *base,
2292 s32 cycle, u32 sync, u32 tags)
2294 struct iso_context *ctx = container_of(base, struct iso_context, base);
2295 struct fw_ohci *ohci = ctx->context.ohci;
2296 u32 control, match;
2297 int index;
2299 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2300 index = ctx - ohci->it_context_list;
2301 match = 0;
2302 if (cycle >= 0)
2303 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2304 (cycle & 0x7fff) << 16;
2306 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2307 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2308 context_run(&ctx->context, match);
2309 } else {
2310 index = ctx - ohci->ir_context_list;
2311 control = IR_CONTEXT_ISOCH_HEADER;
2312 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2313 if (cycle >= 0) {
2314 match |= (cycle & 0x07fff) << 12;
2315 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2318 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2319 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2320 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2321 context_run(&ctx->context, control);
2324 return 0;
2327 static int ohci_stop_iso(struct fw_iso_context *base)
2329 struct fw_ohci *ohci = fw_ohci(base->card);
2330 struct iso_context *ctx = container_of(base, struct iso_context, base);
2331 int index;
2333 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2334 index = ctx - ohci->it_context_list;
2335 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2336 } else {
2337 index = ctx - ohci->ir_context_list;
2338 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2340 flush_writes(ohci);
2341 context_stop(&ctx->context);
2343 return 0;
2346 static void ohci_free_iso_context(struct fw_iso_context *base)
2348 struct fw_ohci *ohci = fw_ohci(base->card);
2349 struct iso_context *ctx = container_of(base, struct iso_context, base);
2350 unsigned long flags;
2351 int index;
2353 ohci_stop_iso(base);
2354 context_release(&ctx->context);
2355 free_page((unsigned long)ctx->header);
2357 spin_lock_irqsave(&ohci->lock, flags);
2359 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2360 index = ctx - ohci->it_context_list;
2361 ohci->it_context_mask |= 1 << index;
2362 } else {
2363 index = ctx - ohci->ir_context_list;
2364 ohci->ir_context_mask |= 1 << index;
2365 ohci->ir_context_channels |= 1ULL << base->channel;
2368 spin_unlock_irqrestore(&ohci->lock, flags);
2371 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2372 struct fw_iso_packet *packet,
2373 struct fw_iso_buffer *buffer,
2374 unsigned long payload)
2376 struct iso_context *ctx = container_of(base, struct iso_context, base);
2377 struct descriptor *d, *last, *pd;
2378 struct fw_iso_packet *p;
2379 __le32 *header;
2380 dma_addr_t d_bus, page_bus;
2381 u32 z, header_z, payload_z, irq;
2382 u32 payload_index, payload_end_index, next_page_index;
2383 int page, end_page, i, length, offset;
2385 p = packet;
2386 payload_index = payload;
2388 if (p->skip)
2389 z = 1;
2390 else
2391 z = 2;
2392 if (p->header_length > 0)
2393 z++;
2395 /* Determine the first page the payload isn't contained in. */
2396 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2397 if (p->payload_length > 0)
2398 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2399 else
2400 payload_z = 0;
2402 z += payload_z;
2404 /* Get header size in number of descriptors. */
2405 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2407 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2408 if (d == NULL)
2409 return -ENOMEM;
2411 if (!p->skip) {
2412 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2413 d[0].req_count = cpu_to_le16(8);
2415 * Link the skip address to this descriptor itself. This causes
2416 * a context to skip a cycle whenever lost cycles or FIFO
2417 * overruns occur, without dropping the data. The application
2418 * should then decide whether this is an error condition or not.
2419 * FIXME: Make the context's cycle-lost behaviour configurable?
2421 d[0].branch_address = cpu_to_le32(d_bus | z);
2423 header = (__le32 *) &d[1];
2424 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2425 IT_HEADER_TAG(p->tag) |
2426 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2427 IT_HEADER_CHANNEL(ctx->base.channel) |
2428 IT_HEADER_SPEED(ctx->base.speed));
2429 header[1] =
2430 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2431 p->payload_length));
2434 if (p->header_length > 0) {
2435 d[2].req_count = cpu_to_le16(p->header_length);
2436 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2437 memcpy(&d[z], p->header, p->header_length);
2440 pd = d + z - payload_z;
2441 payload_end_index = payload_index + p->payload_length;
2442 for (i = 0; i < payload_z; i++) {
2443 page = payload_index >> PAGE_SHIFT;
2444 offset = payload_index & ~PAGE_MASK;
2445 next_page_index = (page + 1) << PAGE_SHIFT;
2446 length =
2447 min(next_page_index, payload_end_index) - payload_index;
2448 pd[i].req_count = cpu_to_le16(length);
2450 page_bus = page_private(buffer->pages[page]);
2451 pd[i].data_address = cpu_to_le32(page_bus + offset);
2453 payload_index += length;
2456 if (p->interrupt)
2457 irq = DESCRIPTOR_IRQ_ALWAYS;
2458 else
2459 irq = DESCRIPTOR_NO_IRQ;
2461 last = z == 2 ? d : d + z - 1;
2462 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2463 DESCRIPTOR_STATUS |
2464 DESCRIPTOR_BRANCH_ALWAYS |
2465 irq);
2467 context_append(&ctx->context, d, z, header_z);
2469 return 0;
2472 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2473 struct fw_iso_packet *packet,
2474 struct fw_iso_buffer *buffer,
2475 unsigned long payload)
2477 struct iso_context *ctx = container_of(base, struct iso_context, base);
2478 struct descriptor *d, *pd;
2479 struct fw_iso_packet *p = packet;
2480 dma_addr_t d_bus, page_bus;
2481 u32 z, header_z, rest;
2482 int i, j, length;
2483 int page, offset, packet_count, header_size, payload_per_buffer;
2486 * The OHCI controller puts the isochronous header and trailer in the
2487 * buffer, so we need at least 8 bytes.
2489 packet_count = p->header_length / ctx->base.header_size;
2490 header_size = max(ctx->base.header_size, (size_t)8);
2492 /* Get header size in number of descriptors. */
2493 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2494 page = payload >> PAGE_SHIFT;
2495 offset = payload & ~PAGE_MASK;
2496 payload_per_buffer = p->payload_length / packet_count;
2498 for (i = 0; i < packet_count; i++) {
2499 /* d points to the header descriptor */
2500 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2501 d = context_get_descriptors(&ctx->context,
2502 z + header_z, &d_bus);
2503 if (d == NULL)
2504 return -ENOMEM;
2506 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2507 DESCRIPTOR_INPUT_MORE);
2508 if (p->skip && i == 0)
2509 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2510 d->req_count = cpu_to_le16(header_size);
2511 d->res_count = d->req_count;
2512 d->transfer_status = 0;
2513 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2515 rest = payload_per_buffer;
2516 pd = d;
2517 for (j = 1; j < z; j++) {
2518 pd++;
2519 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2520 DESCRIPTOR_INPUT_MORE);
2522 if (offset + rest < PAGE_SIZE)
2523 length = rest;
2524 else
2525 length = PAGE_SIZE - offset;
2526 pd->req_count = cpu_to_le16(length);
2527 pd->res_count = pd->req_count;
2528 pd->transfer_status = 0;
2530 page_bus = page_private(buffer->pages[page]);
2531 pd->data_address = cpu_to_le32(page_bus + offset);
2533 offset = (offset + length) & ~PAGE_MASK;
2534 rest -= length;
2535 if (offset == 0)
2536 page++;
2538 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2539 DESCRIPTOR_INPUT_LAST |
2540 DESCRIPTOR_BRANCH_ALWAYS);
2541 if (p->interrupt && i == packet_count - 1)
2542 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2544 context_append(&ctx->context, d, z, header_z);
2547 return 0;
2550 static int ohci_queue_iso(struct fw_iso_context *base,
2551 struct fw_iso_packet *packet,
2552 struct fw_iso_buffer *buffer,
2553 unsigned long payload)
2555 struct iso_context *ctx = container_of(base, struct iso_context, base);
2556 unsigned long flags;
2557 int ret;
2559 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2560 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2561 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2562 else
2563 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2564 buffer, payload);
2565 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2567 return ret;
2570 static const struct fw_card_driver ohci_driver = {
2571 .enable = ohci_enable,
2572 .update_phy_reg = ohci_update_phy_reg,
2573 .set_config_rom = ohci_set_config_rom,
2574 .send_request = ohci_send_request,
2575 .send_response = ohci_send_response,
2576 .cancel_packet = ohci_cancel_packet,
2577 .enable_phys_dma = ohci_enable_phys_dma,
2578 .read_csr_reg = ohci_read_csr_reg,
2579 .write_csr_reg = ohci_write_csr_reg,
2580 .get_features = ohci_get_features,
2582 .allocate_iso_context = ohci_allocate_iso_context,
2583 .free_iso_context = ohci_free_iso_context,
2584 .queue_iso = ohci_queue_iso,
2585 .start_iso = ohci_start_iso,
2586 .stop_iso = ohci_stop_iso,
2589 #ifdef CONFIG_PPC_PMAC
2590 static void pmac_ohci_on(struct pci_dev *dev)
2592 if (machine_is(powermac)) {
2593 struct device_node *ofn = pci_device_to_OF_node(dev);
2595 if (ofn) {
2596 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2597 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2602 static void pmac_ohci_off(struct pci_dev *dev)
2604 if (machine_is(powermac)) {
2605 struct device_node *ofn = pci_device_to_OF_node(dev);
2607 if (ofn) {
2608 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2609 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2613 #else
2614 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2615 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2616 #endif /* CONFIG_PPC_PMAC */
2618 static int __devinit pci_probe(struct pci_dev *dev,
2619 const struct pci_device_id *ent)
2621 struct fw_ohci *ohci;
2622 u32 bus_options, max_receive, link_speed, version, link_enh;
2623 u64 guid;
2624 int i, err, n_ir, n_it;
2625 size_t size;
2627 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2628 if (ohci == NULL) {
2629 err = -ENOMEM;
2630 goto fail;
2633 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2635 pmac_ohci_on(dev);
2637 err = pci_enable_device(dev);
2638 if (err) {
2639 fw_error("Failed to enable OHCI hardware\n");
2640 goto fail_free;
2643 pci_set_master(dev);
2644 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2645 pci_set_drvdata(dev, ohci);
2647 spin_lock_init(&ohci->lock);
2649 tasklet_init(&ohci->bus_reset_tasklet,
2650 bus_reset_tasklet, (unsigned long)ohci);
2652 err = pci_request_region(dev, 0, ohci_driver_name);
2653 if (err) {
2654 fw_error("MMIO resource unavailable\n");
2655 goto fail_disable;
2658 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2659 if (ohci->registers == NULL) {
2660 fw_error("Failed to remap registers\n");
2661 err = -ENXIO;
2662 goto fail_iomem;
2665 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2666 if (ohci_quirks[i].vendor == dev->vendor &&
2667 (ohci_quirks[i].device == dev->device ||
2668 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2669 ohci->quirks = ohci_quirks[i].flags;
2670 break;
2672 if (param_quirks)
2673 ohci->quirks = param_quirks;
2675 /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2676 if (dev->vendor == PCI_VENDOR_ID_TI) {
2677 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2679 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2680 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2681 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2683 /* use priority arbitration for asynchronous responses */
2684 link_enh |= TI_LinkEnh_enab_unfair;
2686 /* required for aPhyEnhanceEnable to work */
2687 link_enh |= TI_LinkEnh_enab_accel;
2689 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2692 ar_context_init(&ohci->ar_request_ctx, ohci,
2693 OHCI1394_AsReqRcvContextControlSet);
2695 ar_context_init(&ohci->ar_response_ctx, ohci,
2696 OHCI1394_AsRspRcvContextControlSet);
2698 context_init(&ohci->at_request_ctx, ohci,
2699 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2701 context_init(&ohci->at_response_ctx, ohci,
2702 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2704 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2705 ohci->ir_context_channels = ~0ULL;
2706 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2707 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2708 n_ir = hweight32(ohci->ir_context_mask);
2709 size = sizeof(struct iso_context) * n_ir;
2710 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2712 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2713 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2714 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2715 n_it = hweight32(ohci->it_context_mask);
2716 size = sizeof(struct iso_context) * n_it;
2717 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2719 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2720 err = -ENOMEM;
2721 goto fail_contexts;
2724 /* self-id dma buffer allocation */
2725 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2726 SELF_ID_BUF_SIZE,
2727 &ohci->self_id_bus,
2728 GFP_KERNEL);
2729 if (ohci->self_id_cpu == NULL) {
2730 err = -ENOMEM;
2731 goto fail_contexts;
2734 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2735 max_receive = (bus_options >> 12) & 0xf;
2736 link_speed = bus_options & 0x7;
2737 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2738 reg_read(ohci, OHCI1394_GUIDLo);
2740 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2741 if (err)
2742 goto fail_self_id;
2744 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2745 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2746 "%d IR + %d IT contexts, quirks 0x%x\n",
2747 dev_name(&dev->dev), version >> 16, version & 0xff,
2748 n_ir, n_it, ohci->quirks);
2750 return 0;
2752 fail_self_id:
2753 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2754 ohci->self_id_cpu, ohci->self_id_bus);
2755 fail_contexts:
2756 kfree(ohci->ir_context_list);
2757 kfree(ohci->it_context_list);
2758 context_release(&ohci->at_response_ctx);
2759 context_release(&ohci->at_request_ctx);
2760 ar_context_release(&ohci->ar_response_ctx);
2761 ar_context_release(&ohci->ar_request_ctx);
2762 pci_iounmap(dev, ohci->registers);
2763 fail_iomem:
2764 pci_release_region(dev, 0);
2765 fail_disable:
2766 pci_disable_device(dev);
2767 fail_free:
2768 kfree(&ohci->card);
2769 pmac_ohci_off(dev);
2770 fail:
2771 if (err == -ENOMEM)
2772 fw_error("Out of memory\n");
2774 return err;
2777 static void pci_remove(struct pci_dev *dev)
2779 struct fw_ohci *ohci;
2781 ohci = pci_get_drvdata(dev);
2782 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2783 flush_writes(ohci);
2784 fw_core_remove_card(&ohci->card);
2787 * FIXME: Fail all pending packets here, now that the upper
2788 * layers can't queue any more.
2791 software_reset(ohci);
2792 free_irq(dev->irq, ohci);
2794 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2795 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2796 ohci->next_config_rom, ohci->next_config_rom_bus);
2797 if (ohci->config_rom)
2798 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2799 ohci->config_rom, ohci->config_rom_bus);
2800 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2801 ohci->self_id_cpu, ohci->self_id_bus);
2802 ar_context_release(&ohci->ar_request_ctx);
2803 ar_context_release(&ohci->ar_response_ctx);
2804 context_release(&ohci->at_request_ctx);
2805 context_release(&ohci->at_response_ctx);
2806 kfree(ohci->it_context_list);
2807 kfree(ohci->ir_context_list);
2808 pci_disable_msi(dev);
2809 pci_iounmap(dev, ohci->registers);
2810 pci_release_region(dev, 0);
2811 pci_disable_device(dev);
2812 kfree(&ohci->card);
2813 pmac_ohci_off(dev);
2815 fw_notify("Removed fw-ohci device.\n");
2818 #ifdef CONFIG_PM
2819 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2821 struct fw_ohci *ohci = pci_get_drvdata(dev);
2822 int err;
2824 software_reset(ohci);
2825 free_irq(dev->irq, ohci);
2826 pci_disable_msi(dev);
2827 err = pci_save_state(dev);
2828 if (err) {
2829 fw_error("pci_save_state failed\n");
2830 return err;
2832 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2833 if (err)
2834 fw_error("pci_set_power_state failed with %d\n", err);
2835 pmac_ohci_off(dev);
2837 return 0;
2840 static int pci_resume(struct pci_dev *dev)
2842 struct fw_ohci *ohci = pci_get_drvdata(dev);
2843 int err;
2845 pmac_ohci_on(dev);
2846 pci_set_power_state(dev, PCI_D0);
2847 pci_restore_state(dev);
2848 err = pci_enable_device(dev);
2849 if (err) {
2850 fw_error("pci_enable_device failed\n");
2851 return err;
2854 return ohci_enable(&ohci->card, NULL, 0);
2856 #endif
2858 static const struct pci_device_id pci_table[] = {
2859 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2863 MODULE_DEVICE_TABLE(pci, pci_table);
2865 static struct pci_driver fw_ohci_pci_driver = {
2866 .name = ohci_driver_name,
2867 .id_table = pci_table,
2868 .probe = pci_probe,
2869 .remove = pci_remove,
2870 #ifdef CONFIG_PM
2871 .resume = pci_resume,
2872 .suspend = pci_suspend,
2873 #endif
2876 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2877 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2878 MODULE_LICENSE("GPL");
2880 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2881 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2882 MODULE_ALIAS("ohci1394");
2883 #endif
2885 static int __init fw_ohci_init(void)
2887 return pci_register_driver(&fw_ohci_pci_driver);
2890 static void __exit fw_ohci_cleanup(void)
2892 pci_unregister_driver(&fw_ohci_pci_driver);
2895 module_init(fw_ohci_init);
2896 module_exit(fw_ohci_cleanup);