Merge firewire branches to be released post v2.6.35
[firewire-audio.git] / net / mac80211 / rx.c
blobbe9abc2e6348943753aab8daae864b561adce82f
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 return len;
92 * ieee80211_add_rx_radiotap_header - add radiotap header
94 * add a radiotap header containing all the fields which the hardware provided.
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
118 pos = (unsigned char *)(rthdr+1);
120 /* the order of the following fields is important */
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
153 pos++;
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
241 return remove_monitor_info(local, origskb);
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
261 } else {
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
268 origskb = remove_monitor_info(local, origskb);
270 if (!skb)
271 return origskb;
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
289 if (!ieee80211_sdata_running(sdata))
290 continue;
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_rx(skb2);
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_rx(skb);
308 } else
309 dev_kfree_skb(skb);
311 return origskb;
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 int tid;
320 /* does the frame have a qos control field? */
321 if (ieee80211_is_data_qos(hdr->frame_control)) {
322 u8 *qc = ieee80211_get_qos_ctl(hdr);
323 /* frame has qos control */
324 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
325 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
326 rx->flags |= IEEE80211_RX_AMSDU;
327 else
328 rx->flags &= ~IEEE80211_RX_AMSDU;
329 } else {
331 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
333 * Sequence numbers for management frames, QoS data
334 * frames with a broadcast/multicast address in the
335 * Address 1 field, and all non-QoS data frames sent
336 * by QoS STAs are assigned using an additional single
337 * modulo-4096 counter, [...]
339 * We also use that counter for non-QoS STAs.
341 tid = NUM_RX_DATA_QUEUES - 1;
344 rx->queue = tid;
345 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
346 * For now, set skb->priority to 0 for other cases. */
347 rx->skb->priority = (tid > 7) ? 0 : tid;
351 * DOC: Packet alignment
353 * Drivers always need to pass packets that are aligned to two-byte boundaries
354 * to the stack.
356 * Additionally, should, if possible, align the payload data in a way that
357 * guarantees that the contained IP header is aligned to a four-byte
358 * boundary. In the case of regular frames, this simply means aligning the
359 * payload to a four-byte boundary (because either the IP header is directly
360 * contained, or IV/RFC1042 headers that have a length divisible by four are
361 * in front of it). If the payload data is not properly aligned and the
362 * architecture doesn't support efficient unaligned operations, mac80211
363 * will align the data.
365 * With A-MSDU frames, however, the payload data address must yield two modulo
366 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
367 * push the IP header further back to a multiple of four again. Thankfully, the
368 * specs were sane enough this time around to require padding each A-MSDU
369 * subframe to a length that is a multiple of four.
371 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
372 * the payload is not supported, the driver is required to move the 802.11
373 * header to be directly in front of the payload in that case.
375 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
377 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
378 WARN_ONCE((unsigned long)rx->skb->data & 1,
379 "unaligned packet at 0x%p\n", rx->skb->data);
380 #endif
384 /* rx handlers */
386 static ieee80211_rx_result debug_noinline
387 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
389 struct ieee80211_local *local = rx->local;
390 struct sk_buff *skb = rx->skb;
392 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
393 return ieee80211_scan_rx(rx->sdata, skb);
395 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
396 (rx->flags & IEEE80211_RX_IN_SCAN))) {
397 /* drop all the other packets during a software scan anyway */
398 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
399 dev_kfree_skb(skb);
400 return RX_QUEUED;
403 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
404 /* scanning finished during invoking of handlers */
405 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
406 return RX_DROP_UNUSABLE;
409 return RX_CONTINUE;
413 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
417 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
418 return 0;
420 return ieee80211_is_robust_mgmt_frame(hdr);
424 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
429 return 0;
431 return ieee80211_is_robust_mgmt_frame(hdr);
435 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
436 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
438 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
439 struct ieee80211_mmie *mmie;
441 if (skb->len < 24 + sizeof(*mmie) ||
442 !is_multicast_ether_addr(hdr->da))
443 return -1;
445 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
446 return -1; /* not a robust management frame */
448 mmie = (struct ieee80211_mmie *)
449 (skb->data + skb->len - sizeof(*mmie));
450 if (mmie->element_id != WLAN_EID_MMIE ||
451 mmie->length != sizeof(*mmie) - 2)
452 return -1;
454 return le16_to_cpu(mmie->key_id);
458 static ieee80211_rx_result
459 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
461 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
462 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
463 char *dev_addr = rx->sdata->vif.addr;
465 if (ieee80211_is_data(hdr->frame_control)) {
466 if (is_multicast_ether_addr(hdr->addr1)) {
467 if (ieee80211_has_tods(hdr->frame_control) ||
468 !ieee80211_has_fromds(hdr->frame_control))
469 return RX_DROP_MONITOR;
470 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
471 return RX_DROP_MONITOR;
472 } else {
473 if (!ieee80211_has_a4(hdr->frame_control))
474 return RX_DROP_MONITOR;
475 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
476 return RX_DROP_MONITOR;
480 /* If there is not an established peer link and this is not a peer link
481 * establisment frame, beacon or probe, drop the frame.
484 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
485 struct ieee80211_mgmt *mgmt;
487 if (!ieee80211_is_mgmt(hdr->frame_control))
488 return RX_DROP_MONITOR;
490 if (ieee80211_is_action(hdr->frame_control)) {
491 mgmt = (struct ieee80211_mgmt *)hdr;
492 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
493 return RX_DROP_MONITOR;
494 return RX_CONTINUE;
497 if (ieee80211_is_probe_req(hdr->frame_control) ||
498 ieee80211_is_probe_resp(hdr->frame_control) ||
499 ieee80211_is_beacon(hdr->frame_control))
500 return RX_CONTINUE;
502 return RX_DROP_MONITOR;
506 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
508 if (ieee80211_is_data(hdr->frame_control) &&
509 is_multicast_ether_addr(hdr->addr1) &&
510 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
511 return RX_DROP_MONITOR;
512 #undef msh_h_get
514 return RX_CONTINUE;
517 #define SEQ_MODULO 0x1000
518 #define SEQ_MASK 0xfff
520 static inline int seq_less(u16 sq1, u16 sq2)
522 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
525 static inline u16 seq_inc(u16 sq)
527 return (sq + 1) & SEQ_MASK;
530 static inline u16 seq_sub(u16 sq1, u16 sq2)
532 return (sq1 - sq2) & SEQ_MASK;
536 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
537 struct tid_ampdu_rx *tid_agg_rx,
538 int index,
539 struct sk_buff_head *frames)
541 struct ieee80211_supported_band *sband;
542 struct ieee80211_rate *rate = NULL;
543 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
544 struct ieee80211_rx_status *status;
546 if (!skb)
547 goto no_frame;
549 status = IEEE80211_SKB_RXCB(skb);
551 /* release the reordered frames to stack */
552 sband = hw->wiphy->bands[status->band];
553 if (!(status->flag & RX_FLAG_HT))
554 rate = &sband->bitrates[status->rate_idx];
555 tid_agg_rx->stored_mpdu_num--;
556 tid_agg_rx->reorder_buf[index] = NULL;
557 __skb_queue_tail(frames, skb);
559 no_frame:
560 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
563 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
564 struct tid_ampdu_rx *tid_agg_rx,
565 u16 head_seq_num,
566 struct sk_buff_head *frames)
568 int index;
570 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
571 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
572 tid_agg_rx->buf_size;
573 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
578 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
579 * the skb was added to the buffer longer than this time ago, the earlier
580 * frames that have not yet been received are assumed to be lost and the skb
581 * can be released for processing. This may also release other skb's from the
582 * reorder buffer if there are no additional gaps between the frames.
584 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
587 * As this function belongs to the RX path it must be under
588 * rcu_read_lock protection. It returns false if the frame
589 * can be processed immediately, true if it was consumed.
591 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
592 struct tid_ampdu_rx *tid_agg_rx,
593 struct sk_buff *skb,
594 struct sk_buff_head *frames)
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
597 u16 sc = le16_to_cpu(hdr->seq_ctrl);
598 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
599 u16 head_seq_num, buf_size;
600 int index;
602 buf_size = tid_agg_rx->buf_size;
603 head_seq_num = tid_agg_rx->head_seq_num;
605 /* frame with out of date sequence number */
606 if (seq_less(mpdu_seq_num, head_seq_num)) {
607 dev_kfree_skb(skb);
608 return true;
612 * If frame the sequence number exceeds our buffering window
613 * size release some previous frames to make room for this one.
615 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
616 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
617 /* release stored frames up to new head to stack */
618 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
619 frames);
622 /* Now the new frame is always in the range of the reordering buffer */
624 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
626 /* check if we already stored this frame */
627 if (tid_agg_rx->reorder_buf[index]) {
628 dev_kfree_skb(skb);
629 return true;
633 * If the current MPDU is in the right order and nothing else
634 * is stored we can process it directly, no need to buffer it.
636 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
637 tid_agg_rx->stored_mpdu_num == 0) {
638 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
639 return false;
642 /* put the frame in the reordering buffer */
643 tid_agg_rx->reorder_buf[index] = skb;
644 tid_agg_rx->reorder_time[index] = jiffies;
645 tid_agg_rx->stored_mpdu_num++;
646 /* release the buffer until next missing frame */
647 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
648 tid_agg_rx->buf_size;
649 if (!tid_agg_rx->reorder_buf[index] &&
650 tid_agg_rx->stored_mpdu_num > 1) {
652 * No buffers ready to be released, but check whether any
653 * frames in the reorder buffer have timed out.
655 int j;
656 int skipped = 1;
657 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
658 j = (j + 1) % tid_agg_rx->buf_size) {
659 if (!tid_agg_rx->reorder_buf[j]) {
660 skipped++;
661 continue;
663 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
664 HT_RX_REORDER_BUF_TIMEOUT))
665 break;
667 #ifdef CONFIG_MAC80211_HT_DEBUG
668 if (net_ratelimit())
669 printk(KERN_DEBUG "%s: release an RX reorder "
670 "frame due to timeout on earlier "
671 "frames\n",
672 wiphy_name(hw->wiphy));
673 #endif
674 ieee80211_release_reorder_frame(hw, tid_agg_rx,
675 j, frames);
678 * Increment the head seq# also for the skipped slots.
680 tid_agg_rx->head_seq_num =
681 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
682 skipped = 0;
684 } else while (tid_agg_rx->reorder_buf[index]) {
685 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
686 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
687 tid_agg_rx->buf_size;
690 return true;
694 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
695 * true if the MPDU was buffered, false if it should be processed.
697 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
698 struct sk_buff_head *frames)
700 struct sk_buff *skb = rx->skb;
701 struct ieee80211_local *local = rx->local;
702 struct ieee80211_hw *hw = &local->hw;
703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
704 struct sta_info *sta = rx->sta;
705 struct tid_ampdu_rx *tid_agg_rx;
706 u16 sc;
707 int tid;
709 if (!ieee80211_is_data_qos(hdr->frame_control))
710 goto dont_reorder;
713 * filter the QoS data rx stream according to
714 * STA/TID and check if this STA/TID is on aggregation
717 if (!sta)
718 goto dont_reorder;
720 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
722 spin_lock(&sta->lock);
724 if (!sta->ampdu_mlme.tid_active_rx[tid])
725 goto dont_reorder_unlock;
727 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
729 /* qos null data frames are excluded */
730 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
731 goto dont_reorder_unlock;
733 /* new, potentially un-ordered, ampdu frame - process it */
735 /* reset session timer */
736 if (tid_agg_rx->timeout)
737 mod_timer(&tid_agg_rx->session_timer,
738 TU_TO_EXP_TIME(tid_agg_rx->timeout));
740 /* if this mpdu is fragmented - terminate rx aggregation session */
741 sc = le16_to_cpu(hdr->seq_ctrl);
742 if (sc & IEEE80211_SCTL_FRAG) {
743 spin_unlock(&sta->lock);
744 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
745 WLAN_REASON_QSTA_REQUIRE_SETUP);
746 dev_kfree_skb(skb);
747 return;
750 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames)) {
751 spin_unlock(&sta->lock);
752 return;
755 dont_reorder_unlock:
756 spin_unlock(&sta->lock);
757 dont_reorder:
758 __skb_queue_tail(frames, skb);
761 static ieee80211_rx_result debug_noinline
762 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
764 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
766 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
767 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
768 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
769 rx->sta->last_seq_ctrl[rx->queue] ==
770 hdr->seq_ctrl)) {
771 if (rx->flags & IEEE80211_RX_RA_MATCH) {
772 rx->local->dot11FrameDuplicateCount++;
773 rx->sta->num_duplicates++;
775 return RX_DROP_MONITOR;
776 } else
777 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
780 if (unlikely(rx->skb->len < 16)) {
781 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
782 return RX_DROP_MONITOR;
785 /* Drop disallowed frame classes based on STA auth/assoc state;
786 * IEEE 802.11, Chap 5.5.
788 * mac80211 filters only based on association state, i.e. it drops
789 * Class 3 frames from not associated stations. hostapd sends
790 * deauth/disassoc frames when needed. In addition, hostapd is
791 * responsible for filtering on both auth and assoc states.
794 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
795 return ieee80211_rx_mesh_check(rx);
797 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
798 ieee80211_is_pspoll(hdr->frame_control)) &&
799 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
800 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
801 if ((!ieee80211_has_fromds(hdr->frame_control) &&
802 !ieee80211_has_tods(hdr->frame_control) &&
803 ieee80211_is_data(hdr->frame_control)) ||
804 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
805 /* Drop IBSS frames and frames for other hosts
806 * silently. */
807 return RX_DROP_MONITOR;
810 return RX_DROP_MONITOR;
813 return RX_CONTINUE;
817 static ieee80211_rx_result debug_noinline
818 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
820 struct sk_buff *skb = rx->skb;
821 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
822 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
823 int keyidx;
824 int hdrlen;
825 ieee80211_rx_result result = RX_DROP_UNUSABLE;
826 struct ieee80211_key *stakey = NULL;
827 int mmie_keyidx = -1;
830 * Key selection 101
832 * There are four types of keys:
833 * - GTK (group keys)
834 * - IGTK (group keys for management frames)
835 * - PTK (pairwise keys)
836 * - STK (station-to-station pairwise keys)
838 * When selecting a key, we have to distinguish between multicast
839 * (including broadcast) and unicast frames, the latter can only
840 * use PTKs and STKs while the former always use GTKs and IGTKs.
841 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
842 * unicast frames can also use key indices like GTKs. Hence, if we
843 * don't have a PTK/STK we check the key index for a WEP key.
845 * Note that in a regular BSS, multicast frames are sent by the
846 * AP only, associated stations unicast the frame to the AP first
847 * which then multicasts it on their behalf.
849 * There is also a slight problem in IBSS mode: GTKs are negotiated
850 * with each station, that is something we don't currently handle.
851 * The spec seems to expect that one negotiates the same key with
852 * every station but there's no such requirement; VLANs could be
853 * possible.
857 * No point in finding a key and decrypting if the frame is neither
858 * addressed to us nor a multicast frame.
860 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
861 return RX_CONTINUE;
863 /* start without a key */
864 rx->key = NULL;
866 if (rx->sta)
867 stakey = rcu_dereference(rx->sta->key);
869 if (!ieee80211_has_protected(hdr->frame_control))
870 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
872 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
873 rx->key = stakey;
874 /* Skip decryption if the frame is not protected. */
875 if (!ieee80211_has_protected(hdr->frame_control))
876 return RX_CONTINUE;
877 } else if (mmie_keyidx >= 0) {
878 /* Broadcast/multicast robust management frame / BIP */
879 if ((status->flag & RX_FLAG_DECRYPTED) &&
880 (status->flag & RX_FLAG_IV_STRIPPED))
881 return RX_CONTINUE;
883 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
884 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
885 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
886 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
887 } else if (!ieee80211_has_protected(hdr->frame_control)) {
889 * The frame was not protected, so skip decryption. However, we
890 * need to set rx->key if there is a key that could have been
891 * used so that the frame may be dropped if encryption would
892 * have been expected.
894 struct ieee80211_key *key = NULL;
895 if (ieee80211_is_mgmt(hdr->frame_control) &&
896 is_multicast_ether_addr(hdr->addr1) &&
897 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
898 rx->key = key;
899 else if ((key = rcu_dereference(rx->sdata->default_key)))
900 rx->key = key;
901 return RX_CONTINUE;
902 } else {
903 u8 keyid;
905 * The device doesn't give us the IV so we won't be
906 * able to look up the key. That's ok though, we
907 * don't need to decrypt the frame, we just won't
908 * be able to keep statistics accurate.
909 * Except for key threshold notifications, should
910 * we somehow allow the driver to tell us which key
911 * the hardware used if this flag is set?
913 if ((status->flag & RX_FLAG_DECRYPTED) &&
914 (status->flag & RX_FLAG_IV_STRIPPED))
915 return RX_CONTINUE;
917 hdrlen = ieee80211_hdrlen(hdr->frame_control);
919 if (rx->skb->len < 8 + hdrlen)
920 return RX_DROP_UNUSABLE; /* TODO: count this? */
923 * no need to call ieee80211_wep_get_keyidx,
924 * it verifies a bunch of things we've done already
926 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
927 keyidx = keyid >> 6;
929 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
932 * RSNA-protected unicast frames should always be sent with
933 * pairwise or station-to-station keys, but for WEP we allow
934 * using a key index as well.
936 if (rx->key && rx->key->conf.alg != ALG_WEP &&
937 !is_multicast_ether_addr(hdr->addr1))
938 rx->key = NULL;
941 if (rx->key) {
942 rx->key->tx_rx_count++;
943 /* TODO: add threshold stuff again */
944 } else {
945 return RX_DROP_MONITOR;
948 if (skb_linearize(rx->skb))
949 return RX_DROP_UNUSABLE;
951 hdr = (struct ieee80211_hdr *)rx->skb->data;
953 /* Check for weak IVs if possible */
954 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
955 ieee80211_is_data(hdr->frame_control) &&
956 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
957 !(status->flag & RX_FLAG_DECRYPTED)) &&
958 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
959 rx->sta->wep_weak_iv_count++;
961 switch (rx->key->conf.alg) {
962 case ALG_WEP:
963 result = ieee80211_crypto_wep_decrypt(rx);
964 break;
965 case ALG_TKIP:
966 result = ieee80211_crypto_tkip_decrypt(rx);
967 break;
968 case ALG_CCMP:
969 result = ieee80211_crypto_ccmp_decrypt(rx);
970 break;
971 case ALG_AES_CMAC:
972 result = ieee80211_crypto_aes_cmac_decrypt(rx);
973 break;
976 /* either the frame has been decrypted or will be dropped */
977 status->flag |= RX_FLAG_DECRYPTED;
979 return result;
982 static ieee80211_rx_result debug_noinline
983 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
985 struct ieee80211_local *local;
986 struct ieee80211_hdr *hdr;
987 struct sk_buff *skb;
989 local = rx->local;
990 skb = rx->skb;
991 hdr = (struct ieee80211_hdr *) skb->data;
993 if (!local->pspolling)
994 return RX_CONTINUE;
996 if (!ieee80211_has_fromds(hdr->frame_control))
997 /* this is not from AP */
998 return RX_CONTINUE;
1000 if (!ieee80211_is_data(hdr->frame_control))
1001 return RX_CONTINUE;
1003 if (!ieee80211_has_moredata(hdr->frame_control)) {
1004 /* AP has no more frames buffered for us */
1005 local->pspolling = false;
1006 return RX_CONTINUE;
1009 /* more data bit is set, let's request a new frame from the AP */
1010 ieee80211_send_pspoll(local, rx->sdata);
1012 return RX_CONTINUE;
1015 static void ap_sta_ps_start(struct sta_info *sta)
1017 struct ieee80211_sub_if_data *sdata = sta->sdata;
1018 struct ieee80211_local *local = sdata->local;
1020 atomic_inc(&sdata->bss->num_sta_ps);
1021 set_sta_flags(sta, WLAN_STA_PS_STA);
1022 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1023 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1024 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1025 sdata->name, sta->sta.addr, sta->sta.aid);
1026 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1029 static void ap_sta_ps_end(struct sta_info *sta)
1031 struct ieee80211_sub_if_data *sdata = sta->sdata;
1033 atomic_dec(&sdata->bss->num_sta_ps);
1035 clear_sta_flags(sta, WLAN_STA_PS_STA);
1037 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1038 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1039 sdata->name, sta->sta.addr, sta->sta.aid);
1040 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1042 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1043 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1044 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1045 sdata->name, sta->sta.addr, sta->sta.aid);
1046 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1047 return;
1050 ieee80211_sta_ps_deliver_wakeup(sta);
1053 static ieee80211_rx_result debug_noinline
1054 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1056 struct sta_info *sta = rx->sta;
1057 struct sk_buff *skb = rx->skb;
1058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1059 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1061 if (!sta)
1062 return RX_CONTINUE;
1065 * Update last_rx only for IBSS packets which are for the current
1066 * BSSID to avoid keeping the current IBSS network alive in cases
1067 * where other STAs start using different BSSID.
1069 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1070 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1071 NL80211_IFTYPE_ADHOC);
1072 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1073 sta->last_rx = jiffies;
1074 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1076 * Mesh beacons will update last_rx when if they are found to
1077 * match the current local configuration when processed.
1079 sta->last_rx = jiffies;
1082 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1083 return RX_CONTINUE;
1085 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1086 ieee80211_sta_rx_notify(rx->sdata, hdr);
1088 sta->rx_fragments++;
1089 sta->rx_bytes += rx->skb->len;
1090 sta->last_signal = status->signal;
1093 * Change STA power saving mode only at the end of a frame
1094 * exchange sequence.
1096 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1097 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1098 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1099 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1101 * Ignore doze->wake transitions that are
1102 * indicated by non-data frames, the standard
1103 * is unclear here, but for example going to
1104 * PS mode and then scanning would cause a
1105 * doze->wake transition for the probe request,
1106 * and that is clearly undesirable.
1108 if (ieee80211_is_data(hdr->frame_control) &&
1109 !ieee80211_has_pm(hdr->frame_control))
1110 ap_sta_ps_end(sta);
1111 } else {
1112 if (ieee80211_has_pm(hdr->frame_control))
1113 ap_sta_ps_start(sta);
1118 * Drop (qos-)data::nullfunc frames silently, since they
1119 * are used only to control station power saving mode.
1121 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1122 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1123 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1126 * If we receive a 4-addr nullfunc frame from a STA
1127 * that was not moved to a 4-addr STA vlan yet, drop
1128 * the frame to the monitor interface, to make sure
1129 * that hostapd sees it
1131 if (ieee80211_has_a4(hdr->frame_control) &&
1132 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1133 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1134 !rx->sdata->u.vlan.sta)))
1135 return RX_DROP_MONITOR;
1137 * Update counter and free packet here to avoid
1138 * counting this as a dropped packed.
1140 sta->rx_packets++;
1141 dev_kfree_skb(rx->skb);
1142 return RX_QUEUED;
1145 return RX_CONTINUE;
1146 } /* ieee80211_rx_h_sta_process */
1148 static inline struct ieee80211_fragment_entry *
1149 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1150 unsigned int frag, unsigned int seq, int rx_queue,
1151 struct sk_buff **skb)
1153 struct ieee80211_fragment_entry *entry;
1154 int idx;
1156 idx = sdata->fragment_next;
1157 entry = &sdata->fragments[sdata->fragment_next++];
1158 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1159 sdata->fragment_next = 0;
1161 if (!skb_queue_empty(&entry->skb_list)) {
1162 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1163 struct ieee80211_hdr *hdr =
1164 (struct ieee80211_hdr *) entry->skb_list.next->data;
1165 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1166 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1167 "addr1=%pM addr2=%pM\n",
1168 sdata->name, idx,
1169 jiffies - entry->first_frag_time, entry->seq,
1170 entry->last_frag, hdr->addr1, hdr->addr2);
1171 #endif
1172 __skb_queue_purge(&entry->skb_list);
1175 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1176 *skb = NULL;
1177 entry->first_frag_time = jiffies;
1178 entry->seq = seq;
1179 entry->rx_queue = rx_queue;
1180 entry->last_frag = frag;
1181 entry->ccmp = 0;
1182 entry->extra_len = 0;
1184 return entry;
1187 static inline struct ieee80211_fragment_entry *
1188 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1189 unsigned int frag, unsigned int seq,
1190 int rx_queue, struct ieee80211_hdr *hdr)
1192 struct ieee80211_fragment_entry *entry;
1193 int i, idx;
1195 idx = sdata->fragment_next;
1196 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1197 struct ieee80211_hdr *f_hdr;
1199 idx--;
1200 if (idx < 0)
1201 idx = IEEE80211_FRAGMENT_MAX - 1;
1203 entry = &sdata->fragments[idx];
1204 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1205 entry->rx_queue != rx_queue ||
1206 entry->last_frag + 1 != frag)
1207 continue;
1209 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1212 * Check ftype and addresses are equal, else check next fragment
1214 if (((hdr->frame_control ^ f_hdr->frame_control) &
1215 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1216 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1217 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1218 continue;
1220 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1221 __skb_queue_purge(&entry->skb_list);
1222 continue;
1224 return entry;
1227 return NULL;
1230 static ieee80211_rx_result debug_noinline
1231 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1233 struct ieee80211_hdr *hdr;
1234 u16 sc;
1235 __le16 fc;
1236 unsigned int frag, seq;
1237 struct ieee80211_fragment_entry *entry;
1238 struct sk_buff *skb;
1240 hdr = (struct ieee80211_hdr *)rx->skb->data;
1241 fc = hdr->frame_control;
1242 sc = le16_to_cpu(hdr->seq_ctrl);
1243 frag = sc & IEEE80211_SCTL_FRAG;
1245 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1246 (rx->skb)->len < 24 ||
1247 is_multicast_ether_addr(hdr->addr1))) {
1248 /* not fragmented */
1249 goto out;
1251 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1253 if (skb_linearize(rx->skb))
1254 return RX_DROP_UNUSABLE;
1257 * skb_linearize() might change the skb->data and
1258 * previously cached variables (in this case, hdr) need to
1259 * be refreshed with the new data.
1261 hdr = (struct ieee80211_hdr *)rx->skb->data;
1262 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1264 if (frag == 0) {
1265 /* This is the first fragment of a new frame. */
1266 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1267 rx->queue, &(rx->skb));
1268 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1269 ieee80211_has_protected(fc)) {
1270 /* Store CCMP PN so that we can verify that the next
1271 * fragment has a sequential PN value. */
1272 entry->ccmp = 1;
1273 memcpy(entry->last_pn,
1274 rx->key->u.ccmp.rx_pn[rx->queue],
1275 CCMP_PN_LEN);
1277 return RX_QUEUED;
1280 /* This is a fragment for a frame that should already be pending in
1281 * fragment cache. Add this fragment to the end of the pending entry.
1283 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1284 if (!entry) {
1285 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1286 return RX_DROP_MONITOR;
1289 /* Verify that MPDUs within one MSDU have sequential PN values.
1290 * (IEEE 802.11i, 8.3.3.4.5) */
1291 if (entry->ccmp) {
1292 int i;
1293 u8 pn[CCMP_PN_LEN], *rpn;
1294 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1295 return RX_DROP_UNUSABLE;
1296 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1297 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1298 pn[i]++;
1299 if (pn[i])
1300 break;
1302 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1303 if (memcmp(pn, rpn, CCMP_PN_LEN))
1304 return RX_DROP_UNUSABLE;
1305 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1308 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1309 __skb_queue_tail(&entry->skb_list, rx->skb);
1310 entry->last_frag = frag;
1311 entry->extra_len += rx->skb->len;
1312 if (ieee80211_has_morefrags(fc)) {
1313 rx->skb = NULL;
1314 return RX_QUEUED;
1317 rx->skb = __skb_dequeue(&entry->skb_list);
1318 if (skb_tailroom(rx->skb) < entry->extra_len) {
1319 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1320 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1321 GFP_ATOMIC))) {
1322 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1323 __skb_queue_purge(&entry->skb_list);
1324 return RX_DROP_UNUSABLE;
1327 while ((skb = __skb_dequeue(&entry->skb_list))) {
1328 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1329 dev_kfree_skb(skb);
1332 /* Complete frame has been reassembled - process it now */
1333 rx->flags |= IEEE80211_RX_FRAGMENTED;
1335 out:
1336 if (rx->sta)
1337 rx->sta->rx_packets++;
1338 if (is_multicast_ether_addr(hdr->addr1))
1339 rx->local->dot11MulticastReceivedFrameCount++;
1340 else
1341 ieee80211_led_rx(rx->local);
1342 return RX_CONTINUE;
1345 static ieee80211_rx_result debug_noinline
1346 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1348 struct ieee80211_sub_if_data *sdata = rx->sdata;
1349 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1351 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1352 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1353 return RX_CONTINUE;
1355 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1356 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1357 return RX_DROP_UNUSABLE;
1359 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1360 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1361 else
1362 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1364 /* Free PS Poll skb here instead of returning RX_DROP that would
1365 * count as an dropped frame. */
1366 dev_kfree_skb(rx->skb);
1368 return RX_QUEUED;
1371 static ieee80211_rx_result debug_noinline
1372 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1374 u8 *data = rx->skb->data;
1375 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1377 if (!ieee80211_is_data_qos(hdr->frame_control))
1378 return RX_CONTINUE;
1380 /* remove the qos control field, update frame type and meta-data */
1381 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1382 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1383 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1384 /* change frame type to non QOS */
1385 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1387 return RX_CONTINUE;
1390 static int
1391 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1393 if (unlikely(!rx->sta ||
1394 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1395 return -EACCES;
1397 return 0;
1400 static int
1401 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1403 struct sk_buff *skb = rx->skb;
1404 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1407 * Pass through unencrypted frames if the hardware has
1408 * decrypted them already.
1410 if (status->flag & RX_FLAG_DECRYPTED)
1411 return 0;
1413 /* Drop unencrypted frames if key is set. */
1414 if (unlikely(!ieee80211_has_protected(fc) &&
1415 !ieee80211_is_nullfunc(fc) &&
1416 ieee80211_is_data(fc) &&
1417 (rx->key || rx->sdata->drop_unencrypted)))
1418 return -EACCES;
1420 return 0;
1423 static int
1424 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1427 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1428 __le16 fc = hdr->frame_control;
1431 * Pass through unencrypted frames if the hardware has
1432 * decrypted them already.
1434 if (status->flag & RX_FLAG_DECRYPTED)
1435 return 0;
1437 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1438 if (unlikely(!ieee80211_has_protected(fc) &&
1439 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1440 rx->key))
1441 return -EACCES;
1442 /* BIP does not use Protected field, so need to check MMIE */
1443 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1444 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1445 return -EACCES;
1447 * When using MFP, Action frames are not allowed prior to
1448 * having configured keys.
1450 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1451 ieee80211_is_robust_mgmt_frame(
1452 (struct ieee80211_hdr *) rx->skb->data)))
1453 return -EACCES;
1456 return 0;
1459 static int
1460 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1462 struct ieee80211_sub_if_data *sdata = rx->sdata;
1463 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1465 if (ieee80211_has_a4(hdr->frame_control) &&
1466 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1467 return -1;
1469 if (is_multicast_ether_addr(hdr->addr1) &&
1470 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1471 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1472 return -1;
1474 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1478 * requires that rx->skb is a frame with ethernet header
1480 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1482 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1483 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1484 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1487 * Allow EAPOL frames to us/the PAE group address regardless
1488 * of whether the frame was encrypted or not.
1490 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1491 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1492 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1493 return true;
1495 if (ieee80211_802_1x_port_control(rx) ||
1496 ieee80211_drop_unencrypted(rx, fc))
1497 return false;
1499 return true;
1503 * requires that rx->skb is a frame with ethernet header
1505 static void
1506 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1508 struct ieee80211_sub_if_data *sdata = rx->sdata;
1509 struct net_device *dev = sdata->dev;
1510 struct sk_buff *skb, *xmit_skb;
1511 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1512 struct sta_info *dsta;
1514 skb = rx->skb;
1515 xmit_skb = NULL;
1517 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1518 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1519 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1520 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1521 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1522 if (is_multicast_ether_addr(ehdr->h_dest)) {
1524 * send multicast frames both to higher layers in
1525 * local net stack and back to the wireless medium
1527 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1528 if (!xmit_skb && net_ratelimit())
1529 printk(KERN_DEBUG "%s: failed to clone "
1530 "multicast frame\n", dev->name);
1531 } else {
1532 dsta = sta_info_get(sdata, skb->data);
1533 if (dsta) {
1535 * The destination station is associated to
1536 * this AP (in this VLAN), so send the frame
1537 * directly to it and do not pass it to local
1538 * net stack.
1540 xmit_skb = skb;
1541 skb = NULL;
1546 if (skb) {
1547 int align __maybe_unused;
1549 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1551 * 'align' will only take the values 0 or 2 here
1552 * since all frames are required to be aligned
1553 * to 2-byte boundaries when being passed to
1554 * mac80211. That also explains the __skb_push()
1555 * below.
1557 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1558 if (align) {
1559 if (WARN_ON(skb_headroom(skb) < 3)) {
1560 dev_kfree_skb(skb);
1561 skb = NULL;
1562 } else {
1563 u8 *data = skb->data;
1564 size_t len = skb_headlen(skb);
1565 skb->data -= align;
1566 memmove(skb->data, data, len);
1567 skb_set_tail_pointer(skb, len);
1570 #endif
1572 if (skb) {
1573 /* deliver to local stack */
1574 skb->protocol = eth_type_trans(skb, dev);
1575 memset(skb->cb, 0, sizeof(skb->cb));
1576 netif_rx(skb);
1580 if (xmit_skb) {
1581 /* send to wireless media */
1582 xmit_skb->protocol = htons(ETH_P_802_3);
1583 skb_reset_network_header(xmit_skb);
1584 skb_reset_mac_header(xmit_skb);
1585 dev_queue_xmit(xmit_skb);
1589 static ieee80211_rx_result debug_noinline
1590 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1592 struct net_device *dev = rx->sdata->dev;
1593 struct sk_buff *skb = rx->skb;
1594 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1595 __le16 fc = hdr->frame_control;
1596 struct sk_buff_head frame_list;
1598 if (unlikely(!ieee80211_is_data(fc)))
1599 return RX_CONTINUE;
1601 if (unlikely(!ieee80211_is_data_present(fc)))
1602 return RX_DROP_MONITOR;
1604 if (!(rx->flags & IEEE80211_RX_AMSDU))
1605 return RX_CONTINUE;
1607 if (ieee80211_has_a4(hdr->frame_control) &&
1608 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1609 !rx->sdata->u.vlan.sta)
1610 return RX_DROP_UNUSABLE;
1612 if (is_multicast_ether_addr(hdr->addr1) &&
1613 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1614 rx->sdata->u.vlan.sta) ||
1615 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1616 rx->sdata->u.mgd.use_4addr)))
1617 return RX_DROP_UNUSABLE;
1619 skb->dev = dev;
1620 __skb_queue_head_init(&frame_list);
1622 if (skb_linearize(skb))
1623 return RX_DROP_UNUSABLE;
1625 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1626 rx->sdata->vif.type,
1627 rx->local->hw.extra_tx_headroom);
1629 while (!skb_queue_empty(&frame_list)) {
1630 rx->skb = __skb_dequeue(&frame_list);
1632 if (!ieee80211_frame_allowed(rx, fc)) {
1633 dev_kfree_skb(rx->skb);
1634 continue;
1636 dev->stats.rx_packets++;
1637 dev->stats.rx_bytes += rx->skb->len;
1639 ieee80211_deliver_skb(rx);
1642 return RX_QUEUED;
1645 #ifdef CONFIG_MAC80211_MESH
1646 static ieee80211_rx_result
1647 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1649 struct ieee80211_hdr *hdr;
1650 struct ieee80211s_hdr *mesh_hdr;
1651 unsigned int hdrlen;
1652 struct sk_buff *skb = rx->skb, *fwd_skb;
1653 struct ieee80211_local *local = rx->local;
1654 struct ieee80211_sub_if_data *sdata = rx->sdata;
1656 hdr = (struct ieee80211_hdr *) skb->data;
1657 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1658 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1660 if (!ieee80211_is_data(hdr->frame_control))
1661 return RX_CONTINUE;
1663 if (!mesh_hdr->ttl)
1664 /* illegal frame */
1665 return RX_DROP_MONITOR;
1667 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1668 struct mesh_path *mppath;
1669 char *proxied_addr;
1670 char *mpp_addr;
1672 if (is_multicast_ether_addr(hdr->addr1)) {
1673 mpp_addr = hdr->addr3;
1674 proxied_addr = mesh_hdr->eaddr1;
1675 } else {
1676 mpp_addr = hdr->addr4;
1677 proxied_addr = mesh_hdr->eaddr2;
1680 rcu_read_lock();
1681 mppath = mpp_path_lookup(proxied_addr, sdata);
1682 if (!mppath) {
1683 mpp_path_add(proxied_addr, mpp_addr, sdata);
1684 } else {
1685 spin_lock_bh(&mppath->state_lock);
1686 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1687 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1688 spin_unlock_bh(&mppath->state_lock);
1690 rcu_read_unlock();
1693 /* Frame has reached destination. Don't forward */
1694 if (!is_multicast_ether_addr(hdr->addr1) &&
1695 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1696 return RX_CONTINUE;
1698 mesh_hdr->ttl--;
1700 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1701 if (!mesh_hdr->ttl)
1702 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1703 dropped_frames_ttl);
1704 else {
1705 struct ieee80211_hdr *fwd_hdr;
1706 struct ieee80211_tx_info *info;
1708 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1710 if (!fwd_skb && net_ratelimit())
1711 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1712 sdata->name);
1714 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1715 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1716 info = IEEE80211_SKB_CB(fwd_skb);
1717 memset(info, 0, sizeof(*info));
1718 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1719 info->control.vif = &rx->sdata->vif;
1720 skb_set_queue_mapping(skb,
1721 ieee80211_select_queue(rx->sdata, fwd_skb));
1722 ieee80211_set_qos_hdr(local, skb);
1723 if (is_multicast_ether_addr(fwd_hdr->addr1))
1724 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1725 fwded_mcast);
1726 else {
1727 int err;
1729 * Save TA to addr1 to send TA a path error if a
1730 * suitable next hop is not found
1732 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1733 ETH_ALEN);
1734 err = mesh_nexthop_lookup(fwd_skb, sdata);
1735 /* Failed to immediately resolve next hop:
1736 * fwded frame was dropped or will be added
1737 * later to the pending skb queue. */
1738 if (err)
1739 return RX_DROP_MONITOR;
1741 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1742 fwded_unicast);
1744 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1745 fwded_frames);
1746 ieee80211_add_pending_skb(local, fwd_skb);
1750 if (is_multicast_ether_addr(hdr->addr1) ||
1751 sdata->dev->flags & IFF_PROMISC)
1752 return RX_CONTINUE;
1753 else
1754 return RX_DROP_MONITOR;
1756 #endif
1758 static ieee80211_rx_result debug_noinline
1759 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1761 struct ieee80211_sub_if_data *sdata = rx->sdata;
1762 struct ieee80211_local *local = rx->local;
1763 struct net_device *dev = sdata->dev;
1764 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1765 __le16 fc = hdr->frame_control;
1766 int err;
1768 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1769 return RX_CONTINUE;
1771 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1772 return RX_DROP_MONITOR;
1775 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1776 * that a 4-addr station can be detected and moved into a separate VLAN
1778 if (ieee80211_has_a4(hdr->frame_control) &&
1779 sdata->vif.type == NL80211_IFTYPE_AP)
1780 return RX_DROP_MONITOR;
1782 err = __ieee80211_data_to_8023(rx);
1783 if (unlikely(err))
1784 return RX_DROP_UNUSABLE;
1786 if (!ieee80211_frame_allowed(rx, fc))
1787 return RX_DROP_MONITOR;
1789 rx->skb->dev = dev;
1791 dev->stats.rx_packets++;
1792 dev->stats.rx_bytes += rx->skb->len;
1794 if (ieee80211_is_data(hdr->frame_control) &&
1795 !is_multicast_ether_addr(hdr->addr1) &&
1796 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1797 mod_timer(&local->dynamic_ps_timer, jiffies +
1798 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1801 ieee80211_deliver_skb(rx);
1803 return RX_QUEUED;
1806 static ieee80211_rx_result debug_noinline
1807 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1809 struct ieee80211_local *local = rx->local;
1810 struct ieee80211_hw *hw = &local->hw;
1811 struct sk_buff *skb = rx->skb;
1812 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1813 struct tid_ampdu_rx *tid_agg_rx;
1814 u16 start_seq_num;
1815 u16 tid;
1817 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1818 return RX_CONTINUE;
1820 if (ieee80211_is_back_req(bar->frame_control)) {
1821 struct {
1822 __le16 control, start_seq_num;
1823 } __packed bar_data;
1825 if (!rx->sta)
1826 return RX_DROP_MONITOR;
1828 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1829 &bar_data, sizeof(bar_data)))
1830 return RX_DROP_MONITOR;
1832 spin_lock(&rx->sta->lock);
1833 tid = le16_to_cpu(bar_data.control) >> 12;
1834 if (!rx->sta->ampdu_mlme.tid_active_rx[tid]) {
1835 spin_unlock(&rx->sta->lock);
1836 return RX_DROP_MONITOR;
1838 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1840 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1842 /* reset session timer */
1843 if (tid_agg_rx->timeout)
1844 mod_timer(&tid_agg_rx->session_timer,
1845 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1847 /* release stored frames up to start of BAR */
1848 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1849 frames);
1850 kfree_skb(skb);
1851 spin_unlock(&rx->sta->lock);
1852 return RX_QUEUED;
1855 return RX_CONTINUE;
1858 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1859 struct ieee80211_mgmt *mgmt,
1860 size_t len)
1862 struct ieee80211_local *local = sdata->local;
1863 struct sk_buff *skb;
1864 struct ieee80211_mgmt *resp;
1866 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1867 /* Not to own unicast address */
1868 return;
1871 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1872 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1873 /* Not from the current AP or not associated yet. */
1874 return;
1877 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1878 /* Too short SA Query request frame */
1879 return;
1882 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1883 if (skb == NULL)
1884 return;
1886 skb_reserve(skb, local->hw.extra_tx_headroom);
1887 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1888 memset(resp, 0, 24);
1889 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1890 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1891 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1892 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1893 IEEE80211_STYPE_ACTION);
1894 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1895 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1896 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1897 memcpy(resp->u.action.u.sa_query.trans_id,
1898 mgmt->u.action.u.sa_query.trans_id,
1899 WLAN_SA_QUERY_TR_ID_LEN);
1901 ieee80211_tx_skb(sdata, skb);
1904 static ieee80211_rx_result debug_noinline
1905 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1907 struct ieee80211_local *local = rx->local;
1908 struct ieee80211_sub_if_data *sdata = rx->sdata;
1909 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1910 struct sk_buff *nskb;
1911 struct ieee80211_rx_status *status;
1912 int len = rx->skb->len;
1914 if (!ieee80211_is_action(mgmt->frame_control))
1915 return RX_CONTINUE;
1917 /* drop too small frames */
1918 if (len < IEEE80211_MIN_ACTION_SIZE)
1919 return RX_DROP_UNUSABLE;
1921 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1922 return RX_DROP_UNUSABLE;
1924 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1925 return RX_DROP_UNUSABLE;
1927 if (ieee80211_drop_unencrypted_mgmt(rx))
1928 return RX_DROP_UNUSABLE;
1930 switch (mgmt->u.action.category) {
1931 case WLAN_CATEGORY_BACK:
1933 * The aggregation code is not prepared to handle
1934 * anything but STA/AP due to the BSSID handling;
1935 * IBSS could work in the code but isn't supported
1936 * by drivers or the standard.
1938 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1939 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1940 sdata->vif.type != NL80211_IFTYPE_AP)
1941 break;
1943 /* verify action_code is present */
1944 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1945 break;
1947 if (sdata->vif.type == NL80211_IFTYPE_STATION)
1948 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1950 switch (mgmt->u.action.u.addba_req.action_code) {
1951 case WLAN_ACTION_ADDBA_REQ:
1952 if (len < (IEEE80211_MIN_ACTION_SIZE +
1953 sizeof(mgmt->u.action.u.addba_req)))
1954 return RX_DROP_MONITOR;
1955 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1956 goto handled;
1957 case WLAN_ACTION_ADDBA_RESP:
1958 if (len < (IEEE80211_MIN_ACTION_SIZE +
1959 sizeof(mgmt->u.action.u.addba_resp)))
1960 break;
1961 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1962 goto handled;
1963 case WLAN_ACTION_DELBA:
1964 if (len < (IEEE80211_MIN_ACTION_SIZE +
1965 sizeof(mgmt->u.action.u.delba)))
1966 break;
1967 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1968 goto handled;
1970 break;
1971 case WLAN_CATEGORY_SPECTRUM_MGMT:
1972 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1973 break;
1975 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1976 break;
1978 /* verify action_code is present */
1979 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1980 break;
1982 switch (mgmt->u.action.u.measurement.action_code) {
1983 case WLAN_ACTION_SPCT_MSR_REQ:
1984 if (len < (IEEE80211_MIN_ACTION_SIZE +
1985 sizeof(mgmt->u.action.u.measurement)))
1986 break;
1987 ieee80211_process_measurement_req(sdata, mgmt, len);
1988 goto handled;
1989 case WLAN_ACTION_SPCT_CHL_SWITCH:
1990 if (len < (IEEE80211_MIN_ACTION_SIZE +
1991 sizeof(mgmt->u.action.u.chan_switch)))
1992 break;
1994 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1995 break;
1997 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1998 break;
2000 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2002 break;
2003 case WLAN_CATEGORY_SA_QUERY:
2004 if (len < (IEEE80211_MIN_ACTION_SIZE +
2005 sizeof(mgmt->u.action.u.sa_query)))
2006 break;
2008 switch (mgmt->u.action.u.sa_query.action) {
2009 case WLAN_ACTION_SA_QUERY_REQUEST:
2010 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2011 break;
2012 ieee80211_process_sa_query_req(sdata, mgmt, len);
2013 goto handled;
2015 break;
2016 case WLAN_CATEGORY_MESH_PLINK:
2017 case WLAN_CATEGORY_MESH_PATH_SEL:
2018 if (ieee80211_vif_is_mesh(&sdata->vif))
2019 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2020 break;
2024 * For AP mode, hostapd is responsible for handling any action
2025 * frames that we didn't handle, including returning unknown
2026 * ones. For all other modes we will return them to the sender,
2027 * setting the 0x80 bit in the action category, as required by
2028 * 802.11-2007 7.3.1.11.
2030 if (sdata->vif.type == NL80211_IFTYPE_AP ||
2031 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2032 return RX_DROP_MONITOR;
2035 * Getting here means the kernel doesn't know how to handle
2036 * it, but maybe userspace does ... include returned frames
2037 * so userspace can register for those to know whether ones
2038 * it transmitted were processed or returned.
2040 status = IEEE80211_SKB_RXCB(rx->skb);
2042 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2043 cfg80211_rx_action(rx->sdata->dev, status->freq,
2044 rx->skb->data, rx->skb->len,
2045 GFP_ATOMIC))
2046 goto handled;
2048 /* do not return rejected action frames */
2049 if (mgmt->u.action.category & 0x80)
2050 return RX_DROP_UNUSABLE;
2052 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2053 GFP_ATOMIC);
2054 if (nskb) {
2055 struct ieee80211_mgmt *mgmt = (void *)nskb->data;
2057 mgmt->u.action.category |= 0x80;
2058 memcpy(mgmt->da, mgmt->sa, ETH_ALEN);
2059 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2061 memset(nskb->cb, 0, sizeof(nskb->cb));
2063 ieee80211_tx_skb(rx->sdata, nskb);
2066 handled:
2067 if (rx->sta)
2068 rx->sta->rx_packets++;
2069 dev_kfree_skb(rx->skb);
2070 return RX_QUEUED;
2073 static ieee80211_rx_result debug_noinline
2074 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2076 struct ieee80211_sub_if_data *sdata = rx->sdata;
2077 ieee80211_rx_result rxs;
2079 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2080 return RX_DROP_MONITOR;
2082 if (ieee80211_drop_unencrypted_mgmt(rx))
2083 return RX_DROP_UNUSABLE;
2085 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2086 if (rxs != RX_CONTINUE)
2087 return rxs;
2089 if (ieee80211_vif_is_mesh(&sdata->vif))
2090 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2092 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2093 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
2095 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2096 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2098 return RX_DROP_MONITOR;
2101 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2102 struct ieee80211_rx_data *rx)
2104 int keyidx;
2105 unsigned int hdrlen;
2107 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2108 if (rx->skb->len >= hdrlen + 4)
2109 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2110 else
2111 keyidx = -1;
2113 if (!rx->sta) {
2115 * Some hardware seem to generate incorrect Michael MIC
2116 * reports; ignore them to avoid triggering countermeasures.
2118 return;
2121 if (!ieee80211_has_protected(hdr->frame_control))
2122 return;
2124 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2126 * APs with pairwise keys should never receive Michael MIC
2127 * errors for non-zero keyidx because these are reserved for
2128 * group keys and only the AP is sending real multicast
2129 * frames in the BSS.
2131 return;
2134 if (!ieee80211_is_data(hdr->frame_control) &&
2135 !ieee80211_is_auth(hdr->frame_control))
2136 return;
2138 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2139 GFP_ATOMIC);
2142 /* TODO: use IEEE80211_RX_FRAGMENTED */
2143 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2144 struct ieee80211_rate *rate)
2146 struct ieee80211_sub_if_data *sdata;
2147 struct ieee80211_local *local = rx->local;
2148 struct ieee80211_rtap_hdr {
2149 struct ieee80211_radiotap_header hdr;
2150 u8 flags;
2151 u8 rate_or_pad;
2152 __le16 chan_freq;
2153 __le16 chan_flags;
2154 } __attribute__ ((packed)) *rthdr;
2155 struct sk_buff *skb = rx->skb, *skb2;
2156 struct net_device *prev_dev = NULL;
2157 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2159 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2160 goto out_free_skb;
2162 if (skb_headroom(skb) < sizeof(*rthdr) &&
2163 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2164 goto out_free_skb;
2166 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2167 memset(rthdr, 0, sizeof(*rthdr));
2168 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2169 rthdr->hdr.it_present =
2170 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2171 (1 << IEEE80211_RADIOTAP_CHANNEL));
2173 if (rate) {
2174 rthdr->rate_or_pad = rate->bitrate / 5;
2175 rthdr->hdr.it_present |=
2176 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2178 rthdr->chan_freq = cpu_to_le16(status->freq);
2180 if (status->band == IEEE80211_BAND_5GHZ)
2181 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2182 IEEE80211_CHAN_5GHZ);
2183 else
2184 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2185 IEEE80211_CHAN_2GHZ);
2187 skb_set_mac_header(skb, 0);
2188 skb->ip_summed = CHECKSUM_UNNECESSARY;
2189 skb->pkt_type = PACKET_OTHERHOST;
2190 skb->protocol = htons(ETH_P_802_2);
2192 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2193 if (!ieee80211_sdata_running(sdata))
2194 continue;
2196 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2197 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2198 continue;
2200 if (prev_dev) {
2201 skb2 = skb_clone(skb, GFP_ATOMIC);
2202 if (skb2) {
2203 skb2->dev = prev_dev;
2204 netif_rx(skb2);
2208 prev_dev = sdata->dev;
2209 sdata->dev->stats.rx_packets++;
2210 sdata->dev->stats.rx_bytes += skb->len;
2213 if (prev_dev) {
2214 skb->dev = prev_dev;
2215 netif_rx(skb);
2216 skb = NULL;
2217 } else
2218 goto out_free_skb;
2220 status->flag |= RX_FLAG_INTERNAL_CMTR;
2221 return;
2223 out_free_skb:
2224 dev_kfree_skb(skb);
2228 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2229 struct ieee80211_rx_data *rx,
2230 struct sk_buff *skb,
2231 struct ieee80211_rate *rate)
2233 struct sk_buff_head reorder_release;
2234 ieee80211_rx_result res = RX_DROP_MONITOR;
2236 __skb_queue_head_init(&reorder_release);
2238 rx->skb = skb;
2239 rx->sdata = sdata;
2241 #define CALL_RXH(rxh) \
2242 do { \
2243 res = rxh(rx); \
2244 if (res != RX_CONTINUE) \
2245 goto rxh_next; \
2246 } while (0);
2249 * NB: the rxh_next label works even if we jump
2250 * to it from here because then the list will
2251 * be empty, which is a trivial check
2253 CALL_RXH(ieee80211_rx_h_passive_scan)
2254 CALL_RXH(ieee80211_rx_h_check)
2256 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2258 while ((skb = __skb_dequeue(&reorder_release))) {
2260 * all the other fields are valid across frames
2261 * that belong to an aMPDU since they are on the
2262 * same TID from the same station
2264 rx->skb = skb;
2266 CALL_RXH(ieee80211_rx_h_decrypt)
2267 CALL_RXH(ieee80211_rx_h_check_more_data)
2268 CALL_RXH(ieee80211_rx_h_sta_process)
2269 CALL_RXH(ieee80211_rx_h_defragment)
2270 CALL_RXH(ieee80211_rx_h_ps_poll)
2271 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2272 /* must be after MMIC verify so header is counted in MPDU mic */
2273 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2274 CALL_RXH(ieee80211_rx_h_amsdu)
2275 #ifdef CONFIG_MAC80211_MESH
2276 if (ieee80211_vif_is_mesh(&sdata->vif))
2277 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2278 #endif
2279 CALL_RXH(ieee80211_rx_h_data)
2281 /* special treatment -- needs the queue */
2282 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2283 if (res != RX_CONTINUE)
2284 goto rxh_next;
2286 CALL_RXH(ieee80211_rx_h_action)
2287 CALL_RXH(ieee80211_rx_h_mgmt)
2289 #undef CALL_RXH
2291 rxh_next:
2292 switch (res) {
2293 case RX_DROP_MONITOR:
2294 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2295 if (rx->sta)
2296 rx->sta->rx_dropped++;
2297 /* fall through */
2298 case RX_CONTINUE:
2299 ieee80211_rx_cooked_monitor(rx, rate);
2300 break;
2301 case RX_DROP_UNUSABLE:
2302 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2303 if (rx->sta)
2304 rx->sta->rx_dropped++;
2305 dev_kfree_skb(rx->skb);
2306 break;
2307 case RX_QUEUED:
2308 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2309 break;
2314 /* main receive path */
2316 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2317 struct ieee80211_rx_data *rx,
2318 struct ieee80211_hdr *hdr)
2320 struct sk_buff *skb = rx->skb;
2321 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2322 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2323 int multicast = is_multicast_ether_addr(hdr->addr1);
2325 switch (sdata->vif.type) {
2326 case NL80211_IFTYPE_STATION:
2327 if (!bssid && !sdata->u.mgd.use_4addr)
2328 return 0;
2329 if (!multicast &&
2330 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2331 if (!(sdata->dev->flags & IFF_PROMISC))
2332 return 0;
2333 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2335 break;
2336 case NL80211_IFTYPE_ADHOC:
2337 if (!bssid)
2338 return 0;
2339 if (ieee80211_is_beacon(hdr->frame_control)) {
2340 return 1;
2342 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2343 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2344 return 0;
2345 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2346 } else if (!multicast &&
2347 compare_ether_addr(sdata->vif.addr,
2348 hdr->addr1) != 0) {
2349 if (!(sdata->dev->flags & IFF_PROMISC))
2350 return 0;
2351 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2352 } else if (!rx->sta) {
2353 int rate_idx;
2354 if (status->flag & RX_FLAG_HT)
2355 rate_idx = 0; /* TODO: HT rates */
2356 else
2357 rate_idx = status->rate_idx;
2358 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2359 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2361 break;
2362 case NL80211_IFTYPE_MESH_POINT:
2363 if (!multicast &&
2364 compare_ether_addr(sdata->vif.addr,
2365 hdr->addr1) != 0) {
2366 if (!(sdata->dev->flags & IFF_PROMISC))
2367 return 0;
2369 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2371 break;
2372 case NL80211_IFTYPE_AP_VLAN:
2373 case NL80211_IFTYPE_AP:
2374 if (!bssid) {
2375 if (compare_ether_addr(sdata->vif.addr,
2376 hdr->addr1))
2377 return 0;
2378 } else if (!ieee80211_bssid_match(bssid,
2379 sdata->vif.addr)) {
2380 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2381 return 0;
2382 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2384 break;
2385 case NL80211_IFTYPE_WDS:
2386 if (bssid || !ieee80211_is_data(hdr->frame_control))
2387 return 0;
2388 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2389 return 0;
2390 break;
2391 case NL80211_IFTYPE_MONITOR:
2392 case NL80211_IFTYPE_UNSPECIFIED:
2393 case __NL80211_IFTYPE_AFTER_LAST:
2394 /* should never get here */
2395 WARN_ON(1);
2396 break;
2399 return 1;
2403 * This is the actual Rx frames handler. as it blongs to Rx path it must
2404 * be called with rcu_read_lock protection.
2406 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2407 struct sk_buff *skb,
2408 struct ieee80211_rate *rate)
2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2411 struct ieee80211_local *local = hw_to_local(hw);
2412 struct ieee80211_sub_if_data *sdata;
2413 struct ieee80211_hdr *hdr;
2414 __le16 fc;
2415 struct ieee80211_rx_data rx;
2416 int prepares;
2417 struct ieee80211_sub_if_data *prev = NULL;
2418 struct sk_buff *skb_new;
2419 struct sta_info *sta, *tmp;
2420 bool found_sta = false;
2421 int err = 0;
2423 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2424 memset(&rx, 0, sizeof(rx));
2425 rx.skb = skb;
2426 rx.local = local;
2428 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2429 local->dot11ReceivedFragmentCount++;
2431 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2432 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2433 rx.flags |= IEEE80211_RX_IN_SCAN;
2435 if (ieee80211_is_mgmt(fc))
2436 err = skb_linearize(skb);
2437 else
2438 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2440 if (err) {
2441 dev_kfree_skb(skb);
2442 return;
2445 hdr = (struct ieee80211_hdr *)skb->data;
2446 ieee80211_parse_qos(&rx);
2447 ieee80211_verify_alignment(&rx);
2449 if (ieee80211_is_data(fc)) {
2450 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2451 rx.sta = sta;
2452 found_sta = true;
2453 rx.sdata = sta->sdata;
2455 rx.flags |= IEEE80211_RX_RA_MATCH;
2456 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2457 if (prepares) {
2458 if (status->flag & RX_FLAG_MMIC_ERROR) {
2459 if (rx.flags & IEEE80211_RX_RA_MATCH)
2460 ieee80211_rx_michael_mic_report(hdr, &rx);
2461 } else
2462 prev = rx.sdata;
2466 if (!found_sta) {
2467 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2468 if (!ieee80211_sdata_running(sdata))
2469 continue;
2471 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2472 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2473 continue;
2476 * frame is destined for this interface, but if it's
2477 * not also for the previous one we handle that after
2478 * the loop to avoid copying the SKB once too much
2481 if (!prev) {
2482 prev = sdata;
2483 continue;
2486 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2488 rx.flags |= IEEE80211_RX_RA_MATCH;
2489 prepares = prepare_for_handlers(prev, &rx, hdr);
2491 if (!prepares)
2492 goto next;
2494 if (status->flag & RX_FLAG_MMIC_ERROR) {
2495 rx.sdata = prev;
2496 if (rx.flags & IEEE80211_RX_RA_MATCH)
2497 ieee80211_rx_michael_mic_report(hdr,
2498 &rx);
2499 goto next;
2503 * frame was destined for the previous interface
2504 * so invoke RX handlers for it
2507 skb_new = skb_copy(skb, GFP_ATOMIC);
2508 if (!skb_new) {
2509 if (net_ratelimit())
2510 printk(KERN_DEBUG "%s: failed to copy "
2511 "multicast frame for %s\n",
2512 wiphy_name(local->hw.wiphy),
2513 prev->name);
2514 goto next;
2516 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2517 next:
2518 prev = sdata;
2521 if (prev) {
2522 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2524 rx.flags |= IEEE80211_RX_RA_MATCH;
2525 prepares = prepare_for_handlers(prev, &rx, hdr);
2527 if (!prepares)
2528 prev = NULL;
2531 if (prev)
2532 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2533 else
2534 dev_kfree_skb(skb);
2538 * This is the receive path handler. It is called by a low level driver when an
2539 * 802.11 MPDU is received from the hardware.
2541 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2543 struct ieee80211_local *local = hw_to_local(hw);
2544 struct ieee80211_rate *rate = NULL;
2545 struct ieee80211_supported_band *sband;
2546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2548 WARN_ON_ONCE(softirq_count() == 0);
2550 if (WARN_ON(status->band < 0 ||
2551 status->band >= IEEE80211_NUM_BANDS))
2552 goto drop;
2554 sband = local->hw.wiphy->bands[status->band];
2555 if (WARN_ON(!sband))
2556 goto drop;
2559 * If we're suspending, it is possible although not too likely
2560 * that we'd be receiving frames after having already partially
2561 * quiesced the stack. We can't process such frames then since
2562 * that might, for example, cause stations to be added or other
2563 * driver callbacks be invoked.
2565 if (unlikely(local->quiescing || local->suspended))
2566 goto drop;
2569 * The same happens when we're not even started,
2570 * but that's worth a warning.
2572 if (WARN_ON(!local->started))
2573 goto drop;
2575 if (status->flag & RX_FLAG_HT) {
2577 * rate_idx is MCS index, which can be [0-76] as documented on:
2579 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2581 * Anything else would be some sort of driver or hardware error.
2582 * The driver should catch hardware errors.
2584 if (WARN((status->rate_idx < 0 ||
2585 status->rate_idx > 76),
2586 "Rate marked as an HT rate but passed "
2587 "status->rate_idx is not "
2588 "an MCS index [0-76]: %d (0x%02x)\n",
2589 status->rate_idx,
2590 status->rate_idx))
2591 goto drop;
2592 } else {
2593 if (WARN_ON(status->rate_idx < 0 ||
2594 status->rate_idx >= sband->n_bitrates))
2595 goto drop;
2596 rate = &sband->bitrates[status->rate_idx];
2600 * key references and virtual interfaces are protected using RCU
2601 * and this requires that we are in a read-side RCU section during
2602 * receive processing
2604 rcu_read_lock();
2607 * Frames with failed FCS/PLCP checksum are not returned,
2608 * all other frames are returned without radiotap header
2609 * if it was previously present.
2610 * Also, frames with less than 16 bytes are dropped.
2612 skb = ieee80211_rx_monitor(local, skb, rate);
2613 if (!skb) {
2614 rcu_read_unlock();
2615 return;
2618 __ieee80211_rx_handle_packet(hw, skb, rate);
2620 rcu_read_unlock();
2622 return;
2623 drop:
2624 kfree_skb(skb);
2626 EXPORT_SYMBOL(ieee80211_rx);
2628 /* This is a version of the rx handler that can be called from hard irq
2629 * context. Post the skb on the queue and schedule the tasklet */
2630 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2632 struct ieee80211_local *local = hw_to_local(hw);
2634 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2636 skb->pkt_type = IEEE80211_RX_MSG;
2637 skb_queue_tail(&local->skb_queue, skb);
2638 tasklet_schedule(&local->tasklet);
2640 EXPORT_SYMBOL(ieee80211_rx_irqsafe);