2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
92 static const struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct
*task_of(struct sched_entity
*se
)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se
));
114 return container_of(se
, struct task_struct
, se
);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
143 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
152 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
154 if (se
->cfs_rq
== pse
->cfs_rq
)
160 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity
*se
)
170 for_each_sched_entity(se
)
177 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
179 int se_depth
, pse_depth
;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
188 /* First walk up until both entities are at same depth */
189 se_depth
= depth_se(*se
);
190 pse_depth
= depth_se(*pse
);
192 while (se_depth
> pse_depth
) {
194 *se
= parent_entity(*se
);
197 while (pse_depth
> se_depth
) {
199 *pse
= parent_entity(*pse
);
202 while (!is_same_group(*se
, *pse
)) {
203 *se
= parent_entity(*se
);
204 *pse
= parent_entity(*pse
);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct
*task_of(struct sched_entity
*se
)
212 return container_of(se
, struct task_struct
, se
);
215 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
217 return container_of(cfs_rq
, struct rq
, cfs
);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
227 return &task_rq(p
)->cfs
;
230 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
232 struct task_struct
*p
= task_of(se
);
233 struct rq
*rq
= task_rq(p
);
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
244 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
246 return &cpu_rq(this_cpu
)->cfs
;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
253 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
258 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
264 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
277 s64 delta
= (s64
)(vruntime
- min_vruntime
);
279 min_vruntime
= vruntime
;
284 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
286 s64 delta
= (s64
)(vruntime
- min_vruntime
);
288 min_vruntime
= vruntime
;
293 static inline int entity_before(struct sched_entity
*a
,
294 struct sched_entity
*b
)
296 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
299 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
301 return se
->vruntime
- cfs_rq
->min_vruntime
;
304 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
306 u64 vruntime
= cfs_rq
->min_vruntime
;
309 vruntime
= cfs_rq
->curr
->vruntime
;
311 if (cfs_rq
->rb_leftmost
) {
312 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
317 vruntime
= se
->vruntime
;
319 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
322 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
330 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
331 struct rb_node
*parent
= NULL
;
332 struct sched_entity
*entry
;
333 s64 key
= entity_key(cfs_rq
, se
);
337 * Find the right place in the rbtree:
341 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key
< entity_key(cfs_rq
, entry
)) {
347 link
= &parent
->rb_left
;
349 link
= &parent
->rb_right
;
355 * Maintain a cache of leftmost tree entries (it is frequently
359 cfs_rq
->rb_leftmost
= &se
->run_node
;
361 rb_link_node(&se
->run_node
, parent
, link
);
362 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
365 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
367 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
368 struct rb_node
*next_node
;
370 next_node
= rb_next(&se
->run_node
);
371 cfs_rq
->rb_leftmost
= next_node
;
374 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
377 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
379 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
384 return rb_entry(left
, struct sched_entity
, run_node
);
387 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
389 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
394 return rb_entry(last
, struct sched_entity
, run_node
);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
403 void __user
*buffer
, size_t *lenp
,
406 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
407 int factor
= get_update_sysctl_factor();
412 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
413 sysctl_sched_min_granularity
);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity
);
418 WRT_SYSCTL(sched_latency
);
419 WRT_SYSCTL(sched_wakeup_granularity
);
420 WRT_SYSCTL(sched_shares_ratelimit
);
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
433 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
434 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64
__sched_period(unsigned long nr_running
)
449 u64 period
= sysctl_sched_latency
;
450 unsigned long nr_latency
= sched_nr_latency
;
452 if (unlikely(nr_running
> nr_latency
)) {
453 period
= sysctl_sched_min_granularity
;
454 period
*= nr_running
;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
466 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
468 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
470 for_each_sched_entity(se
) {
471 struct load_weight
*load
;
472 struct load_weight lw
;
474 cfs_rq
= cfs_rq_of(se
);
475 load
= &cfs_rq
->load
;
477 if (unlikely(!se
->on_rq
)) {
480 update_load_add(&lw
, se
->load
.weight
);
483 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
489 * We calculate the vruntime slice of a to be inserted task
493 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
495 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
503 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
504 unsigned long delta_exec
)
506 unsigned long delta_exec_weighted
;
508 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
510 curr
->sum_exec_runtime
+= delta_exec
;
511 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
512 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
514 curr
->vruntime
+= delta_exec_weighted
;
515 update_min_vruntime(cfs_rq
);
518 static void update_curr(struct cfs_rq
*cfs_rq
)
520 struct sched_entity
*curr
= cfs_rq
->curr
;
521 u64 now
= rq_of(cfs_rq
)->clock
;
522 unsigned long delta_exec
;
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
532 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
536 __update_curr(cfs_rq
, curr
, delta_exec
);
537 curr
->exec_start
= now
;
539 if (entity_is_task(curr
)) {
540 struct task_struct
*curtask
= task_of(curr
);
542 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
543 cpuacct_charge(curtask
, delta_exec
);
544 account_group_exec_runtime(curtask
, delta_exec
);
549 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
551 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
555 * Task is being enqueued - update stats:
557 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
563 if (se
!= cfs_rq
->curr
)
564 update_stats_wait_start(cfs_rq
, se
);
568 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
570 schedstat_set(se
->wait_max
, max(se
->wait_max
,
571 rq_of(cfs_rq
)->clock
- se
->wait_start
));
572 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
573 schedstat_set(se
->wait_sum
, se
->wait_sum
+
574 rq_of(cfs_rq
)->clock
- se
->wait_start
);
575 #ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se
)) {
577 trace_sched_stat_wait(task_of(se
),
578 rq_of(cfs_rq
)->clock
- se
->wait_start
);
581 schedstat_set(se
->wait_start
, 0);
585 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
588 * Mark the end of the wait period if dequeueing a
591 if (se
!= cfs_rq
->curr
)
592 update_stats_wait_end(cfs_rq
, se
);
596 * We are picking a new current task - update its stats:
599 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
602 * We are starting a new run period:
604 se
->exec_start
= rq_of(cfs_rq
)->clock
;
607 /**************************************************
608 * Scheduling class queueing methods:
611 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
615 cfs_rq
->task_weight
+= weight
;
619 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
625 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
627 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
628 if (!parent_entity(se
))
629 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
630 if (entity_is_task(se
)) {
631 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
632 list_add(&se
->group_node
, &cfs_rq
->tasks
);
634 cfs_rq
->nr_running
++;
639 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
641 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
642 if (!parent_entity(se
))
643 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
644 if (entity_is_task(se
)) {
645 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
646 list_del_init(&se
->group_node
);
648 cfs_rq
->nr_running
--;
652 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
654 #ifdef CONFIG_SCHEDSTATS
655 struct task_struct
*tsk
= NULL
;
657 if (entity_is_task(se
))
660 if (se
->sleep_start
) {
661 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
666 if (unlikely(delta
> se
->sleep_max
))
667 se
->sleep_max
= delta
;
670 se
->sum_sleep_runtime
+= delta
;
673 account_scheduler_latency(tsk
, delta
>> 10, 1);
674 trace_sched_stat_sleep(tsk
, delta
);
677 if (se
->block_start
) {
678 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
683 if (unlikely(delta
> se
->block_max
))
684 se
->block_max
= delta
;
687 se
->sum_sleep_runtime
+= delta
;
690 if (tsk
->in_iowait
) {
691 se
->iowait_sum
+= delta
;
693 trace_sched_stat_iowait(tsk
, delta
);
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
701 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
702 profile_hits(SLEEP_PROFILING
,
703 (void *)get_wchan(tsk
),
706 account_scheduler_latency(tsk
, delta
>> 10, 0);
712 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
714 #ifdef CONFIG_SCHED_DEBUG
715 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
720 if (d
> 3*sysctl_sched_latency
)
721 schedstat_inc(cfs_rq
, nr_spread_over
);
726 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
728 u64 vruntime
= cfs_rq
->min_vruntime
;
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
736 if (initial
&& sched_feat(START_DEBIT
))
737 vruntime
+= sched_vslice(cfs_rq
, se
);
739 /* sleeps up to a single latency don't count. */
740 if (!initial
&& sched_feat(FAIR_SLEEPERS
)) {
741 unsigned long thresh
= sysctl_sched_latency
;
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
749 if (sched_feat(NORMALIZED_SLEEPER
) && (!entity_is_task(se
) ||
750 task_of(se
)->policy
!= SCHED_IDLE
))
751 thresh
= calc_delta_fair(thresh
, se
);
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
757 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
763 /* ensure we never gain time by being placed backwards. */
764 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
766 se
->vruntime
= vruntime
;
769 #define ENQUEUE_WAKEUP 1
770 #define ENQUEUE_MIGRATE 2
773 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
779 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATE
))
780 se
->vruntime
+= cfs_rq
->min_vruntime
;
783 * Update run-time statistics of the 'current'.
786 account_entity_enqueue(cfs_rq
, se
);
788 if (flags
& ENQUEUE_WAKEUP
) {
789 place_entity(cfs_rq
, se
, 0);
790 enqueue_sleeper(cfs_rq
, se
);
793 update_stats_enqueue(cfs_rq
, se
);
794 check_spread(cfs_rq
, se
);
795 if (se
!= cfs_rq
->curr
)
796 __enqueue_entity(cfs_rq
, se
);
799 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
801 if (!se
|| cfs_rq
->last
== se
)
804 if (!se
|| cfs_rq
->next
== se
)
808 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
810 for_each_sched_entity(se
)
811 __clear_buddies(cfs_rq_of(se
), se
);
815 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
818 * Update run-time statistics of the 'current'.
822 update_stats_dequeue(cfs_rq
, se
);
824 #ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se
)) {
826 struct task_struct
*tsk
= task_of(se
);
828 if (tsk
->state
& TASK_INTERRUPTIBLE
)
829 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
830 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
831 se
->block_start
= rq_of(cfs_rq
)->clock
;
836 clear_buddies(cfs_rq
, se
);
838 if (se
!= cfs_rq
->curr
)
839 __dequeue_entity(cfs_rq
, se
);
840 account_entity_dequeue(cfs_rq
, se
);
841 update_min_vruntime(cfs_rq
);
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
849 se
->vruntime
-= cfs_rq
->min_vruntime
;
853 * Preempt the current task with a newly woken task if needed:
856 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
858 unsigned long ideal_runtime
, delta_exec
;
860 ideal_runtime
= sched_slice(cfs_rq
, curr
);
861 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
862 if (delta_exec
> ideal_runtime
) {
863 resched_task(rq_of(cfs_rq
)->curr
);
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
868 clear_buddies(cfs_rq
, curr
);
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
877 if (!sched_feat(WAKEUP_PREEMPT
))
880 if (delta_exec
< sysctl_sched_min_granularity
)
883 if (cfs_rq
->nr_running
> 1) {
884 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
885 s64 delta
= curr
->vruntime
- se
->vruntime
;
887 if (delta
> ideal_runtime
)
888 resched_task(rq_of(cfs_rq
)->curr
);
893 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
895 /* 'current' is not kept within the tree. */
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
902 update_stats_wait_end(cfs_rq
, se
);
903 __dequeue_entity(cfs_rq
, se
);
906 update_stats_curr_start(cfs_rq
, se
);
908 #ifdef CONFIG_SCHEDSTATS
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
914 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
915 se
->slice_max
= max(se
->slice_max
,
916 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
919 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
923 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
925 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
927 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
928 struct sched_entity
*left
= se
;
930 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
934 * Prefer last buddy, try to return the CPU to a preempted task.
936 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
939 clear_buddies(cfs_rq
, se
);
944 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
953 check_spread(cfs_rq
, prev
);
955 update_stats_wait_start(cfs_rq
, prev
);
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq
, prev
);
963 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
966 * Update run-time statistics of the 'current'.
970 #ifdef CONFIG_SCHED_HRTICK
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
976 resched_task(rq_of(cfs_rq
)->curr
);
980 * don't let the period tick interfere with the hrtick preemption
982 if (!sched_feat(DOUBLE_TICK
) &&
983 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
987 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
988 check_preempt_tick(cfs_rq
, curr
);
991 /**************************************************
992 * CFS operations on tasks:
995 #ifdef CONFIG_SCHED_HRTICK
996 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
998 struct sched_entity
*se
= &p
->se
;
999 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1001 WARN_ON(task_rq(p
) != rq
);
1003 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1004 u64 slice
= sched_slice(cfs_rq
, se
);
1005 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1006 s64 delta
= slice
- ran
;
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1019 delta
= max_t(s64
, 10000LL, delta
);
1021 hrtick_start(rq
, delta
);
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1030 static void hrtick_update(struct rq
*rq
)
1032 struct task_struct
*curr
= rq
->curr
;
1034 if (curr
->sched_class
!= &fair_sched_class
)
1037 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1038 hrtick_start_fair(rq
, curr
);
1040 #else /* !CONFIG_SCHED_HRTICK */
1042 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1046 static inline void hrtick_update(struct rq
*rq
)
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1056 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1058 struct cfs_rq
*cfs_rq
;
1059 struct sched_entity
*se
= &p
->se
;
1063 flags
|= ENQUEUE_WAKEUP
;
1064 if (p
->state
== TASK_WAKING
)
1065 flags
|= ENQUEUE_MIGRATE
;
1067 for_each_sched_entity(se
) {
1070 cfs_rq
= cfs_rq_of(se
);
1071 enqueue_entity(cfs_rq
, se
, flags
);
1072 flags
= ENQUEUE_WAKEUP
;
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1083 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1085 struct cfs_rq
*cfs_rq
;
1086 struct sched_entity
*se
= &p
->se
;
1088 for_each_sched_entity(se
) {
1089 cfs_rq
= cfs_rq_of(se
);
1090 dequeue_entity(cfs_rq
, se
, sleep
);
1091 /* Don't dequeue parent if it has other entities besides us */
1092 if (cfs_rq
->load
.weight
)
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1103 * If compat_yield is turned on then we requeue to the end of the tree.
1105 static void yield_task_fair(struct rq
*rq
)
1107 struct task_struct
*curr
= rq
->curr
;
1108 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1109 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1112 * Are we the only task in the tree?
1114 if (unlikely(cfs_rq
->nr_running
== 1))
1117 clear_buddies(cfs_rq
, se
);
1119 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1120 update_rq_clock(rq
);
1122 * Update run-time statistics of the 'current'.
1124 update_curr(cfs_rq
);
1129 * Find the rightmost entry in the rbtree:
1131 rightmost
= __pick_last_entity(cfs_rq
);
1133 * Already in the rightmost position?
1135 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1139 * Minimally necessary key value to be last in the tree:
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1143 se
->vruntime
= rightmost
->vruntime
+ 1;
1148 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1150 struct sched_entity
*se
= &p
->se
;
1151 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1153 se
->vruntime
-= cfs_rq
->min_vruntime
;
1156 #ifdef CONFIG_FAIR_GROUP_SCHED
1158 * effective_load() calculates the load change as seen from the root_task_group
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1178 static long effective_load(struct task_group
*tg
, int cpu
,
1181 struct sched_entity
*se
= tg
->se
[cpu
];
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1190 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1193 for_each_sched_entity(se
) {
1194 long S
, rw
, s
, a
, b
;
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1201 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1205 S
= se
->my_q
->tg
->shares
;
1206 s
= se
->my_q
->shares
;
1207 rw
= se
->my_q
->rq_weight
;
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1232 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1233 unsigned long wl
, unsigned long wg
)
1240 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1242 struct task_struct
*curr
= current
;
1243 unsigned long this_load
, load
;
1244 int idx
, this_cpu
, prev_cpu
;
1245 unsigned long tl_per_task
;
1246 unsigned int imbalance
;
1247 struct task_group
*tg
;
1248 unsigned long weight
;
1252 this_cpu
= smp_processor_id();
1253 prev_cpu
= task_cpu(p
);
1254 load
= source_load(prev_cpu
, idx
);
1255 this_load
= target_load(this_cpu
, idx
);
1258 if (sched_feat(SYNC_LESS
) &&
1259 (curr
->se
.avg_overlap
> sysctl_sched_migration_cost
||
1260 p
->se
.avg_overlap
> sysctl_sched_migration_cost
))
1263 if (sched_feat(SYNC_MORE
) &&
1264 (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1265 p
->se
.avg_overlap
< sysctl_sched_migration_cost
))
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1275 tg
= task_group(current
);
1276 weight
= current
->se
.load
.weight
;
1278 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1279 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1283 weight
= p
->se
.load
.weight
;
1285 imbalance
= 100 + (sd
->imbalance_pct
- 100) / 2;
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1296 balanced
= !this_load
||
1297 100*(this_load
+ effective_load(tg
, this_cpu
, weight
, weight
)) <=
1298 imbalance
*(load
+ effective_load(tg
, prev_cpu
, 0, weight
));
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1305 if (sync
&& balanced
)
1308 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1309 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1312 (this_load
<= load
&&
1313 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1319 schedstat_inc(sd
, ttwu_move_affine
);
1320 schedstat_inc(p
, se
.nr_wakeups_affine
);
1328 * find_idlest_group finds and returns the least busy CPU group within the
1331 static struct sched_group
*
1332 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1333 int this_cpu
, int load_idx
)
1335 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1336 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1337 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1340 unsigned long load
, avg_load
;
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group
),
1349 local_group
= cpumask_test_cpu(this_cpu
,
1350 sched_group_cpus(group
));
1352 /* Tally up the load of all CPUs in the group */
1355 for_each_cpu(i
, sched_group_cpus(group
)) {
1356 /* Bias balancing toward cpus of our domain */
1358 load
= source_load(i
, load_idx
);
1360 load
= target_load(i
, load_idx
);
1365 /* Adjust by relative CPU power of the group */
1366 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1369 this_load
= avg_load
;
1371 } else if (avg_load
< min_load
) {
1372 min_load
= avg_load
;
1375 } while (group
= group
->next
, group
!= sd
->groups
);
1377 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1386 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1388 unsigned long load
, min_load
= ULONG_MAX
;
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1394 load
= weighted_cpuload(i
);
1396 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1406 * Try and locate an idle CPU in the sched_domain.
1409 select_idle_sibling(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
1411 int cpu
= smp_processor_id();
1412 int prev_cpu
= task_cpu(p
);
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1420 if (target
== cpu
&& !cpu_rq(prev_cpu
)->cfs
.nr_running
)
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1426 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1427 if (!cpu_rq(i
)->cfs
.nr_running
) {
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1441 * Balance, ie. select the least loaded group.
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1445 * preempt must be disabled.
1447 static int select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
1449 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1450 int cpu
= smp_processor_id();
1451 int prev_cpu
= task_cpu(p
);
1453 int want_affine
= 0;
1455 int sync
= wake_flags
& WF_SYNC
;
1457 if (sd_flag
& SD_BALANCE_WAKE
) {
1458 if (sched_feat(AFFINE_WAKEUPS
) &&
1459 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1464 for_each_domain(cpu
, tmp
) {
1465 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
1472 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1473 unsigned long power
= 0;
1474 unsigned long nr_running
= 0;
1475 unsigned long capacity
;
1478 for_each_cpu(i
, sched_domain_span(tmp
)) {
1479 power
+= power_of(i
);
1480 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1483 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1485 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1488 if (nr_running
< capacity
)
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1504 if (cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
)))
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
1511 if (tmp
->flags
& SD_PREFER_SIBLING
)
1512 target
= select_idle_sibling(p
, tmp
, target
);
1515 if (tmp
->flags
& SD_WAKE_AFFINE
) {
1523 if (!want_sd
&& !want_affine
)
1526 if (!(tmp
->flags
& sd_flag
))
1533 if (sched_feat(LB_SHARES_UPDATE
)) {
1535 * Pick the largest domain to update shares over
1538 if (affine_sd
&& (!tmp
||
1539 cpumask_weight(sched_domain_span(affine_sd
)) >
1540 cpumask_weight(sched_domain_span(sd
))))
1547 if (affine_sd
&& wake_affine(affine_sd
, p
, sync
))
1551 int load_idx
= sd
->forkexec_idx
;
1552 struct sched_group
*group
;
1555 if (!(sd
->flags
& sd_flag
)) {
1560 if (sd_flag
& SD_BALANCE_WAKE
)
1561 load_idx
= sd
->wake_idx
;
1563 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1569 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1570 if (new_cpu
== -1 || new_cpu
== cpu
) {
1571 /* Now try balancing at a lower domain level of cpu */
1576 /* Now try balancing at a lower domain level of new_cpu */
1578 weight
= cpumask_weight(sched_domain_span(sd
));
1580 for_each_domain(cpu
, tmp
) {
1581 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
1583 if (tmp
->flags
& sd_flag
)
1586 /* while loop will break here if sd == NULL */
1591 #endif /* CONFIG_SMP */
1594 * Adaptive granularity
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1608 static unsigned long
1609 adaptive_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1611 u64 this_run
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1612 u64 expected_wakeup
= 2*se
->avg_wakeup
* cfs_rq_of(se
)->nr_running
;
1615 if (this_run
< expected_wakeup
)
1616 gran
= expected_wakeup
- this_run
;
1618 return min_t(s64
, gran
, sysctl_sched_wakeup_granularity
);
1621 static unsigned long
1622 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1624 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1626 if (cfs_rq_of(curr
)->curr
&& sched_feat(ADAPTIVE_GRAN
))
1627 gran
= adaptive_gran(curr
, se
);
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
1633 if (sched_feat(ASYM_GRAN
)) {
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1644 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1645 gran
= calc_delta_fair(gran
, se
);
1647 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
))
1648 gran
= calc_delta_fair(gran
, curr
);
1655 * Should 'se' preempt 'curr'.
1669 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1671 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1676 gran
= wakeup_gran(curr
, se
);
1683 static void set_last_buddy(struct sched_entity
*se
)
1685 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1686 for_each_sched_entity(se
)
1687 cfs_rq_of(se
)->last
= se
;
1691 static void set_next_buddy(struct sched_entity
*se
)
1693 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1694 for_each_sched_entity(se
)
1695 cfs_rq_of(se
)->next
= se
;
1700 * Preempt the current task with a newly woken task if needed:
1702 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1704 struct task_struct
*curr
= rq
->curr
;
1705 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1706 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1707 int sync
= wake_flags
& WF_SYNC
;
1708 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1710 if (unlikely(rt_prio(p
->prio
)))
1713 if (unlikely(p
->sched_class
!= &fair_sched_class
))
1716 if (unlikely(se
== pse
))
1719 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1720 set_next_buddy(pse
);
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1726 if (test_tsk_need_resched(curr
))
1730 * Batch and idle tasks do not preempt (their preemption is driven by
1733 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1736 /* Idle tasks are by definition preempted by everybody. */
1737 if (unlikely(curr
->policy
== SCHED_IDLE
))
1740 if (sched_feat(WAKEUP_SYNC
) && sync
)
1743 if (sched_feat(WAKEUP_OVERLAP
) &&
1744 se
->avg_overlap
< sysctl_sched_migration_cost
&&
1745 pse
->avg_overlap
< sysctl_sched_migration_cost
)
1748 if (!sched_feat(WAKEUP_PREEMPT
))
1751 update_curr(cfs_rq
);
1752 find_matching_se(&se
, &pse
);
1754 if (wakeup_preempt_entity(se
, pse
) == 1)
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1770 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1773 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1777 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1779 struct task_struct
*p
;
1780 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1781 struct sched_entity
*se
;
1783 if (!cfs_rq
->nr_running
)
1787 se
= pick_next_entity(cfs_rq
);
1788 set_next_entity(cfs_rq
, se
);
1789 cfs_rq
= group_cfs_rq(se
);
1793 hrtick_start_fair(rq
, p
);
1799 * Account for a descheduled task:
1801 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1803 struct sched_entity
*se
= &prev
->se
;
1804 struct cfs_rq
*cfs_rq
;
1806 for_each_sched_entity(se
) {
1807 cfs_rq
= cfs_rq_of(se
);
1808 put_prev_entity(cfs_rq
, se
);
1813 /**************************************************
1814 * Fair scheduling class load-balancing methods:
1818 * Load-balancing iterator. Note: while the runqueue stays locked
1819 * during the whole iteration, the current task might be
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1824 static struct task_struct
*
1825 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1827 struct task_struct
*p
= NULL
;
1828 struct sched_entity
*se
;
1830 if (next
== &cfs_rq
->tasks
)
1833 se
= list_entry(next
, struct sched_entity
, group_node
);
1835 cfs_rq
->balance_iterator
= next
->next
;
1840 static struct task_struct
*load_balance_start_fair(void *arg
)
1842 struct cfs_rq
*cfs_rq
= arg
;
1844 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1847 static struct task_struct
*load_balance_next_fair(void *arg
)
1849 struct cfs_rq
*cfs_rq
= arg
;
1851 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1854 static unsigned long
1855 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1856 unsigned long max_load_move
, struct sched_domain
*sd
,
1857 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1858 struct cfs_rq
*cfs_rq
)
1860 struct rq_iterator cfs_rq_iterator
;
1862 cfs_rq_iterator
.start
= load_balance_start_fair
;
1863 cfs_rq_iterator
.next
= load_balance_next_fair
;
1864 cfs_rq_iterator
.arg
= cfs_rq
;
1866 return balance_tasks(this_rq
, this_cpu
, busiest
,
1867 max_load_move
, sd
, idle
, all_pinned
,
1868 this_best_prio
, &cfs_rq_iterator
);
1871 #ifdef CONFIG_FAIR_GROUP_SCHED
1872 static unsigned long
1873 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1874 unsigned long max_load_move
,
1875 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1876 int *all_pinned
, int *this_best_prio
)
1878 long rem_load_move
= max_load_move
;
1879 int busiest_cpu
= cpu_of(busiest
);
1880 struct task_group
*tg
;
1883 update_h_load(busiest_cpu
);
1885 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1886 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1887 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1888 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1889 u64 rem_load
, moved_load
;
1894 if (!busiest_cfs_rq
->task_weight
)
1897 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1898 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1900 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1901 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1902 tg
->cfs_rq
[busiest_cpu
]);
1907 moved_load
*= busiest_h_load
;
1908 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1910 rem_load_move
-= moved_load
;
1911 if (rem_load_move
< 0)
1916 return max_load_move
- rem_load_move
;
1919 static unsigned long
1920 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1921 unsigned long max_load_move
,
1922 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1923 int *all_pinned
, int *this_best_prio
)
1925 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1926 max_load_move
, sd
, idle
, all_pinned
,
1927 this_best_prio
, &busiest
->cfs
);
1932 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1933 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1935 struct cfs_rq
*busy_cfs_rq
;
1936 struct rq_iterator cfs_rq_iterator
;
1938 cfs_rq_iterator
.start
= load_balance_start_fair
;
1939 cfs_rq_iterator
.next
= load_balance_next_fair
;
1941 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1943 * pass busy_cfs_rq argument into
1944 * load_balance_[start|next]_fair iterators
1946 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1947 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1955 static void rq_online_fair(struct rq
*rq
)
1960 static void rq_offline_fair(struct rq
*rq
)
1965 #endif /* CONFIG_SMP */
1968 * scheduler tick hitting a task of our scheduling class:
1970 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1972 struct cfs_rq
*cfs_rq
;
1973 struct sched_entity
*se
= &curr
->se
;
1975 for_each_sched_entity(se
) {
1976 cfs_rq
= cfs_rq_of(se
);
1977 entity_tick(cfs_rq
, se
, queued
);
1982 * called on fork with the child task as argument from the parent's context
1983 * - child not yet on the tasklist
1984 * - preemption disabled
1986 static void task_fork_fair(struct task_struct
*p
)
1988 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
1989 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1990 int this_cpu
= smp_processor_id();
1991 struct rq
*rq
= this_rq();
1992 unsigned long flags
;
1994 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1996 if (unlikely(task_cpu(p
) != this_cpu
))
1997 __set_task_cpu(p
, this_cpu
);
1999 update_curr(cfs_rq
);
2002 se
->vruntime
= curr
->vruntime
;
2003 place_entity(cfs_rq
, se
, 1);
2005 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
2007 * Upon rescheduling, sched_class::put_prev_task() will place
2008 * 'current' within the tree based on its new key value.
2010 swap(curr
->vruntime
, se
->vruntime
);
2011 resched_task(rq
->curr
);
2014 se
->vruntime
-= cfs_rq
->min_vruntime
;
2016 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2020 * Priority of the task has changed. Check to see if we preempt
2023 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
2024 int oldprio
, int running
)
2027 * Reschedule if we are currently running on this runqueue and
2028 * our priority decreased, or if we are not currently running on
2029 * this runqueue and our priority is higher than the current's
2032 if (p
->prio
> oldprio
)
2033 resched_task(rq
->curr
);
2035 check_preempt_curr(rq
, p
, 0);
2039 * We switched to the sched_fair class.
2041 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
2045 * We were most likely switched from sched_rt, so
2046 * kick off the schedule if running, otherwise just see
2047 * if we can still preempt the current task.
2050 resched_task(rq
->curr
);
2052 check_preempt_curr(rq
, p
, 0);
2055 /* Account for a task changing its policy or group.
2057 * This routine is mostly called to set cfs_rq->curr field when a task
2058 * migrates between groups/classes.
2060 static void set_curr_task_fair(struct rq
*rq
)
2062 struct sched_entity
*se
= &rq
->curr
->se
;
2064 for_each_sched_entity(se
)
2065 set_next_entity(cfs_rq_of(se
), se
);
2068 #ifdef CONFIG_FAIR_GROUP_SCHED
2069 static void moved_group_fair(struct task_struct
*p
, int on_rq
)
2071 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
2073 update_curr(cfs_rq
);
2075 place_entity(cfs_rq
, &p
->se
, 1);
2079 unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
2081 struct sched_entity
*se
= &task
->se
;
2082 unsigned int rr_interval
= 0;
2085 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2088 if (rq
->cfs
.load
.weight
)
2089 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
2095 * All the scheduling class methods:
2097 static const struct sched_class fair_sched_class
= {
2098 .next
= &idle_sched_class
,
2099 .enqueue_task
= enqueue_task_fair
,
2100 .dequeue_task
= dequeue_task_fair
,
2101 .yield_task
= yield_task_fair
,
2103 .check_preempt_curr
= check_preempt_wakeup
,
2105 .pick_next_task
= pick_next_task_fair
,
2106 .put_prev_task
= put_prev_task_fair
,
2109 .select_task_rq
= select_task_rq_fair
,
2111 .load_balance
= load_balance_fair
,
2112 .move_one_task
= move_one_task_fair
,
2113 .rq_online
= rq_online_fair
,
2114 .rq_offline
= rq_offline_fair
,
2116 .task_waking
= task_waking_fair
,
2119 .set_curr_task
= set_curr_task_fair
,
2120 .task_tick
= task_tick_fair
,
2121 .task_fork
= task_fork_fair
,
2123 .prio_changed
= prio_changed_fair
,
2124 .switched_to
= switched_to_fair
,
2126 .get_rr_interval
= get_rr_interval_fair
,
2128 #ifdef CONFIG_FAIR_GROUP_SCHED
2129 .moved_group
= moved_group_fair
,
2133 #ifdef CONFIG_SCHED_DEBUG
2134 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
2136 struct cfs_rq
*cfs_rq
;
2139 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
2140 print_cfs_rq(m
, cpu
, cfs_rq
);