regulator: tps6507x - add missing platform_set_drvdata in tps6507x_pmic_probe
[firewire-audio.git] / lib / radix-tree.c
blobe907858498a6a3184f57de0d60fe25098ec37006
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
40 #endif
42 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
45 #define RADIX_TREE_TAG_LONGS \
46 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
48 struct radix_tree_node {
49 unsigned int height; /* Height from the bottom */
50 unsigned int count;
51 struct rcu_head rcu_head;
52 void *slots[RADIX_TREE_MAP_SIZE];
53 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
56 struct radix_tree_path {
57 struct radix_tree_node *node;
58 int offset;
61 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 RADIX_TREE_MAP_SHIFT))
66 * The height_to_maxindex array needs to be one deeper than the maximum
67 * path as height 0 holds only 1 entry.
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
72 * Radix tree node cache.
74 static struct kmem_cache *radix_tree_node_cachep;
77 * Per-cpu pool of preloaded nodes
79 struct radix_tree_preload {
80 int nr;
81 struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
83 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
85 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
87 return root->gfp_mask & __GFP_BITS_MASK;
90 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
91 int offset)
93 __set_bit(offset, node->tags[tag]);
96 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
97 int offset)
99 __clear_bit(offset, node->tags[tag]);
102 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
103 int offset)
105 return test_bit(offset, node->tags[tag]);
108 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
110 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
113 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
115 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
118 static inline void root_tag_clear_all(struct radix_tree_root *root)
120 root->gfp_mask &= __GFP_BITS_MASK;
123 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
125 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
129 * Returns 1 if any slot in the node has this tag set.
130 * Otherwise returns 0.
132 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
134 int idx;
135 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
136 if (node->tags[tag][idx])
137 return 1;
139 return 0;
142 * This assumes that the caller has performed appropriate preallocation, and
143 * that the caller has pinned this thread of control to the current CPU.
145 static struct radix_tree_node *
146 radix_tree_node_alloc(struct radix_tree_root *root)
148 struct radix_tree_node *ret = NULL;
149 gfp_t gfp_mask = root_gfp_mask(root);
151 if (!(gfp_mask & __GFP_WAIT)) {
152 struct radix_tree_preload *rtp;
155 * Provided the caller has preloaded here, we will always
156 * succeed in getting a node here (and never reach
157 * kmem_cache_alloc)
159 rtp = &__get_cpu_var(radix_tree_preloads);
160 if (rtp->nr) {
161 ret = rtp->nodes[rtp->nr - 1];
162 rtp->nodes[rtp->nr - 1] = NULL;
163 rtp->nr--;
166 if (ret == NULL)
167 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
169 BUG_ON(radix_tree_is_indirect_ptr(ret));
170 return ret;
173 static void radix_tree_node_rcu_free(struct rcu_head *head)
175 struct radix_tree_node *node =
176 container_of(head, struct radix_tree_node, rcu_head);
179 * must only free zeroed nodes into the slab. radix_tree_shrink
180 * can leave us with a non-NULL entry in the first slot, so clear
181 * that here to make sure.
183 tag_clear(node, 0, 0);
184 tag_clear(node, 1, 0);
185 node->slots[0] = NULL;
186 node->count = 0;
188 kmem_cache_free(radix_tree_node_cachep, node);
191 static inline void
192 radix_tree_node_free(struct radix_tree_node *node)
194 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
198 * Load up this CPU's radix_tree_node buffer with sufficient objects to
199 * ensure that the addition of a single element in the tree cannot fail. On
200 * success, return zero, with preemption disabled. On error, return -ENOMEM
201 * with preemption not disabled.
203 * To make use of this facility, the radix tree must be initialised without
204 * __GFP_WAIT being passed to INIT_RADIX_TREE().
206 int radix_tree_preload(gfp_t gfp_mask)
208 struct radix_tree_preload *rtp;
209 struct radix_tree_node *node;
210 int ret = -ENOMEM;
212 preempt_disable();
213 rtp = &__get_cpu_var(radix_tree_preloads);
214 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
215 preempt_enable();
216 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
217 if (node == NULL)
218 goto out;
219 preempt_disable();
220 rtp = &__get_cpu_var(radix_tree_preloads);
221 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
222 rtp->nodes[rtp->nr++] = node;
223 else
224 kmem_cache_free(radix_tree_node_cachep, node);
226 ret = 0;
227 out:
228 return ret;
230 EXPORT_SYMBOL(radix_tree_preload);
233 * Return the maximum key which can be store into a
234 * radix tree with height HEIGHT.
236 static inline unsigned long radix_tree_maxindex(unsigned int height)
238 return height_to_maxindex[height];
242 * Extend a radix tree so it can store key @index.
244 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
246 struct radix_tree_node *node;
247 unsigned int height;
248 int tag;
250 /* Figure out what the height should be. */
251 height = root->height + 1;
252 while (index > radix_tree_maxindex(height))
253 height++;
255 if (root->rnode == NULL) {
256 root->height = height;
257 goto out;
260 do {
261 unsigned int newheight;
262 if (!(node = radix_tree_node_alloc(root)))
263 return -ENOMEM;
265 /* Increase the height. */
266 node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
268 /* Propagate the aggregated tag info into the new root */
269 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
270 if (root_tag_get(root, tag))
271 tag_set(node, tag, 0);
274 newheight = root->height+1;
275 node->height = newheight;
276 node->count = 1;
277 node = radix_tree_ptr_to_indirect(node);
278 rcu_assign_pointer(root->rnode, node);
279 root->height = newheight;
280 } while (height > root->height);
281 out:
282 return 0;
286 * radix_tree_insert - insert into a radix tree
287 * @root: radix tree root
288 * @index: index key
289 * @item: item to insert
291 * Insert an item into the radix tree at position @index.
293 int radix_tree_insert(struct radix_tree_root *root,
294 unsigned long index, void *item)
296 struct radix_tree_node *node = NULL, *slot;
297 unsigned int height, shift;
298 int offset;
299 int error;
301 BUG_ON(radix_tree_is_indirect_ptr(item));
303 /* Make sure the tree is high enough. */
304 if (index > radix_tree_maxindex(root->height)) {
305 error = radix_tree_extend(root, index);
306 if (error)
307 return error;
310 slot = radix_tree_indirect_to_ptr(root->rnode);
312 height = root->height;
313 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
315 offset = 0; /* uninitialised var warning */
316 while (height > 0) {
317 if (slot == NULL) {
318 /* Have to add a child node. */
319 if (!(slot = radix_tree_node_alloc(root)))
320 return -ENOMEM;
321 slot->height = height;
322 if (node) {
323 rcu_assign_pointer(node->slots[offset], slot);
324 node->count++;
325 } else
326 rcu_assign_pointer(root->rnode,
327 radix_tree_ptr_to_indirect(slot));
330 /* Go a level down */
331 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
332 node = slot;
333 slot = node->slots[offset];
334 shift -= RADIX_TREE_MAP_SHIFT;
335 height--;
338 if (slot != NULL)
339 return -EEXIST;
341 if (node) {
342 node->count++;
343 rcu_assign_pointer(node->slots[offset], item);
344 BUG_ON(tag_get(node, 0, offset));
345 BUG_ON(tag_get(node, 1, offset));
346 } else {
347 rcu_assign_pointer(root->rnode, item);
348 BUG_ON(root_tag_get(root, 0));
349 BUG_ON(root_tag_get(root, 1));
352 return 0;
354 EXPORT_SYMBOL(radix_tree_insert);
357 * is_slot == 1 : search for the slot.
358 * is_slot == 0 : search for the node.
360 static void *radix_tree_lookup_element(struct radix_tree_root *root,
361 unsigned long index, int is_slot)
363 unsigned int height, shift;
364 struct radix_tree_node *node, **slot;
366 node = rcu_dereference_raw(root->rnode);
367 if (node == NULL)
368 return NULL;
370 if (!radix_tree_is_indirect_ptr(node)) {
371 if (index > 0)
372 return NULL;
373 return is_slot ? (void *)&root->rnode : node;
375 node = radix_tree_indirect_to_ptr(node);
377 height = node->height;
378 if (index > radix_tree_maxindex(height))
379 return NULL;
381 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
383 do {
384 slot = (struct radix_tree_node **)
385 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
386 node = rcu_dereference_raw(*slot);
387 if (node == NULL)
388 return NULL;
390 shift -= RADIX_TREE_MAP_SHIFT;
391 height--;
392 } while (height > 0);
394 return is_slot ? (void *)slot:node;
398 * radix_tree_lookup_slot - lookup a slot in a radix tree
399 * @root: radix tree root
400 * @index: index key
402 * Returns: the slot corresponding to the position @index in the
403 * radix tree @root. This is useful for update-if-exists operations.
405 * This function can be called under rcu_read_lock iff the slot is not
406 * modified by radix_tree_replace_slot, otherwise it must be called
407 * exclusive from other writers. Any dereference of the slot must be done
408 * using radix_tree_deref_slot.
410 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
412 return (void **)radix_tree_lookup_element(root, index, 1);
414 EXPORT_SYMBOL(radix_tree_lookup_slot);
417 * radix_tree_lookup - perform lookup operation on a radix tree
418 * @root: radix tree root
419 * @index: index key
421 * Lookup the item at the position @index in the radix tree @root.
423 * This function can be called under rcu_read_lock, however the caller
424 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
425 * them safely). No RCU barriers are required to access or modify the
426 * returned item, however.
428 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
430 return radix_tree_lookup_element(root, index, 0);
432 EXPORT_SYMBOL(radix_tree_lookup);
435 * radix_tree_tag_set - set a tag on a radix tree node
436 * @root: radix tree root
437 * @index: index key
438 * @tag: tag index
440 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
441 * corresponding to @index in the radix tree. From
442 * the root all the way down to the leaf node.
444 * Returns the address of the tagged item. Setting a tag on a not-present
445 * item is a bug.
447 void *radix_tree_tag_set(struct radix_tree_root *root,
448 unsigned long index, unsigned int tag)
450 unsigned int height, shift;
451 struct radix_tree_node *slot;
453 height = root->height;
454 BUG_ON(index > radix_tree_maxindex(height));
456 slot = radix_tree_indirect_to_ptr(root->rnode);
457 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
459 while (height > 0) {
460 int offset;
462 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
463 if (!tag_get(slot, tag, offset))
464 tag_set(slot, tag, offset);
465 slot = slot->slots[offset];
466 BUG_ON(slot == NULL);
467 shift -= RADIX_TREE_MAP_SHIFT;
468 height--;
471 /* set the root's tag bit */
472 if (slot && !root_tag_get(root, tag))
473 root_tag_set(root, tag);
475 return slot;
477 EXPORT_SYMBOL(radix_tree_tag_set);
480 * radix_tree_tag_clear - clear a tag on a radix tree node
481 * @root: radix tree root
482 * @index: index key
483 * @tag: tag index
485 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
486 * corresponding to @index in the radix tree. If
487 * this causes the leaf node to have no tags set then clear the tag in the
488 * next-to-leaf node, etc.
490 * Returns the address of the tagged item on success, else NULL. ie:
491 * has the same return value and semantics as radix_tree_lookup().
493 void *radix_tree_tag_clear(struct radix_tree_root *root,
494 unsigned long index, unsigned int tag)
497 * The radix tree path needs to be one longer than the maximum path
498 * since the "list" is null terminated.
500 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
501 struct radix_tree_node *slot = NULL;
502 unsigned int height, shift;
504 height = root->height;
505 if (index > radix_tree_maxindex(height))
506 goto out;
508 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
509 pathp->node = NULL;
510 slot = radix_tree_indirect_to_ptr(root->rnode);
512 while (height > 0) {
513 int offset;
515 if (slot == NULL)
516 goto out;
518 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
519 pathp[1].offset = offset;
520 pathp[1].node = slot;
521 slot = slot->slots[offset];
522 pathp++;
523 shift -= RADIX_TREE_MAP_SHIFT;
524 height--;
527 if (slot == NULL)
528 goto out;
530 while (pathp->node) {
531 if (!tag_get(pathp->node, tag, pathp->offset))
532 goto out;
533 tag_clear(pathp->node, tag, pathp->offset);
534 if (any_tag_set(pathp->node, tag))
535 goto out;
536 pathp--;
539 /* clear the root's tag bit */
540 if (root_tag_get(root, tag))
541 root_tag_clear(root, tag);
543 out:
544 return slot;
546 EXPORT_SYMBOL(radix_tree_tag_clear);
549 * radix_tree_tag_get - get a tag on a radix tree node
550 * @root: radix tree root
551 * @index: index key
552 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
554 * Return values:
556 * 0: tag not present or not set
557 * 1: tag set
559 * Note that the return value of this function may not be relied on, even if
560 * the RCU lock is held, unless tag modification and node deletion are excluded
561 * from concurrency.
563 int radix_tree_tag_get(struct radix_tree_root *root,
564 unsigned long index, unsigned int tag)
566 unsigned int height, shift;
567 struct radix_tree_node *node;
568 int saw_unset_tag = 0;
570 /* check the root's tag bit */
571 if (!root_tag_get(root, tag))
572 return 0;
574 node = rcu_dereference_raw(root->rnode);
575 if (node == NULL)
576 return 0;
578 if (!radix_tree_is_indirect_ptr(node))
579 return (index == 0);
580 node = radix_tree_indirect_to_ptr(node);
582 height = node->height;
583 if (index > radix_tree_maxindex(height))
584 return 0;
586 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
588 for ( ; ; ) {
589 int offset;
591 if (node == NULL)
592 return 0;
594 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
597 * This is just a debug check. Later, we can bale as soon as
598 * we see an unset tag.
600 if (!tag_get(node, tag, offset))
601 saw_unset_tag = 1;
602 if (height == 1)
603 return !!tag_get(node, tag, offset);
604 node = rcu_dereference_raw(node->slots[offset]);
605 shift -= RADIX_TREE_MAP_SHIFT;
606 height--;
609 EXPORT_SYMBOL(radix_tree_tag_get);
612 * radix_tree_range_tag_if_tagged - for each item in given range set given
613 * tag if item has another tag set
614 * @root: radix tree root
615 * @first_indexp: pointer to a starting index of a range to scan
616 * @last_index: last index of a range to scan
617 * @nr_to_tag: maximum number items to tag
618 * @iftag: tag index to test
619 * @settag: tag index to set if tested tag is set
621 * This function scans range of radix tree from first_index to last_index
622 * (inclusive). For each item in the range if iftag is set, the function sets
623 * also settag. The function stops either after tagging nr_to_tag items or
624 * after reaching last_index.
626 * The function returns number of leaves where the tag was set and sets
627 * *first_indexp to the first unscanned index.
629 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
630 unsigned long *first_indexp, unsigned long last_index,
631 unsigned long nr_to_tag,
632 unsigned int iftag, unsigned int settag)
634 unsigned int height = root->height, shift;
635 unsigned long tagged = 0, index = *first_indexp;
636 struct radix_tree_node *open_slots[height], *slot;
638 last_index = min(last_index, radix_tree_maxindex(height));
639 if (index > last_index)
640 return 0;
641 if (!nr_to_tag)
642 return 0;
643 if (!root_tag_get(root, iftag)) {
644 *first_indexp = last_index + 1;
645 return 0;
647 if (height == 0) {
648 *first_indexp = last_index + 1;
649 root_tag_set(root, settag);
650 return 1;
653 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
654 slot = radix_tree_indirect_to_ptr(root->rnode);
656 for (;;) {
657 int offset;
659 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
660 if (!slot->slots[offset])
661 goto next;
662 if (!tag_get(slot, iftag, offset))
663 goto next;
664 tag_set(slot, settag, offset);
665 if (height == 1) {
666 tagged++;
667 goto next;
669 /* Go down one level */
670 height--;
671 shift -= RADIX_TREE_MAP_SHIFT;
672 open_slots[height] = slot;
673 slot = slot->slots[offset];
674 continue;
675 next:
676 /* Go to next item at level determined by 'shift' */
677 index = ((index >> shift) + 1) << shift;
678 if (index > last_index)
679 break;
680 if (tagged >= nr_to_tag)
681 break;
682 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
684 * We've fully scanned this node. Go up. Because
685 * last_index is guaranteed to be in the tree, what
686 * we do below cannot wander astray.
688 slot = open_slots[height];
689 height++;
690 shift += RADIX_TREE_MAP_SHIFT;
694 * The iftag must have been set somewhere because otherwise
695 * we would return immediated at the beginning of the function
697 root_tag_set(root, settag);
698 *first_indexp = index;
700 return tagged;
702 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
706 * radix_tree_next_hole - find the next hole (not-present entry)
707 * @root: tree root
708 * @index: index key
709 * @max_scan: maximum range to search
711 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
712 * indexed hole.
714 * Returns: the index of the hole if found, otherwise returns an index
715 * outside of the set specified (in which case 'return - index >= max_scan'
716 * will be true). In rare cases of index wrap-around, 0 will be returned.
718 * radix_tree_next_hole may be called under rcu_read_lock. However, like
719 * radix_tree_gang_lookup, this will not atomically search a snapshot of
720 * the tree at a single point in time. For example, if a hole is created
721 * at index 5, then subsequently a hole is created at index 10,
722 * radix_tree_next_hole covering both indexes may return 10 if called
723 * under rcu_read_lock.
725 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
726 unsigned long index, unsigned long max_scan)
728 unsigned long i;
730 for (i = 0; i < max_scan; i++) {
731 if (!radix_tree_lookup(root, index))
732 break;
733 index++;
734 if (index == 0)
735 break;
738 return index;
740 EXPORT_SYMBOL(radix_tree_next_hole);
743 * radix_tree_prev_hole - find the prev hole (not-present entry)
744 * @root: tree root
745 * @index: index key
746 * @max_scan: maximum range to search
748 * Search backwards in the range [max(index-max_scan+1, 0), index]
749 * for the first hole.
751 * Returns: the index of the hole if found, otherwise returns an index
752 * outside of the set specified (in which case 'index - return >= max_scan'
753 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
755 * radix_tree_next_hole may be called under rcu_read_lock. However, like
756 * radix_tree_gang_lookup, this will not atomically search a snapshot of
757 * the tree at a single point in time. For example, if a hole is created
758 * at index 10, then subsequently a hole is created at index 5,
759 * radix_tree_prev_hole covering both indexes may return 5 if called under
760 * rcu_read_lock.
762 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
763 unsigned long index, unsigned long max_scan)
765 unsigned long i;
767 for (i = 0; i < max_scan; i++) {
768 if (!radix_tree_lookup(root, index))
769 break;
770 index--;
771 if (index == ULONG_MAX)
772 break;
775 return index;
777 EXPORT_SYMBOL(radix_tree_prev_hole);
779 static unsigned int
780 __lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
781 unsigned int max_items, unsigned long *next_index)
783 unsigned int nr_found = 0;
784 unsigned int shift, height;
785 unsigned long i;
787 height = slot->height;
788 if (height == 0)
789 goto out;
790 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
792 for ( ; height > 1; height--) {
793 i = (index >> shift) & RADIX_TREE_MAP_MASK;
794 for (;;) {
795 if (slot->slots[i] != NULL)
796 break;
797 index &= ~((1UL << shift) - 1);
798 index += 1UL << shift;
799 if (index == 0)
800 goto out; /* 32-bit wraparound */
801 i++;
802 if (i == RADIX_TREE_MAP_SIZE)
803 goto out;
806 shift -= RADIX_TREE_MAP_SHIFT;
807 slot = rcu_dereference_raw(slot->slots[i]);
808 if (slot == NULL)
809 goto out;
812 /* Bottom level: grab some items */
813 for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
814 index++;
815 if (slot->slots[i]) {
816 results[nr_found++] = &(slot->slots[i]);
817 if (nr_found == max_items)
818 goto out;
821 out:
822 *next_index = index;
823 return nr_found;
827 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
828 * @root: radix tree root
829 * @results: where the results of the lookup are placed
830 * @first_index: start the lookup from this key
831 * @max_items: place up to this many items at *results
833 * Performs an index-ascending scan of the tree for present items. Places
834 * them at *@results and returns the number of items which were placed at
835 * *@results.
837 * The implementation is naive.
839 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
840 * rcu_read_lock. In this case, rather than the returned results being
841 * an atomic snapshot of the tree at a single point in time, the semantics
842 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
843 * have been issued in individual locks, and results stored in 'results'.
845 unsigned int
846 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
847 unsigned long first_index, unsigned int max_items)
849 unsigned long max_index;
850 struct radix_tree_node *node;
851 unsigned long cur_index = first_index;
852 unsigned int ret;
854 node = rcu_dereference_raw(root->rnode);
855 if (!node)
856 return 0;
858 if (!radix_tree_is_indirect_ptr(node)) {
859 if (first_index > 0)
860 return 0;
861 results[0] = node;
862 return 1;
864 node = radix_tree_indirect_to_ptr(node);
866 max_index = radix_tree_maxindex(node->height);
868 ret = 0;
869 while (ret < max_items) {
870 unsigned int nr_found, slots_found, i;
871 unsigned long next_index; /* Index of next search */
873 if (cur_index > max_index)
874 break;
875 slots_found = __lookup(node, (void ***)results + ret, cur_index,
876 max_items - ret, &next_index);
877 nr_found = 0;
878 for (i = 0; i < slots_found; i++) {
879 struct radix_tree_node *slot;
880 slot = *(((void ***)results)[ret + i]);
881 if (!slot)
882 continue;
883 results[ret + nr_found] = rcu_dereference_raw(slot);
884 nr_found++;
886 ret += nr_found;
887 if (next_index == 0)
888 break;
889 cur_index = next_index;
892 return ret;
894 EXPORT_SYMBOL(radix_tree_gang_lookup);
897 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
898 * @root: radix tree root
899 * @results: where the results of the lookup are placed
900 * @first_index: start the lookup from this key
901 * @max_items: place up to this many items at *results
903 * Performs an index-ascending scan of the tree for present items. Places
904 * their slots at *@results and returns the number of items which were
905 * placed at *@results.
907 * The implementation is naive.
909 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
910 * be dereferenced with radix_tree_deref_slot, and if using only RCU
911 * protection, radix_tree_deref_slot may fail requiring a retry.
913 unsigned int
914 radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
915 unsigned long first_index, unsigned int max_items)
917 unsigned long max_index;
918 struct radix_tree_node *node;
919 unsigned long cur_index = first_index;
920 unsigned int ret;
922 node = rcu_dereference_raw(root->rnode);
923 if (!node)
924 return 0;
926 if (!radix_tree_is_indirect_ptr(node)) {
927 if (first_index > 0)
928 return 0;
929 results[0] = (void **)&root->rnode;
930 return 1;
932 node = radix_tree_indirect_to_ptr(node);
934 max_index = radix_tree_maxindex(node->height);
936 ret = 0;
937 while (ret < max_items) {
938 unsigned int slots_found;
939 unsigned long next_index; /* Index of next search */
941 if (cur_index > max_index)
942 break;
943 slots_found = __lookup(node, results + ret, cur_index,
944 max_items - ret, &next_index);
945 ret += slots_found;
946 if (next_index == 0)
947 break;
948 cur_index = next_index;
951 return ret;
953 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
956 * FIXME: the two tag_get()s here should use find_next_bit() instead of
957 * open-coding the search.
959 static unsigned int
960 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
961 unsigned int max_items, unsigned long *next_index, unsigned int tag)
963 unsigned int nr_found = 0;
964 unsigned int shift, height;
966 height = slot->height;
967 if (height == 0)
968 goto out;
969 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
971 while (height > 0) {
972 unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
974 for (;;) {
975 if (tag_get(slot, tag, i))
976 break;
977 index &= ~((1UL << shift) - 1);
978 index += 1UL << shift;
979 if (index == 0)
980 goto out; /* 32-bit wraparound */
981 i++;
982 if (i == RADIX_TREE_MAP_SIZE)
983 goto out;
985 height--;
986 if (height == 0) { /* Bottom level: grab some items */
987 unsigned long j = index & RADIX_TREE_MAP_MASK;
989 for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
990 index++;
991 if (!tag_get(slot, tag, j))
992 continue;
994 * Even though the tag was found set, we need to
995 * recheck that we have a non-NULL node, because
996 * if this lookup is lockless, it may have been
997 * subsequently deleted.
999 * Similar care must be taken in any place that
1000 * lookup ->slots[x] without a lock (ie. can't
1001 * rely on its value remaining the same).
1003 if (slot->slots[j]) {
1004 results[nr_found++] = &(slot->slots[j]);
1005 if (nr_found == max_items)
1006 goto out;
1010 shift -= RADIX_TREE_MAP_SHIFT;
1011 slot = rcu_dereference_raw(slot->slots[i]);
1012 if (slot == NULL)
1013 break;
1015 out:
1016 *next_index = index;
1017 return nr_found;
1021 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1022 * based on a tag
1023 * @root: radix tree root
1024 * @results: where the results of the lookup are placed
1025 * @first_index: start the lookup from this key
1026 * @max_items: place up to this many items at *results
1027 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1029 * Performs an index-ascending scan of the tree for present items which
1030 * have the tag indexed by @tag set. Places the items at *@results and
1031 * returns the number of items which were placed at *@results.
1033 unsigned int
1034 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1035 unsigned long first_index, unsigned int max_items,
1036 unsigned int tag)
1038 struct radix_tree_node *node;
1039 unsigned long max_index;
1040 unsigned long cur_index = first_index;
1041 unsigned int ret;
1043 /* check the root's tag bit */
1044 if (!root_tag_get(root, tag))
1045 return 0;
1047 node = rcu_dereference_raw(root->rnode);
1048 if (!node)
1049 return 0;
1051 if (!radix_tree_is_indirect_ptr(node)) {
1052 if (first_index > 0)
1053 return 0;
1054 results[0] = node;
1055 return 1;
1057 node = radix_tree_indirect_to_ptr(node);
1059 max_index = radix_tree_maxindex(node->height);
1061 ret = 0;
1062 while (ret < max_items) {
1063 unsigned int nr_found, slots_found, i;
1064 unsigned long next_index; /* Index of next search */
1066 if (cur_index > max_index)
1067 break;
1068 slots_found = __lookup_tag(node, (void ***)results + ret,
1069 cur_index, max_items - ret, &next_index, tag);
1070 nr_found = 0;
1071 for (i = 0; i < slots_found; i++) {
1072 struct radix_tree_node *slot;
1073 slot = *(((void ***)results)[ret + i]);
1074 if (!slot)
1075 continue;
1076 results[ret + nr_found] = rcu_dereference_raw(slot);
1077 nr_found++;
1079 ret += nr_found;
1080 if (next_index == 0)
1081 break;
1082 cur_index = next_index;
1085 return ret;
1087 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1090 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1091 * radix tree based on a tag
1092 * @root: radix tree root
1093 * @results: where the results of the lookup are placed
1094 * @first_index: start the lookup from this key
1095 * @max_items: place up to this many items at *results
1096 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1098 * Performs an index-ascending scan of the tree for present items which
1099 * have the tag indexed by @tag set. Places the slots at *@results and
1100 * returns the number of slots which were placed at *@results.
1102 unsigned int
1103 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1104 unsigned long first_index, unsigned int max_items,
1105 unsigned int tag)
1107 struct radix_tree_node *node;
1108 unsigned long max_index;
1109 unsigned long cur_index = first_index;
1110 unsigned int ret;
1112 /* check the root's tag bit */
1113 if (!root_tag_get(root, tag))
1114 return 0;
1116 node = rcu_dereference_raw(root->rnode);
1117 if (!node)
1118 return 0;
1120 if (!radix_tree_is_indirect_ptr(node)) {
1121 if (first_index > 0)
1122 return 0;
1123 results[0] = (void **)&root->rnode;
1124 return 1;
1126 node = radix_tree_indirect_to_ptr(node);
1128 max_index = radix_tree_maxindex(node->height);
1130 ret = 0;
1131 while (ret < max_items) {
1132 unsigned int slots_found;
1133 unsigned long next_index; /* Index of next search */
1135 if (cur_index > max_index)
1136 break;
1137 slots_found = __lookup_tag(node, results + ret,
1138 cur_index, max_items - ret, &next_index, tag);
1139 ret += slots_found;
1140 if (next_index == 0)
1141 break;
1142 cur_index = next_index;
1145 return ret;
1147 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1151 * radix_tree_shrink - shrink height of a radix tree to minimal
1152 * @root radix tree root
1154 static inline void radix_tree_shrink(struct radix_tree_root *root)
1156 /* try to shrink tree height */
1157 while (root->height > 0) {
1158 struct radix_tree_node *to_free = root->rnode;
1159 void *newptr;
1161 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1162 to_free = radix_tree_indirect_to_ptr(to_free);
1165 * The candidate node has more than one child, or its child
1166 * is not at the leftmost slot, we cannot shrink.
1168 if (to_free->count != 1)
1169 break;
1170 if (!to_free->slots[0])
1171 break;
1174 * We don't need rcu_assign_pointer(), since we are simply
1175 * moving the node from one part of the tree to another. If
1176 * it was safe to dereference the old pointer to it
1177 * (to_free->slots[0]), it will be safe to dereference the new
1178 * one (root->rnode).
1180 newptr = to_free->slots[0];
1181 if (root->height > 1)
1182 newptr = radix_tree_ptr_to_indirect(newptr);
1183 root->rnode = newptr;
1184 root->height--;
1185 radix_tree_node_free(to_free);
1190 * radix_tree_delete - delete an item from a radix tree
1191 * @root: radix tree root
1192 * @index: index key
1194 * Remove the item at @index from the radix tree rooted at @root.
1196 * Returns the address of the deleted item, or NULL if it was not present.
1198 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1201 * The radix tree path needs to be one longer than the maximum path
1202 * since the "list" is null terminated.
1204 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1205 struct radix_tree_node *slot = NULL;
1206 struct radix_tree_node *to_free;
1207 unsigned int height, shift;
1208 int tag;
1209 int offset;
1211 height = root->height;
1212 if (index > radix_tree_maxindex(height))
1213 goto out;
1215 slot = root->rnode;
1216 if (height == 0) {
1217 root_tag_clear_all(root);
1218 root->rnode = NULL;
1219 goto out;
1221 slot = radix_tree_indirect_to_ptr(slot);
1223 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1224 pathp->node = NULL;
1226 do {
1227 if (slot == NULL)
1228 goto out;
1230 pathp++;
1231 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1232 pathp->offset = offset;
1233 pathp->node = slot;
1234 slot = slot->slots[offset];
1235 shift -= RADIX_TREE_MAP_SHIFT;
1236 height--;
1237 } while (height > 0);
1239 if (slot == NULL)
1240 goto out;
1243 * Clear all tags associated with the just-deleted item
1245 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1246 if (tag_get(pathp->node, tag, pathp->offset))
1247 radix_tree_tag_clear(root, index, tag);
1250 to_free = NULL;
1251 /* Now free the nodes we do not need anymore */
1252 while (pathp->node) {
1253 pathp->node->slots[pathp->offset] = NULL;
1254 pathp->node->count--;
1256 * Queue the node for deferred freeing after the
1257 * last reference to it disappears (set NULL, above).
1259 if (to_free)
1260 radix_tree_node_free(to_free);
1262 if (pathp->node->count) {
1263 if (pathp->node ==
1264 radix_tree_indirect_to_ptr(root->rnode))
1265 radix_tree_shrink(root);
1266 goto out;
1269 /* Node with zero slots in use so free it */
1270 to_free = pathp->node;
1271 pathp--;
1274 root_tag_clear_all(root);
1275 root->height = 0;
1276 root->rnode = NULL;
1277 if (to_free)
1278 radix_tree_node_free(to_free);
1280 out:
1281 return slot;
1283 EXPORT_SYMBOL(radix_tree_delete);
1286 * radix_tree_tagged - test whether any items in the tree are tagged
1287 * @root: radix tree root
1288 * @tag: tag to test
1290 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1292 return root_tag_get(root, tag);
1294 EXPORT_SYMBOL(radix_tree_tagged);
1296 static void
1297 radix_tree_node_ctor(void *node)
1299 memset(node, 0, sizeof(struct radix_tree_node));
1302 static __init unsigned long __maxindex(unsigned int height)
1304 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1305 int shift = RADIX_TREE_INDEX_BITS - width;
1307 if (shift < 0)
1308 return ~0UL;
1309 if (shift >= BITS_PER_LONG)
1310 return 0UL;
1311 return ~0UL >> shift;
1314 static __init void radix_tree_init_maxindex(void)
1316 unsigned int i;
1318 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1319 height_to_maxindex[i] = __maxindex(i);
1322 static int radix_tree_callback(struct notifier_block *nfb,
1323 unsigned long action,
1324 void *hcpu)
1326 int cpu = (long)hcpu;
1327 struct radix_tree_preload *rtp;
1329 /* Free per-cpu pool of perloaded nodes */
1330 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1331 rtp = &per_cpu(radix_tree_preloads, cpu);
1332 while (rtp->nr) {
1333 kmem_cache_free(radix_tree_node_cachep,
1334 rtp->nodes[rtp->nr-1]);
1335 rtp->nodes[rtp->nr-1] = NULL;
1336 rtp->nr--;
1339 return NOTIFY_OK;
1342 void __init radix_tree_init(void)
1344 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1345 sizeof(struct radix_tree_node), 0,
1346 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1347 radix_tree_node_ctor);
1348 radix_tree_init_maxindex();
1349 hotcpu_notifier(radix_tree_callback, 0);