4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock
);
39 static unsigned int nr_swapfiles
;
41 long total_swap_pages
;
42 static int swap_overflow
;
43 static int least_priority
;
45 static const char Bad_file
[] = "Bad swap file entry ";
46 static const char Unused_file
[] = "Unused swap file entry ";
47 static const char Bad_offset
[] = "Bad swap offset entry ";
48 static const char Unused_offset
[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list
= {-1, -1};
52 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
54 static DEFINE_MUTEX(swapon_mutex
);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
59 SWAP_MAP
= 0, /* ops for reference from swap users */
60 SWAP_CACHE
, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent
)
65 return ent
& SWAP_COUNT_MASK
;
68 static inline bool swap_has_cache(unsigned short ent
)
70 return !!(ent
& SWAP_HAS_CACHE
);
73 static inline unsigned short encode_swapmap(int count
, bool has_cache
)
75 unsigned short ret
= count
;
78 return SWAP_HAS_CACHE
| ret
;
82 /* returnes 1 if swap entry is freed */
84 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
86 int type
= si
- swap_info
;
87 swp_entry_t entry
= swp_entry(type
, offset
);
91 page
= find_get_page(&swapper_space
, entry
.val
);
95 * This function is called from scan_swap_map() and it's called
96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 * We have to use trylock for avoiding deadlock. This is a special
98 * case and you should use try_to_free_swap() with explicit lock_page()
99 * in usual operations.
101 if (trylock_page(page
)) {
102 ret
= try_to_free_swap(page
);
105 page_cache_release(page
);
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
114 static DECLARE_RWSEM(swap_unplug_sem
);
116 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
120 down_read(&swap_unplug_sem
);
121 entry
.val
= page_private(page
);
122 if (PageSwapCache(page
)) {
123 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
124 struct backing_dev_info
*bdi
;
127 * If the page is removed from swapcache from under us (with a
128 * racy try_to_unuse/swapoff) we need an additional reference
129 * count to avoid reading garbage from page_private(page) above.
130 * If the WARN_ON triggers during a swapoff it maybe the race
131 * condition and it's harmless. However if it triggers without
132 * swapoff it signals a problem.
134 WARN_ON(page_count(page
) <= 1);
136 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
137 blk_run_backing_dev(bdi
, page
);
139 up_read(&swap_unplug_sem
);
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
146 static int discard_swap(struct swap_info_struct
*si
)
148 struct swap_extent
*se
;
151 list_for_each_entry(se
, &si
->extent_list
, list
) {
152 sector_t start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
153 sector_t nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
155 if (se
->start_page
== 0) {
156 /* Do not discard the swap header page! */
157 start_block
+= 1 << (PAGE_SHIFT
- 9);
158 nr_blocks
-= 1 << (PAGE_SHIFT
- 9);
163 err
= blkdev_issue_discard(si
->bdev
, start_block
,
164 nr_blocks
, GFP_KERNEL
);
170 return err
; /* That will often be -EOPNOTSUPP */
174 * swap allocation tell device that a cluster of swap can now be discarded,
175 * to allow the swap device to optimize its wear-levelling.
177 static void discard_swap_cluster(struct swap_info_struct
*si
,
178 pgoff_t start_page
, pgoff_t nr_pages
)
180 struct swap_extent
*se
= si
->curr_swap_extent
;
181 int found_extent
= 0;
184 struct list_head
*lh
;
186 if (se
->start_page
<= start_page
&&
187 start_page
< se
->start_page
+ se
->nr_pages
) {
188 pgoff_t offset
= start_page
- se
->start_page
;
189 sector_t start_block
= se
->start_block
+ offset
;
190 sector_t nr_blocks
= se
->nr_pages
- offset
;
192 if (nr_blocks
> nr_pages
)
193 nr_blocks
= nr_pages
;
194 start_page
+= nr_blocks
;
195 nr_pages
-= nr_blocks
;
198 si
->curr_swap_extent
= se
;
200 start_block
<<= PAGE_SHIFT
- 9;
201 nr_blocks
<<= PAGE_SHIFT
- 9;
202 if (blkdev_issue_discard(si
->bdev
, start_block
,
203 nr_blocks
, GFP_NOIO
))
208 if (lh
== &si
->extent_list
)
210 se
= list_entry(lh
, struct swap_extent
, list
);
214 static int wait_for_discard(void *word
)
220 #define SWAPFILE_CLUSTER 256
221 #define LATENCY_LIMIT 256
223 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
226 unsigned long offset
;
227 unsigned long scan_base
;
228 unsigned long last_in_cluster
= 0;
229 int latency_ration
= LATENCY_LIMIT
;
230 int found_free_cluster
= 0;
233 * We try to cluster swap pages by allocating them sequentially
234 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
235 * way, however, we resort to first-free allocation, starting
236 * a new cluster. This prevents us from scattering swap pages
237 * all over the entire swap partition, so that we reduce
238 * overall disk seek times between swap pages. -- sct
239 * But we do now try to find an empty cluster. -Andrea
240 * And we let swap pages go all over an SSD partition. Hugh
243 si
->flags
+= SWP_SCANNING
;
244 scan_base
= offset
= si
->cluster_next
;
246 if (unlikely(!si
->cluster_nr
--)) {
247 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
248 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
251 if (si
->flags
& SWP_DISCARDABLE
) {
253 * Start range check on racing allocations, in case
254 * they overlap the cluster we eventually decide on
255 * (we scan without swap_lock to allow preemption).
256 * It's hardly conceivable that cluster_nr could be
257 * wrapped during our scan, but don't depend on it.
259 if (si
->lowest_alloc
)
261 si
->lowest_alloc
= si
->max
;
262 si
->highest_alloc
= 0;
264 spin_unlock(&swap_lock
);
267 * If seek is expensive, start searching for new cluster from
268 * start of partition, to minimize the span of allocated swap.
269 * But if seek is cheap, search from our current position, so
270 * that swap is allocated from all over the partition: if the
271 * Flash Translation Layer only remaps within limited zones,
272 * we don't want to wear out the first zone too quickly.
274 if (!(si
->flags
& SWP_SOLIDSTATE
))
275 scan_base
= offset
= si
->lowest_bit
;
276 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
278 /* Locate the first empty (unaligned) cluster */
279 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
280 if (si
->swap_map
[offset
])
281 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
282 else if (offset
== last_in_cluster
) {
283 spin_lock(&swap_lock
);
284 offset
-= SWAPFILE_CLUSTER
- 1;
285 si
->cluster_next
= offset
;
286 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
287 found_free_cluster
= 1;
290 if (unlikely(--latency_ration
< 0)) {
292 latency_ration
= LATENCY_LIMIT
;
296 offset
= si
->lowest_bit
;
297 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
299 /* Locate the first empty (unaligned) cluster */
300 for (; last_in_cluster
< scan_base
; offset
++) {
301 if (si
->swap_map
[offset
])
302 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
303 else if (offset
== last_in_cluster
) {
304 spin_lock(&swap_lock
);
305 offset
-= SWAPFILE_CLUSTER
- 1;
306 si
->cluster_next
= offset
;
307 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
308 found_free_cluster
= 1;
311 if (unlikely(--latency_ration
< 0)) {
313 latency_ration
= LATENCY_LIMIT
;
318 spin_lock(&swap_lock
);
319 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
320 si
->lowest_alloc
= 0;
324 if (!(si
->flags
& SWP_WRITEOK
))
326 if (!si
->highest_bit
)
328 if (offset
> si
->highest_bit
)
329 scan_base
= offset
= si
->lowest_bit
;
331 /* reuse swap entry of cache-only swap if not busy. */
332 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
334 spin_unlock(&swap_lock
);
335 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
336 spin_lock(&swap_lock
);
337 /* entry was freed successfully, try to use this again */
340 goto scan
; /* check next one */
343 if (si
->swap_map
[offset
])
346 if (offset
== si
->lowest_bit
)
348 if (offset
== si
->highest_bit
)
351 if (si
->inuse_pages
== si
->pages
) {
352 si
->lowest_bit
= si
->max
;
355 if (cache
== SWAP_CACHE
) /* at usual swap-out via vmscan.c */
356 si
->swap_map
[offset
] = encode_swapmap(0, true);
357 else /* at suspend */
358 si
->swap_map
[offset
] = encode_swapmap(1, false);
359 si
->cluster_next
= offset
+ 1;
360 si
->flags
-= SWP_SCANNING
;
362 if (si
->lowest_alloc
) {
364 * Only set when SWP_DISCARDABLE, and there's a scan
365 * for a free cluster in progress or just completed.
367 if (found_free_cluster
) {
369 * To optimize wear-levelling, discard the
370 * old data of the cluster, taking care not to
371 * discard any of its pages that have already
372 * been allocated by racing tasks (offset has
373 * already stepped over any at the beginning).
375 if (offset
< si
->highest_alloc
&&
376 si
->lowest_alloc
<= last_in_cluster
)
377 last_in_cluster
= si
->lowest_alloc
- 1;
378 si
->flags
|= SWP_DISCARDING
;
379 spin_unlock(&swap_lock
);
381 if (offset
< last_in_cluster
)
382 discard_swap_cluster(si
, offset
,
383 last_in_cluster
- offset
+ 1);
385 spin_lock(&swap_lock
);
386 si
->lowest_alloc
= 0;
387 si
->flags
&= ~SWP_DISCARDING
;
389 smp_mb(); /* wake_up_bit advises this */
390 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
392 } else if (si
->flags
& SWP_DISCARDING
) {
394 * Delay using pages allocated by racing tasks
395 * until the whole discard has been issued. We
396 * could defer that delay until swap_writepage,
397 * but it's easier to keep this self-contained.
399 spin_unlock(&swap_lock
);
400 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
401 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
402 spin_lock(&swap_lock
);
405 * Note pages allocated by racing tasks while
406 * scan for a free cluster is in progress, so
407 * that its final discard can exclude them.
409 if (offset
< si
->lowest_alloc
)
410 si
->lowest_alloc
= offset
;
411 if (offset
> si
->highest_alloc
)
412 si
->highest_alloc
= offset
;
418 spin_unlock(&swap_lock
);
419 while (++offset
<= si
->highest_bit
) {
420 if (!si
->swap_map
[offset
]) {
421 spin_lock(&swap_lock
);
424 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
425 spin_lock(&swap_lock
);
428 if (unlikely(--latency_ration
< 0)) {
430 latency_ration
= LATENCY_LIMIT
;
433 offset
= si
->lowest_bit
;
434 while (++offset
< scan_base
) {
435 if (!si
->swap_map
[offset
]) {
436 spin_lock(&swap_lock
);
439 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
440 spin_lock(&swap_lock
);
443 if (unlikely(--latency_ration
< 0)) {
445 latency_ration
= LATENCY_LIMIT
;
448 spin_lock(&swap_lock
);
451 si
->flags
-= SWP_SCANNING
;
455 swp_entry_t
get_swap_page(void)
457 struct swap_info_struct
*si
;
462 spin_lock(&swap_lock
);
463 if (nr_swap_pages
<= 0)
467 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
468 si
= swap_info
+ type
;
471 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
472 next
= swap_list
.head
;
476 if (!si
->highest_bit
)
478 if (!(si
->flags
& SWP_WRITEOK
))
481 swap_list
.next
= next
;
482 /* This is called for allocating swap entry for cache */
483 offset
= scan_swap_map(si
, SWAP_CACHE
);
485 spin_unlock(&swap_lock
);
486 return swp_entry(type
, offset
);
488 next
= swap_list
.next
;
493 spin_unlock(&swap_lock
);
494 return (swp_entry_t
) {0};
497 /* The only caller of this function is now susupend routine */
498 swp_entry_t
get_swap_page_of_type(int type
)
500 struct swap_info_struct
*si
;
503 spin_lock(&swap_lock
);
504 si
= swap_info
+ type
;
505 if (si
->flags
& SWP_WRITEOK
) {
507 /* This is called for allocating swap entry, not cache */
508 offset
= scan_swap_map(si
, SWAP_MAP
);
510 spin_unlock(&swap_lock
);
511 return swp_entry(type
, offset
);
515 spin_unlock(&swap_lock
);
516 return (swp_entry_t
) {0};
519 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
521 struct swap_info_struct
* p
;
522 unsigned long offset
, type
;
526 type
= swp_type(entry
);
527 if (type
>= nr_swapfiles
)
529 p
= & swap_info
[type
];
530 if (!(p
->flags
& SWP_USED
))
532 offset
= swp_offset(entry
);
533 if (offset
>= p
->max
)
535 if (!p
->swap_map
[offset
])
537 spin_lock(&swap_lock
);
541 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
544 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
547 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
550 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
555 static int swap_entry_free(struct swap_info_struct
*p
,
556 swp_entry_t ent
, int cache
)
558 unsigned long offset
= swp_offset(ent
);
559 int count
= swap_count(p
->swap_map
[offset
]);
562 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
564 if (cache
== SWAP_MAP
) { /* dropping usage count of swap */
565 if (count
< SWAP_MAP_MAX
) {
567 p
->swap_map
[offset
] = encode_swapmap(count
, has_cache
);
569 } else { /* dropping swap cache flag */
570 VM_BUG_ON(!has_cache
);
571 p
->swap_map
[offset
] = encode_swapmap(count
, false);
575 count
= p
->swap_map
[offset
];
576 /* free if no reference */
578 if (offset
< p
->lowest_bit
)
579 p
->lowest_bit
= offset
;
580 if (offset
> p
->highest_bit
)
581 p
->highest_bit
= offset
;
582 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
583 swap_list
.next
= p
- swap_info
;
587 if (!swap_count(count
))
588 mem_cgroup_uncharge_swap(ent
);
593 * Caller has made sure that the swapdevice corresponding to entry
594 * is still around or has not been recycled.
596 void swap_free(swp_entry_t entry
)
598 struct swap_info_struct
* p
;
600 p
= swap_info_get(entry
);
602 swap_entry_free(p
, entry
, SWAP_MAP
);
603 spin_unlock(&swap_lock
);
608 * Called after dropping swapcache to decrease refcnt to swap entries.
610 void swapcache_free(swp_entry_t entry
, struct page
*page
)
612 struct swap_info_struct
*p
;
615 p
= swap_info_get(entry
);
617 ret
= swap_entry_free(p
, entry
, SWAP_CACHE
);
621 swapout
= true; /* the end of swap out */
623 swapout
= false; /* no more swap users! */
624 mem_cgroup_uncharge_swapcache(page
, entry
, swapout
);
626 spin_unlock(&swap_lock
);
632 * How many references to page are currently swapped out?
634 static inline int page_swapcount(struct page
*page
)
637 struct swap_info_struct
*p
;
640 entry
.val
= page_private(page
);
641 p
= swap_info_get(entry
);
643 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
644 spin_unlock(&swap_lock
);
650 * We can write to an anon page without COW if there are no other references
651 * to it. And as a side-effect, free up its swap: because the old content
652 * on disk will never be read, and seeking back there to write new content
653 * later would only waste time away from clustering.
655 int reuse_swap_page(struct page
*page
)
659 VM_BUG_ON(!PageLocked(page
));
660 count
= page_mapcount(page
);
661 if (count
<= 1 && PageSwapCache(page
)) {
662 count
+= page_swapcount(page
);
663 if (count
== 1 && !PageWriteback(page
)) {
664 delete_from_swap_cache(page
);
672 * If swap is getting full, or if there are no more mappings of this page,
673 * then try_to_free_swap is called to free its swap space.
675 int try_to_free_swap(struct page
*page
)
677 VM_BUG_ON(!PageLocked(page
));
679 if (!PageSwapCache(page
))
681 if (PageWriteback(page
))
683 if (page_swapcount(page
))
686 delete_from_swap_cache(page
);
692 * Free the swap entry like above, but also try to
693 * free the page cache entry if it is the last user.
695 int free_swap_and_cache(swp_entry_t entry
)
697 struct swap_info_struct
*p
;
698 struct page
*page
= NULL
;
700 if (is_migration_entry(entry
))
703 p
= swap_info_get(entry
);
705 if (swap_entry_free(p
, entry
, SWAP_MAP
) == SWAP_HAS_CACHE
) {
706 page
= find_get_page(&swapper_space
, entry
.val
);
707 if (page
&& !trylock_page(page
)) {
708 page_cache_release(page
);
712 spin_unlock(&swap_lock
);
716 * Not mapped elsewhere, or swap space full? Free it!
717 * Also recheck PageSwapCache now page is locked (above).
719 if (PageSwapCache(page
) && !PageWriteback(page
) &&
720 (!page_mapped(page
) || vm_swap_full())) {
721 delete_from_swap_cache(page
);
725 page_cache_release(page
);
730 #ifdef CONFIG_HIBERNATION
732 * Find the swap type that corresponds to given device (if any).
734 * @offset - number of the PAGE_SIZE-sized block of the device, starting
735 * from 0, in which the swap header is expected to be located.
737 * This is needed for the suspend to disk (aka swsusp).
739 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
741 struct block_device
*bdev
= NULL
;
745 bdev
= bdget(device
);
747 spin_lock(&swap_lock
);
748 for (i
= 0; i
< nr_swapfiles
; i
++) {
749 struct swap_info_struct
*sis
= swap_info
+ i
;
751 if (!(sis
->flags
& SWP_WRITEOK
))
756 *bdev_p
= bdget(sis
->bdev
->bd_dev
);
758 spin_unlock(&swap_lock
);
761 if (bdev
== sis
->bdev
) {
762 struct swap_extent
*se
;
764 se
= list_entry(sis
->extent_list
.next
,
765 struct swap_extent
, list
);
766 if (se
->start_block
== offset
) {
768 *bdev_p
= bdget(sis
->bdev
->bd_dev
);
770 spin_unlock(&swap_lock
);
776 spin_unlock(&swap_lock
);
784 * Return either the total number of swap pages of given type, or the number
785 * of free pages of that type (depending on @free)
787 * This is needed for software suspend
789 unsigned int count_swap_pages(int type
, int free
)
793 if (type
< nr_swapfiles
) {
794 spin_lock(&swap_lock
);
795 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
796 n
= swap_info
[type
].pages
;
798 n
-= swap_info
[type
].inuse_pages
;
800 spin_unlock(&swap_lock
);
807 * No need to decide whether this PTE shares the swap entry with others,
808 * just let do_wp_page work it out if a write is requested later - to
809 * force COW, vm_page_prot omits write permission from any private vma.
811 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
812 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
814 struct mem_cgroup
*ptr
= NULL
;
819 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
824 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
825 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
827 mem_cgroup_cancel_charge_swapin(ptr
);
832 inc_mm_counter(vma
->vm_mm
, anon_rss
);
834 set_pte_at(vma
->vm_mm
, addr
, pte
,
835 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
836 page_add_anon_rmap(page
, vma
, addr
);
837 mem_cgroup_commit_charge_swapin(page
, ptr
);
840 * Move the page to the active list so it is not
841 * immediately swapped out again after swapon.
845 pte_unmap_unlock(pte
, ptl
);
850 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
851 unsigned long addr
, unsigned long end
,
852 swp_entry_t entry
, struct page
*page
)
854 pte_t swp_pte
= swp_entry_to_pte(entry
);
859 * We don't actually need pte lock while scanning for swp_pte: since
860 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
861 * page table while we're scanning; though it could get zapped, and on
862 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
863 * of unmatched parts which look like swp_pte, so unuse_pte must
864 * recheck under pte lock. Scanning without pte lock lets it be
865 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
867 pte
= pte_offset_map(pmd
, addr
);
870 * swapoff spends a _lot_ of time in this loop!
871 * Test inline before going to call unuse_pte.
873 if (unlikely(pte_same(*pte
, swp_pte
))) {
875 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
878 pte
= pte_offset_map(pmd
, addr
);
880 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
886 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
887 unsigned long addr
, unsigned long end
,
888 swp_entry_t entry
, struct page
*page
)
894 pmd
= pmd_offset(pud
, addr
);
896 next
= pmd_addr_end(addr
, end
);
897 if (pmd_none_or_clear_bad(pmd
))
899 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
902 } while (pmd
++, addr
= next
, addr
!= end
);
906 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
907 unsigned long addr
, unsigned long end
,
908 swp_entry_t entry
, struct page
*page
)
914 pud
= pud_offset(pgd
, addr
);
916 next
= pud_addr_end(addr
, end
);
917 if (pud_none_or_clear_bad(pud
))
919 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
922 } while (pud
++, addr
= next
, addr
!= end
);
926 static int unuse_vma(struct vm_area_struct
*vma
,
927 swp_entry_t entry
, struct page
*page
)
930 unsigned long addr
, end
, next
;
934 addr
= page_address_in_vma(page
, vma
);
938 end
= addr
+ PAGE_SIZE
;
940 addr
= vma
->vm_start
;
944 pgd
= pgd_offset(vma
->vm_mm
, addr
);
946 next
= pgd_addr_end(addr
, end
);
947 if (pgd_none_or_clear_bad(pgd
))
949 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
952 } while (pgd
++, addr
= next
, addr
!= end
);
956 static int unuse_mm(struct mm_struct
*mm
,
957 swp_entry_t entry
, struct page
*page
)
959 struct vm_area_struct
*vma
;
962 if (!down_read_trylock(&mm
->mmap_sem
)) {
964 * Activate page so shrink_inactive_list is unlikely to unmap
965 * its ptes while lock is dropped, so swapoff can make progress.
969 down_read(&mm
->mmap_sem
);
972 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
973 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
976 up_read(&mm
->mmap_sem
);
977 return (ret
< 0)? ret
: 0;
981 * Scan swap_map from current position to next entry still in use.
982 * Recycle to start on reaching the end, returning 0 when empty.
984 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
987 unsigned int max
= si
->max
;
988 unsigned int i
= prev
;
992 * No need for swap_lock here: we're just looking
993 * for whether an entry is in use, not modifying it; false
994 * hits are okay, and sys_swapoff() has already prevented new
995 * allocations from this area (while holding swap_lock).
1004 * No entries in use at top of swap_map,
1005 * loop back to start and recheck there.
1011 count
= si
->swap_map
[i
];
1012 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1019 * We completely avoid races by reading each swap page in advance,
1020 * and then search for the process using it. All the necessary
1021 * page table adjustments can then be made atomically.
1023 static int try_to_unuse(unsigned int type
)
1025 struct swap_info_struct
* si
= &swap_info
[type
];
1026 struct mm_struct
*start_mm
;
1027 unsigned short *swap_map
;
1028 unsigned short swcount
;
1033 int reset_overflow
= 0;
1037 * When searching mms for an entry, a good strategy is to
1038 * start at the first mm we freed the previous entry from
1039 * (though actually we don't notice whether we or coincidence
1040 * freed the entry). Initialize this start_mm with a hold.
1042 * A simpler strategy would be to start at the last mm we
1043 * freed the previous entry from; but that would take less
1044 * advantage of mmlist ordering, which clusters forked mms
1045 * together, child after parent. If we race with dup_mmap(), we
1046 * prefer to resolve parent before child, lest we miss entries
1047 * duplicated after we scanned child: using last mm would invert
1048 * that. Though it's only a serious concern when an overflowed
1049 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1051 start_mm
= &init_mm
;
1052 atomic_inc(&init_mm
.mm_users
);
1055 * Keep on scanning until all entries have gone. Usually,
1056 * one pass through swap_map is enough, but not necessarily:
1057 * there are races when an instance of an entry might be missed.
1059 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1060 if (signal_pending(current
)) {
1066 * Get a page for the entry, using the existing swap
1067 * cache page if there is one. Otherwise, get a clean
1068 * page and read the swap into it.
1070 swap_map
= &si
->swap_map
[i
];
1071 entry
= swp_entry(type
, i
);
1072 page
= read_swap_cache_async(entry
,
1073 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1076 * Either swap_duplicate() failed because entry
1077 * has been freed independently, and will not be
1078 * reused since sys_swapoff() already disabled
1079 * allocation from here, or alloc_page() failed.
1088 * Don't hold on to start_mm if it looks like exiting.
1090 if (atomic_read(&start_mm
->mm_users
) == 1) {
1092 start_mm
= &init_mm
;
1093 atomic_inc(&init_mm
.mm_users
);
1097 * Wait for and lock page. When do_swap_page races with
1098 * try_to_unuse, do_swap_page can handle the fault much
1099 * faster than try_to_unuse can locate the entry. This
1100 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1101 * defer to do_swap_page in such a case - in some tests,
1102 * do_swap_page and try_to_unuse repeatedly compete.
1104 wait_on_page_locked(page
);
1105 wait_on_page_writeback(page
);
1107 wait_on_page_writeback(page
);
1110 * Remove all references to entry.
1111 * Whenever we reach init_mm, there's no address space
1112 * to search, but use it as a reminder to search shmem.
1115 swcount
= *swap_map
;
1116 if (swap_count(swcount
)) {
1117 if (start_mm
== &init_mm
)
1118 shmem
= shmem_unuse(entry
, page
);
1120 retval
= unuse_mm(start_mm
, entry
, page
);
1122 if (swap_count(*swap_map
)) {
1123 int set_start_mm
= (*swap_map
>= swcount
);
1124 struct list_head
*p
= &start_mm
->mmlist
;
1125 struct mm_struct
*new_start_mm
= start_mm
;
1126 struct mm_struct
*prev_mm
= start_mm
;
1127 struct mm_struct
*mm
;
1129 atomic_inc(&new_start_mm
->mm_users
);
1130 atomic_inc(&prev_mm
->mm_users
);
1131 spin_lock(&mmlist_lock
);
1132 while (swap_count(*swap_map
) && !retval
&& !shmem
&&
1133 (p
= p
->next
) != &start_mm
->mmlist
) {
1134 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1135 if (!atomic_inc_not_zero(&mm
->mm_users
))
1137 spin_unlock(&mmlist_lock
);
1143 swcount
= *swap_map
;
1144 if (!swap_count(swcount
)) /* any usage ? */
1146 else if (mm
== &init_mm
) {
1148 shmem
= shmem_unuse(entry
, page
);
1150 retval
= unuse_mm(mm
, entry
, page
);
1153 swap_count(*swap_map
) < swcount
) {
1154 mmput(new_start_mm
);
1155 atomic_inc(&mm
->mm_users
);
1159 spin_lock(&mmlist_lock
);
1161 spin_unlock(&mmlist_lock
);
1164 start_mm
= new_start_mm
;
1167 /* page has already been unlocked and released */
1175 page_cache_release(page
);
1180 * How could swap count reach 0x7ffe ?
1181 * There's no way to repeat a swap page within an mm
1182 * (except in shmem, where it's the shared object which takes
1183 * the reference count)?
1184 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1185 * short is too small....)
1186 * If that's wrong, then we should worry more about
1187 * exit_mmap() and do_munmap() cases described above:
1188 * we might be resetting SWAP_MAP_MAX too early here.
1189 * We know "Undead"s can happen, they're okay, so don't
1190 * report them; but do report if we reset SWAP_MAP_MAX.
1192 /* We might release the lock_page() in unuse_mm(). */
1193 if (!PageSwapCache(page
) || page_private(page
) != entry
.val
)
1196 if (swap_count(*swap_map
) == SWAP_MAP_MAX
) {
1197 spin_lock(&swap_lock
);
1198 *swap_map
= encode_swapmap(0, true);
1199 spin_unlock(&swap_lock
);
1204 * If a reference remains (rare), we would like to leave
1205 * the page in the swap cache; but try_to_unmap could
1206 * then re-duplicate the entry once we drop page lock,
1207 * so we might loop indefinitely; also, that page could
1208 * not be swapped out to other storage meanwhile. So:
1209 * delete from cache even if there's another reference,
1210 * after ensuring that the data has been saved to disk -
1211 * since if the reference remains (rarer), it will be
1212 * read from disk into another page. Splitting into two
1213 * pages would be incorrect if swap supported "shared
1214 * private" pages, but they are handled by tmpfs files.
1216 if (swap_count(*swap_map
) &&
1217 PageDirty(page
) && PageSwapCache(page
)) {
1218 struct writeback_control wbc
= {
1219 .sync_mode
= WB_SYNC_NONE
,
1222 swap_writepage(page
, &wbc
);
1224 wait_on_page_writeback(page
);
1228 * It is conceivable that a racing task removed this page from
1229 * swap cache just before we acquired the page lock at the top,
1230 * or while we dropped it in unuse_mm(). The page might even
1231 * be back in swap cache on another swap area: that we must not
1232 * delete, since it may not have been written out to swap yet.
1234 if (PageSwapCache(page
) &&
1235 likely(page_private(page
) == entry
.val
))
1236 delete_from_swap_cache(page
);
1239 * So we could skip searching mms once swap count went
1240 * to 1, we did not mark any present ptes as dirty: must
1241 * mark page dirty so shrink_page_list will preserve it.
1246 page_cache_release(page
);
1249 * Make sure that we aren't completely killing
1250 * interactive performance.
1256 if (reset_overflow
) {
1257 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
1264 * After a successful try_to_unuse, if no swap is now in use, we know
1265 * we can empty the mmlist. swap_lock must be held on entry and exit.
1266 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1267 * added to the mmlist just after page_duplicate - before would be racy.
1269 static void drain_mmlist(void)
1271 struct list_head
*p
, *next
;
1274 for (i
= 0; i
< nr_swapfiles
; i
++)
1275 if (swap_info
[i
].inuse_pages
)
1277 spin_lock(&mmlist_lock
);
1278 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1280 spin_unlock(&mmlist_lock
);
1284 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1285 * corresponds to page offset `offset'.
1287 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
1289 struct swap_extent
*se
= sis
->curr_swap_extent
;
1290 struct swap_extent
*start_se
= se
;
1293 struct list_head
*lh
;
1295 if (se
->start_page
<= offset
&&
1296 offset
< (se
->start_page
+ se
->nr_pages
)) {
1297 return se
->start_block
+ (offset
- se
->start_page
);
1300 if (lh
== &sis
->extent_list
)
1302 se
= list_entry(lh
, struct swap_extent
, list
);
1303 sis
->curr_swap_extent
= se
;
1304 BUG_ON(se
== start_se
); /* It *must* be present */
1308 #ifdef CONFIG_HIBERNATION
1310 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1311 * corresponding to given index in swap_info (swap type).
1313 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
1315 struct swap_info_struct
*sis
;
1317 if (swap_type
>= nr_swapfiles
)
1320 sis
= swap_info
+ swap_type
;
1321 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1323 #endif /* CONFIG_HIBERNATION */
1326 * Free all of a swapdev's extent information
1328 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1330 while (!list_empty(&sis
->extent_list
)) {
1331 struct swap_extent
*se
;
1333 se
= list_entry(sis
->extent_list
.next
,
1334 struct swap_extent
, list
);
1335 list_del(&se
->list
);
1341 * Add a block range (and the corresponding page range) into this swapdev's
1342 * extent list. The extent list is kept sorted in page order.
1344 * This function rather assumes that it is called in ascending page order.
1347 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1348 unsigned long nr_pages
, sector_t start_block
)
1350 struct swap_extent
*se
;
1351 struct swap_extent
*new_se
;
1352 struct list_head
*lh
;
1354 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1355 if (lh
!= &sis
->extent_list
) {
1356 se
= list_entry(lh
, struct swap_extent
, list
);
1357 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1358 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1360 se
->nr_pages
+= nr_pages
;
1366 * No merge. Insert a new extent, preserving ordering.
1368 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1371 new_se
->start_page
= start_page
;
1372 new_se
->nr_pages
= nr_pages
;
1373 new_se
->start_block
= start_block
;
1375 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1380 * A `swap extent' is a simple thing which maps a contiguous range of pages
1381 * onto a contiguous range of disk blocks. An ordered list of swap extents
1382 * is built at swapon time and is then used at swap_writepage/swap_readpage
1383 * time for locating where on disk a page belongs.
1385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1387 * swap files identically.
1389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1391 * swapfiles are handled *identically* after swapon time.
1393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1396 * requirements, they are simply tossed out - we will never use those blocks
1399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1401 * which will scribble on the fs.
1403 * The amount of disk space which a single swap extent represents varies.
1404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1405 * extents in the list. To avoid much list walking, we cache the previous
1406 * search location in `curr_swap_extent', and start new searches from there.
1407 * This is extremely effective. The average number of iterations in
1408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1410 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1412 struct inode
*inode
;
1413 unsigned blocks_per_page
;
1414 unsigned long page_no
;
1416 sector_t probe_block
;
1417 sector_t last_block
;
1418 sector_t lowest_block
= -1;
1419 sector_t highest_block
= 0;
1423 inode
= sis
->swap_file
->f_mapping
->host
;
1424 if (S_ISBLK(inode
->i_mode
)) {
1425 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1430 blkbits
= inode
->i_blkbits
;
1431 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1434 * Map all the blocks into the extent list. This code doesn't try
1439 last_block
= i_size_read(inode
) >> blkbits
;
1440 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1441 page_no
< sis
->max
) {
1442 unsigned block_in_page
;
1443 sector_t first_block
;
1445 first_block
= bmap(inode
, probe_block
);
1446 if (first_block
== 0)
1450 * It must be PAGE_SIZE aligned on-disk
1452 if (first_block
& (blocks_per_page
- 1)) {
1457 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1461 block
= bmap(inode
, probe_block
+ block_in_page
);
1464 if (block
!= first_block
+ block_in_page
) {
1471 first_block
>>= (PAGE_SHIFT
- blkbits
);
1472 if (page_no
) { /* exclude the header page */
1473 if (first_block
< lowest_block
)
1474 lowest_block
= first_block
;
1475 if (first_block
> highest_block
)
1476 highest_block
= first_block
;
1480 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1482 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1487 probe_block
+= blocks_per_page
;
1492 *span
= 1 + highest_block
- lowest_block
;
1494 page_no
= 1; /* force Empty message */
1496 sis
->pages
= page_no
- 1;
1497 sis
->highest_bit
= page_no
- 1;
1499 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1500 struct swap_extent
, list
);
1503 printk(KERN_ERR
"swapon: swapfile has holes\n");
1509 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1511 struct swap_info_struct
* p
= NULL
;
1512 unsigned short *swap_map
;
1513 struct file
*swap_file
, *victim
;
1514 struct address_space
*mapping
;
1515 struct inode
*inode
;
1520 if (!capable(CAP_SYS_ADMIN
))
1523 pathname
= getname(specialfile
);
1524 err
= PTR_ERR(pathname
);
1525 if (IS_ERR(pathname
))
1528 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1530 err
= PTR_ERR(victim
);
1534 mapping
= victim
->f_mapping
;
1536 spin_lock(&swap_lock
);
1537 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1538 p
= swap_info
+ type
;
1539 if (p
->flags
& SWP_WRITEOK
) {
1540 if (p
->swap_file
->f_mapping
== mapping
)
1547 spin_unlock(&swap_lock
);
1550 if (!security_vm_enough_memory(p
->pages
))
1551 vm_unacct_memory(p
->pages
);
1554 spin_unlock(&swap_lock
);
1558 swap_list
.head
= p
->next
;
1560 swap_info
[prev
].next
= p
->next
;
1562 if (type
== swap_list
.next
) {
1563 /* just pick something that's safe... */
1564 swap_list
.next
= swap_list
.head
;
1567 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1568 swap_info
[i
].prio
= p
->prio
--;
1571 nr_swap_pages
-= p
->pages
;
1572 total_swap_pages
-= p
->pages
;
1573 p
->flags
&= ~SWP_WRITEOK
;
1574 spin_unlock(&swap_lock
);
1576 current
->flags
|= PF_SWAPOFF
;
1577 err
= try_to_unuse(type
);
1578 current
->flags
&= ~PF_SWAPOFF
;
1581 /* re-insert swap space back into swap_list */
1582 spin_lock(&swap_lock
);
1584 p
->prio
= --least_priority
;
1586 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1587 if (p
->prio
>= swap_info
[i
].prio
)
1593 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1595 swap_info
[prev
].next
= p
- swap_info
;
1596 nr_swap_pages
+= p
->pages
;
1597 total_swap_pages
+= p
->pages
;
1598 p
->flags
|= SWP_WRITEOK
;
1599 spin_unlock(&swap_lock
);
1603 /* wait for any unplug function to finish */
1604 down_write(&swap_unplug_sem
);
1605 up_write(&swap_unplug_sem
);
1607 destroy_swap_extents(p
);
1608 mutex_lock(&swapon_mutex
);
1609 spin_lock(&swap_lock
);
1612 /* wait for anyone still in scan_swap_map */
1613 p
->highest_bit
= 0; /* cuts scans short */
1614 while (p
->flags
>= SWP_SCANNING
) {
1615 spin_unlock(&swap_lock
);
1616 schedule_timeout_uninterruptible(1);
1617 spin_lock(&swap_lock
);
1620 swap_file
= p
->swap_file
;
1621 p
->swap_file
= NULL
;
1623 swap_map
= p
->swap_map
;
1626 spin_unlock(&swap_lock
);
1627 mutex_unlock(&swapon_mutex
);
1629 /* Destroy swap account informatin */
1630 swap_cgroup_swapoff(type
);
1632 inode
= mapping
->host
;
1633 if (S_ISBLK(inode
->i_mode
)) {
1634 struct block_device
*bdev
= I_BDEV(inode
);
1635 set_blocksize(bdev
, p
->old_block_size
);
1638 mutex_lock(&inode
->i_mutex
);
1639 inode
->i_flags
&= ~S_SWAPFILE
;
1640 mutex_unlock(&inode
->i_mutex
);
1642 filp_close(swap_file
, NULL
);
1646 filp_close(victim
, NULL
);
1651 #ifdef CONFIG_PROC_FS
1653 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1655 struct swap_info_struct
*ptr
= swap_info
;
1659 mutex_lock(&swapon_mutex
);
1662 return SEQ_START_TOKEN
;
1664 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1665 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1674 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1676 struct swap_info_struct
*ptr
;
1677 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1679 if (v
== SEQ_START_TOKEN
)
1686 for (; ptr
< endptr
; ptr
++) {
1687 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1696 static void swap_stop(struct seq_file
*swap
, void *v
)
1698 mutex_unlock(&swapon_mutex
);
1701 static int swap_show(struct seq_file
*swap
, void *v
)
1703 struct swap_info_struct
*ptr
= v
;
1707 if (ptr
== SEQ_START_TOKEN
) {
1708 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1712 file
= ptr
->swap_file
;
1713 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1714 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1715 len
< 40 ? 40 - len
: 1, " ",
1716 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1717 "partition" : "file\t",
1718 ptr
->pages
<< (PAGE_SHIFT
- 10),
1719 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1724 static const struct seq_operations swaps_op
= {
1725 .start
= swap_start
,
1731 static int swaps_open(struct inode
*inode
, struct file
*file
)
1733 return seq_open(file
, &swaps_op
);
1736 static const struct file_operations proc_swaps_operations
= {
1739 .llseek
= seq_lseek
,
1740 .release
= seq_release
,
1743 static int __init
procswaps_init(void)
1745 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1748 __initcall(procswaps_init
);
1749 #endif /* CONFIG_PROC_FS */
1751 #ifdef MAX_SWAPFILES_CHECK
1752 static int __init
max_swapfiles_check(void)
1754 MAX_SWAPFILES_CHECK();
1757 late_initcall(max_swapfiles_check
);
1761 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1763 * The swapon system call
1765 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1767 struct swap_info_struct
* p
;
1769 struct block_device
*bdev
= NULL
;
1770 struct file
*swap_file
= NULL
;
1771 struct address_space
*mapping
;
1775 union swap_header
*swap_header
= NULL
;
1776 unsigned int nr_good_pages
= 0;
1779 unsigned long maxpages
= 1;
1780 unsigned long swapfilepages
;
1781 unsigned short *swap_map
= NULL
;
1782 struct page
*page
= NULL
;
1783 struct inode
*inode
= NULL
;
1786 if (!capable(CAP_SYS_ADMIN
))
1788 spin_lock(&swap_lock
);
1790 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1791 if (!(p
->flags
& SWP_USED
))
1794 if (type
>= MAX_SWAPFILES
) {
1795 spin_unlock(&swap_lock
);
1798 if (type
>= nr_swapfiles
)
1799 nr_swapfiles
= type
+1;
1800 memset(p
, 0, sizeof(*p
));
1801 INIT_LIST_HEAD(&p
->extent_list
);
1802 p
->flags
= SWP_USED
;
1804 spin_unlock(&swap_lock
);
1805 name
= getname(specialfile
);
1806 error
= PTR_ERR(name
);
1811 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1812 error
= PTR_ERR(swap_file
);
1813 if (IS_ERR(swap_file
)) {
1818 p
->swap_file
= swap_file
;
1819 mapping
= swap_file
->f_mapping
;
1820 inode
= mapping
->host
;
1823 for (i
= 0; i
< nr_swapfiles
; i
++) {
1824 struct swap_info_struct
*q
= &swap_info
[i
];
1826 if (i
== type
|| !q
->swap_file
)
1828 if (mapping
== q
->swap_file
->f_mapping
)
1833 if (S_ISBLK(inode
->i_mode
)) {
1834 bdev
= I_BDEV(inode
);
1835 error
= bd_claim(bdev
, sys_swapon
);
1841 p
->old_block_size
= block_size(bdev
);
1842 error
= set_blocksize(bdev
, PAGE_SIZE
);
1846 } else if (S_ISREG(inode
->i_mode
)) {
1847 p
->bdev
= inode
->i_sb
->s_bdev
;
1848 mutex_lock(&inode
->i_mutex
);
1850 if (IS_SWAPFILE(inode
)) {
1858 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1861 * Read the swap header.
1863 if (!mapping
->a_ops
->readpage
) {
1867 page
= read_mapping_page(mapping
, 0, swap_file
);
1869 error
= PTR_ERR(page
);
1872 swap_header
= kmap(page
);
1874 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1875 printk(KERN_ERR
"Unable to find swap-space signature\n");
1880 /* swap partition endianess hack... */
1881 if (swab32(swap_header
->info
.version
) == 1) {
1882 swab32s(&swap_header
->info
.version
);
1883 swab32s(&swap_header
->info
.last_page
);
1884 swab32s(&swap_header
->info
.nr_badpages
);
1885 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1886 swab32s(&swap_header
->info
.badpages
[i
]);
1888 /* Check the swap header's sub-version */
1889 if (swap_header
->info
.version
!= 1) {
1891 "Unable to handle swap header version %d\n",
1892 swap_header
->info
.version
);
1898 p
->cluster_next
= 1;
1901 * Find out how many pages are allowed for a single swap
1902 * device. There are two limiting factors: 1) the number of
1903 * bits for the swap offset in the swp_entry_t type and
1904 * 2) the number of bits in the a swap pte as defined by
1905 * the different architectures. In order to find the
1906 * largest possible bit mask a swap entry with swap type 0
1907 * and swap offset ~0UL is created, encoded to a swap pte,
1908 * decoded to a swp_entry_t again and finally the swap
1909 * offset is extracted. This will mask all the bits from
1910 * the initial ~0UL mask that can't be encoded in either
1911 * the swp_entry_t or the architecture definition of a
1914 maxpages
= swp_offset(pte_to_swp_entry(
1915 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1916 if (maxpages
> swap_header
->info
.last_page
)
1917 maxpages
= swap_header
->info
.last_page
;
1918 p
->highest_bit
= maxpages
- 1;
1923 if (swapfilepages
&& maxpages
> swapfilepages
) {
1925 "Swap area shorter than signature indicates\n");
1928 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1930 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1933 /* OK, set up the swap map and apply the bad block list */
1934 swap_map
= vmalloc(maxpages
* sizeof(short));
1940 memset(swap_map
, 0, maxpages
* sizeof(short));
1941 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1942 int page_nr
= swap_header
->info
.badpages
[i
];
1943 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1947 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1950 error
= swap_cgroup_swapon(type
, maxpages
);
1954 nr_good_pages
= swap_header
->info
.last_page
-
1955 swap_header
->info
.nr_badpages
-
1956 1 /* header page */;
1958 if (nr_good_pages
) {
1959 swap_map
[0] = SWAP_MAP_BAD
;
1961 p
->pages
= nr_good_pages
;
1962 nr_extents
= setup_swap_extents(p
, &span
);
1963 if (nr_extents
< 0) {
1967 nr_good_pages
= p
->pages
;
1969 if (!nr_good_pages
) {
1970 printk(KERN_WARNING
"Empty swap-file\n");
1975 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
1976 p
->flags
|= SWP_SOLIDSTATE
;
1977 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
1979 if (discard_swap(p
) == 0)
1980 p
->flags
|= SWP_DISCARDABLE
;
1982 mutex_lock(&swapon_mutex
);
1983 spin_lock(&swap_lock
);
1984 if (swap_flags
& SWAP_FLAG_PREFER
)
1986 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1988 p
->prio
= --least_priority
;
1989 p
->swap_map
= swap_map
;
1990 p
->flags
|= SWP_WRITEOK
;
1991 nr_swap_pages
+= nr_good_pages
;
1992 total_swap_pages
+= nr_good_pages
;
1994 printk(KERN_INFO
"Adding %uk swap on %s. "
1995 "Priority:%d extents:%d across:%lluk %s%s\n",
1996 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1997 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
1998 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
1999 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2001 /* insert swap space into swap_list: */
2003 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
2004 if (p
->prio
>= swap_info
[i
].prio
) {
2011 swap_list
.head
= swap_list
.next
= p
- swap_info
;
2013 swap_info
[prev
].next
= p
- swap_info
;
2015 spin_unlock(&swap_lock
);
2016 mutex_unlock(&swapon_mutex
);
2021 set_blocksize(bdev
, p
->old_block_size
);
2024 destroy_swap_extents(p
);
2025 swap_cgroup_swapoff(type
);
2027 spin_lock(&swap_lock
);
2028 p
->swap_file
= NULL
;
2030 spin_unlock(&swap_lock
);
2033 filp_close(swap_file
, NULL
);
2035 if (page
&& !IS_ERR(page
)) {
2037 page_cache_release(page
);
2043 inode
->i_flags
|= S_SWAPFILE
;
2044 mutex_unlock(&inode
->i_mutex
);
2049 void si_swapinfo(struct sysinfo
*val
)
2052 unsigned long nr_to_be_unused
= 0;
2054 spin_lock(&swap_lock
);
2055 for (i
= 0; i
< nr_swapfiles
; i
++) {
2056 if (!(swap_info
[i
].flags
& SWP_USED
) ||
2057 (swap_info
[i
].flags
& SWP_WRITEOK
))
2059 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
2061 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2062 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2063 spin_unlock(&swap_lock
);
2067 * Verify that a swap entry is valid and increment its swap map count.
2069 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2070 * "permanent", but will be reclaimed by the next swapoff.
2071 * Returns error code in following case.
2073 * - swp_entry is invalid -> EINVAL
2074 * - swp_entry is migration entry -> EINVAL
2075 * - swap-cache reference is requested but there is already one. -> EEXIST
2076 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2078 static int __swap_duplicate(swp_entry_t entry
, bool cache
)
2080 struct swap_info_struct
* p
;
2081 unsigned long offset
, type
;
2082 int result
= -EINVAL
;
2086 if (is_migration_entry(entry
))
2089 type
= swp_type(entry
);
2090 if (type
>= nr_swapfiles
)
2092 p
= type
+ swap_info
;
2093 offset
= swp_offset(entry
);
2095 spin_lock(&swap_lock
);
2097 if (unlikely(offset
>= p
->max
))
2100 count
= swap_count(p
->swap_map
[offset
]);
2101 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
2103 if (cache
== SWAP_CACHE
) { /* called for swapcache/swapin-readahead */
2105 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2106 if (!has_cache
&& count
) {
2107 p
->swap_map
[offset
] = encode_swapmap(count
, true);
2109 } else if (has_cache
) /* someone added cache */
2111 else if (!count
) /* no users */
2114 } else if (count
|| has_cache
) {
2115 if (count
< SWAP_MAP_MAX
- 1) {
2116 p
->swap_map
[offset
] = encode_swapmap(count
+ 1,
2119 } else if (count
<= SWAP_MAP_MAX
) {
2120 if (swap_overflow
++ < 5)
2122 "swap_dup: swap entry overflow\n");
2123 p
->swap_map
[offset
] = encode_swapmap(SWAP_MAP_MAX
,
2128 result
= -ENOENT
; /* unused swap entry */
2130 spin_unlock(&swap_lock
);
2135 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2139 * increase reference count of swap entry by 1.
2141 void swap_duplicate(swp_entry_t entry
)
2143 __swap_duplicate(entry
, SWAP_MAP
);
2147 * @entry: swap entry for which we allocate swap cache.
2149 * Called when allocating swap cache for exising swap entry,
2150 * This can return error codes. Returns 0 at success.
2151 * -EBUSY means there is a swap cache.
2152 * Note: return code is different from swap_duplicate().
2154 int swapcache_prepare(swp_entry_t entry
)
2156 return __swap_duplicate(entry
, SWAP_CACHE
);
2160 struct swap_info_struct
*
2161 get_swap_info_struct(unsigned type
)
2163 return &swap_info
[type
];
2167 * swap_lock prevents swap_map being freed. Don't grab an extra
2168 * reference on the swaphandle, it doesn't matter if it becomes unused.
2170 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2172 struct swap_info_struct
*si
;
2173 int our_page_cluster
= page_cluster
;
2174 pgoff_t target
, toff
;
2178 if (!our_page_cluster
) /* no readahead */
2181 si
= &swap_info
[swp_type(entry
)];
2182 target
= swp_offset(entry
);
2183 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2184 end
= base
+ (1 << our_page_cluster
);
2185 if (!base
) /* first page is swap header */
2188 spin_lock(&swap_lock
);
2189 if (end
> si
->max
) /* don't go beyond end of map */
2192 /* Count contiguous allocated slots above our target */
2193 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2194 /* Don't read in free or bad pages */
2195 if (!si
->swap_map
[toff
])
2197 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2200 /* Count contiguous allocated slots below our target */
2201 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2202 /* Don't read in free or bad pages */
2203 if (!si
->swap_map
[toff
])
2205 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2208 spin_unlock(&swap_lock
);
2211 * Indicate starting offset, and return number of pages to get:
2212 * if only 1, say 0, since there's then no readahead to be done.
2215 return nr_pages
? ++nr_pages
: 0;