libata: relocate forcing PIO0 on reset
[firewire-audio.git] / drivers / ata / libata-core.c
blobbdd8778e5256e2213d094d342b8315e9fbbec008
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <linux/io.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
129 * LOCKING:
130 * Inherited from caller.
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
170 * LOCKING:
171 * Inherited from caller.
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
192 static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
219 ATA_CMD_WRITE_FUA_EXT
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
230 * LOCKING:
231 * caller.
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
235 u8 cmd;
237 int index, fua, lba48, write;
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
260 return -1;
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
268 * LOCKING:
269 * None.
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
275 * RETURNS:
276 * Block address read from @tf.
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
280 u64 block = 0;
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
303 return block;
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
315 * LOCKING:
316 * None.
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
321 * RETURNS:
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
373 tf->hob_nsect = (n_block >> 8) & 0xff;
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
385 tf->nsect = n_block & 0xff;
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
426 return 0;
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
438 * LOCKING:
439 * None.
441 * RETURNS:
442 * Packed xfer_mask.
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
476 static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479 } ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
493 * LOCKING:
494 * None.
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
514 * Return matching xfer_mask for @xfer_mode.
516 * LOCKING:
517 * None.
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
524 const struct ata_xfer_ent *ent;
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
536 * Return matching xfer_shift for @xfer_mode.
538 * LOCKING:
539 * None.
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
546 const struct ata_xfer_ent *ent;
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
561 * LOCKING:
562 * None.
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
568 static const char *ata_mode_string(unsigned int xfer_mask)
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
592 int highbit;
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
600 static const char *sata_spd_string(unsigned int spd)
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
612 void ata_dev_disable(struct ata_device *dev)
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
624 * ata_devchk - PATA device presence detection
625 * @ap: ATA channel to examine
626 * @device: Device to examine (starting at zero)
628 * This technique was originally described in
629 * Hale Landis's ATADRVR (www.ata-atapi.com), and
630 * later found its way into the ATA/ATAPI spec.
632 * Write a pattern to the ATA shadow registers,
633 * and if a device is present, it will respond by
634 * correctly storing and echoing back the
635 * ATA shadow register contents.
637 * LOCKING:
638 * caller.
641 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
643 struct ata_ioports *ioaddr = &ap->ioaddr;
644 u8 nsect, lbal;
646 ap->ops->dev_select(ap, device);
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
651 iowrite8(0xaa, ioaddr->nsect_addr);
652 iowrite8(0x55, ioaddr->lbal_addr);
654 iowrite8(0x55, ioaddr->nsect_addr);
655 iowrite8(0xaa, ioaddr->lbal_addr);
657 nsect = ioread8(ioaddr->nsect_addr);
658 lbal = ioread8(ioaddr->lbal_addr);
660 if ((nsect == 0x55) && (lbal == 0xaa))
661 return 1; /* we found a device */
663 return 0; /* nothing found */
667 * ata_dev_classify - determine device type based on ATA-spec signature
668 * @tf: ATA taskfile register set for device to be identified
670 * Determine from taskfile register contents whether a device is
671 * ATA or ATAPI, as per "Signature and persistence" section
672 * of ATA/PI spec (volume 1, sect 5.14).
674 * LOCKING:
675 * None.
677 * RETURNS:
678 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
679 * %ATA_DEV_UNKNOWN the event of failure.
681 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
683 /* Apple's open source Darwin code hints that some devices only
684 * put a proper signature into the LBA mid/high registers,
685 * So, we only check those. It's sufficient for uniqueness.
687 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
688 * signatures for ATA and ATAPI devices attached on SerialATA,
689 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
690 * spec has never mentioned about using different signatures
691 * for ATA/ATAPI devices. Then, Serial ATA II: Port
692 * Multiplier specification began to use 0x69/0x96 to identify
693 * port multpliers and 0x3c/0xc3 to identify SEMB device.
694 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
695 * 0x69/0x96 shortly and described them as reserved for
696 * SerialATA.
698 * We follow the current spec and consider that 0x69/0x96
699 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
701 if ((tf->lbam == 0) && (tf->lbah == 0)) {
702 DPRINTK("found ATA device by sig\n");
703 return ATA_DEV_ATA;
706 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
707 DPRINTK("found ATAPI device by sig\n");
708 return ATA_DEV_ATAPI;
711 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
712 DPRINTK("found PMP device by sig\n");
713 return ATA_DEV_PMP;
716 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
717 printk(KERN_INFO "ata: SEMB device ignored\n");
718 return ATA_DEV_SEMB_UNSUP; /* not yet */
721 DPRINTK("unknown device\n");
722 return ATA_DEV_UNKNOWN;
726 * ata_dev_try_classify - Parse returned ATA device signature
727 * @dev: ATA device to classify (starting at zero)
728 * @present: device seems present
729 * @r_err: Value of error register on completion
731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
732 * an ATA/ATAPI-defined set of values is placed in the ATA
733 * shadow registers, indicating the results of device detection
734 * and diagnostics.
736 * Select the ATA device, and read the values from the ATA shadow
737 * registers. Then parse according to the Error register value,
738 * and the spec-defined values examined by ata_dev_classify().
740 * LOCKING:
741 * caller.
743 * RETURNS:
744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
746 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
747 u8 *r_err)
749 struct ata_port *ap = dev->link->ap;
750 struct ata_taskfile tf;
751 unsigned int class;
752 u8 err;
754 ap->ops->dev_select(ap, dev->devno);
756 memset(&tf, 0, sizeof(tf));
758 ap->ops->tf_read(ap, &tf);
759 err = tf.feature;
760 if (r_err)
761 *r_err = err;
763 /* see if device passed diags: if master then continue and warn later */
764 if (err == 0 && dev->devno == 0)
765 /* diagnostic fail : do nothing _YET_ */
766 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
767 else if (err == 1)
768 /* do nothing */ ;
769 else if ((dev->devno == 0) && (err == 0x81))
770 /* do nothing */ ;
771 else
772 return ATA_DEV_NONE;
774 /* determine if device is ATA or ATAPI */
775 class = ata_dev_classify(&tf);
777 if (class == ATA_DEV_UNKNOWN) {
778 /* If the device failed diagnostic, it's likely to
779 * have reported incorrect device signature too.
780 * Assume ATA device if the device seems present but
781 * device signature is invalid with diagnostic
782 * failure.
784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
785 class = ATA_DEV_ATA;
786 else
787 class = ATA_DEV_NONE;
788 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
789 class = ATA_DEV_NONE;
791 return class;
795 * ata_id_string - Convert IDENTIFY DEVICE page into string
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an even number.
801 * The strings in the IDENTIFY DEVICE page are broken up into
802 * 16-bit chunks. Run through the string, and output each
803 * 8-bit chunk linearly, regardless of platform.
805 * LOCKING:
806 * caller.
809 void ata_id_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
812 unsigned int c;
814 while (len > 0) {
815 c = id[ofs] >> 8;
816 *s = c;
817 s++;
819 c = id[ofs] & 0xff;
820 *s = c;
821 s++;
823 ofs++;
824 len -= 2;
829 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
830 * @id: IDENTIFY DEVICE results we will examine
831 * @s: string into which data is output
832 * @ofs: offset into identify device page
833 * @len: length of string to return. must be an odd number.
835 * This function is identical to ata_id_string except that it
836 * trims trailing spaces and terminates the resulting string with
837 * null. @len must be actual maximum length (even number) + 1.
839 * LOCKING:
840 * caller.
842 void ata_id_c_string(const u16 *id, unsigned char *s,
843 unsigned int ofs, unsigned int len)
845 unsigned char *p;
847 WARN_ON(!(len & 1));
849 ata_id_string(id, s, ofs, len - 1);
851 p = s + strnlen(s, len - 1);
852 while (p > s && p[-1] == ' ')
853 p--;
854 *p = '\0';
857 static u64 ata_id_n_sectors(const u16 *id)
859 if (ata_id_has_lba(id)) {
860 if (ata_id_has_lba48(id))
861 return ata_id_u64(id, 100);
862 else
863 return ata_id_u32(id, 60);
864 } else {
865 if (ata_id_current_chs_valid(id))
866 return ata_id_u32(id, 57);
867 else
868 return id[1] * id[3] * id[6];
872 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
874 u64 sectors = 0;
876 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
877 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
878 sectors |= (tf->hob_lbal & 0xff) << 24;
879 sectors |= (tf->lbah & 0xff) << 16;
880 sectors |= (tf->lbam & 0xff) << 8;
881 sectors |= (tf->lbal & 0xff);
883 return ++sectors;
886 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
888 u64 sectors = 0;
890 sectors |= (tf->device & 0x0f) << 24;
891 sectors |= (tf->lbah & 0xff) << 16;
892 sectors |= (tf->lbam & 0xff) << 8;
893 sectors |= (tf->lbal & 0xff);
895 return ++sectors;
899 * ata_read_native_max_address - Read native max address
900 * @dev: target device
901 * @max_sectors: out parameter for the result native max address
903 * Perform an LBA48 or LBA28 native size query upon the device in
904 * question.
906 * RETURNS:
907 * 0 on success, -EACCES if command is aborted by the drive.
908 * -EIO on other errors.
910 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
912 unsigned int err_mask;
913 struct ata_taskfile tf;
914 int lba48 = ata_id_has_lba48(dev->id);
916 ata_tf_init(dev, &tf);
918 /* always clear all address registers */
919 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
921 if (lba48) {
922 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
923 tf.flags |= ATA_TFLAG_LBA48;
924 } else
925 tf.command = ATA_CMD_READ_NATIVE_MAX;
927 tf.protocol |= ATA_PROT_NODATA;
928 tf.device |= ATA_LBA;
930 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
931 if (err_mask) {
932 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
933 "max address (err_mask=0x%x)\n", err_mask);
934 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
935 return -EACCES;
936 return -EIO;
939 if (lba48)
940 *max_sectors = ata_tf_to_lba48(&tf);
941 else
942 *max_sectors = ata_tf_to_lba(&tf);
943 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
944 (*max_sectors)--;
945 return 0;
949 * ata_set_max_sectors - Set max sectors
950 * @dev: target device
951 * @new_sectors: new max sectors value to set for the device
953 * Set max sectors of @dev to @new_sectors.
955 * RETURNS:
956 * 0 on success, -EACCES if command is aborted or denied (due to
957 * previous non-volatile SET_MAX) by the drive. -EIO on other
958 * errors.
960 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
962 unsigned int err_mask;
963 struct ata_taskfile tf;
964 int lba48 = ata_id_has_lba48(dev->id);
966 new_sectors--;
968 ata_tf_init(dev, &tf);
970 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
972 if (lba48) {
973 tf.command = ATA_CMD_SET_MAX_EXT;
974 tf.flags |= ATA_TFLAG_LBA48;
976 tf.hob_lbal = (new_sectors >> 24) & 0xff;
977 tf.hob_lbam = (new_sectors >> 32) & 0xff;
978 tf.hob_lbah = (new_sectors >> 40) & 0xff;
979 } else {
980 tf.command = ATA_CMD_SET_MAX;
982 tf.device |= (new_sectors >> 24) & 0xf;
985 tf.protocol |= ATA_PROT_NODATA;
986 tf.device |= ATA_LBA;
988 tf.lbal = (new_sectors >> 0) & 0xff;
989 tf.lbam = (new_sectors >> 8) & 0xff;
990 tf.lbah = (new_sectors >> 16) & 0xff;
992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
993 if (err_mask) {
994 ata_dev_printk(dev, KERN_WARNING, "failed to set "
995 "max address (err_mask=0x%x)\n", err_mask);
996 if (err_mask == AC_ERR_DEV &&
997 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
998 return -EACCES;
999 return -EIO;
1002 return 0;
1006 * ata_hpa_resize - Resize a device with an HPA set
1007 * @dev: Device to resize
1009 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1010 * it if required to the full size of the media. The caller must check
1011 * the drive has the HPA feature set enabled.
1013 * RETURNS:
1014 * 0 on success, -errno on failure.
1016 static int ata_hpa_resize(struct ata_device *dev)
1018 struct ata_eh_context *ehc = &dev->link->eh_context;
1019 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1020 u64 sectors = ata_id_n_sectors(dev->id);
1021 u64 native_sectors;
1022 int rc;
1024 /* do we need to do it? */
1025 if (dev->class != ATA_DEV_ATA ||
1026 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1027 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1028 return 0;
1030 /* read native max address */
1031 rc = ata_read_native_max_address(dev, &native_sectors);
1032 if (rc) {
1033 /* If HPA isn't going to be unlocked, skip HPA
1034 * resizing from the next try.
1036 if (!ata_ignore_hpa) {
1037 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1038 "broken, will skip HPA handling\n");
1039 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1041 /* we can continue if device aborted the command */
1042 if (rc == -EACCES)
1043 rc = 0;
1046 return rc;
1049 /* nothing to do? */
1050 if (native_sectors <= sectors || !ata_ignore_hpa) {
1051 if (!print_info || native_sectors == sectors)
1052 return 0;
1054 if (native_sectors > sectors)
1055 ata_dev_printk(dev, KERN_INFO,
1056 "HPA detected: current %llu, native %llu\n",
1057 (unsigned long long)sectors,
1058 (unsigned long long)native_sectors);
1059 else if (native_sectors < sectors)
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "native sectors (%llu) is smaller than "
1062 "sectors (%llu)\n",
1063 (unsigned long long)native_sectors,
1064 (unsigned long long)sectors);
1065 return 0;
1068 /* let's unlock HPA */
1069 rc = ata_set_max_sectors(dev, native_sectors);
1070 if (rc == -EACCES) {
1071 /* if device aborted the command, skip HPA resizing */
1072 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1073 "(%llu -> %llu), skipping HPA handling\n",
1074 (unsigned long long)sectors,
1075 (unsigned long long)native_sectors);
1076 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1077 return 0;
1078 } else if (rc)
1079 return rc;
1081 /* re-read IDENTIFY data */
1082 rc = ata_dev_reread_id(dev, 0);
1083 if (rc) {
1084 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1085 "data after HPA resizing\n");
1086 return rc;
1089 if (print_info) {
1090 u64 new_sectors = ata_id_n_sectors(dev->id);
1091 ata_dev_printk(dev, KERN_INFO,
1092 "HPA unlocked: %llu -> %llu, native %llu\n",
1093 (unsigned long long)sectors,
1094 (unsigned long long)new_sectors,
1095 (unsigned long long)native_sectors);
1098 return 0;
1102 * ata_id_to_dma_mode - Identify DMA mode from id block
1103 * @dev: device to identify
1104 * @unknown: mode to assume if we cannot tell
1106 * Set up the timing values for the device based upon the identify
1107 * reported values for the DMA mode. This function is used by drivers
1108 * which rely upon firmware configured modes, but wish to report the
1109 * mode correctly when possible.
1111 * In addition we emit similarly formatted messages to the default
1112 * ata_dev_set_mode handler, in order to provide consistency of
1113 * presentation.
1116 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1118 unsigned int mask;
1119 u8 mode;
1121 /* Pack the DMA modes */
1122 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1123 if (dev->id[53] & 0x04)
1124 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1126 /* Select the mode in use */
1127 mode = ata_xfer_mask2mode(mask);
1129 if (mode != 0) {
1130 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1131 ata_mode_string(mask));
1132 } else {
1133 /* SWDMA perhaps ? */
1134 mode = unknown;
1135 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1138 /* Configure the device reporting */
1139 dev->xfer_mode = mode;
1140 dev->xfer_shift = ata_xfer_mode2shift(mode);
1144 * ata_noop_dev_select - Select device 0/1 on ATA bus
1145 * @ap: ATA channel to manipulate
1146 * @device: ATA device (numbered from zero) to select
1148 * This function performs no actual function.
1150 * May be used as the dev_select() entry in ata_port_operations.
1152 * LOCKING:
1153 * caller.
1155 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1161 * ata_std_dev_select - Select device 0/1 on ATA bus
1162 * @ap: ATA channel to manipulate
1163 * @device: ATA device (numbered from zero) to select
1165 * Use the method defined in the ATA specification to
1166 * make either device 0, or device 1, active on the
1167 * ATA channel. Works with both PIO and MMIO.
1169 * May be used as the dev_select() entry in ata_port_operations.
1171 * LOCKING:
1172 * caller.
1175 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1177 u8 tmp;
1179 if (device == 0)
1180 tmp = ATA_DEVICE_OBS;
1181 else
1182 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1184 iowrite8(tmp, ap->ioaddr.device_addr);
1185 ata_pause(ap); /* needed; also flushes, for mmio */
1189 * ata_dev_select - Select device 0/1 on ATA bus
1190 * @ap: ATA channel to manipulate
1191 * @device: ATA device (numbered from zero) to select
1192 * @wait: non-zero to wait for Status register BSY bit to clear
1193 * @can_sleep: non-zero if context allows sleeping
1195 * Use the method defined in the ATA specification to
1196 * make either device 0, or device 1, active on the
1197 * ATA channel.
1199 * This is a high-level version of ata_std_dev_select(),
1200 * which additionally provides the services of inserting
1201 * the proper pauses and status polling, where needed.
1203 * LOCKING:
1204 * caller.
1207 void ata_dev_select(struct ata_port *ap, unsigned int device,
1208 unsigned int wait, unsigned int can_sleep)
1210 if (ata_msg_probe(ap))
1211 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1212 "device %u, wait %u\n", device, wait);
1214 if (wait)
1215 ata_wait_idle(ap);
1217 ap->ops->dev_select(ap, device);
1219 if (wait) {
1220 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1221 msleep(150);
1222 ata_wait_idle(ap);
1227 * ata_dump_id - IDENTIFY DEVICE info debugging output
1228 * @id: IDENTIFY DEVICE page to dump
1230 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1231 * page.
1233 * LOCKING:
1234 * caller.
1237 static inline void ata_dump_id(const u16 *id)
1239 DPRINTK("49==0x%04x "
1240 "53==0x%04x "
1241 "63==0x%04x "
1242 "64==0x%04x "
1243 "75==0x%04x \n",
1244 id[49],
1245 id[53],
1246 id[63],
1247 id[64],
1248 id[75]);
1249 DPRINTK("80==0x%04x "
1250 "81==0x%04x "
1251 "82==0x%04x "
1252 "83==0x%04x "
1253 "84==0x%04x \n",
1254 id[80],
1255 id[81],
1256 id[82],
1257 id[83],
1258 id[84]);
1259 DPRINTK("88==0x%04x "
1260 "93==0x%04x\n",
1261 id[88],
1262 id[93]);
1266 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1267 * @id: IDENTIFY data to compute xfer mask from
1269 * Compute the xfermask for this device. This is not as trivial
1270 * as it seems if we must consider early devices correctly.
1272 * FIXME: pre IDE drive timing (do we care ?).
1274 * LOCKING:
1275 * None.
1277 * RETURNS:
1278 * Computed xfermask
1280 static unsigned int ata_id_xfermask(const u16 *id)
1282 unsigned int pio_mask, mwdma_mask, udma_mask;
1284 /* Usual case. Word 53 indicates word 64 is valid */
1285 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1286 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1287 pio_mask <<= 3;
1288 pio_mask |= 0x7;
1289 } else {
1290 /* If word 64 isn't valid then Word 51 high byte holds
1291 * the PIO timing number for the maximum. Turn it into
1292 * a mask.
1294 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1295 if (mode < 5) /* Valid PIO range */
1296 pio_mask = (2 << mode) - 1;
1297 else
1298 pio_mask = 1;
1300 /* But wait.. there's more. Design your standards by
1301 * committee and you too can get a free iordy field to
1302 * process. However its the speeds not the modes that
1303 * are supported... Note drivers using the timing API
1304 * will get this right anyway
1308 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1310 if (ata_id_is_cfa(id)) {
1312 * Process compact flash extended modes
1314 int pio = id[163] & 0x7;
1315 int dma = (id[163] >> 3) & 7;
1317 if (pio)
1318 pio_mask |= (1 << 5);
1319 if (pio > 1)
1320 pio_mask |= (1 << 6);
1321 if (dma)
1322 mwdma_mask |= (1 << 3);
1323 if (dma > 1)
1324 mwdma_mask |= (1 << 4);
1327 udma_mask = 0;
1328 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1329 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1331 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1335 * ata_port_queue_task - Queue port_task
1336 * @ap: The ata_port to queue port_task for
1337 * @fn: workqueue function to be scheduled
1338 * @data: data for @fn to use
1339 * @delay: delay time for workqueue function
1341 * Schedule @fn(@data) for execution after @delay jiffies using
1342 * port_task. There is one port_task per port and it's the
1343 * user(low level driver)'s responsibility to make sure that only
1344 * one task is active at any given time.
1346 * libata core layer takes care of synchronization between
1347 * port_task and EH. ata_port_queue_task() may be ignored for EH
1348 * synchronization.
1350 * LOCKING:
1351 * Inherited from caller.
1353 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1354 unsigned long delay)
1356 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1357 ap->port_task_data = data;
1359 /* may fail if ata_port_flush_task() in progress */
1360 queue_delayed_work(ata_wq, &ap->port_task, delay);
1364 * ata_port_flush_task - Flush port_task
1365 * @ap: The ata_port to flush port_task for
1367 * After this function completes, port_task is guranteed not to
1368 * be running or scheduled.
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1373 void ata_port_flush_task(struct ata_port *ap)
1375 DPRINTK("ENTER\n");
1377 cancel_rearming_delayed_work(&ap->port_task);
1379 if (ata_msg_ctl(ap))
1380 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1383 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1385 struct completion *waiting = qc->private_data;
1387 complete(waiting);
1391 * ata_exec_internal_sg - execute libata internal command
1392 * @dev: Device to which the command is sent
1393 * @tf: Taskfile registers for the command and the result
1394 * @cdb: CDB for packet command
1395 * @dma_dir: Data tranfer direction of the command
1396 * @sgl: sg list for the data buffer of the command
1397 * @n_elem: Number of sg entries
1398 * @timeout: Timeout in msecs (0 for default)
1400 * Executes libata internal command with timeout. @tf contains
1401 * command on entry and result on return. Timeout and error
1402 * conditions are reported via return value. No recovery action
1403 * is taken after a command times out. It's caller's duty to
1404 * clean up after timeout.
1406 * LOCKING:
1407 * None. Should be called with kernel context, might sleep.
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
1412 unsigned ata_exec_internal_sg(struct ata_device *dev,
1413 struct ata_taskfile *tf, const u8 *cdb,
1414 int dma_dir, struct scatterlist *sgl,
1415 unsigned int n_elem, unsigned long timeout)
1417 struct ata_link *link = dev->link;
1418 struct ata_port *ap = link->ap;
1419 u8 command = tf->command;
1420 struct ata_queued_cmd *qc;
1421 unsigned int tag, preempted_tag;
1422 u32 preempted_sactive, preempted_qc_active;
1423 int preempted_nr_active_links;
1424 DECLARE_COMPLETION_ONSTACK(wait);
1425 unsigned long flags;
1426 unsigned int err_mask;
1427 int rc;
1429 spin_lock_irqsave(ap->lock, flags);
1431 /* no internal command while frozen */
1432 if (ap->pflags & ATA_PFLAG_FROZEN) {
1433 spin_unlock_irqrestore(ap->lock, flags);
1434 return AC_ERR_SYSTEM;
1437 /* initialize internal qc */
1439 /* XXX: Tag 0 is used for drivers with legacy EH as some
1440 * drivers choke if any other tag is given. This breaks
1441 * ata_tag_internal() test for those drivers. Don't use new
1442 * EH stuff without converting to it.
1444 if (ap->ops->error_handler)
1445 tag = ATA_TAG_INTERNAL;
1446 else
1447 tag = 0;
1449 if (test_and_set_bit(tag, &ap->qc_allocated))
1450 BUG();
1451 qc = __ata_qc_from_tag(ap, tag);
1453 qc->tag = tag;
1454 qc->scsicmd = NULL;
1455 qc->ap = ap;
1456 qc->dev = dev;
1457 ata_qc_reinit(qc);
1459 preempted_tag = link->active_tag;
1460 preempted_sactive = link->sactive;
1461 preempted_qc_active = ap->qc_active;
1462 preempted_nr_active_links = ap->nr_active_links;
1463 link->active_tag = ATA_TAG_POISON;
1464 link->sactive = 0;
1465 ap->qc_active = 0;
1466 ap->nr_active_links = 0;
1468 /* prepare & issue qc */
1469 qc->tf = *tf;
1470 if (cdb)
1471 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1472 qc->flags |= ATA_QCFLAG_RESULT_TF;
1473 qc->dma_dir = dma_dir;
1474 if (dma_dir != DMA_NONE) {
1475 unsigned int i, buflen = 0;
1476 struct scatterlist *sg;
1478 for_each_sg(sgl, sg, n_elem, i)
1479 buflen += sg->length;
1481 ata_sg_init(qc, sgl, n_elem);
1482 qc->nbytes = buflen;
1485 qc->private_data = &wait;
1486 qc->complete_fn = ata_qc_complete_internal;
1488 ata_qc_issue(qc);
1490 spin_unlock_irqrestore(ap->lock, flags);
1492 if (!timeout)
1493 timeout = ata_probe_timeout * 1000 / HZ;
1495 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1497 ata_port_flush_task(ap);
1499 if (!rc) {
1500 spin_lock_irqsave(ap->lock, flags);
1502 /* We're racing with irq here. If we lose, the
1503 * following test prevents us from completing the qc
1504 * twice. If we win, the port is frozen and will be
1505 * cleaned up by ->post_internal_cmd().
1507 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1508 qc->err_mask |= AC_ERR_TIMEOUT;
1510 if (ap->ops->error_handler)
1511 ata_port_freeze(ap);
1512 else
1513 ata_qc_complete(qc);
1515 if (ata_msg_warn(ap))
1516 ata_dev_printk(dev, KERN_WARNING,
1517 "qc timeout (cmd 0x%x)\n", command);
1520 spin_unlock_irqrestore(ap->lock, flags);
1523 /* do post_internal_cmd */
1524 if (ap->ops->post_internal_cmd)
1525 ap->ops->post_internal_cmd(qc);
1527 /* perform minimal error analysis */
1528 if (qc->flags & ATA_QCFLAG_FAILED) {
1529 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1530 qc->err_mask |= AC_ERR_DEV;
1532 if (!qc->err_mask)
1533 qc->err_mask |= AC_ERR_OTHER;
1535 if (qc->err_mask & ~AC_ERR_OTHER)
1536 qc->err_mask &= ~AC_ERR_OTHER;
1539 /* finish up */
1540 spin_lock_irqsave(ap->lock, flags);
1542 *tf = qc->result_tf;
1543 err_mask = qc->err_mask;
1545 ata_qc_free(qc);
1546 link->active_tag = preempted_tag;
1547 link->sactive = preempted_sactive;
1548 ap->qc_active = preempted_qc_active;
1549 ap->nr_active_links = preempted_nr_active_links;
1551 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1552 * Until those drivers are fixed, we detect the condition
1553 * here, fail the command with AC_ERR_SYSTEM and reenable the
1554 * port.
1556 * Note that this doesn't change any behavior as internal
1557 * command failure results in disabling the device in the
1558 * higher layer for LLDDs without new reset/EH callbacks.
1560 * Kill the following code as soon as those drivers are fixed.
1562 if (ap->flags & ATA_FLAG_DISABLED) {
1563 err_mask |= AC_ERR_SYSTEM;
1564 ata_port_probe(ap);
1567 spin_unlock_irqrestore(ap->lock, flags);
1569 return err_mask;
1573 * ata_exec_internal - execute libata internal command
1574 * @dev: Device to which the command is sent
1575 * @tf: Taskfile registers for the command and the result
1576 * @cdb: CDB for packet command
1577 * @dma_dir: Data tranfer direction of the command
1578 * @buf: Data buffer of the command
1579 * @buflen: Length of data buffer
1580 * @timeout: Timeout in msecs (0 for default)
1582 * Wrapper around ata_exec_internal_sg() which takes simple
1583 * buffer instead of sg list.
1585 * LOCKING:
1586 * None. Should be called with kernel context, might sleep.
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1591 unsigned ata_exec_internal(struct ata_device *dev,
1592 struct ata_taskfile *tf, const u8 *cdb,
1593 int dma_dir, void *buf, unsigned int buflen,
1594 unsigned long timeout)
1596 struct scatterlist *psg = NULL, sg;
1597 unsigned int n_elem = 0;
1599 if (dma_dir != DMA_NONE) {
1600 WARN_ON(!buf);
1601 sg_init_one(&sg, buf, buflen);
1602 psg = &sg;
1603 n_elem++;
1606 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1607 timeout);
1611 * ata_do_simple_cmd - execute simple internal command
1612 * @dev: Device to which the command is sent
1613 * @cmd: Opcode to execute
1615 * Execute a 'simple' command, that only consists of the opcode
1616 * 'cmd' itself, without filling any other registers
1618 * LOCKING:
1619 * Kernel thread context (may sleep).
1621 * RETURNS:
1622 * Zero on success, AC_ERR_* mask on failure
1624 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1626 struct ata_taskfile tf;
1628 ata_tf_init(dev, &tf);
1630 tf.command = cmd;
1631 tf.flags |= ATA_TFLAG_DEVICE;
1632 tf.protocol = ATA_PROT_NODATA;
1634 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1638 * ata_pio_need_iordy - check if iordy needed
1639 * @adev: ATA device
1641 * Check if the current speed of the device requires IORDY. Used
1642 * by various controllers for chip configuration.
1645 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1647 /* Controller doesn't support IORDY. Probably a pointless check
1648 as the caller should know this */
1649 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1650 return 0;
1651 /* PIO3 and higher it is mandatory */
1652 if (adev->pio_mode > XFER_PIO_2)
1653 return 1;
1654 /* We turn it on when possible */
1655 if (ata_id_has_iordy(adev->id))
1656 return 1;
1657 return 0;
1661 * ata_pio_mask_no_iordy - Return the non IORDY mask
1662 * @adev: ATA device
1664 * Compute the highest mode possible if we are not using iordy. Return
1665 * -1 if no iordy mode is available.
1668 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1670 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1671 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1672 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1673 /* Is the speed faster than the drive allows non IORDY ? */
1674 if (pio) {
1675 /* This is cycle times not frequency - watch the logic! */
1676 if (pio > 240) /* PIO2 is 240nS per cycle */
1677 return 3 << ATA_SHIFT_PIO;
1678 return 7 << ATA_SHIFT_PIO;
1681 return 3 << ATA_SHIFT_PIO;
1685 * ata_dev_read_id - Read ID data from the specified device
1686 * @dev: target device
1687 * @p_class: pointer to class of the target device (may be changed)
1688 * @flags: ATA_READID_* flags
1689 * @id: buffer to read IDENTIFY data into
1691 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1692 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1693 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1694 * for pre-ATA4 drives.
1696 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1697 * now we abort if we hit that case.
1699 * LOCKING:
1700 * Kernel thread context (may sleep)
1702 * RETURNS:
1703 * 0 on success, -errno otherwise.
1705 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1706 unsigned int flags, u16 *id)
1708 struct ata_port *ap = dev->link->ap;
1709 unsigned int class = *p_class;
1710 struct ata_taskfile tf;
1711 unsigned int err_mask = 0;
1712 const char *reason;
1713 int may_fallback = 1, tried_spinup = 0;
1714 int rc;
1716 if (ata_msg_ctl(ap))
1717 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1719 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1720 retry:
1721 ata_tf_init(dev, &tf);
1723 switch (class) {
1724 case ATA_DEV_ATA:
1725 tf.command = ATA_CMD_ID_ATA;
1726 break;
1727 case ATA_DEV_ATAPI:
1728 tf.command = ATA_CMD_ID_ATAPI;
1729 break;
1730 default:
1731 rc = -ENODEV;
1732 reason = "unsupported class";
1733 goto err_out;
1736 tf.protocol = ATA_PROT_PIO;
1738 /* Some devices choke if TF registers contain garbage. Make
1739 * sure those are properly initialized.
1741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1743 /* Device presence detection is unreliable on some
1744 * controllers. Always poll IDENTIFY if available.
1746 tf.flags |= ATA_TFLAG_POLLING;
1748 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1749 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1750 if (err_mask) {
1751 if (err_mask & AC_ERR_NODEV_HINT) {
1752 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1753 ap->print_id, dev->devno);
1754 return -ENOENT;
1757 /* Device or controller might have reported the wrong
1758 * device class. Give a shot at the other IDENTIFY if
1759 * the current one is aborted by the device.
1761 if (may_fallback &&
1762 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1763 may_fallback = 0;
1765 if (class == ATA_DEV_ATA)
1766 class = ATA_DEV_ATAPI;
1767 else
1768 class = ATA_DEV_ATA;
1769 goto retry;
1772 rc = -EIO;
1773 reason = "I/O error";
1774 goto err_out;
1777 /* Falling back doesn't make sense if ID data was read
1778 * successfully at least once.
1780 may_fallback = 0;
1782 swap_buf_le16(id, ATA_ID_WORDS);
1784 /* sanity check */
1785 rc = -EINVAL;
1786 reason = "device reports invalid type";
1788 if (class == ATA_DEV_ATA) {
1789 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1790 goto err_out;
1791 } else {
1792 if (ata_id_is_ata(id))
1793 goto err_out;
1796 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1797 tried_spinup = 1;
1799 * Drive powered-up in standby mode, and requires a specific
1800 * SET_FEATURES spin-up subcommand before it will accept
1801 * anything other than the original IDENTIFY command.
1803 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1804 if (err_mask && id[2] != 0x738c) {
1805 rc = -EIO;
1806 reason = "SPINUP failed";
1807 goto err_out;
1810 * If the drive initially returned incomplete IDENTIFY info,
1811 * we now must reissue the IDENTIFY command.
1813 if (id[2] == 0x37c8)
1814 goto retry;
1817 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1819 * The exact sequence expected by certain pre-ATA4 drives is:
1820 * SRST RESET
1821 * IDENTIFY (optional in early ATA)
1822 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1823 * anything else..
1824 * Some drives were very specific about that exact sequence.
1826 * Note that ATA4 says lba is mandatory so the second check
1827 * shoud never trigger.
1829 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1830 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1831 if (err_mask) {
1832 rc = -EIO;
1833 reason = "INIT_DEV_PARAMS failed";
1834 goto err_out;
1837 /* current CHS translation info (id[53-58]) might be
1838 * changed. reread the identify device info.
1840 flags &= ~ATA_READID_POSTRESET;
1841 goto retry;
1845 *p_class = class;
1847 return 0;
1849 err_out:
1850 if (ata_msg_warn(ap))
1851 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1852 "(%s, err_mask=0x%x)\n", reason, err_mask);
1853 return rc;
1856 static inline u8 ata_dev_knobble(struct ata_device *dev)
1858 struct ata_port *ap = dev->link->ap;
1859 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1862 static void ata_dev_config_ncq(struct ata_device *dev,
1863 char *desc, size_t desc_sz)
1865 struct ata_port *ap = dev->link->ap;
1866 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1868 if (!ata_id_has_ncq(dev->id)) {
1869 desc[0] = '\0';
1870 return;
1872 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1873 snprintf(desc, desc_sz, "NCQ (not used)");
1874 return;
1876 if (ap->flags & ATA_FLAG_NCQ) {
1877 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1878 dev->flags |= ATA_DFLAG_NCQ;
1881 if (hdepth >= ddepth)
1882 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1883 else
1884 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1888 * ata_dev_configure - Configure the specified ATA/ATAPI device
1889 * @dev: Target device to configure
1891 * Configure @dev according to @dev->id. Generic and low-level
1892 * driver specific fixups are also applied.
1894 * LOCKING:
1895 * Kernel thread context (may sleep)
1897 * RETURNS:
1898 * 0 on success, -errno otherwise
1900 int ata_dev_configure(struct ata_device *dev)
1902 struct ata_port *ap = dev->link->ap;
1903 struct ata_eh_context *ehc = &dev->link->eh_context;
1904 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1905 const u16 *id = dev->id;
1906 unsigned int xfer_mask;
1907 char revbuf[7]; /* XYZ-99\0 */
1908 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1909 char modelbuf[ATA_ID_PROD_LEN+1];
1910 int rc;
1912 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1913 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1914 __FUNCTION__);
1915 return 0;
1918 if (ata_msg_probe(ap))
1919 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1921 /* set horkage */
1922 dev->horkage |= ata_dev_blacklisted(dev);
1924 /* let ACPI work its magic */
1925 rc = ata_acpi_on_devcfg(dev);
1926 if (rc)
1927 return rc;
1929 /* massage HPA, do it early as it might change IDENTIFY data */
1930 rc = ata_hpa_resize(dev);
1931 if (rc)
1932 return rc;
1934 /* print device capabilities */
1935 if (ata_msg_probe(ap))
1936 ata_dev_printk(dev, KERN_DEBUG,
1937 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1938 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1939 __FUNCTION__,
1940 id[49], id[82], id[83], id[84],
1941 id[85], id[86], id[87], id[88]);
1943 /* initialize to-be-configured parameters */
1944 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1945 dev->max_sectors = 0;
1946 dev->cdb_len = 0;
1947 dev->n_sectors = 0;
1948 dev->cylinders = 0;
1949 dev->heads = 0;
1950 dev->sectors = 0;
1953 * common ATA, ATAPI feature tests
1956 /* find max transfer mode; for printk only */
1957 xfer_mask = ata_id_xfermask(id);
1959 if (ata_msg_probe(ap))
1960 ata_dump_id(id);
1962 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1963 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1964 sizeof(fwrevbuf));
1966 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1967 sizeof(modelbuf));
1969 /* ATA-specific feature tests */
1970 if (dev->class == ATA_DEV_ATA) {
1971 if (ata_id_is_cfa(id)) {
1972 if (id[162] & 1) /* CPRM may make this media unusable */
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "supports DRM functions and may "
1975 "not be fully accessable.\n");
1976 snprintf(revbuf, 7, "CFA");
1977 } else
1978 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1980 dev->n_sectors = ata_id_n_sectors(id);
1982 if (dev->id[59] & 0x100)
1983 dev->multi_count = dev->id[59] & 0xff;
1985 if (ata_id_has_lba(id)) {
1986 const char *lba_desc;
1987 char ncq_desc[20];
1989 lba_desc = "LBA";
1990 dev->flags |= ATA_DFLAG_LBA;
1991 if (ata_id_has_lba48(id)) {
1992 dev->flags |= ATA_DFLAG_LBA48;
1993 lba_desc = "LBA48";
1995 if (dev->n_sectors >= (1UL << 28) &&
1996 ata_id_has_flush_ext(id))
1997 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2000 /* config NCQ */
2001 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2003 /* print device info to dmesg */
2004 if (ata_msg_drv(ap) && print_info) {
2005 ata_dev_printk(dev, KERN_INFO,
2006 "%s: %s, %s, max %s\n",
2007 revbuf, modelbuf, fwrevbuf,
2008 ata_mode_string(xfer_mask));
2009 ata_dev_printk(dev, KERN_INFO,
2010 "%Lu sectors, multi %u: %s %s\n",
2011 (unsigned long long)dev->n_sectors,
2012 dev->multi_count, lba_desc, ncq_desc);
2014 } else {
2015 /* CHS */
2017 /* Default translation */
2018 dev->cylinders = id[1];
2019 dev->heads = id[3];
2020 dev->sectors = id[6];
2022 if (ata_id_current_chs_valid(id)) {
2023 /* Current CHS translation is valid. */
2024 dev->cylinders = id[54];
2025 dev->heads = id[55];
2026 dev->sectors = id[56];
2029 /* print device info to dmesg */
2030 if (ata_msg_drv(ap) && print_info) {
2031 ata_dev_printk(dev, KERN_INFO,
2032 "%s: %s, %s, max %s\n",
2033 revbuf, modelbuf, fwrevbuf,
2034 ata_mode_string(xfer_mask));
2035 ata_dev_printk(dev, KERN_INFO,
2036 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2037 (unsigned long long)dev->n_sectors,
2038 dev->multi_count, dev->cylinders,
2039 dev->heads, dev->sectors);
2043 dev->cdb_len = 16;
2046 /* ATAPI-specific feature tests */
2047 else if (dev->class == ATA_DEV_ATAPI) {
2048 const char *cdb_intr_string = "";
2049 const char *atapi_an_string = "";
2050 u32 sntf;
2052 rc = atapi_cdb_len(id);
2053 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2054 if (ata_msg_warn(ap))
2055 ata_dev_printk(dev, KERN_WARNING,
2056 "unsupported CDB len\n");
2057 rc = -EINVAL;
2058 goto err_out_nosup;
2060 dev->cdb_len = (unsigned int) rc;
2062 /* Enable ATAPI AN if both the host and device have
2063 * the support. If PMP is attached, SNTF is required
2064 * to enable ATAPI AN to discern between PHY status
2065 * changed notifications and ATAPI ANs.
2067 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2068 (!ap->nr_pmp_links ||
2069 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2070 unsigned int err_mask;
2072 /* issue SET feature command to turn this on */
2073 err_mask = ata_dev_set_feature(dev,
2074 SETFEATURES_SATA_ENABLE, SATA_AN);
2075 if (err_mask)
2076 ata_dev_printk(dev, KERN_ERR,
2077 "failed to enable ATAPI AN "
2078 "(err_mask=0x%x)\n", err_mask);
2079 else {
2080 dev->flags |= ATA_DFLAG_AN;
2081 atapi_an_string = ", ATAPI AN";
2085 if (ata_id_cdb_intr(dev->id)) {
2086 dev->flags |= ATA_DFLAG_CDB_INTR;
2087 cdb_intr_string = ", CDB intr";
2090 /* print device info to dmesg */
2091 if (ata_msg_drv(ap) && print_info)
2092 ata_dev_printk(dev, KERN_INFO,
2093 "ATAPI: %s, %s, max %s%s%s\n",
2094 modelbuf, fwrevbuf,
2095 ata_mode_string(xfer_mask),
2096 cdb_intr_string, atapi_an_string);
2099 /* determine max_sectors */
2100 dev->max_sectors = ATA_MAX_SECTORS;
2101 if (dev->flags & ATA_DFLAG_LBA48)
2102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2104 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2105 /* Let the user know. We don't want to disallow opens for
2106 rescue purposes, or in case the vendor is just a blithering
2107 idiot */
2108 if (print_info) {
2109 ata_dev_printk(dev, KERN_WARNING,
2110 "Drive reports diagnostics failure. This may indicate a drive\n");
2111 ata_dev_printk(dev, KERN_WARNING,
2112 "fault or invalid emulation. Contact drive vendor for information.\n");
2116 /* limit bridge transfers to udma5, 200 sectors */
2117 if (ata_dev_knobble(dev)) {
2118 if (ata_msg_drv(ap) && print_info)
2119 ata_dev_printk(dev, KERN_INFO,
2120 "applying bridge limits\n");
2121 dev->udma_mask &= ATA_UDMA5;
2122 dev->max_sectors = ATA_MAX_SECTORS;
2125 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2126 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2127 dev->max_sectors);
2129 if (ap->ops->dev_config)
2130 ap->ops->dev_config(dev);
2132 if (ata_msg_probe(ap))
2133 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2134 __FUNCTION__, ata_chk_status(ap));
2135 return 0;
2137 err_out_nosup:
2138 if (ata_msg_probe(ap))
2139 ata_dev_printk(dev, KERN_DEBUG,
2140 "%s: EXIT, err\n", __FUNCTION__);
2141 return rc;
2145 * ata_cable_40wire - return 40 wire cable type
2146 * @ap: port
2148 * Helper method for drivers which want to hardwire 40 wire cable
2149 * detection.
2152 int ata_cable_40wire(struct ata_port *ap)
2154 return ATA_CBL_PATA40;
2158 * ata_cable_80wire - return 80 wire cable type
2159 * @ap: port
2161 * Helper method for drivers which want to hardwire 80 wire cable
2162 * detection.
2165 int ata_cable_80wire(struct ata_port *ap)
2167 return ATA_CBL_PATA80;
2171 * ata_cable_unknown - return unknown PATA cable.
2172 * @ap: port
2174 * Helper method for drivers which have no PATA cable detection.
2177 int ata_cable_unknown(struct ata_port *ap)
2179 return ATA_CBL_PATA_UNK;
2183 * ata_cable_sata - return SATA cable type
2184 * @ap: port
2186 * Helper method for drivers which have SATA cables
2189 int ata_cable_sata(struct ata_port *ap)
2191 return ATA_CBL_SATA;
2195 * ata_bus_probe - Reset and probe ATA bus
2196 * @ap: Bus to probe
2198 * Master ATA bus probing function. Initiates a hardware-dependent
2199 * bus reset, then attempts to identify any devices found on
2200 * the bus.
2202 * LOCKING:
2203 * PCI/etc. bus probe sem.
2205 * RETURNS:
2206 * Zero on success, negative errno otherwise.
2209 int ata_bus_probe(struct ata_port *ap)
2211 unsigned int classes[ATA_MAX_DEVICES];
2212 int tries[ATA_MAX_DEVICES];
2213 int rc;
2214 struct ata_device *dev;
2216 ata_port_probe(ap);
2218 ata_link_for_each_dev(dev, &ap->link)
2219 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2221 retry:
2222 ata_link_for_each_dev(dev, &ap->link) {
2223 /* If we issue an SRST then an ATA drive (not ATAPI)
2224 * may change configuration and be in PIO0 timing. If
2225 * we do a hard reset (or are coming from power on)
2226 * this is true for ATA or ATAPI. Until we've set a
2227 * suitable controller mode we should not touch the
2228 * bus as we may be talking too fast.
2230 dev->pio_mode = XFER_PIO_0;
2232 /* If the controller has a pio mode setup function
2233 * then use it to set the chipset to rights. Don't
2234 * touch the DMA setup as that will be dealt with when
2235 * configuring devices.
2237 if (ap->ops->set_piomode)
2238 ap->ops->set_piomode(ap, dev);
2241 /* reset and determine device classes */
2242 ap->ops->phy_reset(ap);
2244 ata_link_for_each_dev(dev, &ap->link) {
2245 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2246 dev->class != ATA_DEV_UNKNOWN)
2247 classes[dev->devno] = dev->class;
2248 else
2249 classes[dev->devno] = ATA_DEV_NONE;
2251 dev->class = ATA_DEV_UNKNOWN;
2254 ata_port_probe(ap);
2256 /* read IDENTIFY page and configure devices. We have to do the identify
2257 specific sequence bass-ackwards so that PDIAG- is released by
2258 the slave device */
2260 ata_link_for_each_dev(dev, &ap->link) {
2261 if (tries[dev->devno])
2262 dev->class = classes[dev->devno];
2264 if (!ata_dev_enabled(dev))
2265 continue;
2267 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2268 dev->id);
2269 if (rc)
2270 goto fail;
2273 /* Now ask for the cable type as PDIAG- should have been released */
2274 if (ap->ops->cable_detect)
2275 ap->cbl = ap->ops->cable_detect(ap);
2277 /* We may have SATA bridge glue hiding here irrespective of the
2278 reported cable types and sensed types */
2279 ata_link_for_each_dev(dev, &ap->link) {
2280 if (!ata_dev_enabled(dev))
2281 continue;
2282 /* SATA drives indicate we have a bridge. We don't know which
2283 end of the link the bridge is which is a problem */
2284 if (ata_id_is_sata(dev->id))
2285 ap->cbl = ATA_CBL_SATA;
2288 /* After the identify sequence we can now set up the devices. We do
2289 this in the normal order so that the user doesn't get confused */
2291 ata_link_for_each_dev(dev, &ap->link) {
2292 if (!ata_dev_enabled(dev))
2293 continue;
2295 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2296 rc = ata_dev_configure(dev);
2297 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2298 if (rc)
2299 goto fail;
2302 /* configure transfer mode */
2303 rc = ata_set_mode(&ap->link, &dev);
2304 if (rc)
2305 goto fail;
2307 ata_link_for_each_dev(dev, &ap->link)
2308 if (ata_dev_enabled(dev))
2309 return 0;
2311 /* no device present, disable port */
2312 ata_port_disable(ap);
2313 return -ENODEV;
2315 fail:
2316 tries[dev->devno]--;
2318 switch (rc) {
2319 case -EINVAL:
2320 /* eeek, something went very wrong, give up */
2321 tries[dev->devno] = 0;
2322 break;
2324 case -ENODEV:
2325 /* give it just one more chance */
2326 tries[dev->devno] = min(tries[dev->devno], 1);
2327 case -EIO:
2328 if (tries[dev->devno] == 1) {
2329 /* This is the last chance, better to slow
2330 * down than lose it.
2332 sata_down_spd_limit(&ap->link);
2333 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2337 if (!tries[dev->devno])
2338 ata_dev_disable(dev);
2340 goto retry;
2344 * ata_port_probe - Mark port as enabled
2345 * @ap: Port for which we indicate enablement
2347 * Modify @ap data structure such that the system
2348 * thinks that the entire port is enabled.
2350 * LOCKING: host lock, or some other form of
2351 * serialization.
2354 void ata_port_probe(struct ata_port *ap)
2356 ap->flags &= ~ATA_FLAG_DISABLED;
2360 * sata_print_link_status - Print SATA link status
2361 * @link: SATA link to printk link status about
2363 * This function prints link speed and status of a SATA link.
2365 * LOCKING:
2366 * None.
2368 void sata_print_link_status(struct ata_link *link)
2370 u32 sstatus, scontrol, tmp;
2372 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2373 return;
2374 sata_scr_read(link, SCR_CONTROL, &scontrol);
2376 if (ata_link_online(link)) {
2377 tmp = (sstatus >> 4) & 0xf;
2378 ata_link_printk(link, KERN_INFO,
2379 "SATA link up %s (SStatus %X SControl %X)\n",
2380 sata_spd_string(tmp), sstatus, scontrol);
2381 } else {
2382 ata_link_printk(link, KERN_INFO,
2383 "SATA link down (SStatus %X SControl %X)\n",
2384 sstatus, scontrol);
2389 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2390 * @ap: SATA port associated with target SATA PHY.
2392 * This function issues commands to standard SATA Sxxx
2393 * PHY registers, to wake up the phy (and device), and
2394 * clear any reset condition.
2396 * LOCKING:
2397 * PCI/etc. bus probe sem.
2400 void __sata_phy_reset(struct ata_port *ap)
2402 struct ata_link *link = &ap->link;
2403 unsigned long timeout = jiffies + (HZ * 5);
2404 u32 sstatus;
2406 if (ap->flags & ATA_FLAG_SATA_RESET) {
2407 /* issue phy wake/reset */
2408 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2409 /* Couldn't find anything in SATA I/II specs, but
2410 * AHCI-1.1 10.4.2 says at least 1 ms. */
2411 mdelay(1);
2413 /* phy wake/clear reset */
2414 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2416 /* wait for phy to become ready, if necessary */
2417 do {
2418 msleep(200);
2419 sata_scr_read(link, SCR_STATUS, &sstatus);
2420 if ((sstatus & 0xf) != 1)
2421 break;
2422 } while (time_before(jiffies, timeout));
2424 /* print link status */
2425 sata_print_link_status(link);
2427 /* TODO: phy layer with polling, timeouts, etc. */
2428 if (!ata_link_offline(link))
2429 ata_port_probe(ap);
2430 else
2431 ata_port_disable(ap);
2433 if (ap->flags & ATA_FLAG_DISABLED)
2434 return;
2436 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2437 ata_port_disable(ap);
2438 return;
2441 ap->cbl = ATA_CBL_SATA;
2445 * sata_phy_reset - Reset SATA bus.
2446 * @ap: SATA port associated with target SATA PHY.
2448 * This function resets the SATA bus, and then probes
2449 * the bus for devices.
2451 * LOCKING:
2452 * PCI/etc. bus probe sem.
2455 void sata_phy_reset(struct ata_port *ap)
2457 __sata_phy_reset(ap);
2458 if (ap->flags & ATA_FLAG_DISABLED)
2459 return;
2460 ata_bus_reset(ap);
2464 * ata_dev_pair - return other device on cable
2465 * @adev: device
2467 * Obtain the other device on the same cable, or if none is
2468 * present NULL is returned
2471 struct ata_device *ata_dev_pair(struct ata_device *adev)
2473 struct ata_link *link = adev->link;
2474 struct ata_device *pair = &link->device[1 - adev->devno];
2475 if (!ata_dev_enabled(pair))
2476 return NULL;
2477 return pair;
2481 * ata_port_disable - Disable port.
2482 * @ap: Port to be disabled.
2484 * Modify @ap data structure such that the system
2485 * thinks that the entire port is disabled, and should
2486 * never attempt to probe or communicate with devices
2487 * on this port.
2489 * LOCKING: host lock, or some other form of
2490 * serialization.
2493 void ata_port_disable(struct ata_port *ap)
2495 ap->link.device[0].class = ATA_DEV_NONE;
2496 ap->link.device[1].class = ATA_DEV_NONE;
2497 ap->flags |= ATA_FLAG_DISABLED;
2501 * sata_down_spd_limit - adjust SATA spd limit downward
2502 * @link: Link to adjust SATA spd limit for
2504 * Adjust SATA spd limit of @link downward. Note that this
2505 * function only adjusts the limit. The change must be applied
2506 * using sata_set_spd().
2508 * LOCKING:
2509 * Inherited from caller.
2511 * RETURNS:
2512 * 0 on success, negative errno on failure
2514 int sata_down_spd_limit(struct ata_link *link)
2516 u32 sstatus, spd, mask;
2517 int rc, highbit;
2519 if (!sata_scr_valid(link))
2520 return -EOPNOTSUPP;
2522 /* If SCR can be read, use it to determine the current SPD.
2523 * If not, use cached value in link->sata_spd.
2525 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2526 if (rc == 0)
2527 spd = (sstatus >> 4) & 0xf;
2528 else
2529 spd = link->sata_spd;
2531 mask = link->sata_spd_limit;
2532 if (mask <= 1)
2533 return -EINVAL;
2535 /* unconditionally mask off the highest bit */
2536 highbit = fls(mask) - 1;
2537 mask &= ~(1 << highbit);
2539 /* Mask off all speeds higher than or equal to the current
2540 * one. Force 1.5Gbps if current SPD is not available.
2542 if (spd > 1)
2543 mask &= (1 << (spd - 1)) - 1;
2544 else
2545 mask &= 1;
2547 /* were we already at the bottom? */
2548 if (!mask)
2549 return -EINVAL;
2551 link->sata_spd_limit = mask;
2553 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2554 sata_spd_string(fls(mask)));
2556 return 0;
2559 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2561 u32 spd, limit;
2563 if (link->sata_spd_limit == UINT_MAX)
2564 limit = 0;
2565 else
2566 limit = fls(link->sata_spd_limit);
2568 spd = (*scontrol >> 4) & 0xf;
2569 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2571 return spd != limit;
2575 * sata_set_spd_needed - is SATA spd configuration needed
2576 * @link: Link in question
2578 * Test whether the spd limit in SControl matches
2579 * @link->sata_spd_limit. This function is used to determine
2580 * whether hardreset is necessary to apply SATA spd
2581 * configuration.
2583 * LOCKING:
2584 * Inherited from caller.
2586 * RETURNS:
2587 * 1 if SATA spd configuration is needed, 0 otherwise.
2589 int sata_set_spd_needed(struct ata_link *link)
2591 u32 scontrol;
2593 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2594 return 0;
2596 return __sata_set_spd_needed(link, &scontrol);
2600 * sata_set_spd - set SATA spd according to spd limit
2601 * @link: Link to set SATA spd for
2603 * Set SATA spd of @link according to sata_spd_limit.
2605 * LOCKING:
2606 * Inherited from caller.
2608 * RETURNS:
2609 * 0 if spd doesn't need to be changed, 1 if spd has been
2610 * changed. Negative errno if SCR registers are inaccessible.
2612 int sata_set_spd(struct ata_link *link)
2614 u32 scontrol;
2615 int rc;
2617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2618 return rc;
2620 if (!__sata_set_spd_needed(link, &scontrol))
2621 return 0;
2623 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2624 return rc;
2626 return 1;
2630 * This mode timing computation functionality is ported over from
2631 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2634 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2635 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2636 * for UDMA6, which is currently supported only by Maxtor drives.
2638 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2641 static const struct ata_timing ata_timing[] = {
2643 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2644 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2645 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2646 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2648 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2649 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2650 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2651 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2652 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2654 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2656 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2657 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2658 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2660 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2661 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2662 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2664 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2665 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2666 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2667 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2669 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2670 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2671 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2673 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2675 { 0xFF }
2678 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2679 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2681 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2683 q->setup = EZ(t->setup * 1000, T);
2684 q->act8b = EZ(t->act8b * 1000, T);
2685 q->rec8b = EZ(t->rec8b * 1000, T);
2686 q->cyc8b = EZ(t->cyc8b * 1000, T);
2687 q->active = EZ(t->active * 1000, T);
2688 q->recover = EZ(t->recover * 1000, T);
2689 q->cycle = EZ(t->cycle * 1000, T);
2690 q->udma = EZ(t->udma * 1000, UT);
2693 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2694 struct ata_timing *m, unsigned int what)
2696 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2697 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2698 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2699 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2700 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2701 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2702 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2703 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2706 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2708 const struct ata_timing *t;
2710 for (t = ata_timing; t->mode != speed; t++)
2711 if (t->mode == 0xFF)
2712 return NULL;
2713 return t;
2716 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2717 struct ata_timing *t, int T, int UT)
2719 const struct ata_timing *s;
2720 struct ata_timing p;
2723 * Find the mode.
2726 if (!(s = ata_timing_find_mode(speed)))
2727 return -EINVAL;
2729 memcpy(t, s, sizeof(*s));
2732 * If the drive is an EIDE drive, it can tell us it needs extended
2733 * PIO/MW_DMA cycle timing.
2736 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2737 memset(&p, 0, sizeof(p));
2738 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2739 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2740 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2741 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2742 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2744 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2748 * Convert the timing to bus clock counts.
2751 ata_timing_quantize(t, t, T, UT);
2754 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2755 * S.M.A.R.T * and some other commands. We have to ensure that the
2756 * DMA cycle timing is slower/equal than the fastest PIO timing.
2759 if (speed > XFER_PIO_6) {
2760 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2761 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2765 * Lengthen active & recovery time so that cycle time is correct.
2768 if (t->act8b + t->rec8b < t->cyc8b) {
2769 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2770 t->rec8b = t->cyc8b - t->act8b;
2773 if (t->active + t->recover < t->cycle) {
2774 t->active += (t->cycle - (t->active + t->recover)) / 2;
2775 t->recover = t->cycle - t->active;
2778 /* In a few cases quantisation may produce enough errors to
2779 leave t->cycle too low for the sum of active and recovery
2780 if so we must correct this */
2781 if (t->active + t->recover > t->cycle)
2782 t->cycle = t->active + t->recover;
2784 return 0;
2788 * ata_down_xfermask_limit - adjust dev xfer masks downward
2789 * @dev: Device to adjust xfer masks
2790 * @sel: ATA_DNXFER_* selector
2792 * Adjust xfer masks of @dev downward. Note that this function
2793 * does not apply the change. Invoking ata_set_mode() afterwards
2794 * will apply the limit.
2796 * LOCKING:
2797 * Inherited from caller.
2799 * RETURNS:
2800 * 0 on success, negative errno on failure
2802 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2804 char buf[32];
2805 unsigned int orig_mask, xfer_mask;
2806 unsigned int pio_mask, mwdma_mask, udma_mask;
2807 int quiet, highbit;
2809 quiet = !!(sel & ATA_DNXFER_QUIET);
2810 sel &= ~ATA_DNXFER_QUIET;
2812 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2813 dev->mwdma_mask,
2814 dev->udma_mask);
2815 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2817 switch (sel) {
2818 case ATA_DNXFER_PIO:
2819 highbit = fls(pio_mask) - 1;
2820 pio_mask &= ~(1 << highbit);
2821 break;
2823 case ATA_DNXFER_DMA:
2824 if (udma_mask) {
2825 highbit = fls(udma_mask) - 1;
2826 udma_mask &= ~(1 << highbit);
2827 if (!udma_mask)
2828 return -ENOENT;
2829 } else if (mwdma_mask) {
2830 highbit = fls(mwdma_mask) - 1;
2831 mwdma_mask &= ~(1 << highbit);
2832 if (!mwdma_mask)
2833 return -ENOENT;
2835 break;
2837 case ATA_DNXFER_40C:
2838 udma_mask &= ATA_UDMA_MASK_40C;
2839 break;
2841 case ATA_DNXFER_FORCE_PIO0:
2842 pio_mask &= 1;
2843 case ATA_DNXFER_FORCE_PIO:
2844 mwdma_mask = 0;
2845 udma_mask = 0;
2846 break;
2848 default:
2849 BUG();
2852 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2854 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2855 return -ENOENT;
2857 if (!quiet) {
2858 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2859 snprintf(buf, sizeof(buf), "%s:%s",
2860 ata_mode_string(xfer_mask),
2861 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2862 else
2863 snprintf(buf, sizeof(buf), "%s",
2864 ata_mode_string(xfer_mask));
2866 ata_dev_printk(dev, KERN_WARNING,
2867 "limiting speed to %s\n", buf);
2870 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2871 &dev->udma_mask);
2873 return 0;
2876 static int ata_dev_set_mode(struct ata_device *dev)
2878 struct ata_eh_context *ehc = &dev->link->eh_context;
2879 unsigned int err_mask;
2880 int rc;
2882 dev->flags &= ~ATA_DFLAG_PIO;
2883 if (dev->xfer_shift == ATA_SHIFT_PIO)
2884 dev->flags |= ATA_DFLAG_PIO;
2886 err_mask = ata_dev_set_xfermode(dev);
2888 /* Old CFA may refuse this command, which is just fine */
2889 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2890 err_mask &= ~AC_ERR_DEV;
2892 /* Some very old devices and some bad newer ones fail any kind of
2893 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2894 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2895 dev->pio_mode <= XFER_PIO_2)
2896 err_mask &= ~AC_ERR_DEV;
2898 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
2899 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
2900 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
2901 dev->dma_mode == XFER_MW_DMA_0 &&
2902 (dev->id[63] >> 8) & 1)
2903 err_mask &= ~AC_ERR_DEV;
2905 if (err_mask) {
2906 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2907 "(err_mask=0x%x)\n", err_mask);
2908 return -EIO;
2911 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2912 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
2913 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2914 if (rc)
2915 return rc;
2917 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2918 dev->xfer_shift, (int)dev->xfer_mode);
2920 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2921 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2922 return 0;
2926 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2927 * @link: link on which timings will be programmed
2928 * @r_failed_dev: out paramter for failed device
2930 * Standard implementation of the function used to tune and set
2931 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2932 * ata_dev_set_mode() fails, pointer to the failing device is
2933 * returned in @r_failed_dev.
2935 * LOCKING:
2936 * PCI/etc. bus probe sem.
2938 * RETURNS:
2939 * 0 on success, negative errno otherwise
2942 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2944 struct ata_port *ap = link->ap;
2945 struct ata_device *dev;
2946 int rc = 0, used_dma = 0, found = 0;
2948 /* step 1: calculate xfer_mask */
2949 ata_link_for_each_dev(dev, link) {
2950 unsigned int pio_mask, dma_mask;
2951 unsigned int mode_mask;
2953 if (!ata_dev_enabled(dev))
2954 continue;
2956 mode_mask = ATA_DMA_MASK_ATA;
2957 if (dev->class == ATA_DEV_ATAPI)
2958 mode_mask = ATA_DMA_MASK_ATAPI;
2959 else if (ata_id_is_cfa(dev->id))
2960 mode_mask = ATA_DMA_MASK_CFA;
2962 ata_dev_xfermask(dev);
2964 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2965 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2967 if (libata_dma_mask & mode_mask)
2968 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2969 else
2970 dma_mask = 0;
2972 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2973 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2975 found = 1;
2976 if (dev->dma_mode)
2977 used_dma = 1;
2979 if (!found)
2980 goto out;
2982 /* step 2: always set host PIO timings */
2983 ata_link_for_each_dev(dev, link) {
2984 if (!ata_dev_enabled(dev))
2985 continue;
2987 if (!dev->pio_mode) {
2988 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2989 rc = -EINVAL;
2990 goto out;
2993 dev->xfer_mode = dev->pio_mode;
2994 dev->xfer_shift = ATA_SHIFT_PIO;
2995 if (ap->ops->set_piomode)
2996 ap->ops->set_piomode(ap, dev);
2999 /* step 3: set host DMA timings */
3000 ata_link_for_each_dev(dev, link) {
3001 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3002 continue;
3004 dev->xfer_mode = dev->dma_mode;
3005 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3006 if (ap->ops->set_dmamode)
3007 ap->ops->set_dmamode(ap, dev);
3010 /* step 4: update devices' xfer mode */
3011 ata_link_for_each_dev(dev, link) {
3012 /* don't update suspended devices' xfer mode */
3013 if (!ata_dev_enabled(dev))
3014 continue;
3016 rc = ata_dev_set_mode(dev);
3017 if (rc)
3018 goto out;
3021 /* Record simplex status. If we selected DMA then the other
3022 * host channels are not permitted to do so.
3024 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3025 ap->host->simplex_claimed = ap;
3027 out:
3028 if (rc)
3029 *r_failed_dev = dev;
3030 return rc;
3034 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3035 * @link: link on which timings will be programmed
3036 * @r_failed_dev: out paramter for failed device
3038 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3039 * ata_set_mode() fails, pointer to the failing device is
3040 * returned in @r_failed_dev.
3042 * LOCKING:
3043 * PCI/etc. bus probe sem.
3045 * RETURNS:
3046 * 0 on success, negative errno otherwise
3048 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3050 struct ata_port *ap = link->ap;
3052 /* has private set_mode? */
3053 if (ap->ops->set_mode)
3054 return ap->ops->set_mode(link, r_failed_dev);
3055 return ata_do_set_mode(link, r_failed_dev);
3059 * ata_tf_to_host - issue ATA taskfile to host controller
3060 * @ap: port to which command is being issued
3061 * @tf: ATA taskfile register set
3063 * Issues ATA taskfile register set to ATA host controller,
3064 * with proper synchronization with interrupt handler and
3065 * other threads.
3067 * LOCKING:
3068 * spin_lock_irqsave(host lock)
3071 static inline void ata_tf_to_host(struct ata_port *ap,
3072 const struct ata_taskfile *tf)
3074 ap->ops->tf_load(ap, tf);
3075 ap->ops->exec_command(ap, tf);
3079 * ata_busy_sleep - sleep until BSY clears, or timeout
3080 * @ap: port containing status register to be polled
3081 * @tmout_pat: impatience timeout
3082 * @tmout: overall timeout
3084 * Sleep until ATA Status register bit BSY clears,
3085 * or a timeout occurs.
3087 * LOCKING:
3088 * Kernel thread context (may sleep).
3090 * RETURNS:
3091 * 0 on success, -errno otherwise.
3093 int ata_busy_sleep(struct ata_port *ap,
3094 unsigned long tmout_pat, unsigned long tmout)
3096 unsigned long timer_start, timeout;
3097 u8 status;
3099 status = ata_busy_wait(ap, ATA_BUSY, 300);
3100 timer_start = jiffies;
3101 timeout = timer_start + tmout_pat;
3102 while (status != 0xff && (status & ATA_BUSY) &&
3103 time_before(jiffies, timeout)) {
3104 msleep(50);
3105 status = ata_busy_wait(ap, ATA_BUSY, 3);
3108 if (status != 0xff && (status & ATA_BUSY))
3109 ata_port_printk(ap, KERN_WARNING,
3110 "port is slow to respond, please be patient "
3111 "(Status 0x%x)\n", status);
3113 timeout = timer_start + tmout;
3114 while (status != 0xff && (status & ATA_BUSY) &&
3115 time_before(jiffies, timeout)) {
3116 msleep(50);
3117 status = ata_chk_status(ap);
3120 if (status == 0xff)
3121 return -ENODEV;
3123 if (status & ATA_BUSY) {
3124 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3125 "(%lu secs, Status 0x%x)\n",
3126 tmout / HZ, status);
3127 return -EBUSY;
3130 return 0;
3134 * ata_wait_after_reset - wait before checking status after reset
3135 * @ap: port containing status register to be polled
3136 * @deadline: deadline jiffies for the operation
3138 * After reset, we need to pause a while before reading status.
3139 * Also, certain combination of controller and device report 0xff
3140 * for some duration (e.g. until SATA PHY is up and running)
3141 * which is interpreted as empty port in ATA world. This
3142 * function also waits for such devices to get out of 0xff
3143 * status.
3145 * LOCKING:
3146 * Kernel thread context (may sleep).
3148 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3150 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3152 if (time_before(until, deadline))
3153 deadline = until;
3155 /* Spec mandates ">= 2ms" before checking status. We wait
3156 * 150ms, because that was the magic delay used for ATAPI
3157 * devices in Hale Landis's ATADRVR, for the period of time
3158 * between when the ATA command register is written, and then
3159 * status is checked. Because waiting for "a while" before
3160 * checking status is fine, post SRST, we perform this magic
3161 * delay here as well.
3163 * Old drivers/ide uses the 2mS rule and then waits for ready.
3165 msleep(150);
3167 /* Wait for 0xff to clear. Some SATA devices take a long time
3168 * to clear 0xff after reset. For example, HHD424020F7SV00
3169 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3170 * than that.
3172 while (1) {
3173 u8 status = ata_chk_status(ap);
3175 if (status != 0xff || time_after(jiffies, deadline))
3176 return;
3178 msleep(50);
3183 * ata_wait_ready - sleep until BSY clears, or timeout
3184 * @ap: port containing status register to be polled
3185 * @deadline: deadline jiffies for the operation
3187 * Sleep until ATA Status register bit BSY clears, or timeout
3188 * occurs.
3190 * LOCKING:
3191 * Kernel thread context (may sleep).
3193 * RETURNS:
3194 * 0 on success, -errno otherwise.
3196 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3198 unsigned long start = jiffies;
3199 int warned = 0;
3201 while (1) {
3202 u8 status = ata_chk_status(ap);
3203 unsigned long now = jiffies;
3205 if (!(status & ATA_BUSY))
3206 return 0;
3207 if (!ata_link_online(&ap->link) && status == 0xff)
3208 return -ENODEV;
3209 if (time_after(now, deadline))
3210 return -EBUSY;
3212 if (!warned && time_after(now, start + 5 * HZ) &&
3213 (deadline - now > 3 * HZ)) {
3214 ata_port_printk(ap, KERN_WARNING,
3215 "port is slow to respond, please be patient "
3216 "(Status 0x%x)\n", status);
3217 warned = 1;
3220 msleep(50);
3224 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3225 unsigned long deadline)
3227 struct ata_ioports *ioaddr = &ap->ioaddr;
3228 unsigned int dev0 = devmask & (1 << 0);
3229 unsigned int dev1 = devmask & (1 << 1);
3230 int rc, ret = 0;
3232 /* if device 0 was found in ata_devchk, wait for its
3233 * BSY bit to clear
3235 if (dev0) {
3236 rc = ata_wait_ready(ap, deadline);
3237 if (rc) {
3238 if (rc != -ENODEV)
3239 return rc;
3240 ret = rc;
3244 /* if device 1 was found in ata_devchk, wait for register
3245 * access briefly, then wait for BSY to clear.
3247 if (dev1) {
3248 int i;
3250 ap->ops->dev_select(ap, 1);
3252 /* Wait for register access. Some ATAPI devices fail
3253 * to set nsect/lbal after reset, so don't waste too
3254 * much time on it. We're gonna wait for !BSY anyway.
3256 for (i = 0; i < 2; i++) {
3257 u8 nsect, lbal;
3259 nsect = ioread8(ioaddr->nsect_addr);
3260 lbal = ioread8(ioaddr->lbal_addr);
3261 if ((nsect == 1) && (lbal == 1))
3262 break;
3263 msleep(50); /* give drive a breather */
3266 rc = ata_wait_ready(ap, deadline);
3267 if (rc) {
3268 if (rc != -ENODEV)
3269 return rc;
3270 ret = rc;
3274 /* is all this really necessary? */
3275 ap->ops->dev_select(ap, 0);
3276 if (dev1)
3277 ap->ops->dev_select(ap, 1);
3278 if (dev0)
3279 ap->ops->dev_select(ap, 0);
3281 return ret;
3284 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3285 unsigned long deadline)
3287 struct ata_ioports *ioaddr = &ap->ioaddr;
3289 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3291 /* software reset. causes dev0 to be selected */
3292 iowrite8(ap->ctl, ioaddr->ctl_addr);
3293 udelay(20); /* FIXME: flush */
3294 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3295 udelay(20); /* FIXME: flush */
3296 iowrite8(ap->ctl, ioaddr->ctl_addr);
3298 /* wait a while before checking status */
3299 ata_wait_after_reset(ap, deadline);
3301 /* Before we perform post reset processing we want to see if
3302 * the bus shows 0xFF because the odd clown forgets the D7
3303 * pulldown resistor.
3305 if (ata_chk_status(ap) == 0xFF)
3306 return -ENODEV;
3308 return ata_bus_post_reset(ap, devmask, deadline);
3312 * ata_bus_reset - reset host port and associated ATA channel
3313 * @ap: port to reset
3315 * This is typically the first time we actually start issuing
3316 * commands to the ATA channel. We wait for BSY to clear, then
3317 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3318 * result. Determine what devices, if any, are on the channel
3319 * by looking at the device 0/1 error register. Look at the signature
3320 * stored in each device's taskfile registers, to determine if
3321 * the device is ATA or ATAPI.
3323 * LOCKING:
3324 * PCI/etc. bus probe sem.
3325 * Obtains host lock.
3327 * SIDE EFFECTS:
3328 * Sets ATA_FLAG_DISABLED if bus reset fails.
3331 void ata_bus_reset(struct ata_port *ap)
3333 struct ata_device *device = ap->link.device;
3334 struct ata_ioports *ioaddr = &ap->ioaddr;
3335 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3336 u8 err;
3337 unsigned int dev0, dev1 = 0, devmask = 0;
3338 int rc;
3340 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3342 /* determine if device 0/1 are present */
3343 if (ap->flags & ATA_FLAG_SATA_RESET)
3344 dev0 = 1;
3345 else {
3346 dev0 = ata_devchk(ap, 0);
3347 if (slave_possible)
3348 dev1 = ata_devchk(ap, 1);
3351 if (dev0)
3352 devmask |= (1 << 0);
3353 if (dev1)
3354 devmask |= (1 << 1);
3356 /* select device 0 again */
3357 ap->ops->dev_select(ap, 0);
3359 /* issue bus reset */
3360 if (ap->flags & ATA_FLAG_SRST) {
3361 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3362 if (rc && rc != -ENODEV)
3363 goto err_out;
3367 * determine by signature whether we have ATA or ATAPI devices
3369 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3370 if ((slave_possible) && (err != 0x81))
3371 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3373 /* is double-select really necessary? */
3374 if (device[1].class != ATA_DEV_NONE)
3375 ap->ops->dev_select(ap, 1);
3376 if (device[0].class != ATA_DEV_NONE)
3377 ap->ops->dev_select(ap, 0);
3379 /* if no devices were detected, disable this port */
3380 if ((device[0].class == ATA_DEV_NONE) &&
3381 (device[1].class == ATA_DEV_NONE))
3382 goto err_out;
3384 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3385 /* set up device control for ATA_FLAG_SATA_RESET */
3386 iowrite8(ap->ctl, ioaddr->ctl_addr);
3389 DPRINTK("EXIT\n");
3390 return;
3392 err_out:
3393 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3394 ata_port_disable(ap);
3396 DPRINTK("EXIT\n");
3400 * sata_link_debounce - debounce SATA phy status
3401 * @link: ATA link to debounce SATA phy status for
3402 * @params: timing parameters { interval, duratinon, timeout } in msec
3403 * @deadline: deadline jiffies for the operation
3405 * Make sure SStatus of @link reaches stable state, determined by
3406 * holding the same value where DET is not 1 for @duration polled
3407 * every @interval, before @timeout. Timeout constraints the
3408 * beginning of the stable state. Because DET gets stuck at 1 on
3409 * some controllers after hot unplugging, this functions waits
3410 * until timeout then returns 0 if DET is stable at 1.
3412 * @timeout is further limited by @deadline. The sooner of the
3413 * two is used.
3415 * LOCKING:
3416 * Kernel thread context (may sleep)
3418 * RETURNS:
3419 * 0 on success, -errno on failure.
3421 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3422 unsigned long deadline)
3424 unsigned long interval_msec = params[0];
3425 unsigned long duration = msecs_to_jiffies(params[1]);
3426 unsigned long last_jiffies, t;
3427 u32 last, cur;
3428 int rc;
3430 t = jiffies + msecs_to_jiffies(params[2]);
3431 if (time_before(t, deadline))
3432 deadline = t;
3434 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3435 return rc;
3436 cur &= 0xf;
3438 last = cur;
3439 last_jiffies = jiffies;
3441 while (1) {
3442 msleep(interval_msec);
3443 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3444 return rc;
3445 cur &= 0xf;
3447 /* DET stable? */
3448 if (cur == last) {
3449 if (cur == 1 && time_before(jiffies, deadline))
3450 continue;
3451 if (time_after(jiffies, last_jiffies + duration))
3452 return 0;
3453 continue;
3456 /* unstable, start over */
3457 last = cur;
3458 last_jiffies = jiffies;
3460 /* Check deadline. If debouncing failed, return
3461 * -EPIPE to tell upper layer to lower link speed.
3463 if (time_after(jiffies, deadline))
3464 return -EPIPE;
3469 * sata_link_resume - resume SATA link
3470 * @link: ATA link to resume SATA
3471 * @params: timing parameters { interval, duratinon, timeout } in msec
3472 * @deadline: deadline jiffies for the operation
3474 * Resume SATA phy @link and debounce it.
3476 * LOCKING:
3477 * Kernel thread context (may sleep)
3479 * RETURNS:
3480 * 0 on success, -errno on failure.
3482 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3483 unsigned long deadline)
3485 u32 scontrol;
3486 int rc;
3488 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3489 return rc;
3491 scontrol = (scontrol & 0x0f0) | 0x300;
3493 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3494 return rc;
3496 /* Some PHYs react badly if SStatus is pounded immediately
3497 * after resuming. Delay 200ms before debouncing.
3499 msleep(200);
3501 return sata_link_debounce(link, params, deadline);
3505 * ata_std_prereset - prepare for reset
3506 * @link: ATA link to be reset
3507 * @deadline: deadline jiffies for the operation
3509 * @link is about to be reset. Initialize it. Failure from
3510 * prereset makes libata abort whole reset sequence and give up
3511 * that port, so prereset should be best-effort. It does its
3512 * best to prepare for reset sequence but if things go wrong, it
3513 * should just whine, not fail.
3515 * LOCKING:
3516 * Kernel thread context (may sleep)
3518 * RETURNS:
3519 * 0 on success, -errno otherwise.
3521 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3523 struct ata_port *ap = link->ap;
3524 struct ata_eh_context *ehc = &link->eh_context;
3525 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3526 int rc;
3528 /* handle link resume */
3529 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3530 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3531 ehc->i.action |= ATA_EH_HARDRESET;
3533 /* Some PMPs don't work with only SRST, force hardreset if PMP
3534 * is supported.
3536 if (ap->flags & ATA_FLAG_PMP)
3537 ehc->i.action |= ATA_EH_HARDRESET;
3539 /* if we're about to do hardreset, nothing more to do */
3540 if (ehc->i.action & ATA_EH_HARDRESET)
3541 return 0;
3543 /* if SATA, resume link */
3544 if (ap->flags & ATA_FLAG_SATA) {
3545 rc = sata_link_resume(link, timing, deadline);
3546 /* whine about phy resume failure but proceed */
3547 if (rc && rc != -EOPNOTSUPP)
3548 ata_link_printk(link, KERN_WARNING, "failed to resume "
3549 "link for reset (errno=%d)\n", rc);
3552 /* Wait for !BSY if the controller can wait for the first D2H
3553 * Reg FIS and we don't know that no device is attached.
3555 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3556 rc = ata_wait_ready(ap, deadline);
3557 if (rc && rc != -ENODEV) {
3558 ata_link_printk(link, KERN_WARNING, "device not ready "
3559 "(errno=%d), forcing hardreset\n", rc);
3560 ehc->i.action |= ATA_EH_HARDRESET;
3564 return 0;
3568 * ata_std_softreset - reset host port via ATA SRST
3569 * @link: ATA link to reset
3570 * @classes: resulting classes of attached devices
3571 * @deadline: deadline jiffies for the operation
3573 * Reset host port using ATA SRST.
3575 * LOCKING:
3576 * Kernel thread context (may sleep)
3578 * RETURNS:
3579 * 0 on success, -errno otherwise.
3581 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3582 unsigned long deadline)
3584 struct ata_port *ap = link->ap;
3585 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3586 unsigned int devmask = 0;
3587 int rc;
3588 u8 err;
3590 DPRINTK("ENTER\n");
3592 if (ata_link_offline(link)) {
3593 classes[0] = ATA_DEV_NONE;
3594 goto out;
3597 /* determine if device 0/1 are present */
3598 if (ata_devchk(ap, 0))
3599 devmask |= (1 << 0);
3600 if (slave_possible && ata_devchk(ap, 1))
3601 devmask |= (1 << 1);
3603 /* select device 0 again */
3604 ap->ops->dev_select(ap, 0);
3606 /* issue bus reset */
3607 DPRINTK("about to softreset, devmask=%x\n", devmask);
3608 rc = ata_bus_softreset(ap, devmask, deadline);
3609 /* if link is occupied, -ENODEV too is an error */
3610 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3611 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3612 return rc;
3615 /* determine by signature whether we have ATA or ATAPI devices */
3616 classes[0] = ata_dev_try_classify(&link->device[0],
3617 devmask & (1 << 0), &err);
3618 if (slave_possible && err != 0x81)
3619 classes[1] = ata_dev_try_classify(&link->device[1],
3620 devmask & (1 << 1), &err);
3622 out:
3623 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3624 return 0;
3628 * sata_link_hardreset - reset link via SATA phy reset
3629 * @link: link to reset
3630 * @timing: timing parameters { interval, duratinon, timeout } in msec
3631 * @deadline: deadline jiffies for the operation
3633 * SATA phy-reset @link using DET bits of SControl register.
3635 * LOCKING:
3636 * Kernel thread context (may sleep)
3638 * RETURNS:
3639 * 0 on success, -errno otherwise.
3641 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3642 unsigned long deadline)
3644 u32 scontrol;
3645 int rc;
3647 DPRINTK("ENTER\n");
3649 if (sata_set_spd_needed(link)) {
3650 /* SATA spec says nothing about how to reconfigure
3651 * spd. To be on the safe side, turn off phy during
3652 * reconfiguration. This works for at least ICH7 AHCI
3653 * and Sil3124.
3655 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3656 goto out;
3658 scontrol = (scontrol & 0x0f0) | 0x304;
3660 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3661 goto out;
3663 sata_set_spd(link);
3666 /* issue phy wake/reset */
3667 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3668 goto out;
3670 scontrol = (scontrol & 0x0f0) | 0x301;
3672 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3673 goto out;
3675 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3676 * 10.4.2 says at least 1 ms.
3678 msleep(1);
3680 /* bring link back */
3681 rc = sata_link_resume(link, timing, deadline);
3682 out:
3683 DPRINTK("EXIT, rc=%d\n", rc);
3684 return rc;
3688 * sata_std_hardreset - reset host port via SATA phy reset
3689 * @link: link to reset
3690 * @class: resulting class of attached device
3691 * @deadline: deadline jiffies for the operation
3693 * SATA phy-reset host port using DET bits of SControl register,
3694 * wait for !BSY and classify the attached device.
3696 * LOCKING:
3697 * Kernel thread context (may sleep)
3699 * RETURNS:
3700 * 0 on success, -errno otherwise.
3702 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3703 unsigned long deadline)
3705 struct ata_port *ap = link->ap;
3706 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3707 int rc;
3709 DPRINTK("ENTER\n");
3711 /* do hardreset */
3712 rc = sata_link_hardreset(link, timing, deadline);
3713 if (rc) {
3714 ata_link_printk(link, KERN_ERR,
3715 "COMRESET failed (errno=%d)\n", rc);
3716 return rc;
3719 /* TODO: phy layer with polling, timeouts, etc. */
3720 if (ata_link_offline(link)) {
3721 *class = ATA_DEV_NONE;
3722 DPRINTK("EXIT, link offline\n");
3723 return 0;
3726 /* wait a while before checking status */
3727 ata_wait_after_reset(ap, deadline);
3729 /* If PMP is supported, we have to do follow-up SRST. Note
3730 * that some PMPs don't send D2H Reg FIS after hardreset at
3731 * all if the first port is empty. Wait for it just for a
3732 * second and request follow-up SRST.
3734 if (ap->flags & ATA_FLAG_PMP) {
3735 ata_wait_ready(ap, jiffies + HZ);
3736 return -EAGAIN;
3739 rc = ata_wait_ready(ap, deadline);
3740 /* link occupied, -ENODEV too is an error */
3741 if (rc) {
3742 ata_link_printk(link, KERN_ERR,
3743 "COMRESET failed (errno=%d)\n", rc);
3744 return rc;
3747 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3749 *class = ata_dev_try_classify(link->device, 1, NULL);
3751 DPRINTK("EXIT, class=%u\n", *class);
3752 return 0;
3756 * ata_std_postreset - standard postreset callback
3757 * @link: the target ata_link
3758 * @classes: classes of attached devices
3760 * This function is invoked after a successful reset. Note that
3761 * the device might have been reset more than once using
3762 * different reset methods before postreset is invoked.
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3767 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3769 struct ata_port *ap = link->ap;
3770 u32 serror;
3772 DPRINTK("ENTER\n");
3774 /* print link status */
3775 sata_print_link_status(link);
3777 /* clear SError */
3778 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3779 sata_scr_write(link, SCR_ERROR, serror);
3781 /* is double-select really necessary? */
3782 if (classes[0] != ATA_DEV_NONE)
3783 ap->ops->dev_select(ap, 1);
3784 if (classes[1] != ATA_DEV_NONE)
3785 ap->ops->dev_select(ap, 0);
3787 /* bail out if no device is present */
3788 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3789 DPRINTK("EXIT, no device\n");
3790 return;
3793 /* set up device control */
3794 if (ap->ioaddr.ctl_addr)
3795 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3797 DPRINTK("EXIT\n");
3801 * ata_dev_same_device - Determine whether new ID matches configured device
3802 * @dev: device to compare against
3803 * @new_class: class of the new device
3804 * @new_id: IDENTIFY page of the new device
3806 * Compare @new_class and @new_id against @dev and determine
3807 * whether @dev is the device indicated by @new_class and
3808 * @new_id.
3810 * LOCKING:
3811 * None.
3813 * RETURNS:
3814 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3816 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3817 const u16 *new_id)
3819 const u16 *old_id = dev->id;
3820 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3821 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3823 if (dev->class != new_class) {
3824 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3825 dev->class, new_class);
3826 return 0;
3829 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3830 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3831 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3832 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3834 if (strcmp(model[0], model[1])) {
3835 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3836 "'%s' != '%s'\n", model[0], model[1]);
3837 return 0;
3840 if (strcmp(serial[0], serial[1])) {
3841 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3842 "'%s' != '%s'\n", serial[0], serial[1]);
3843 return 0;
3846 return 1;
3850 * ata_dev_reread_id - Re-read IDENTIFY data
3851 * @dev: target ATA device
3852 * @readid_flags: read ID flags
3854 * Re-read IDENTIFY page and make sure @dev is still attached to
3855 * the port.
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3860 * RETURNS:
3861 * 0 on success, negative errno otherwise
3863 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3865 unsigned int class = dev->class;
3866 u16 *id = (void *)dev->link->ap->sector_buf;
3867 int rc;
3869 /* read ID data */
3870 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3871 if (rc)
3872 return rc;
3874 /* is the device still there? */
3875 if (!ata_dev_same_device(dev, class, id))
3876 return -ENODEV;
3878 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3879 return 0;
3883 * ata_dev_revalidate - Revalidate ATA device
3884 * @dev: device to revalidate
3885 * @new_class: new class code
3886 * @readid_flags: read ID flags
3888 * Re-read IDENTIFY page, make sure @dev is still attached to the
3889 * port and reconfigure it according to the new IDENTIFY page.
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3894 * RETURNS:
3895 * 0 on success, negative errno otherwise
3897 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3898 unsigned int readid_flags)
3900 u64 n_sectors = dev->n_sectors;
3901 int rc;
3903 if (!ata_dev_enabled(dev))
3904 return -ENODEV;
3906 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3907 if (ata_class_enabled(new_class) &&
3908 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3909 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3910 dev->class, new_class);
3911 rc = -ENODEV;
3912 goto fail;
3915 /* re-read ID */
3916 rc = ata_dev_reread_id(dev, readid_flags);
3917 if (rc)
3918 goto fail;
3920 /* configure device according to the new ID */
3921 rc = ata_dev_configure(dev);
3922 if (rc)
3923 goto fail;
3925 /* verify n_sectors hasn't changed */
3926 if (dev->class == ATA_DEV_ATA && n_sectors &&
3927 dev->n_sectors != n_sectors) {
3928 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3929 "%llu != %llu\n",
3930 (unsigned long long)n_sectors,
3931 (unsigned long long)dev->n_sectors);
3933 /* restore original n_sectors */
3934 dev->n_sectors = n_sectors;
3936 rc = -ENODEV;
3937 goto fail;
3940 return 0;
3942 fail:
3943 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3944 return rc;
3947 struct ata_blacklist_entry {
3948 const char *model_num;
3949 const char *model_rev;
3950 unsigned long horkage;
3953 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3954 /* Devices with DMA related problems under Linux */
3955 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3956 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3957 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3958 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3959 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3960 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3961 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3962 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3963 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3964 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3965 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3966 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3967 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3968 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3969 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3970 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3971 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3972 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3973 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3974 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3975 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3976 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3977 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3978 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3979 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3980 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3981 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3982 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3983 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3984 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3985 /* Odd clown on sil3726/4726 PMPs */
3986 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3987 ATA_HORKAGE_SKIP_PM },
3989 /* Weird ATAPI devices */
3990 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3992 /* Devices we expect to fail diagnostics */
3994 /* Devices where NCQ should be avoided */
3995 /* NCQ is slow */
3996 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3997 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3998 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3999 /* NCQ is broken */
4000 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4001 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4002 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4003 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4004 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4006 /* Blacklist entries taken from Silicon Image 3124/3132
4007 Windows driver .inf file - also several Linux problem reports */
4008 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4009 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4010 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4011 /* Drives which do spurious command completion */
4012 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4013 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4014 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4015 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4016 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4017 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4018 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4019 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4020 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4021 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4022 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4023 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4024 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4025 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4026 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4028 /* devices which puke on READ_NATIVE_MAX */
4029 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4030 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4031 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4032 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4034 /* Devices which report 1 sector over size HPA */
4035 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4036 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4038 /* End Marker */
4042 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4044 const char *p;
4045 int len;
4048 * check for trailing wildcard: *\0
4050 p = strchr(patt, wildchar);
4051 if (p && ((*(p + 1)) == 0))
4052 len = p - patt;
4053 else {
4054 len = strlen(name);
4055 if (!len) {
4056 if (!*patt)
4057 return 0;
4058 return -1;
4062 return strncmp(patt, name, len);
4065 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4067 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4068 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4069 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4071 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4072 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4074 while (ad->model_num) {
4075 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4076 if (ad->model_rev == NULL)
4077 return ad->horkage;
4078 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4079 return ad->horkage;
4081 ad++;
4083 return 0;
4086 static int ata_dma_blacklisted(const struct ata_device *dev)
4088 /* We don't support polling DMA.
4089 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4090 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4092 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4093 (dev->flags & ATA_DFLAG_CDB_INTR))
4094 return 1;
4095 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4099 * ata_dev_xfermask - Compute supported xfermask of the given device
4100 * @dev: Device to compute xfermask for
4102 * Compute supported xfermask of @dev and store it in
4103 * dev->*_mask. This function is responsible for applying all
4104 * known limits including host controller limits, device
4105 * blacklist, etc...
4107 * LOCKING:
4108 * None.
4110 static void ata_dev_xfermask(struct ata_device *dev)
4112 struct ata_link *link = dev->link;
4113 struct ata_port *ap = link->ap;
4114 struct ata_host *host = ap->host;
4115 unsigned long xfer_mask;
4117 /* controller modes available */
4118 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4119 ap->mwdma_mask, ap->udma_mask);
4121 /* drive modes available */
4122 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4123 dev->mwdma_mask, dev->udma_mask);
4124 xfer_mask &= ata_id_xfermask(dev->id);
4127 * CFA Advanced TrueIDE timings are not allowed on a shared
4128 * cable
4130 if (ata_dev_pair(dev)) {
4131 /* No PIO5 or PIO6 */
4132 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4133 /* No MWDMA3 or MWDMA 4 */
4134 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4137 if (ata_dma_blacklisted(dev)) {
4138 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4139 ata_dev_printk(dev, KERN_WARNING,
4140 "device is on DMA blacklist, disabling DMA\n");
4143 if ((host->flags & ATA_HOST_SIMPLEX) &&
4144 host->simplex_claimed && host->simplex_claimed != ap) {
4145 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4146 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4147 "other device, disabling DMA\n");
4150 if (ap->flags & ATA_FLAG_NO_IORDY)
4151 xfer_mask &= ata_pio_mask_no_iordy(dev);
4153 if (ap->ops->mode_filter)
4154 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4156 /* Apply cable rule here. Don't apply it early because when
4157 * we handle hot plug the cable type can itself change.
4158 * Check this last so that we know if the transfer rate was
4159 * solely limited by the cable.
4160 * Unknown or 80 wire cables reported host side are checked
4161 * drive side as well. Cases where we know a 40wire cable
4162 * is used safely for 80 are not checked here.
4164 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4165 /* UDMA/44 or higher would be available */
4166 if ((ap->cbl == ATA_CBL_PATA40) ||
4167 (ata_drive_40wire(dev->id) &&
4168 (ap->cbl == ATA_CBL_PATA_UNK ||
4169 ap->cbl == ATA_CBL_PATA80))) {
4170 ata_dev_printk(dev, KERN_WARNING,
4171 "limited to UDMA/33 due to 40-wire cable\n");
4172 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4175 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4176 &dev->mwdma_mask, &dev->udma_mask);
4180 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4181 * @dev: Device to which command will be sent
4183 * Issue SET FEATURES - XFER MODE command to device @dev
4184 * on port @ap.
4186 * LOCKING:
4187 * PCI/etc. bus probe sem.
4189 * RETURNS:
4190 * 0 on success, AC_ERR_* mask otherwise.
4193 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4195 struct ata_taskfile tf;
4196 unsigned int err_mask;
4198 /* set up set-features taskfile */
4199 DPRINTK("set features - xfer mode\n");
4201 /* Some controllers and ATAPI devices show flaky interrupt
4202 * behavior after setting xfer mode. Use polling instead.
4204 ata_tf_init(dev, &tf);
4205 tf.command = ATA_CMD_SET_FEATURES;
4206 tf.feature = SETFEATURES_XFER;
4207 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4208 tf.protocol = ATA_PROT_NODATA;
4209 tf.nsect = dev->xfer_mode;
4211 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4213 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4214 return err_mask;
4217 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4218 * @dev: Device to which command will be sent
4219 * @enable: Whether to enable or disable the feature
4220 * @feature: The sector count represents the feature to set
4222 * Issue SET FEATURES - SATA FEATURES command to device @dev
4223 * on port @ap with sector count
4225 * LOCKING:
4226 * PCI/etc. bus probe sem.
4228 * RETURNS:
4229 * 0 on success, AC_ERR_* mask otherwise.
4231 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4232 u8 feature)
4234 struct ata_taskfile tf;
4235 unsigned int err_mask;
4237 /* set up set-features taskfile */
4238 DPRINTK("set features - SATA features\n");
4240 ata_tf_init(dev, &tf);
4241 tf.command = ATA_CMD_SET_FEATURES;
4242 tf.feature = enable;
4243 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4244 tf.protocol = ATA_PROT_NODATA;
4245 tf.nsect = feature;
4247 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4249 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4250 return err_mask;
4254 * ata_dev_init_params - Issue INIT DEV PARAMS command
4255 * @dev: Device to which command will be sent
4256 * @heads: Number of heads (taskfile parameter)
4257 * @sectors: Number of sectors (taskfile parameter)
4259 * LOCKING:
4260 * Kernel thread context (may sleep)
4262 * RETURNS:
4263 * 0 on success, AC_ERR_* mask otherwise.
4265 static unsigned int ata_dev_init_params(struct ata_device *dev,
4266 u16 heads, u16 sectors)
4268 struct ata_taskfile tf;
4269 unsigned int err_mask;
4271 /* Number of sectors per track 1-255. Number of heads 1-16 */
4272 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4273 return AC_ERR_INVALID;
4275 /* set up init dev params taskfile */
4276 DPRINTK("init dev params \n");
4278 ata_tf_init(dev, &tf);
4279 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4280 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4281 tf.protocol = ATA_PROT_NODATA;
4282 tf.nsect = sectors;
4283 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4285 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4286 /* A clean abort indicates an original or just out of spec drive
4287 and we should continue as we issue the setup based on the
4288 drive reported working geometry */
4289 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4290 err_mask = 0;
4292 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4293 return err_mask;
4297 * ata_sg_clean - Unmap DMA memory associated with command
4298 * @qc: Command containing DMA memory to be released
4300 * Unmap all mapped DMA memory associated with this command.
4302 * LOCKING:
4303 * spin_lock_irqsave(host lock)
4305 void ata_sg_clean(struct ata_queued_cmd *qc)
4307 struct ata_port *ap = qc->ap;
4308 struct scatterlist *sg = qc->__sg;
4309 int dir = qc->dma_dir;
4310 void *pad_buf = NULL;
4312 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4313 WARN_ON(sg == NULL);
4315 if (qc->flags & ATA_QCFLAG_SINGLE)
4316 WARN_ON(qc->n_elem > 1);
4318 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4320 /* if we padded the buffer out to 32-bit bound, and data
4321 * xfer direction is from-device, we must copy from the
4322 * pad buffer back into the supplied buffer
4324 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4325 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4327 if (qc->flags & ATA_QCFLAG_SG) {
4328 if (qc->n_elem)
4329 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4330 /* restore last sg */
4331 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4332 if (pad_buf) {
4333 struct scatterlist *psg = &qc->pad_sgent;
4334 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4335 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4336 kunmap_atomic(addr, KM_IRQ0);
4338 } else {
4339 if (qc->n_elem)
4340 dma_unmap_single(ap->dev,
4341 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4342 dir);
4343 /* restore sg */
4344 sg->length += qc->pad_len;
4345 if (pad_buf)
4346 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4347 pad_buf, qc->pad_len);
4350 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4351 qc->__sg = NULL;
4355 * ata_fill_sg - Fill PCI IDE PRD table
4356 * @qc: Metadata associated with taskfile to be transferred
4358 * Fill PCI IDE PRD (scatter-gather) table with segments
4359 * associated with the current disk command.
4361 * LOCKING:
4362 * spin_lock_irqsave(host lock)
4365 static void ata_fill_sg(struct ata_queued_cmd *qc)
4367 struct ata_port *ap = qc->ap;
4368 struct scatterlist *sg;
4369 unsigned int idx;
4371 WARN_ON(qc->__sg == NULL);
4372 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4374 idx = 0;
4375 ata_for_each_sg(sg, qc) {
4376 u32 addr, offset;
4377 u32 sg_len, len;
4379 /* determine if physical DMA addr spans 64K boundary.
4380 * Note h/w doesn't support 64-bit, so we unconditionally
4381 * truncate dma_addr_t to u32.
4383 addr = (u32) sg_dma_address(sg);
4384 sg_len = sg_dma_len(sg);
4386 while (sg_len) {
4387 offset = addr & 0xffff;
4388 len = sg_len;
4389 if ((offset + sg_len) > 0x10000)
4390 len = 0x10000 - offset;
4392 ap->prd[idx].addr = cpu_to_le32(addr);
4393 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4394 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4396 idx++;
4397 sg_len -= len;
4398 addr += len;
4402 if (idx)
4403 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4407 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4408 * @qc: Metadata associated with taskfile to be transferred
4410 * Fill PCI IDE PRD (scatter-gather) table with segments
4411 * associated with the current disk command. Perform the fill
4412 * so that we avoid writing any length 64K records for
4413 * controllers that don't follow the spec.
4415 * LOCKING:
4416 * spin_lock_irqsave(host lock)
4419 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4421 struct ata_port *ap = qc->ap;
4422 struct scatterlist *sg;
4423 unsigned int idx;
4425 WARN_ON(qc->__sg == NULL);
4426 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4428 idx = 0;
4429 ata_for_each_sg(sg, qc) {
4430 u32 addr, offset;
4431 u32 sg_len, len, blen;
4433 /* determine if physical DMA addr spans 64K boundary.
4434 * Note h/w doesn't support 64-bit, so we unconditionally
4435 * truncate dma_addr_t to u32.
4437 addr = (u32) sg_dma_address(sg);
4438 sg_len = sg_dma_len(sg);
4440 while (sg_len) {
4441 offset = addr & 0xffff;
4442 len = sg_len;
4443 if ((offset + sg_len) > 0x10000)
4444 len = 0x10000 - offset;
4446 blen = len & 0xffff;
4447 ap->prd[idx].addr = cpu_to_le32(addr);
4448 if (blen == 0) {
4449 /* Some PATA chipsets like the CS5530 can't
4450 cope with 0x0000 meaning 64K as the spec says */
4451 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4452 blen = 0x8000;
4453 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4455 ap->prd[idx].flags_len = cpu_to_le32(blen);
4456 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4458 idx++;
4459 sg_len -= len;
4460 addr += len;
4464 if (idx)
4465 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4469 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4470 * @qc: Metadata associated with taskfile to check
4472 * Allow low-level driver to filter ATA PACKET commands, returning
4473 * a status indicating whether or not it is OK to use DMA for the
4474 * supplied PACKET command.
4476 * LOCKING:
4477 * spin_lock_irqsave(host lock)
4479 * RETURNS: 0 when ATAPI DMA can be used
4480 * nonzero otherwise
4482 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4484 struct ata_port *ap = qc->ap;
4486 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4487 * few ATAPI devices choke on such DMA requests.
4489 if (unlikely(qc->nbytes & 15))
4490 return 1;
4492 if (ap->ops->check_atapi_dma)
4493 return ap->ops->check_atapi_dma(qc);
4495 return 0;
4499 * ata_std_qc_defer - Check whether a qc needs to be deferred
4500 * @qc: ATA command in question
4502 * Non-NCQ commands cannot run with any other command, NCQ or
4503 * not. As upper layer only knows the queue depth, we are
4504 * responsible for maintaining exclusion. This function checks
4505 * whether a new command @qc can be issued.
4507 * LOCKING:
4508 * spin_lock_irqsave(host lock)
4510 * RETURNS:
4511 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4513 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4515 struct ata_link *link = qc->dev->link;
4517 if (qc->tf.protocol == ATA_PROT_NCQ) {
4518 if (!ata_tag_valid(link->active_tag))
4519 return 0;
4520 } else {
4521 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4522 return 0;
4525 return ATA_DEFER_LINK;
4529 * ata_qc_prep - Prepare taskfile for submission
4530 * @qc: Metadata associated with taskfile to be prepared
4532 * Prepare ATA taskfile for submission.
4534 * LOCKING:
4535 * spin_lock_irqsave(host lock)
4537 void ata_qc_prep(struct ata_queued_cmd *qc)
4539 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4540 return;
4542 ata_fill_sg(qc);
4546 * ata_dumb_qc_prep - Prepare taskfile for submission
4547 * @qc: Metadata associated with taskfile to be prepared
4549 * Prepare ATA taskfile for submission.
4551 * LOCKING:
4552 * spin_lock_irqsave(host lock)
4554 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4556 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4557 return;
4559 ata_fill_sg_dumb(qc);
4562 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4565 * ata_sg_init_one - Associate command with memory buffer
4566 * @qc: Command to be associated
4567 * @buf: Memory buffer
4568 * @buflen: Length of memory buffer, in bytes.
4570 * Initialize the data-related elements of queued_cmd @qc
4571 * to point to a single memory buffer, @buf of byte length @buflen.
4573 * LOCKING:
4574 * spin_lock_irqsave(host lock)
4577 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4579 qc->flags |= ATA_QCFLAG_SINGLE;
4581 qc->__sg = &qc->sgent;
4582 qc->n_elem = 1;
4583 qc->orig_n_elem = 1;
4584 qc->buf_virt = buf;
4585 qc->nbytes = buflen;
4586 qc->cursg = qc->__sg;
4588 sg_init_one(&qc->sgent, buf, buflen);
4592 * ata_sg_init - Associate command with scatter-gather table.
4593 * @qc: Command to be associated
4594 * @sg: Scatter-gather table.
4595 * @n_elem: Number of elements in s/g table.
4597 * Initialize the data-related elements of queued_cmd @qc
4598 * to point to a scatter-gather table @sg, containing @n_elem
4599 * elements.
4601 * LOCKING:
4602 * spin_lock_irqsave(host lock)
4605 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4606 unsigned int n_elem)
4608 qc->flags |= ATA_QCFLAG_SG;
4609 qc->__sg = sg;
4610 qc->n_elem = n_elem;
4611 qc->orig_n_elem = n_elem;
4612 qc->cursg = qc->__sg;
4616 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4617 * @qc: Command with memory buffer to be mapped.
4619 * DMA-map the memory buffer associated with queued_cmd @qc.
4621 * LOCKING:
4622 * spin_lock_irqsave(host lock)
4624 * RETURNS:
4625 * Zero on success, negative on error.
4628 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4630 struct ata_port *ap = qc->ap;
4631 int dir = qc->dma_dir;
4632 struct scatterlist *sg = qc->__sg;
4633 dma_addr_t dma_address;
4634 int trim_sg = 0;
4636 /* we must lengthen transfers to end on a 32-bit boundary */
4637 qc->pad_len = sg->length & 3;
4638 if (qc->pad_len) {
4639 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4640 struct scatterlist *psg = &qc->pad_sgent;
4642 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4644 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4646 if (qc->tf.flags & ATA_TFLAG_WRITE)
4647 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4648 qc->pad_len);
4650 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4651 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4652 /* trim sg */
4653 sg->length -= qc->pad_len;
4654 if (sg->length == 0)
4655 trim_sg = 1;
4657 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4658 sg->length, qc->pad_len);
4661 if (trim_sg) {
4662 qc->n_elem--;
4663 goto skip_map;
4666 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4667 sg->length, dir);
4668 if (dma_mapping_error(dma_address)) {
4669 /* restore sg */
4670 sg->length += qc->pad_len;
4671 return -1;
4674 sg_dma_address(sg) = dma_address;
4675 sg_dma_len(sg) = sg->length;
4677 skip_map:
4678 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4679 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4681 return 0;
4685 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4686 * @qc: Command with scatter-gather table to be mapped.
4688 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4690 * LOCKING:
4691 * spin_lock_irqsave(host lock)
4693 * RETURNS:
4694 * Zero on success, negative on error.
4698 static int ata_sg_setup(struct ata_queued_cmd *qc)
4700 struct ata_port *ap = qc->ap;
4701 struct scatterlist *sg = qc->__sg;
4702 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4703 int n_elem, pre_n_elem, dir, trim_sg = 0;
4705 VPRINTK("ENTER, ata%u\n", ap->print_id);
4706 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4708 /* we must lengthen transfers to end on a 32-bit boundary */
4709 qc->pad_len = lsg->length & 3;
4710 if (qc->pad_len) {
4711 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4712 struct scatterlist *psg = &qc->pad_sgent;
4713 unsigned int offset;
4715 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4717 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4720 * psg->page/offset are used to copy to-be-written
4721 * data in this function or read data in ata_sg_clean.
4723 offset = lsg->offset + lsg->length - qc->pad_len;
4724 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4725 qc->pad_len, offset_in_page(offset));
4727 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4728 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4729 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4730 kunmap_atomic(addr, KM_IRQ0);
4733 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4734 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4735 /* trim last sg */
4736 lsg->length -= qc->pad_len;
4737 if (lsg->length == 0)
4738 trim_sg = 1;
4740 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4741 qc->n_elem - 1, lsg->length, qc->pad_len);
4744 pre_n_elem = qc->n_elem;
4745 if (trim_sg && pre_n_elem)
4746 pre_n_elem--;
4748 if (!pre_n_elem) {
4749 n_elem = 0;
4750 goto skip_map;
4753 dir = qc->dma_dir;
4754 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4755 if (n_elem < 1) {
4756 /* restore last sg */
4757 lsg->length += qc->pad_len;
4758 return -1;
4761 DPRINTK("%d sg elements mapped\n", n_elem);
4763 skip_map:
4764 qc->n_elem = n_elem;
4766 return 0;
4770 * swap_buf_le16 - swap halves of 16-bit words in place
4771 * @buf: Buffer to swap
4772 * @buf_words: Number of 16-bit words in buffer.
4774 * Swap halves of 16-bit words if needed to convert from
4775 * little-endian byte order to native cpu byte order, or
4776 * vice-versa.
4778 * LOCKING:
4779 * Inherited from caller.
4781 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4783 #ifdef __BIG_ENDIAN
4784 unsigned int i;
4786 for (i = 0; i < buf_words; i++)
4787 buf[i] = le16_to_cpu(buf[i]);
4788 #endif /* __BIG_ENDIAN */
4792 * ata_data_xfer - Transfer data by PIO
4793 * @adev: device to target
4794 * @buf: data buffer
4795 * @buflen: buffer length
4796 * @write_data: read/write
4798 * Transfer data from/to the device data register by PIO.
4800 * LOCKING:
4801 * Inherited from caller.
4803 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4804 unsigned int buflen, int write_data)
4806 struct ata_port *ap = adev->link->ap;
4807 unsigned int words = buflen >> 1;
4809 /* Transfer multiple of 2 bytes */
4810 if (write_data)
4811 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4812 else
4813 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4815 /* Transfer trailing 1 byte, if any. */
4816 if (unlikely(buflen & 0x01)) {
4817 u16 align_buf[1] = { 0 };
4818 unsigned char *trailing_buf = buf + buflen - 1;
4820 if (write_data) {
4821 memcpy(align_buf, trailing_buf, 1);
4822 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4823 } else {
4824 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4825 memcpy(trailing_buf, align_buf, 1);
4831 * ata_data_xfer_noirq - Transfer data by PIO
4832 * @adev: device to target
4833 * @buf: data buffer
4834 * @buflen: buffer length
4835 * @write_data: read/write
4837 * Transfer data from/to the device data register by PIO. Do the
4838 * transfer with interrupts disabled.
4840 * LOCKING:
4841 * Inherited from caller.
4843 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4844 unsigned int buflen, int write_data)
4846 unsigned long flags;
4847 local_irq_save(flags);
4848 ata_data_xfer(adev, buf, buflen, write_data);
4849 local_irq_restore(flags);
4854 * ata_pio_sector - Transfer a sector of data.
4855 * @qc: Command on going
4857 * Transfer qc->sect_size bytes of data from/to the ATA device.
4859 * LOCKING:
4860 * Inherited from caller.
4863 static void ata_pio_sector(struct ata_queued_cmd *qc)
4865 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4866 struct ata_port *ap = qc->ap;
4867 struct page *page;
4868 unsigned int offset;
4869 unsigned char *buf;
4871 if (qc->curbytes == qc->nbytes - qc->sect_size)
4872 ap->hsm_task_state = HSM_ST_LAST;
4874 page = sg_page(qc->cursg);
4875 offset = qc->cursg->offset + qc->cursg_ofs;
4877 /* get the current page and offset */
4878 page = nth_page(page, (offset >> PAGE_SHIFT));
4879 offset %= PAGE_SIZE;
4881 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4883 if (PageHighMem(page)) {
4884 unsigned long flags;
4886 /* FIXME: use a bounce buffer */
4887 local_irq_save(flags);
4888 buf = kmap_atomic(page, KM_IRQ0);
4890 /* do the actual data transfer */
4891 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4893 kunmap_atomic(buf, KM_IRQ0);
4894 local_irq_restore(flags);
4895 } else {
4896 buf = page_address(page);
4897 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4900 qc->curbytes += qc->sect_size;
4901 qc->cursg_ofs += qc->sect_size;
4903 if (qc->cursg_ofs == qc->cursg->length) {
4904 qc->cursg = sg_next(qc->cursg);
4905 qc->cursg_ofs = 0;
4910 * ata_pio_sectors - Transfer one or many sectors.
4911 * @qc: Command on going
4913 * Transfer one or many sectors of data from/to the
4914 * ATA device for the DRQ request.
4916 * LOCKING:
4917 * Inherited from caller.
4920 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4922 if (is_multi_taskfile(&qc->tf)) {
4923 /* READ/WRITE MULTIPLE */
4924 unsigned int nsect;
4926 WARN_ON(qc->dev->multi_count == 0);
4928 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4929 qc->dev->multi_count);
4930 while (nsect--)
4931 ata_pio_sector(qc);
4932 } else
4933 ata_pio_sector(qc);
4935 ata_altstatus(qc->ap); /* flush */
4939 * atapi_send_cdb - Write CDB bytes to hardware
4940 * @ap: Port to which ATAPI device is attached.
4941 * @qc: Taskfile currently active
4943 * When device has indicated its readiness to accept
4944 * a CDB, this function is called. Send the CDB.
4946 * LOCKING:
4947 * caller.
4950 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4952 /* send SCSI cdb */
4953 DPRINTK("send cdb\n");
4954 WARN_ON(qc->dev->cdb_len < 12);
4956 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4957 ata_altstatus(ap); /* flush */
4959 switch (qc->tf.protocol) {
4960 case ATA_PROT_ATAPI:
4961 ap->hsm_task_state = HSM_ST;
4962 break;
4963 case ATA_PROT_ATAPI_NODATA:
4964 ap->hsm_task_state = HSM_ST_LAST;
4965 break;
4966 case ATA_PROT_ATAPI_DMA:
4967 ap->hsm_task_state = HSM_ST_LAST;
4968 /* initiate bmdma */
4969 ap->ops->bmdma_start(qc);
4970 break;
4975 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4976 * @qc: Command on going
4977 * @bytes: number of bytes
4979 * Transfer Transfer data from/to the ATAPI device.
4981 * LOCKING:
4982 * Inherited from caller.
4986 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4988 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4989 struct scatterlist *sg = qc->__sg;
4990 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4991 struct ata_port *ap = qc->ap;
4992 struct page *page;
4993 unsigned char *buf;
4994 unsigned int offset, count;
4995 int no_more_sg = 0;
4997 if (qc->curbytes + bytes >= qc->nbytes)
4998 ap->hsm_task_state = HSM_ST_LAST;
5000 next_sg:
5001 if (unlikely(no_more_sg)) {
5003 * The end of qc->sg is reached and the device expects
5004 * more data to transfer. In order not to overrun qc->sg
5005 * and fulfill length specified in the byte count register,
5006 * - for read case, discard trailing data from the device
5007 * - for write case, padding zero data to the device
5009 u16 pad_buf[1] = { 0 };
5010 unsigned int words = bytes >> 1;
5011 unsigned int i;
5013 if (words) /* warning if bytes > 1 */
5014 ata_dev_printk(qc->dev, KERN_WARNING,
5015 "%u bytes trailing data\n", bytes);
5017 for (i = 0; i < words; i++)
5018 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5020 ap->hsm_task_state = HSM_ST_LAST;
5021 return;
5024 sg = qc->cursg;
5026 page = sg_page(sg);
5027 offset = sg->offset + qc->cursg_ofs;
5029 /* get the current page and offset */
5030 page = nth_page(page, (offset >> PAGE_SHIFT));
5031 offset %= PAGE_SIZE;
5033 /* don't overrun current sg */
5034 count = min(sg->length - qc->cursg_ofs, bytes);
5036 /* don't cross page boundaries */
5037 count = min(count, (unsigned int)PAGE_SIZE - offset);
5039 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5041 if (PageHighMem(page)) {
5042 unsigned long flags;
5044 /* FIXME: use bounce buffer */
5045 local_irq_save(flags);
5046 buf = kmap_atomic(page, KM_IRQ0);
5048 /* do the actual data transfer */
5049 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5051 kunmap_atomic(buf, KM_IRQ0);
5052 local_irq_restore(flags);
5053 } else {
5054 buf = page_address(page);
5055 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5058 bytes -= count;
5059 qc->curbytes += count;
5060 qc->cursg_ofs += count;
5062 if (qc->cursg_ofs == sg->length) {
5063 if (qc->cursg == lsg)
5064 no_more_sg = 1;
5066 qc->cursg = sg_next(qc->cursg);
5067 qc->cursg_ofs = 0;
5070 if (bytes)
5071 goto next_sg;
5075 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5076 * @qc: Command on going
5078 * Transfer Transfer data from/to the ATAPI device.
5080 * LOCKING:
5081 * Inherited from caller.
5084 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5086 struct ata_port *ap = qc->ap;
5087 struct ata_device *dev = qc->dev;
5088 unsigned int ireason, bc_lo, bc_hi, bytes;
5089 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5091 /* Abuse qc->result_tf for temp storage of intermediate TF
5092 * here to save some kernel stack usage.
5093 * For normal completion, qc->result_tf is not relevant. For
5094 * error, qc->result_tf is later overwritten by ata_qc_complete().
5095 * So, the correctness of qc->result_tf is not affected.
5097 ap->ops->tf_read(ap, &qc->result_tf);
5098 ireason = qc->result_tf.nsect;
5099 bc_lo = qc->result_tf.lbam;
5100 bc_hi = qc->result_tf.lbah;
5101 bytes = (bc_hi << 8) | bc_lo;
5103 /* shall be cleared to zero, indicating xfer of data */
5104 if (ireason & (1 << 0))
5105 goto err_out;
5107 /* make sure transfer direction matches expected */
5108 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5109 if (do_write != i_write)
5110 goto err_out;
5112 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5114 __atapi_pio_bytes(qc, bytes);
5115 ata_altstatus(ap); /* flush */
5117 return;
5119 err_out:
5120 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5121 qc->err_mask |= AC_ERR_HSM;
5122 ap->hsm_task_state = HSM_ST_ERR;
5126 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5127 * @ap: the target ata_port
5128 * @qc: qc on going
5130 * RETURNS:
5131 * 1 if ok in workqueue, 0 otherwise.
5134 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5136 if (qc->tf.flags & ATA_TFLAG_POLLING)
5137 return 1;
5139 if (ap->hsm_task_state == HSM_ST_FIRST) {
5140 if (qc->tf.protocol == ATA_PROT_PIO &&
5141 (qc->tf.flags & ATA_TFLAG_WRITE))
5142 return 1;
5144 if (is_atapi_taskfile(&qc->tf) &&
5145 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5146 return 1;
5149 return 0;
5153 * ata_hsm_qc_complete - finish a qc running on standard HSM
5154 * @qc: Command to complete
5155 * @in_wq: 1 if called from workqueue, 0 otherwise
5157 * Finish @qc which is running on standard HSM.
5159 * LOCKING:
5160 * If @in_wq is zero, spin_lock_irqsave(host lock).
5161 * Otherwise, none on entry and grabs host lock.
5163 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5165 struct ata_port *ap = qc->ap;
5166 unsigned long flags;
5168 if (ap->ops->error_handler) {
5169 if (in_wq) {
5170 spin_lock_irqsave(ap->lock, flags);
5172 /* EH might have kicked in while host lock is
5173 * released.
5175 qc = ata_qc_from_tag(ap, qc->tag);
5176 if (qc) {
5177 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5178 ap->ops->irq_on(ap);
5179 ata_qc_complete(qc);
5180 } else
5181 ata_port_freeze(ap);
5184 spin_unlock_irqrestore(ap->lock, flags);
5185 } else {
5186 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5187 ata_qc_complete(qc);
5188 else
5189 ata_port_freeze(ap);
5191 } else {
5192 if (in_wq) {
5193 spin_lock_irqsave(ap->lock, flags);
5194 ap->ops->irq_on(ap);
5195 ata_qc_complete(qc);
5196 spin_unlock_irqrestore(ap->lock, flags);
5197 } else
5198 ata_qc_complete(qc);
5203 * ata_hsm_move - move the HSM to the next state.
5204 * @ap: the target ata_port
5205 * @qc: qc on going
5206 * @status: current device status
5207 * @in_wq: 1 if called from workqueue, 0 otherwise
5209 * RETURNS:
5210 * 1 when poll next status needed, 0 otherwise.
5212 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5213 u8 status, int in_wq)
5215 unsigned long flags = 0;
5216 int poll_next;
5218 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5220 /* Make sure ata_qc_issue_prot() does not throw things
5221 * like DMA polling into the workqueue. Notice that
5222 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5224 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5226 fsm_start:
5227 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5228 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5230 switch (ap->hsm_task_state) {
5231 case HSM_ST_FIRST:
5232 /* Send first data block or PACKET CDB */
5234 /* If polling, we will stay in the work queue after
5235 * sending the data. Otherwise, interrupt handler
5236 * takes over after sending the data.
5238 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5240 /* check device status */
5241 if (unlikely((status & ATA_DRQ) == 0)) {
5242 /* handle BSY=0, DRQ=0 as error */
5243 if (likely(status & (ATA_ERR | ATA_DF)))
5244 /* device stops HSM for abort/error */
5245 qc->err_mask |= AC_ERR_DEV;
5246 else
5247 /* HSM violation. Let EH handle this */
5248 qc->err_mask |= AC_ERR_HSM;
5250 ap->hsm_task_state = HSM_ST_ERR;
5251 goto fsm_start;
5254 /* Device should not ask for data transfer (DRQ=1)
5255 * when it finds something wrong.
5256 * We ignore DRQ here and stop the HSM by
5257 * changing hsm_task_state to HSM_ST_ERR and
5258 * let the EH abort the command or reset the device.
5260 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5261 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5262 "error, dev_stat 0x%X\n", status);
5263 qc->err_mask |= AC_ERR_HSM;
5264 ap->hsm_task_state = HSM_ST_ERR;
5265 goto fsm_start;
5268 /* Send the CDB (atapi) or the first data block (ata pio out).
5269 * During the state transition, interrupt handler shouldn't
5270 * be invoked before the data transfer is complete and
5271 * hsm_task_state is changed. Hence, the following locking.
5273 if (in_wq)
5274 spin_lock_irqsave(ap->lock, flags);
5276 if (qc->tf.protocol == ATA_PROT_PIO) {
5277 /* PIO data out protocol.
5278 * send first data block.
5281 /* ata_pio_sectors() might change the state
5282 * to HSM_ST_LAST. so, the state is changed here
5283 * before ata_pio_sectors().
5285 ap->hsm_task_state = HSM_ST;
5286 ata_pio_sectors(qc);
5287 } else
5288 /* send CDB */
5289 atapi_send_cdb(ap, qc);
5291 if (in_wq)
5292 spin_unlock_irqrestore(ap->lock, flags);
5294 /* if polling, ata_pio_task() handles the rest.
5295 * otherwise, interrupt handler takes over from here.
5297 break;
5299 case HSM_ST:
5300 /* complete command or read/write the data register */
5301 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5302 /* ATAPI PIO protocol */
5303 if ((status & ATA_DRQ) == 0) {
5304 /* No more data to transfer or device error.
5305 * Device error will be tagged in HSM_ST_LAST.
5307 ap->hsm_task_state = HSM_ST_LAST;
5308 goto fsm_start;
5311 /* Device should not ask for data transfer (DRQ=1)
5312 * when it finds something wrong.
5313 * We ignore DRQ here and stop the HSM by
5314 * changing hsm_task_state to HSM_ST_ERR and
5315 * let the EH abort the command or reset the device.
5317 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5318 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5319 "device error, dev_stat 0x%X\n",
5320 status);
5321 qc->err_mask |= AC_ERR_HSM;
5322 ap->hsm_task_state = HSM_ST_ERR;
5323 goto fsm_start;
5326 atapi_pio_bytes(qc);
5328 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5329 /* bad ireason reported by device */
5330 goto fsm_start;
5332 } else {
5333 /* ATA PIO protocol */
5334 if (unlikely((status & ATA_DRQ) == 0)) {
5335 /* handle BSY=0, DRQ=0 as error */
5336 if (likely(status & (ATA_ERR | ATA_DF)))
5337 /* device stops HSM for abort/error */
5338 qc->err_mask |= AC_ERR_DEV;
5339 else
5340 /* HSM violation. Let EH handle this.
5341 * Phantom devices also trigger this
5342 * condition. Mark hint.
5344 qc->err_mask |= AC_ERR_HSM |
5345 AC_ERR_NODEV_HINT;
5347 ap->hsm_task_state = HSM_ST_ERR;
5348 goto fsm_start;
5351 /* For PIO reads, some devices may ask for
5352 * data transfer (DRQ=1) alone with ERR=1.
5353 * We respect DRQ here and transfer one
5354 * block of junk data before changing the
5355 * hsm_task_state to HSM_ST_ERR.
5357 * For PIO writes, ERR=1 DRQ=1 doesn't make
5358 * sense since the data block has been
5359 * transferred to the device.
5361 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5362 /* data might be corrputed */
5363 qc->err_mask |= AC_ERR_DEV;
5365 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5366 ata_pio_sectors(qc);
5367 status = ata_wait_idle(ap);
5370 if (status & (ATA_BUSY | ATA_DRQ))
5371 qc->err_mask |= AC_ERR_HSM;
5373 /* ata_pio_sectors() might change the
5374 * state to HSM_ST_LAST. so, the state
5375 * is changed after ata_pio_sectors().
5377 ap->hsm_task_state = HSM_ST_ERR;
5378 goto fsm_start;
5381 ata_pio_sectors(qc);
5383 if (ap->hsm_task_state == HSM_ST_LAST &&
5384 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5385 /* all data read */
5386 status = ata_wait_idle(ap);
5387 goto fsm_start;
5391 poll_next = 1;
5392 break;
5394 case HSM_ST_LAST:
5395 if (unlikely(!ata_ok(status))) {
5396 qc->err_mask |= __ac_err_mask(status);
5397 ap->hsm_task_state = HSM_ST_ERR;
5398 goto fsm_start;
5401 /* no more data to transfer */
5402 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5403 ap->print_id, qc->dev->devno, status);
5405 WARN_ON(qc->err_mask);
5407 ap->hsm_task_state = HSM_ST_IDLE;
5409 /* complete taskfile transaction */
5410 ata_hsm_qc_complete(qc, in_wq);
5412 poll_next = 0;
5413 break;
5415 case HSM_ST_ERR:
5416 /* make sure qc->err_mask is available to
5417 * know what's wrong and recover
5419 WARN_ON(qc->err_mask == 0);
5421 ap->hsm_task_state = HSM_ST_IDLE;
5423 /* complete taskfile transaction */
5424 ata_hsm_qc_complete(qc, in_wq);
5426 poll_next = 0;
5427 break;
5428 default:
5429 poll_next = 0;
5430 BUG();
5433 return poll_next;
5436 static void ata_pio_task(struct work_struct *work)
5438 struct ata_port *ap =
5439 container_of(work, struct ata_port, port_task.work);
5440 struct ata_queued_cmd *qc = ap->port_task_data;
5441 u8 status;
5442 int poll_next;
5444 fsm_start:
5445 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5448 * This is purely heuristic. This is a fast path.
5449 * Sometimes when we enter, BSY will be cleared in
5450 * a chk-status or two. If not, the drive is probably seeking
5451 * or something. Snooze for a couple msecs, then
5452 * chk-status again. If still busy, queue delayed work.
5454 status = ata_busy_wait(ap, ATA_BUSY, 5);
5455 if (status & ATA_BUSY) {
5456 msleep(2);
5457 status = ata_busy_wait(ap, ATA_BUSY, 10);
5458 if (status & ATA_BUSY) {
5459 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5460 return;
5464 /* move the HSM */
5465 poll_next = ata_hsm_move(ap, qc, status, 1);
5467 /* another command or interrupt handler
5468 * may be running at this point.
5470 if (poll_next)
5471 goto fsm_start;
5475 * ata_qc_new - Request an available ATA command, for queueing
5476 * @ap: Port associated with device @dev
5477 * @dev: Device from whom we request an available command structure
5479 * LOCKING:
5480 * None.
5483 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5485 struct ata_queued_cmd *qc = NULL;
5486 unsigned int i;
5488 /* no command while frozen */
5489 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5490 return NULL;
5492 /* the last tag is reserved for internal command. */
5493 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5494 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5495 qc = __ata_qc_from_tag(ap, i);
5496 break;
5499 if (qc)
5500 qc->tag = i;
5502 return qc;
5506 * ata_qc_new_init - Request an available ATA command, and initialize it
5507 * @dev: Device from whom we request an available command structure
5509 * LOCKING:
5510 * None.
5513 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5515 struct ata_port *ap = dev->link->ap;
5516 struct ata_queued_cmd *qc;
5518 qc = ata_qc_new(ap);
5519 if (qc) {
5520 qc->scsicmd = NULL;
5521 qc->ap = ap;
5522 qc->dev = dev;
5524 ata_qc_reinit(qc);
5527 return qc;
5531 * ata_qc_free - free unused ata_queued_cmd
5532 * @qc: Command to complete
5534 * Designed to free unused ata_queued_cmd object
5535 * in case something prevents using it.
5537 * LOCKING:
5538 * spin_lock_irqsave(host lock)
5540 void ata_qc_free(struct ata_queued_cmd *qc)
5542 struct ata_port *ap = qc->ap;
5543 unsigned int tag;
5545 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5547 qc->flags = 0;
5548 tag = qc->tag;
5549 if (likely(ata_tag_valid(tag))) {
5550 qc->tag = ATA_TAG_POISON;
5551 clear_bit(tag, &ap->qc_allocated);
5555 void __ata_qc_complete(struct ata_queued_cmd *qc)
5557 struct ata_port *ap = qc->ap;
5558 struct ata_link *link = qc->dev->link;
5560 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5561 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5563 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5564 ata_sg_clean(qc);
5566 /* command should be marked inactive atomically with qc completion */
5567 if (qc->tf.protocol == ATA_PROT_NCQ) {
5568 link->sactive &= ~(1 << qc->tag);
5569 if (!link->sactive)
5570 ap->nr_active_links--;
5571 } else {
5572 link->active_tag = ATA_TAG_POISON;
5573 ap->nr_active_links--;
5576 /* clear exclusive status */
5577 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5578 ap->excl_link == link))
5579 ap->excl_link = NULL;
5581 /* atapi: mark qc as inactive to prevent the interrupt handler
5582 * from completing the command twice later, before the error handler
5583 * is called. (when rc != 0 and atapi request sense is needed)
5585 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5586 ap->qc_active &= ~(1 << qc->tag);
5588 /* call completion callback */
5589 qc->complete_fn(qc);
5592 static void fill_result_tf(struct ata_queued_cmd *qc)
5594 struct ata_port *ap = qc->ap;
5596 qc->result_tf.flags = qc->tf.flags;
5597 ap->ops->tf_read(ap, &qc->result_tf);
5601 * ata_qc_complete - Complete an active ATA command
5602 * @qc: Command to complete
5603 * @err_mask: ATA Status register contents
5605 * Indicate to the mid and upper layers that an ATA
5606 * command has completed, with either an ok or not-ok status.
5608 * LOCKING:
5609 * spin_lock_irqsave(host lock)
5611 void ata_qc_complete(struct ata_queued_cmd *qc)
5613 struct ata_port *ap = qc->ap;
5615 /* XXX: New EH and old EH use different mechanisms to
5616 * synchronize EH with regular execution path.
5618 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5619 * Normal execution path is responsible for not accessing a
5620 * failed qc. libata core enforces the rule by returning NULL
5621 * from ata_qc_from_tag() for failed qcs.
5623 * Old EH depends on ata_qc_complete() nullifying completion
5624 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5625 * not synchronize with interrupt handler. Only PIO task is
5626 * taken care of.
5628 if (ap->ops->error_handler) {
5629 struct ata_device *dev = qc->dev;
5630 struct ata_eh_info *ehi = &dev->link->eh_info;
5632 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5634 if (unlikely(qc->err_mask))
5635 qc->flags |= ATA_QCFLAG_FAILED;
5637 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5638 if (!ata_tag_internal(qc->tag)) {
5639 /* always fill result TF for failed qc */
5640 fill_result_tf(qc);
5641 ata_qc_schedule_eh(qc);
5642 return;
5646 /* read result TF if requested */
5647 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5648 fill_result_tf(qc);
5650 /* Some commands need post-processing after successful
5651 * completion.
5653 switch (qc->tf.command) {
5654 case ATA_CMD_SET_FEATURES:
5655 if (qc->tf.feature != SETFEATURES_WC_ON &&
5656 qc->tf.feature != SETFEATURES_WC_OFF)
5657 break;
5658 /* fall through */
5659 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5660 case ATA_CMD_SET_MULTI: /* multi_count changed */
5661 /* revalidate device */
5662 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5663 ata_port_schedule_eh(ap);
5664 break;
5666 case ATA_CMD_SLEEP:
5667 dev->flags |= ATA_DFLAG_SLEEPING;
5668 break;
5671 __ata_qc_complete(qc);
5672 } else {
5673 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5674 return;
5676 /* read result TF if failed or requested */
5677 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5678 fill_result_tf(qc);
5680 __ata_qc_complete(qc);
5685 * ata_qc_complete_multiple - Complete multiple qcs successfully
5686 * @ap: port in question
5687 * @qc_active: new qc_active mask
5688 * @finish_qc: LLDD callback invoked before completing a qc
5690 * Complete in-flight commands. This functions is meant to be
5691 * called from low-level driver's interrupt routine to complete
5692 * requests normally. ap->qc_active and @qc_active is compared
5693 * and commands are completed accordingly.
5695 * LOCKING:
5696 * spin_lock_irqsave(host lock)
5698 * RETURNS:
5699 * Number of completed commands on success, -errno otherwise.
5701 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5702 void (*finish_qc)(struct ata_queued_cmd *))
5704 int nr_done = 0;
5705 u32 done_mask;
5706 int i;
5708 done_mask = ap->qc_active ^ qc_active;
5710 if (unlikely(done_mask & qc_active)) {
5711 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5712 "(%08x->%08x)\n", ap->qc_active, qc_active);
5713 return -EINVAL;
5716 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5717 struct ata_queued_cmd *qc;
5719 if (!(done_mask & (1 << i)))
5720 continue;
5722 if ((qc = ata_qc_from_tag(ap, i))) {
5723 if (finish_qc)
5724 finish_qc(qc);
5725 ata_qc_complete(qc);
5726 nr_done++;
5730 return nr_done;
5733 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5735 struct ata_port *ap = qc->ap;
5737 switch (qc->tf.protocol) {
5738 case ATA_PROT_NCQ:
5739 case ATA_PROT_DMA:
5740 case ATA_PROT_ATAPI_DMA:
5741 return 1;
5743 case ATA_PROT_ATAPI:
5744 case ATA_PROT_PIO:
5745 if (ap->flags & ATA_FLAG_PIO_DMA)
5746 return 1;
5748 /* fall through */
5750 default:
5751 return 0;
5754 /* never reached */
5758 * ata_qc_issue - issue taskfile to device
5759 * @qc: command to issue to device
5761 * Prepare an ATA command to submission to device.
5762 * This includes mapping the data into a DMA-able
5763 * area, filling in the S/G table, and finally
5764 * writing the taskfile to hardware, starting the command.
5766 * LOCKING:
5767 * spin_lock_irqsave(host lock)
5769 void ata_qc_issue(struct ata_queued_cmd *qc)
5771 struct ata_port *ap = qc->ap;
5772 struct ata_link *link = qc->dev->link;
5774 /* Make sure only one non-NCQ command is outstanding. The
5775 * check is skipped for old EH because it reuses active qc to
5776 * request ATAPI sense.
5778 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5780 if (qc->tf.protocol == ATA_PROT_NCQ) {
5781 WARN_ON(link->sactive & (1 << qc->tag));
5783 if (!link->sactive)
5784 ap->nr_active_links++;
5785 link->sactive |= 1 << qc->tag;
5786 } else {
5787 WARN_ON(link->sactive);
5789 ap->nr_active_links++;
5790 link->active_tag = qc->tag;
5793 qc->flags |= ATA_QCFLAG_ACTIVE;
5794 ap->qc_active |= 1 << qc->tag;
5796 if (ata_should_dma_map(qc)) {
5797 if (qc->flags & ATA_QCFLAG_SG) {
5798 if (ata_sg_setup(qc))
5799 goto sg_err;
5800 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5801 if (ata_sg_setup_one(qc))
5802 goto sg_err;
5804 } else {
5805 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5808 /* if device is sleeping, schedule softreset and abort the link */
5809 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5810 link->eh_info.action |= ATA_EH_SOFTRESET;
5811 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5812 ata_link_abort(link);
5813 return;
5816 ap->ops->qc_prep(qc);
5818 qc->err_mask |= ap->ops->qc_issue(qc);
5819 if (unlikely(qc->err_mask))
5820 goto err;
5821 return;
5823 sg_err:
5824 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5825 qc->err_mask |= AC_ERR_SYSTEM;
5826 err:
5827 ata_qc_complete(qc);
5831 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5832 * @qc: command to issue to device
5834 * Using various libata functions and hooks, this function
5835 * starts an ATA command. ATA commands are grouped into
5836 * classes called "protocols", and issuing each type of protocol
5837 * is slightly different.
5839 * May be used as the qc_issue() entry in ata_port_operations.
5841 * LOCKING:
5842 * spin_lock_irqsave(host lock)
5844 * RETURNS:
5845 * Zero on success, AC_ERR_* mask on failure
5848 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5850 struct ata_port *ap = qc->ap;
5852 /* Use polling pio if the LLD doesn't handle
5853 * interrupt driven pio and atapi CDB interrupt.
5855 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5856 switch (qc->tf.protocol) {
5857 case ATA_PROT_PIO:
5858 case ATA_PROT_NODATA:
5859 case ATA_PROT_ATAPI:
5860 case ATA_PROT_ATAPI_NODATA:
5861 qc->tf.flags |= ATA_TFLAG_POLLING;
5862 break;
5863 case ATA_PROT_ATAPI_DMA:
5864 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5865 /* see ata_dma_blacklisted() */
5866 BUG();
5867 break;
5868 default:
5869 break;
5873 /* select the device */
5874 ata_dev_select(ap, qc->dev->devno, 1, 0);
5876 /* start the command */
5877 switch (qc->tf.protocol) {
5878 case ATA_PROT_NODATA:
5879 if (qc->tf.flags & ATA_TFLAG_POLLING)
5880 ata_qc_set_polling(qc);
5882 ata_tf_to_host(ap, &qc->tf);
5883 ap->hsm_task_state = HSM_ST_LAST;
5885 if (qc->tf.flags & ATA_TFLAG_POLLING)
5886 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5888 break;
5890 case ATA_PROT_DMA:
5891 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5893 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5894 ap->ops->bmdma_setup(qc); /* set up bmdma */
5895 ap->ops->bmdma_start(qc); /* initiate bmdma */
5896 ap->hsm_task_state = HSM_ST_LAST;
5897 break;
5899 case ATA_PROT_PIO:
5900 if (qc->tf.flags & ATA_TFLAG_POLLING)
5901 ata_qc_set_polling(qc);
5903 ata_tf_to_host(ap, &qc->tf);
5905 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5906 /* PIO data out protocol */
5907 ap->hsm_task_state = HSM_ST_FIRST;
5908 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5910 /* always send first data block using
5911 * the ata_pio_task() codepath.
5913 } else {
5914 /* PIO data in protocol */
5915 ap->hsm_task_state = HSM_ST;
5917 if (qc->tf.flags & ATA_TFLAG_POLLING)
5918 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5920 /* if polling, ata_pio_task() handles the rest.
5921 * otherwise, interrupt handler takes over from here.
5925 break;
5927 case ATA_PROT_ATAPI:
5928 case ATA_PROT_ATAPI_NODATA:
5929 if (qc->tf.flags & ATA_TFLAG_POLLING)
5930 ata_qc_set_polling(qc);
5932 ata_tf_to_host(ap, &qc->tf);
5934 ap->hsm_task_state = HSM_ST_FIRST;
5936 /* send cdb by polling if no cdb interrupt */
5937 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5938 (qc->tf.flags & ATA_TFLAG_POLLING))
5939 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5940 break;
5942 case ATA_PROT_ATAPI_DMA:
5943 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5945 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5946 ap->ops->bmdma_setup(qc); /* set up bmdma */
5947 ap->hsm_task_state = HSM_ST_FIRST;
5949 /* send cdb by polling if no cdb interrupt */
5950 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5951 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5952 break;
5954 default:
5955 WARN_ON(1);
5956 return AC_ERR_SYSTEM;
5959 return 0;
5963 * ata_host_intr - Handle host interrupt for given (port, task)
5964 * @ap: Port on which interrupt arrived (possibly...)
5965 * @qc: Taskfile currently active in engine
5967 * Handle host interrupt for given queued command. Currently,
5968 * only DMA interrupts are handled. All other commands are
5969 * handled via polling with interrupts disabled (nIEN bit).
5971 * LOCKING:
5972 * spin_lock_irqsave(host lock)
5974 * RETURNS:
5975 * One if interrupt was handled, zero if not (shared irq).
5978 inline unsigned int ata_host_intr(struct ata_port *ap,
5979 struct ata_queued_cmd *qc)
5981 struct ata_eh_info *ehi = &ap->link.eh_info;
5982 u8 status, host_stat = 0;
5984 VPRINTK("ata%u: protocol %d task_state %d\n",
5985 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5987 /* Check whether we are expecting interrupt in this state */
5988 switch (ap->hsm_task_state) {
5989 case HSM_ST_FIRST:
5990 /* Some pre-ATAPI-4 devices assert INTRQ
5991 * at this state when ready to receive CDB.
5994 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5995 * The flag was turned on only for atapi devices.
5996 * No need to check is_atapi_taskfile(&qc->tf) again.
5998 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5999 goto idle_irq;
6000 break;
6001 case HSM_ST_LAST:
6002 if (qc->tf.protocol == ATA_PROT_DMA ||
6003 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6004 /* check status of DMA engine */
6005 host_stat = ap->ops->bmdma_status(ap);
6006 VPRINTK("ata%u: host_stat 0x%X\n",
6007 ap->print_id, host_stat);
6009 /* if it's not our irq... */
6010 if (!(host_stat & ATA_DMA_INTR))
6011 goto idle_irq;
6013 /* before we do anything else, clear DMA-Start bit */
6014 ap->ops->bmdma_stop(qc);
6016 if (unlikely(host_stat & ATA_DMA_ERR)) {
6017 /* error when transfering data to/from memory */
6018 qc->err_mask |= AC_ERR_HOST_BUS;
6019 ap->hsm_task_state = HSM_ST_ERR;
6022 break;
6023 case HSM_ST:
6024 break;
6025 default:
6026 goto idle_irq;
6029 /* check altstatus */
6030 status = ata_altstatus(ap);
6031 if (status & ATA_BUSY)
6032 goto idle_irq;
6034 /* check main status, clearing INTRQ */
6035 status = ata_chk_status(ap);
6036 if (unlikely(status & ATA_BUSY))
6037 goto idle_irq;
6039 /* ack bmdma irq events */
6040 ap->ops->irq_clear(ap);
6042 ata_hsm_move(ap, qc, status, 0);
6044 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6045 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6046 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6048 return 1; /* irq handled */
6050 idle_irq:
6051 ap->stats.idle_irq++;
6053 #ifdef ATA_IRQ_TRAP
6054 if ((ap->stats.idle_irq % 1000) == 0) {
6055 ata_chk_status(ap);
6056 ap->ops->irq_clear(ap);
6057 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6058 return 1;
6060 #endif
6061 return 0; /* irq not handled */
6065 * ata_interrupt - Default ATA host interrupt handler
6066 * @irq: irq line (unused)
6067 * @dev_instance: pointer to our ata_host information structure
6069 * Default interrupt handler for PCI IDE devices. Calls
6070 * ata_host_intr() for each port that is not disabled.
6072 * LOCKING:
6073 * Obtains host lock during operation.
6075 * RETURNS:
6076 * IRQ_NONE or IRQ_HANDLED.
6079 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6081 struct ata_host *host = dev_instance;
6082 unsigned int i;
6083 unsigned int handled = 0;
6084 unsigned long flags;
6086 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6087 spin_lock_irqsave(&host->lock, flags);
6089 for (i = 0; i < host->n_ports; i++) {
6090 struct ata_port *ap;
6092 ap = host->ports[i];
6093 if (ap &&
6094 !(ap->flags & ATA_FLAG_DISABLED)) {
6095 struct ata_queued_cmd *qc;
6097 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6098 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6099 (qc->flags & ATA_QCFLAG_ACTIVE))
6100 handled |= ata_host_intr(ap, qc);
6104 spin_unlock_irqrestore(&host->lock, flags);
6106 return IRQ_RETVAL(handled);
6110 * sata_scr_valid - test whether SCRs are accessible
6111 * @link: ATA link to test SCR accessibility for
6113 * Test whether SCRs are accessible for @link.
6115 * LOCKING:
6116 * None.
6118 * RETURNS:
6119 * 1 if SCRs are accessible, 0 otherwise.
6121 int sata_scr_valid(struct ata_link *link)
6123 struct ata_port *ap = link->ap;
6125 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6129 * sata_scr_read - read SCR register of the specified port
6130 * @link: ATA link to read SCR for
6131 * @reg: SCR to read
6132 * @val: Place to store read value
6134 * Read SCR register @reg of @link into *@val. This function is
6135 * guaranteed to succeed if @link is ap->link, the cable type of
6136 * the port is SATA and the port implements ->scr_read.
6138 * LOCKING:
6139 * None if @link is ap->link. Kernel thread context otherwise.
6141 * RETURNS:
6142 * 0 on success, negative errno on failure.
6144 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6146 if (ata_is_host_link(link)) {
6147 struct ata_port *ap = link->ap;
6149 if (sata_scr_valid(link))
6150 return ap->ops->scr_read(ap, reg, val);
6151 return -EOPNOTSUPP;
6154 return sata_pmp_scr_read(link, reg, val);
6158 * sata_scr_write - write SCR register of the specified port
6159 * @link: ATA link to write SCR for
6160 * @reg: SCR to write
6161 * @val: value to write
6163 * Write @val to SCR register @reg of @link. This function is
6164 * guaranteed to succeed if @link is ap->link, the cable type of
6165 * the port is SATA and the port implements ->scr_read.
6167 * LOCKING:
6168 * None if @link is ap->link. Kernel thread context otherwise.
6170 * RETURNS:
6171 * 0 on success, negative errno on failure.
6173 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6175 if (ata_is_host_link(link)) {
6176 struct ata_port *ap = link->ap;
6178 if (sata_scr_valid(link))
6179 return ap->ops->scr_write(ap, reg, val);
6180 return -EOPNOTSUPP;
6183 return sata_pmp_scr_write(link, reg, val);
6187 * sata_scr_write_flush - write SCR register of the specified port and flush
6188 * @link: ATA link to write SCR for
6189 * @reg: SCR to write
6190 * @val: value to write
6192 * This function is identical to sata_scr_write() except that this
6193 * function performs flush after writing to the register.
6195 * LOCKING:
6196 * None if @link is ap->link. Kernel thread context otherwise.
6198 * RETURNS:
6199 * 0 on success, negative errno on failure.
6201 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6203 if (ata_is_host_link(link)) {
6204 struct ata_port *ap = link->ap;
6205 int rc;
6207 if (sata_scr_valid(link)) {
6208 rc = ap->ops->scr_write(ap, reg, val);
6209 if (rc == 0)
6210 rc = ap->ops->scr_read(ap, reg, &val);
6211 return rc;
6213 return -EOPNOTSUPP;
6216 return sata_pmp_scr_write(link, reg, val);
6220 * ata_link_online - test whether the given link is online
6221 * @link: ATA link to test
6223 * Test whether @link is online. Note that this function returns
6224 * 0 if online status of @link cannot be obtained, so
6225 * ata_link_online(link) != !ata_link_offline(link).
6227 * LOCKING:
6228 * None.
6230 * RETURNS:
6231 * 1 if the port online status is available and online.
6233 int ata_link_online(struct ata_link *link)
6235 u32 sstatus;
6237 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6238 (sstatus & 0xf) == 0x3)
6239 return 1;
6240 return 0;
6244 * ata_link_offline - test whether the given link is offline
6245 * @link: ATA link to test
6247 * Test whether @link is offline. Note that this function
6248 * returns 0 if offline status of @link cannot be obtained, so
6249 * ata_link_online(link) != !ata_link_offline(link).
6251 * LOCKING:
6252 * None.
6254 * RETURNS:
6255 * 1 if the port offline status is available and offline.
6257 int ata_link_offline(struct ata_link *link)
6259 u32 sstatus;
6261 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6262 (sstatus & 0xf) != 0x3)
6263 return 1;
6264 return 0;
6267 int ata_flush_cache(struct ata_device *dev)
6269 unsigned int err_mask;
6270 u8 cmd;
6272 if (!ata_try_flush_cache(dev))
6273 return 0;
6275 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6276 cmd = ATA_CMD_FLUSH_EXT;
6277 else
6278 cmd = ATA_CMD_FLUSH;
6280 /* This is wrong. On a failed flush we get back the LBA of the lost
6281 sector and we should (assuming it wasn't aborted as unknown) issue
6282 a further flush command to continue the writeback until it
6283 does not error */
6284 err_mask = ata_do_simple_cmd(dev, cmd);
6285 if (err_mask) {
6286 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6287 return -EIO;
6290 return 0;
6293 #ifdef CONFIG_PM
6294 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6295 unsigned int action, unsigned int ehi_flags,
6296 int wait)
6298 unsigned long flags;
6299 int i, rc;
6301 for (i = 0; i < host->n_ports; i++) {
6302 struct ata_port *ap = host->ports[i];
6303 struct ata_link *link;
6305 /* Previous resume operation might still be in
6306 * progress. Wait for PM_PENDING to clear.
6308 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6309 ata_port_wait_eh(ap);
6310 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6313 /* request PM ops to EH */
6314 spin_lock_irqsave(ap->lock, flags);
6316 ap->pm_mesg = mesg;
6317 if (wait) {
6318 rc = 0;
6319 ap->pm_result = &rc;
6322 ap->pflags |= ATA_PFLAG_PM_PENDING;
6323 __ata_port_for_each_link(link, ap) {
6324 link->eh_info.action |= action;
6325 link->eh_info.flags |= ehi_flags;
6328 ata_port_schedule_eh(ap);
6330 spin_unlock_irqrestore(ap->lock, flags);
6332 /* wait and check result */
6333 if (wait) {
6334 ata_port_wait_eh(ap);
6335 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6336 if (rc)
6337 return rc;
6341 return 0;
6345 * ata_host_suspend - suspend host
6346 * @host: host to suspend
6347 * @mesg: PM message
6349 * Suspend @host. Actual operation is performed by EH. This
6350 * function requests EH to perform PM operations and waits for EH
6351 * to finish.
6353 * LOCKING:
6354 * Kernel thread context (may sleep).
6356 * RETURNS:
6357 * 0 on success, -errno on failure.
6359 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6361 int rc;
6363 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6364 if (rc == 0)
6365 host->dev->power.power_state = mesg;
6366 return rc;
6370 * ata_host_resume - resume host
6371 * @host: host to resume
6373 * Resume @host. Actual operation is performed by EH. This
6374 * function requests EH to perform PM operations and returns.
6375 * Note that all resume operations are performed parallely.
6377 * LOCKING:
6378 * Kernel thread context (may sleep).
6380 void ata_host_resume(struct ata_host *host)
6382 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6383 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6384 host->dev->power.power_state = PMSG_ON;
6386 #endif
6389 * ata_port_start - Set port up for dma.
6390 * @ap: Port to initialize
6392 * Called just after data structures for each port are
6393 * initialized. Allocates space for PRD table.
6395 * May be used as the port_start() entry in ata_port_operations.
6397 * LOCKING:
6398 * Inherited from caller.
6400 int ata_port_start(struct ata_port *ap)
6402 struct device *dev = ap->dev;
6403 int rc;
6405 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6406 GFP_KERNEL);
6407 if (!ap->prd)
6408 return -ENOMEM;
6410 rc = ata_pad_alloc(ap, dev);
6411 if (rc)
6412 return rc;
6414 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6415 (unsigned long long)ap->prd_dma);
6416 return 0;
6420 * ata_dev_init - Initialize an ata_device structure
6421 * @dev: Device structure to initialize
6423 * Initialize @dev in preparation for probing.
6425 * LOCKING:
6426 * Inherited from caller.
6428 void ata_dev_init(struct ata_device *dev)
6430 struct ata_link *link = dev->link;
6431 struct ata_port *ap = link->ap;
6432 unsigned long flags;
6434 /* SATA spd limit is bound to the first device */
6435 link->sata_spd_limit = link->hw_sata_spd_limit;
6436 link->sata_spd = 0;
6438 /* High bits of dev->flags are used to record warm plug
6439 * requests which occur asynchronously. Synchronize using
6440 * host lock.
6442 spin_lock_irqsave(ap->lock, flags);
6443 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6444 dev->horkage = 0;
6445 spin_unlock_irqrestore(ap->lock, flags);
6447 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6448 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6449 dev->pio_mask = UINT_MAX;
6450 dev->mwdma_mask = UINT_MAX;
6451 dev->udma_mask = UINT_MAX;
6455 * ata_link_init - Initialize an ata_link structure
6456 * @ap: ATA port link is attached to
6457 * @link: Link structure to initialize
6458 * @pmp: Port multiplier port number
6460 * Initialize @link.
6462 * LOCKING:
6463 * Kernel thread context (may sleep)
6465 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6467 int i;
6469 /* clear everything except for devices */
6470 memset(link, 0, offsetof(struct ata_link, device[0]));
6472 link->ap = ap;
6473 link->pmp = pmp;
6474 link->active_tag = ATA_TAG_POISON;
6475 link->hw_sata_spd_limit = UINT_MAX;
6477 /* can't use iterator, ap isn't initialized yet */
6478 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6479 struct ata_device *dev = &link->device[i];
6481 dev->link = link;
6482 dev->devno = dev - link->device;
6483 ata_dev_init(dev);
6488 * sata_link_init_spd - Initialize link->sata_spd_limit
6489 * @link: Link to configure sata_spd_limit for
6491 * Initialize @link->[hw_]sata_spd_limit to the currently
6492 * configured value.
6494 * LOCKING:
6495 * Kernel thread context (may sleep).
6497 * RETURNS:
6498 * 0 on success, -errno on failure.
6500 int sata_link_init_spd(struct ata_link *link)
6502 u32 scontrol, spd;
6503 int rc;
6505 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6506 if (rc)
6507 return rc;
6509 spd = (scontrol >> 4) & 0xf;
6510 if (spd)
6511 link->hw_sata_spd_limit &= (1 << spd) - 1;
6513 link->sata_spd_limit = link->hw_sata_spd_limit;
6515 return 0;
6519 * ata_port_alloc - allocate and initialize basic ATA port resources
6520 * @host: ATA host this allocated port belongs to
6522 * Allocate and initialize basic ATA port resources.
6524 * RETURNS:
6525 * Allocate ATA port on success, NULL on failure.
6527 * LOCKING:
6528 * Inherited from calling layer (may sleep).
6530 struct ata_port *ata_port_alloc(struct ata_host *host)
6532 struct ata_port *ap;
6534 DPRINTK("ENTER\n");
6536 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6537 if (!ap)
6538 return NULL;
6540 ap->pflags |= ATA_PFLAG_INITIALIZING;
6541 ap->lock = &host->lock;
6542 ap->flags = ATA_FLAG_DISABLED;
6543 ap->print_id = -1;
6544 ap->ctl = ATA_DEVCTL_OBS;
6545 ap->host = host;
6546 ap->dev = host->dev;
6547 ap->last_ctl = 0xFF;
6549 #if defined(ATA_VERBOSE_DEBUG)
6550 /* turn on all debugging levels */
6551 ap->msg_enable = 0x00FF;
6552 #elif defined(ATA_DEBUG)
6553 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6554 #else
6555 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6556 #endif
6558 INIT_DELAYED_WORK(&ap->port_task, NULL);
6559 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6560 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6561 INIT_LIST_HEAD(&ap->eh_done_q);
6562 init_waitqueue_head(&ap->eh_wait_q);
6563 init_timer_deferrable(&ap->fastdrain_timer);
6564 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6565 ap->fastdrain_timer.data = (unsigned long)ap;
6567 ap->cbl = ATA_CBL_NONE;
6569 ata_link_init(ap, &ap->link, 0);
6571 #ifdef ATA_IRQ_TRAP
6572 ap->stats.unhandled_irq = 1;
6573 ap->stats.idle_irq = 1;
6574 #endif
6575 return ap;
6578 static void ata_host_release(struct device *gendev, void *res)
6580 struct ata_host *host = dev_get_drvdata(gendev);
6581 int i;
6583 for (i = 0; i < host->n_ports; i++) {
6584 struct ata_port *ap = host->ports[i];
6586 if (!ap)
6587 continue;
6589 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6590 ap->ops->port_stop(ap);
6593 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6594 host->ops->host_stop(host);
6596 for (i = 0; i < host->n_ports; i++) {
6597 struct ata_port *ap = host->ports[i];
6599 if (!ap)
6600 continue;
6602 if (ap->scsi_host)
6603 scsi_host_put(ap->scsi_host);
6605 kfree(ap->pmp_link);
6606 kfree(ap);
6607 host->ports[i] = NULL;
6610 dev_set_drvdata(gendev, NULL);
6614 * ata_host_alloc - allocate and init basic ATA host resources
6615 * @dev: generic device this host is associated with
6616 * @max_ports: maximum number of ATA ports associated with this host
6618 * Allocate and initialize basic ATA host resources. LLD calls
6619 * this function to allocate a host, initializes it fully and
6620 * attaches it using ata_host_register().
6622 * @max_ports ports are allocated and host->n_ports is
6623 * initialized to @max_ports. The caller is allowed to decrease
6624 * host->n_ports before calling ata_host_register(). The unused
6625 * ports will be automatically freed on registration.
6627 * RETURNS:
6628 * Allocate ATA host on success, NULL on failure.
6630 * LOCKING:
6631 * Inherited from calling layer (may sleep).
6633 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6635 struct ata_host *host;
6636 size_t sz;
6637 int i;
6639 DPRINTK("ENTER\n");
6641 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6642 return NULL;
6644 /* alloc a container for our list of ATA ports (buses) */
6645 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6646 /* alloc a container for our list of ATA ports (buses) */
6647 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6648 if (!host)
6649 goto err_out;
6651 devres_add(dev, host);
6652 dev_set_drvdata(dev, host);
6654 spin_lock_init(&host->lock);
6655 host->dev = dev;
6656 host->n_ports = max_ports;
6658 /* allocate ports bound to this host */
6659 for (i = 0; i < max_ports; i++) {
6660 struct ata_port *ap;
6662 ap = ata_port_alloc(host);
6663 if (!ap)
6664 goto err_out;
6666 ap->port_no = i;
6667 host->ports[i] = ap;
6670 devres_remove_group(dev, NULL);
6671 return host;
6673 err_out:
6674 devres_release_group(dev, NULL);
6675 return NULL;
6679 * ata_host_alloc_pinfo - alloc host and init with port_info array
6680 * @dev: generic device this host is associated with
6681 * @ppi: array of ATA port_info to initialize host with
6682 * @n_ports: number of ATA ports attached to this host
6684 * Allocate ATA host and initialize with info from @ppi. If NULL
6685 * terminated, @ppi may contain fewer entries than @n_ports. The
6686 * last entry will be used for the remaining ports.
6688 * RETURNS:
6689 * Allocate ATA host on success, NULL on failure.
6691 * LOCKING:
6692 * Inherited from calling layer (may sleep).
6694 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6695 const struct ata_port_info * const * ppi,
6696 int n_ports)
6698 const struct ata_port_info *pi;
6699 struct ata_host *host;
6700 int i, j;
6702 host = ata_host_alloc(dev, n_ports);
6703 if (!host)
6704 return NULL;
6706 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6707 struct ata_port *ap = host->ports[i];
6709 if (ppi[j])
6710 pi = ppi[j++];
6712 ap->pio_mask = pi->pio_mask;
6713 ap->mwdma_mask = pi->mwdma_mask;
6714 ap->udma_mask = pi->udma_mask;
6715 ap->flags |= pi->flags;
6716 ap->link.flags |= pi->link_flags;
6717 ap->ops = pi->port_ops;
6719 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6720 host->ops = pi->port_ops;
6721 if (!host->private_data && pi->private_data)
6722 host->private_data = pi->private_data;
6725 return host;
6729 * ata_host_start - start and freeze ports of an ATA host
6730 * @host: ATA host to start ports for
6732 * Start and then freeze ports of @host. Started status is
6733 * recorded in host->flags, so this function can be called
6734 * multiple times. Ports are guaranteed to get started only
6735 * once. If host->ops isn't initialized yet, its set to the
6736 * first non-dummy port ops.
6738 * LOCKING:
6739 * Inherited from calling layer (may sleep).
6741 * RETURNS:
6742 * 0 if all ports are started successfully, -errno otherwise.
6744 int ata_host_start(struct ata_host *host)
6746 int i, rc;
6748 if (host->flags & ATA_HOST_STARTED)
6749 return 0;
6751 for (i = 0; i < host->n_ports; i++) {
6752 struct ata_port *ap = host->ports[i];
6754 if (!host->ops && !ata_port_is_dummy(ap))
6755 host->ops = ap->ops;
6757 if (ap->ops->port_start) {
6758 rc = ap->ops->port_start(ap);
6759 if (rc) {
6760 ata_port_printk(ap, KERN_ERR, "failed to "
6761 "start port (errno=%d)\n", rc);
6762 goto err_out;
6766 ata_eh_freeze_port(ap);
6769 host->flags |= ATA_HOST_STARTED;
6770 return 0;
6772 err_out:
6773 while (--i >= 0) {
6774 struct ata_port *ap = host->ports[i];
6776 if (ap->ops->port_stop)
6777 ap->ops->port_stop(ap);
6779 return rc;
6783 * ata_sas_host_init - Initialize a host struct
6784 * @host: host to initialize
6785 * @dev: device host is attached to
6786 * @flags: host flags
6787 * @ops: port_ops
6789 * LOCKING:
6790 * PCI/etc. bus probe sem.
6793 /* KILLME - the only user left is ipr */
6794 void ata_host_init(struct ata_host *host, struct device *dev,
6795 unsigned long flags, const struct ata_port_operations *ops)
6797 spin_lock_init(&host->lock);
6798 host->dev = dev;
6799 host->flags = flags;
6800 host->ops = ops;
6804 * ata_host_register - register initialized ATA host
6805 * @host: ATA host to register
6806 * @sht: template for SCSI host
6808 * Register initialized ATA host. @host is allocated using
6809 * ata_host_alloc() and fully initialized by LLD. This function
6810 * starts ports, registers @host with ATA and SCSI layers and
6811 * probe registered devices.
6813 * LOCKING:
6814 * Inherited from calling layer (may sleep).
6816 * RETURNS:
6817 * 0 on success, -errno otherwise.
6819 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6821 int i, rc;
6823 /* host must have been started */
6824 if (!(host->flags & ATA_HOST_STARTED)) {
6825 dev_printk(KERN_ERR, host->dev,
6826 "BUG: trying to register unstarted host\n");
6827 WARN_ON(1);
6828 return -EINVAL;
6831 /* Blow away unused ports. This happens when LLD can't
6832 * determine the exact number of ports to allocate at
6833 * allocation time.
6835 for (i = host->n_ports; host->ports[i]; i++)
6836 kfree(host->ports[i]);
6838 /* give ports names and add SCSI hosts */
6839 for (i = 0; i < host->n_ports; i++)
6840 host->ports[i]->print_id = ata_print_id++;
6842 rc = ata_scsi_add_hosts(host, sht);
6843 if (rc)
6844 return rc;
6846 /* associate with ACPI nodes */
6847 ata_acpi_associate(host);
6849 /* set cable, sata_spd_limit and report */
6850 for (i = 0; i < host->n_ports; i++) {
6851 struct ata_port *ap = host->ports[i];
6852 unsigned long xfer_mask;
6854 /* set SATA cable type if still unset */
6855 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6856 ap->cbl = ATA_CBL_SATA;
6858 /* init sata_spd_limit to the current value */
6859 sata_link_init_spd(&ap->link);
6861 /* print per-port info to dmesg */
6862 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6863 ap->udma_mask);
6865 if (!ata_port_is_dummy(ap)) {
6866 ata_port_printk(ap, KERN_INFO,
6867 "%cATA max %s %s\n",
6868 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6869 ata_mode_string(xfer_mask),
6870 ap->link.eh_info.desc);
6871 ata_ehi_clear_desc(&ap->link.eh_info);
6872 } else
6873 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6876 /* perform each probe synchronously */
6877 DPRINTK("probe begin\n");
6878 for (i = 0; i < host->n_ports; i++) {
6879 struct ata_port *ap = host->ports[i];
6880 int rc;
6882 /* probe */
6883 if (ap->ops->error_handler) {
6884 struct ata_eh_info *ehi = &ap->link.eh_info;
6885 unsigned long flags;
6887 ata_port_probe(ap);
6889 /* kick EH for boot probing */
6890 spin_lock_irqsave(ap->lock, flags);
6892 ehi->probe_mask =
6893 (1 << ata_link_max_devices(&ap->link)) - 1;
6894 ehi->action |= ATA_EH_SOFTRESET;
6895 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6897 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6898 ap->pflags |= ATA_PFLAG_LOADING;
6899 ata_port_schedule_eh(ap);
6901 spin_unlock_irqrestore(ap->lock, flags);
6903 /* wait for EH to finish */
6904 ata_port_wait_eh(ap);
6905 } else {
6906 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6907 rc = ata_bus_probe(ap);
6908 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6910 if (rc) {
6911 /* FIXME: do something useful here?
6912 * Current libata behavior will
6913 * tear down everything when
6914 * the module is removed
6915 * or the h/w is unplugged.
6921 /* probes are done, now scan each port's disk(s) */
6922 DPRINTK("host probe begin\n");
6923 for (i = 0; i < host->n_ports; i++) {
6924 struct ata_port *ap = host->ports[i];
6926 ata_scsi_scan_host(ap, 1);
6929 return 0;
6933 * ata_host_activate - start host, request IRQ and register it
6934 * @host: target ATA host
6935 * @irq: IRQ to request
6936 * @irq_handler: irq_handler used when requesting IRQ
6937 * @irq_flags: irq_flags used when requesting IRQ
6938 * @sht: scsi_host_template to use when registering the host
6940 * After allocating an ATA host and initializing it, most libata
6941 * LLDs perform three steps to activate the host - start host,
6942 * request IRQ and register it. This helper takes necessasry
6943 * arguments and performs the three steps in one go.
6945 * LOCKING:
6946 * Inherited from calling layer (may sleep).
6948 * RETURNS:
6949 * 0 on success, -errno otherwise.
6951 int ata_host_activate(struct ata_host *host, int irq,
6952 irq_handler_t irq_handler, unsigned long irq_flags,
6953 struct scsi_host_template *sht)
6955 int i, rc;
6957 rc = ata_host_start(host);
6958 if (rc)
6959 return rc;
6961 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6962 dev_driver_string(host->dev), host);
6963 if (rc)
6964 return rc;
6966 for (i = 0; i < host->n_ports; i++)
6967 ata_port_desc(host->ports[i], "irq %d", irq);
6969 rc = ata_host_register(host, sht);
6970 /* if failed, just free the IRQ and leave ports alone */
6971 if (rc)
6972 devm_free_irq(host->dev, irq, host);
6974 return rc;
6978 * ata_port_detach - Detach ATA port in prepration of device removal
6979 * @ap: ATA port to be detached
6981 * Detach all ATA devices and the associated SCSI devices of @ap;
6982 * then, remove the associated SCSI host. @ap is guaranteed to
6983 * be quiescent on return from this function.
6985 * LOCKING:
6986 * Kernel thread context (may sleep).
6988 static void ata_port_detach(struct ata_port *ap)
6990 unsigned long flags;
6991 struct ata_link *link;
6992 struct ata_device *dev;
6994 if (!ap->ops->error_handler)
6995 goto skip_eh;
6997 /* tell EH we're leaving & flush EH */
6998 spin_lock_irqsave(ap->lock, flags);
6999 ap->pflags |= ATA_PFLAG_UNLOADING;
7000 spin_unlock_irqrestore(ap->lock, flags);
7002 ata_port_wait_eh(ap);
7004 /* EH is now guaranteed to see UNLOADING, so no new device
7005 * will be attached. Disable all existing devices.
7007 spin_lock_irqsave(ap->lock, flags);
7009 ata_port_for_each_link(link, ap) {
7010 ata_link_for_each_dev(dev, link)
7011 ata_dev_disable(dev);
7014 spin_unlock_irqrestore(ap->lock, flags);
7016 /* Final freeze & EH. All in-flight commands are aborted. EH
7017 * will be skipped and retrials will be terminated with bad
7018 * target.
7020 spin_lock_irqsave(ap->lock, flags);
7021 ata_port_freeze(ap); /* won't be thawed */
7022 spin_unlock_irqrestore(ap->lock, flags);
7024 ata_port_wait_eh(ap);
7025 cancel_rearming_delayed_work(&ap->hotplug_task);
7027 skip_eh:
7028 /* remove the associated SCSI host */
7029 scsi_remove_host(ap->scsi_host);
7033 * ata_host_detach - Detach all ports of an ATA host
7034 * @host: Host to detach
7036 * Detach all ports of @host.
7038 * LOCKING:
7039 * Kernel thread context (may sleep).
7041 void ata_host_detach(struct ata_host *host)
7043 int i;
7045 for (i = 0; i < host->n_ports; i++)
7046 ata_port_detach(host->ports[i]);
7050 * ata_std_ports - initialize ioaddr with standard port offsets.
7051 * @ioaddr: IO address structure to be initialized
7053 * Utility function which initializes data_addr, error_addr,
7054 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7055 * device_addr, status_addr, and command_addr to standard offsets
7056 * relative to cmd_addr.
7058 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7061 void ata_std_ports(struct ata_ioports *ioaddr)
7063 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7064 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7065 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7066 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7067 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7068 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7069 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7070 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7071 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7072 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7076 #ifdef CONFIG_PCI
7079 * ata_pci_remove_one - PCI layer callback for device removal
7080 * @pdev: PCI device that was removed
7082 * PCI layer indicates to libata via this hook that hot-unplug or
7083 * module unload event has occurred. Detach all ports. Resource
7084 * release is handled via devres.
7086 * LOCKING:
7087 * Inherited from PCI layer (may sleep).
7089 void ata_pci_remove_one(struct pci_dev *pdev)
7091 struct device *dev = &pdev->dev;
7092 struct ata_host *host = dev_get_drvdata(dev);
7094 ata_host_detach(host);
7097 /* move to PCI subsystem */
7098 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7100 unsigned long tmp = 0;
7102 switch (bits->width) {
7103 case 1: {
7104 u8 tmp8 = 0;
7105 pci_read_config_byte(pdev, bits->reg, &tmp8);
7106 tmp = tmp8;
7107 break;
7109 case 2: {
7110 u16 tmp16 = 0;
7111 pci_read_config_word(pdev, bits->reg, &tmp16);
7112 tmp = tmp16;
7113 break;
7115 case 4: {
7116 u32 tmp32 = 0;
7117 pci_read_config_dword(pdev, bits->reg, &tmp32);
7118 tmp = tmp32;
7119 break;
7122 default:
7123 return -EINVAL;
7126 tmp &= bits->mask;
7128 return (tmp == bits->val) ? 1 : 0;
7131 #ifdef CONFIG_PM
7132 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7134 pci_save_state(pdev);
7135 pci_disable_device(pdev);
7137 if (mesg.event == PM_EVENT_SUSPEND)
7138 pci_set_power_state(pdev, PCI_D3hot);
7141 int ata_pci_device_do_resume(struct pci_dev *pdev)
7143 int rc;
7145 pci_set_power_state(pdev, PCI_D0);
7146 pci_restore_state(pdev);
7148 rc = pcim_enable_device(pdev);
7149 if (rc) {
7150 dev_printk(KERN_ERR, &pdev->dev,
7151 "failed to enable device after resume (%d)\n", rc);
7152 return rc;
7155 pci_set_master(pdev);
7156 return 0;
7159 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7161 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7162 int rc = 0;
7164 rc = ata_host_suspend(host, mesg);
7165 if (rc)
7166 return rc;
7168 ata_pci_device_do_suspend(pdev, mesg);
7170 return 0;
7173 int ata_pci_device_resume(struct pci_dev *pdev)
7175 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7176 int rc;
7178 rc = ata_pci_device_do_resume(pdev);
7179 if (rc == 0)
7180 ata_host_resume(host);
7181 return rc;
7183 #endif /* CONFIG_PM */
7185 #endif /* CONFIG_PCI */
7188 static int __init ata_init(void)
7190 ata_probe_timeout *= HZ;
7191 ata_wq = create_workqueue("ata");
7192 if (!ata_wq)
7193 return -ENOMEM;
7195 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7196 if (!ata_aux_wq) {
7197 destroy_workqueue(ata_wq);
7198 return -ENOMEM;
7201 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7202 return 0;
7205 static void __exit ata_exit(void)
7207 destroy_workqueue(ata_wq);
7208 destroy_workqueue(ata_aux_wq);
7211 subsys_initcall(ata_init);
7212 module_exit(ata_exit);
7214 static unsigned long ratelimit_time;
7215 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7217 int ata_ratelimit(void)
7219 int rc;
7220 unsigned long flags;
7222 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7224 if (time_after(jiffies, ratelimit_time)) {
7225 rc = 1;
7226 ratelimit_time = jiffies + (HZ/5);
7227 } else
7228 rc = 0;
7230 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7232 return rc;
7236 * ata_wait_register - wait until register value changes
7237 * @reg: IO-mapped register
7238 * @mask: Mask to apply to read register value
7239 * @val: Wait condition
7240 * @interval_msec: polling interval in milliseconds
7241 * @timeout_msec: timeout in milliseconds
7243 * Waiting for some bits of register to change is a common
7244 * operation for ATA controllers. This function reads 32bit LE
7245 * IO-mapped register @reg and tests for the following condition.
7247 * (*@reg & mask) != val
7249 * If the condition is met, it returns; otherwise, the process is
7250 * repeated after @interval_msec until timeout.
7252 * LOCKING:
7253 * Kernel thread context (may sleep)
7255 * RETURNS:
7256 * The final register value.
7258 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7259 unsigned long interval_msec,
7260 unsigned long timeout_msec)
7262 unsigned long timeout;
7263 u32 tmp;
7265 tmp = ioread32(reg);
7267 /* Calculate timeout _after_ the first read to make sure
7268 * preceding writes reach the controller before starting to
7269 * eat away the timeout.
7271 timeout = jiffies + (timeout_msec * HZ) / 1000;
7273 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7274 msleep(interval_msec);
7275 tmp = ioread32(reg);
7278 return tmp;
7282 * Dummy port_ops
7284 static void ata_dummy_noret(struct ata_port *ap) { }
7285 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7286 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7288 static u8 ata_dummy_check_status(struct ata_port *ap)
7290 return ATA_DRDY;
7293 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7295 return AC_ERR_SYSTEM;
7298 const struct ata_port_operations ata_dummy_port_ops = {
7299 .check_status = ata_dummy_check_status,
7300 .check_altstatus = ata_dummy_check_status,
7301 .dev_select = ata_noop_dev_select,
7302 .qc_prep = ata_noop_qc_prep,
7303 .qc_issue = ata_dummy_qc_issue,
7304 .freeze = ata_dummy_noret,
7305 .thaw = ata_dummy_noret,
7306 .error_handler = ata_dummy_noret,
7307 .post_internal_cmd = ata_dummy_qc_noret,
7308 .irq_clear = ata_dummy_noret,
7309 .port_start = ata_dummy_ret0,
7310 .port_stop = ata_dummy_noret,
7313 const struct ata_port_info ata_dummy_port_info = {
7314 .port_ops = &ata_dummy_port_ops,
7318 * libata is essentially a library of internal helper functions for
7319 * low-level ATA host controller drivers. As such, the API/ABI is
7320 * likely to change as new drivers are added and updated.
7321 * Do not depend on ABI/API stability.
7324 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7325 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7326 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7327 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7328 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7329 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7330 EXPORT_SYMBOL_GPL(ata_std_ports);
7331 EXPORT_SYMBOL_GPL(ata_host_init);
7332 EXPORT_SYMBOL_GPL(ata_host_alloc);
7333 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7334 EXPORT_SYMBOL_GPL(ata_host_start);
7335 EXPORT_SYMBOL_GPL(ata_host_register);
7336 EXPORT_SYMBOL_GPL(ata_host_activate);
7337 EXPORT_SYMBOL_GPL(ata_host_detach);
7338 EXPORT_SYMBOL_GPL(ata_sg_init);
7339 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7340 EXPORT_SYMBOL_GPL(ata_hsm_move);
7341 EXPORT_SYMBOL_GPL(ata_qc_complete);
7342 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7343 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7344 EXPORT_SYMBOL_GPL(ata_tf_load);
7345 EXPORT_SYMBOL_GPL(ata_tf_read);
7346 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7347 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7348 EXPORT_SYMBOL_GPL(sata_print_link_status);
7349 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7350 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7351 EXPORT_SYMBOL_GPL(ata_check_status);
7352 EXPORT_SYMBOL_GPL(ata_altstatus);
7353 EXPORT_SYMBOL_GPL(ata_exec_command);
7354 EXPORT_SYMBOL_GPL(ata_port_start);
7355 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7356 EXPORT_SYMBOL_GPL(ata_interrupt);
7357 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7358 EXPORT_SYMBOL_GPL(ata_data_xfer);
7359 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7360 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7361 EXPORT_SYMBOL_GPL(ata_qc_prep);
7362 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7363 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7364 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7365 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7366 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7367 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7368 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7369 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7370 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7371 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7372 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7373 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7374 EXPORT_SYMBOL_GPL(ata_port_probe);
7375 EXPORT_SYMBOL_GPL(ata_dev_disable);
7376 EXPORT_SYMBOL_GPL(sata_set_spd);
7377 EXPORT_SYMBOL_GPL(sata_link_debounce);
7378 EXPORT_SYMBOL_GPL(sata_link_resume);
7379 EXPORT_SYMBOL_GPL(sata_phy_reset);
7380 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7381 EXPORT_SYMBOL_GPL(ata_bus_reset);
7382 EXPORT_SYMBOL_GPL(ata_std_prereset);
7383 EXPORT_SYMBOL_GPL(ata_std_softreset);
7384 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7385 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7386 EXPORT_SYMBOL_GPL(ata_std_postreset);
7387 EXPORT_SYMBOL_GPL(ata_dev_classify);
7388 EXPORT_SYMBOL_GPL(ata_dev_pair);
7389 EXPORT_SYMBOL_GPL(ata_port_disable);
7390 EXPORT_SYMBOL_GPL(ata_ratelimit);
7391 EXPORT_SYMBOL_GPL(ata_wait_register);
7392 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7393 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7394 EXPORT_SYMBOL_GPL(ata_wait_ready);
7395 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7396 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7397 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7398 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7399 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7400 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7401 EXPORT_SYMBOL_GPL(ata_host_intr);
7402 EXPORT_SYMBOL_GPL(sata_scr_valid);
7403 EXPORT_SYMBOL_GPL(sata_scr_read);
7404 EXPORT_SYMBOL_GPL(sata_scr_write);
7405 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7406 EXPORT_SYMBOL_GPL(ata_link_online);
7407 EXPORT_SYMBOL_GPL(ata_link_offline);
7408 #ifdef CONFIG_PM
7409 EXPORT_SYMBOL_GPL(ata_host_suspend);
7410 EXPORT_SYMBOL_GPL(ata_host_resume);
7411 #endif /* CONFIG_PM */
7412 EXPORT_SYMBOL_GPL(ata_id_string);
7413 EXPORT_SYMBOL_GPL(ata_id_c_string);
7414 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7415 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7417 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7418 EXPORT_SYMBOL_GPL(ata_timing_compute);
7419 EXPORT_SYMBOL_GPL(ata_timing_merge);
7421 #ifdef CONFIG_PCI
7422 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7423 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7424 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7425 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7426 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7427 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7428 #ifdef CONFIG_PM
7429 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7430 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7431 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7432 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7433 #endif /* CONFIG_PM */
7434 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7435 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7436 #endif /* CONFIG_PCI */
7438 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7439 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7440 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7441 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7442 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7444 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7445 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7446 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7447 EXPORT_SYMBOL_GPL(ata_port_desc);
7448 #ifdef CONFIG_PCI
7449 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7450 #endif /* CONFIG_PCI */
7451 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7452 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7453 EXPORT_SYMBOL_GPL(ata_link_abort);
7454 EXPORT_SYMBOL_GPL(ata_port_abort);
7455 EXPORT_SYMBOL_GPL(ata_port_freeze);
7456 EXPORT_SYMBOL_GPL(sata_async_notification);
7457 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7458 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7459 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7460 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7461 EXPORT_SYMBOL_GPL(ata_do_eh);
7462 EXPORT_SYMBOL_GPL(ata_irq_on);
7463 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7465 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7466 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7467 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7468 EXPORT_SYMBOL_GPL(ata_cable_sata);