4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq
*s
)
32 ret
= trace_seq_printf(s
, "# compressed entry header\n");
33 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
34 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
35 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
36 ret
= trace_seq_printf(s
, "\n");
37 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING
);
39 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND
);
41 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
64 * |reader| RING BUFFER
66 * +------+ +---+ +---+ +---+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
93 * +------------------------------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
101 * | New +---+ +---+ +---+
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
145 RB_BUFFERS_ON_BIT
= 0,
146 RB_BUFFERS_DISABLED_BIT
= 1,
150 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
151 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
154 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
168 EXPORT_SYMBOL_GPL(tracing_on
);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
182 EXPORT_SYMBOL_GPL(tracing_off
);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags
== RB_BUFFERS_ON
;
202 EXPORT_SYMBOL_GPL(tracing_is_on
);
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 RB_LEN_TIME_EXTEND
= 8,
214 RB_LEN_TIME_STAMP
= 16,
217 static inline int rb_null_event(struct ring_buffer_event
*event
)
219 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
222 static void rb_event_set_padding(struct ring_buffer_event
*event
)
224 /* padding has a NULL time_delta */
225 event
->type_len
= RINGBUF_TYPE_PADDING
;
226 event
->time_delta
= 0;
230 rb_event_data_length(struct ring_buffer_event
*event
)
235 length
= event
->type_len
* RB_ALIGNMENT
;
237 length
= event
->array
[0];
238 return length
+ RB_EVNT_HDR_SIZE
;
241 /* inline for ring buffer fast paths */
243 rb_event_length(struct ring_buffer_event
*event
)
245 switch (event
->type_len
) {
246 case RINGBUF_TYPE_PADDING
:
247 if (rb_null_event(event
))
250 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
252 case RINGBUF_TYPE_TIME_EXTEND
:
253 return RB_LEN_TIME_EXTEND
;
255 case RINGBUF_TYPE_TIME_STAMP
:
256 return RB_LEN_TIME_STAMP
;
258 case RINGBUF_TYPE_DATA
:
259 return rb_event_data_length(event
);
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
271 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
273 unsigned length
= rb_event_length(event
);
274 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
276 length
-= RB_EVNT_HDR_SIZE
;
277 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
278 length
-= sizeof(event
->array
[0]);
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
283 /* inline for ring buffer fast paths */
285 rb_event_data(struct ring_buffer_event
*event
)
287 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
288 /* If length is in len field, then array[0] has the data */
290 return (void *)&event
->array
[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event
->array
[1];
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
299 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
301 return rb_event_data(event
);
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
312 struct buffer_data_page
{
313 u64 time_stamp
; /* page time stamp */
314 local_t commit
; /* write committed index */
315 unsigned char data
[]; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
327 struct list_head list
; /* list of buffer pages */
328 local_t write
; /* index for next write */
329 unsigned read
; /* index for next read */
330 local_t entries
; /* entries on this page */
331 struct buffer_data_page
*page
; /* Actual data page */
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
344 * The counter is 20 bits, and the state data is 12.
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
349 static void rb_init_page(struct buffer_data_page
*bpage
)
351 local_set(&bpage
->commit
, 0);
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
358 * Returns the amount of data on the page, including buffer page header.
360 size_t ring_buffer_page_len(void *page
)
362 return local_read(&((struct buffer_data_page
*)page
)->commit
)
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370 static void free_buffer_page(struct buffer_page
*bpage
)
372 free_page((unsigned long)bpage
->page
);
377 * We need to fit the time_stamp delta into 27 bits.
379 static inline int test_time_stamp(u64 delta
)
381 if (delta
& TS_DELTA_TEST
)
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
394 int ring_buffer_print_page_header(struct trace_seq
*s
)
396 struct buffer_data_page field
;
399 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field
.time_stamp
),
402 (unsigned int)is_signed_type(u64
));
404 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field
), commit
),
407 (unsigned int)sizeof(field
.commit
),
408 (unsigned int)is_signed_type(long));
410 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field
), data
),
413 (unsigned int)BUF_PAGE_SIZE
,
414 (unsigned int)is_signed_type(char));
420 * head_page == tail_page && head == tail then buffer is empty.
422 struct ring_buffer_per_cpu
{
424 struct ring_buffer
*buffer
;
425 spinlock_t reader_lock
; /* serialize readers */
426 arch_spinlock_t lock
;
427 struct lock_class_key lock_key
;
428 struct list_head
*pages
;
429 struct buffer_page
*head_page
; /* read from head */
430 struct buffer_page
*tail_page
; /* write to tail */
431 struct buffer_page
*commit_page
; /* committed pages */
432 struct buffer_page
*reader_page
;
433 local_t commit_overrun
;
441 atomic_t record_disabled
;
448 atomic_t record_disabled
;
449 cpumask_var_t cpumask
;
451 struct lock_class_key
*reader_lock_key
;
455 struct ring_buffer_per_cpu
**buffers
;
457 #ifdef CONFIG_HOTPLUG_CPU
458 struct notifier_block cpu_notify
;
463 struct ring_buffer_iter
{
464 struct ring_buffer_per_cpu
*cpu_buffer
;
466 struct buffer_page
*head_page
;
470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
471 #define RB_WARN_ON(b, cond) \
473 int _____ret = unlikely(cond); \
475 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
476 struct ring_buffer_per_cpu *__b = \
478 atomic_inc(&__b->buffer->record_disabled); \
480 atomic_inc(&b->record_disabled); \
486 /* Up this if you want to test the TIME_EXTENTS and normalization */
487 #define DEBUG_SHIFT 0
489 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
491 /* shift to debug/test normalization and TIME_EXTENTS */
492 return buffer
->clock() << DEBUG_SHIFT
;
495 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
499 preempt_disable_notrace();
500 time
= rb_time_stamp(buffer
);
501 preempt_enable_no_resched_notrace();
505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
507 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
510 /* Just stupid testing the normalize function and deltas */
513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
516 * Making the ring buffer lockless makes things tricky.
517 * Although writes only happen on the CPU that they are on,
518 * and they only need to worry about interrupts. Reads can
521 * The reader page is always off the ring buffer, but when the
522 * reader finishes with a page, it needs to swap its page with
523 * a new one from the buffer. The reader needs to take from
524 * the head (writes go to the tail). But if a writer is in overwrite
525 * mode and wraps, it must push the head page forward.
527 * Here lies the problem.
529 * The reader must be careful to replace only the head page, and
530 * not another one. As described at the top of the file in the
531 * ASCII art, the reader sets its old page to point to the next
532 * page after head. It then sets the page after head to point to
533 * the old reader page. But if the writer moves the head page
534 * during this operation, the reader could end up with the tail.
536 * We use cmpxchg to help prevent this race. We also do something
537 * special with the page before head. We set the LSB to 1.
539 * When the writer must push the page forward, it will clear the
540 * bit that points to the head page, move the head, and then set
541 * the bit that points to the new head page.
543 * We also don't want an interrupt coming in and moving the head
544 * page on another writer. Thus we use the second LSB to catch
547 * head->list->prev->next bit 1 bit 0
550 * Points to head page 0 1
553 * Note we can not trust the prev pointer of the head page, because:
555 * +----+ +-----+ +-----+
556 * | |------>| T |---X--->| N |
558 * +----+ +-----+ +-----+
561 * +----------| R |----------+ |
565 * Key: ---X--> HEAD flag set in pointer
570 * (see __rb_reserve_next() to see where this happens)
572 * What the above shows is that the reader just swapped out
573 * the reader page with a page in the buffer, but before it
574 * could make the new header point back to the new page added
575 * it was preempted by a writer. The writer moved forward onto
576 * the new page added by the reader and is about to move forward
579 * You can see, it is legitimate for the previous pointer of
580 * the head (or any page) not to point back to itself. But only
584 #define RB_PAGE_NORMAL 0UL
585 #define RB_PAGE_HEAD 1UL
586 #define RB_PAGE_UPDATE 2UL
589 #define RB_FLAG_MASK 3UL
591 /* PAGE_MOVED is not part of the mask */
592 #define RB_PAGE_MOVED 4UL
595 * rb_list_head - remove any bit
597 static struct list_head
*rb_list_head(struct list_head
*list
)
599 unsigned long val
= (unsigned long)list
;
601 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
605 * rb_is_head_page - test if the given page is the head page
607 * Because the reader may move the head_page pointer, we can
608 * not trust what the head page is (it may be pointing to
609 * the reader page). But if the next page is a header page,
610 * its flags will be non zero.
613 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
614 struct buffer_page
*page
, struct list_head
*list
)
618 val
= (unsigned long)list
->next
;
620 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
621 return RB_PAGE_MOVED
;
623 return val
& RB_FLAG_MASK
;
629 * The unique thing about the reader page, is that, if the
630 * writer is ever on it, the previous pointer never points
631 * back to the reader page.
633 static int rb_is_reader_page(struct buffer_page
*page
)
635 struct list_head
*list
= page
->list
.prev
;
637 return rb_list_head(list
->next
) != &page
->list
;
641 * rb_set_list_to_head - set a list_head to be pointing to head.
643 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
644 struct list_head
*list
)
648 ptr
= (unsigned long *)&list
->next
;
649 *ptr
|= RB_PAGE_HEAD
;
650 *ptr
&= ~RB_PAGE_UPDATE
;
654 * rb_head_page_activate - sets up head page
656 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
658 struct buffer_page
*head
;
660 head
= cpu_buffer
->head_page
;
665 * Set the previous list pointer to have the HEAD flag.
667 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
670 static void rb_list_head_clear(struct list_head
*list
)
672 unsigned long *ptr
= (unsigned long *)&list
->next
;
674 *ptr
&= ~RB_FLAG_MASK
;
678 * rb_head_page_dactivate - clears head page ptr (for free list)
681 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
683 struct list_head
*hd
;
685 /* Go through the whole list and clear any pointers found. */
686 rb_list_head_clear(cpu_buffer
->pages
);
688 list_for_each(hd
, cpu_buffer
->pages
)
689 rb_list_head_clear(hd
);
692 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
693 struct buffer_page
*head
,
694 struct buffer_page
*prev
,
695 int old_flag
, int new_flag
)
697 struct list_head
*list
;
698 unsigned long val
= (unsigned long)&head
->list
;
703 val
&= ~RB_FLAG_MASK
;
705 ret
= cmpxchg((unsigned long *)&list
->next
,
706 val
| old_flag
, val
| new_flag
);
708 /* check if the reader took the page */
709 if ((ret
& ~RB_FLAG_MASK
) != val
)
710 return RB_PAGE_MOVED
;
712 return ret
& RB_FLAG_MASK
;
715 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
716 struct buffer_page
*head
,
717 struct buffer_page
*prev
,
720 return rb_head_page_set(cpu_buffer
, head
, prev
,
721 old_flag
, RB_PAGE_UPDATE
);
724 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
725 struct buffer_page
*head
,
726 struct buffer_page
*prev
,
729 return rb_head_page_set(cpu_buffer
, head
, prev
,
730 old_flag
, RB_PAGE_HEAD
);
733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
734 struct buffer_page
*head
,
735 struct buffer_page
*prev
,
738 return rb_head_page_set(cpu_buffer
, head
, prev
,
739 old_flag
, RB_PAGE_NORMAL
);
742 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
743 struct buffer_page
**bpage
)
745 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
747 *bpage
= list_entry(p
, struct buffer_page
, list
);
750 static struct buffer_page
*
751 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
753 struct buffer_page
*head
;
754 struct buffer_page
*page
;
755 struct list_head
*list
;
758 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
762 list
= cpu_buffer
->pages
;
763 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
766 page
= head
= cpu_buffer
->head_page
;
768 * It is possible that the writer moves the header behind
769 * where we started, and we miss in one loop.
770 * A second loop should grab the header, but we'll do
771 * three loops just because I'm paranoid.
773 for (i
= 0; i
< 3; i
++) {
775 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
776 cpu_buffer
->head_page
= page
;
779 rb_inc_page(cpu_buffer
, &page
);
780 } while (page
!= head
);
783 RB_WARN_ON(cpu_buffer
, 1);
788 static int rb_head_page_replace(struct buffer_page
*old
,
789 struct buffer_page
*new)
791 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
795 val
= *ptr
& ~RB_FLAG_MASK
;
798 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
804 * rb_tail_page_update - move the tail page forward
806 * Returns 1 if moved tail page, 0 if someone else did.
808 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
809 struct buffer_page
*tail_page
,
810 struct buffer_page
*next_page
)
812 struct buffer_page
*old_tail
;
813 unsigned long old_entries
;
814 unsigned long old_write
;
818 * The tail page now needs to be moved forward.
820 * We need to reset the tail page, but without messing
821 * with possible erasing of data brought in by interrupts
822 * that have moved the tail page and are currently on it.
824 * We add a counter to the write field to denote this.
826 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
827 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
830 * Just make sure we have seen our old_write and synchronize
831 * with any interrupts that come in.
836 * If the tail page is still the same as what we think
837 * it is, then it is up to us to update the tail
840 if (tail_page
== cpu_buffer
->tail_page
) {
841 /* Zero the write counter */
842 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
843 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
846 * This will only succeed if an interrupt did
847 * not come in and change it. In which case, we
848 * do not want to modify it.
850 * We add (void) to let the compiler know that we do not care
851 * about the return value of these functions. We use the
852 * cmpxchg to only update if an interrupt did not already
853 * do it for us. If the cmpxchg fails, we don't care.
855 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
856 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
859 * No need to worry about races with clearing out the commit.
860 * it only can increment when a commit takes place. But that
861 * only happens in the outer most nested commit.
863 local_set(&next_page
->page
->commit
, 0);
865 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
866 tail_page
, next_page
);
868 if (old_tail
== tail_page
)
875 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
876 struct buffer_page
*bpage
)
878 unsigned long val
= (unsigned long)bpage
;
880 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
887 * rb_check_list - make sure a pointer to a list has the last bits zero
889 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
890 struct list_head
*list
)
892 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
894 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
900 * check_pages - integrity check of buffer pages
901 * @cpu_buffer: CPU buffer with pages to test
903 * As a safety measure we check to make sure the data pages have not
906 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
908 struct list_head
*head
= cpu_buffer
->pages
;
909 struct buffer_page
*bpage
, *tmp
;
911 rb_head_page_deactivate(cpu_buffer
);
913 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
915 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
918 if (rb_check_list(cpu_buffer
, head
))
921 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
922 if (RB_WARN_ON(cpu_buffer
,
923 bpage
->list
.next
->prev
!= &bpage
->list
))
925 if (RB_WARN_ON(cpu_buffer
,
926 bpage
->list
.prev
->next
!= &bpage
->list
))
928 if (rb_check_list(cpu_buffer
, &bpage
->list
))
932 rb_head_page_activate(cpu_buffer
);
937 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
940 struct buffer_page
*bpage
, *tmp
;
947 for (i
= 0; i
< nr_pages
; i
++) {
948 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
949 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
953 rb_check_bpage(cpu_buffer
, bpage
);
955 list_add(&bpage
->list
, &pages
);
957 addr
= __get_free_page(GFP_KERNEL
);
960 bpage
->page
= (void *)addr
;
961 rb_init_page(bpage
->page
);
965 * The ring buffer page list is a circular list that does not
966 * start and end with a list head. All page list items point to
969 cpu_buffer
->pages
= pages
.next
;
972 rb_check_pages(cpu_buffer
);
977 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
978 list_del_init(&bpage
->list
);
979 free_buffer_page(bpage
);
984 static struct ring_buffer_per_cpu
*
985 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
987 struct ring_buffer_per_cpu
*cpu_buffer
;
988 struct buffer_page
*bpage
;
992 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
993 GFP_KERNEL
, cpu_to_node(cpu
));
997 cpu_buffer
->cpu
= cpu
;
998 cpu_buffer
->buffer
= buffer
;
999 spin_lock_init(&cpu_buffer
->reader_lock
);
1000 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1001 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1003 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1004 GFP_KERNEL
, cpu_to_node(cpu
));
1006 goto fail_free_buffer
;
1008 rb_check_bpage(cpu_buffer
, bpage
);
1010 cpu_buffer
->reader_page
= bpage
;
1011 addr
= __get_free_page(GFP_KERNEL
);
1013 goto fail_free_reader
;
1014 bpage
->page
= (void *)addr
;
1015 rb_init_page(bpage
->page
);
1017 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1019 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1021 goto fail_free_reader
;
1023 cpu_buffer
->head_page
1024 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1025 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1027 rb_head_page_activate(cpu_buffer
);
1032 free_buffer_page(cpu_buffer
->reader_page
);
1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1041 struct list_head
*head
= cpu_buffer
->pages
;
1042 struct buffer_page
*bpage
, *tmp
;
1044 free_buffer_page(cpu_buffer
->reader_page
);
1046 rb_head_page_deactivate(cpu_buffer
);
1049 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1050 list_del_init(&bpage
->list
);
1051 free_buffer_page(bpage
);
1053 bpage
= list_entry(head
, struct buffer_page
, list
);
1054 free_buffer_page(bpage
);
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 static int rb_cpu_notify(struct notifier_block
*self
,
1062 unsigned long action
, void *hcpu
);
1066 * ring_buffer_alloc - allocate a new ring_buffer
1067 * @size: the size in bytes per cpu that is needed.
1068 * @flags: attributes to set for the ring buffer.
1070 * Currently the only flag that is available is the RB_FL_OVERWRITE
1071 * flag. This flag means that the buffer will overwrite old data
1072 * when the buffer wraps. If this flag is not set, the buffer will
1073 * drop data when the tail hits the head.
1075 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1076 struct lock_class_key
*key
)
1078 struct ring_buffer
*buffer
;
1082 /* keep it in its own cache line */
1083 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1088 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1089 goto fail_free_buffer
;
1091 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1092 buffer
->flags
= flags
;
1093 buffer
->clock
= trace_clock_local
;
1094 buffer
->reader_lock_key
= key
;
1096 /* need at least two pages */
1097 if (buffer
->pages
< 2)
1101 * In case of non-hotplug cpu, if the ring-buffer is allocated
1102 * in early initcall, it will not be notified of secondary cpus.
1103 * In that off case, we need to allocate for all possible cpus.
1105 #ifdef CONFIG_HOTPLUG_CPU
1107 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1109 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1111 buffer
->cpus
= nr_cpu_ids
;
1113 bsize
= sizeof(void *) * nr_cpu_ids
;
1114 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1116 if (!buffer
->buffers
)
1117 goto fail_free_cpumask
;
1119 for_each_buffer_cpu(buffer
, cpu
) {
1120 buffer
->buffers
[cpu
] =
1121 rb_allocate_cpu_buffer(buffer
, cpu
);
1122 if (!buffer
->buffers
[cpu
])
1123 goto fail_free_buffers
;
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1128 buffer
->cpu_notify
.priority
= 0;
1129 register_cpu_notifier(&buffer
->cpu_notify
);
1133 mutex_init(&buffer
->mutex
);
1138 for_each_buffer_cpu(buffer
, cpu
) {
1139 if (buffer
->buffers
[cpu
])
1140 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1142 kfree(buffer
->buffers
);
1145 free_cpumask_var(buffer
->cpumask
);
1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1155 * ring_buffer_free - free a ring buffer.
1156 * @buffer: the buffer to free.
1159 ring_buffer_free(struct ring_buffer
*buffer
)
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 unregister_cpu_notifier(&buffer
->cpu_notify
);
1169 for_each_buffer_cpu(buffer
, cpu
)
1170 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1174 kfree(buffer
->buffers
);
1175 free_cpumask_var(buffer
->cpumask
);
1179 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1181 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1184 buffer
->clock
= clock
;
1187 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1190 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1192 struct buffer_page
*bpage
;
1193 struct list_head
*p
;
1196 spin_lock_irq(&cpu_buffer
->reader_lock
);
1197 rb_head_page_deactivate(cpu_buffer
);
1199 for (i
= 0; i
< nr_pages
; i
++) {
1200 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1202 p
= cpu_buffer
->pages
->next
;
1203 bpage
= list_entry(p
, struct buffer_page
, list
);
1204 list_del_init(&bpage
->list
);
1205 free_buffer_page(bpage
);
1207 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1210 rb_reset_cpu(cpu_buffer
);
1211 rb_check_pages(cpu_buffer
);
1213 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1217 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1218 struct list_head
*pages
, unsigned nr_pages
)
1220 struct buffer_page
*bpage
;
1221 struct list_head
*p
;
1224 spin_lock_irq(&cpu_buffer
->reader_lock
);
1225 rb_head_page_deactivate(cpu_buffer
);
1227 for (i
= 0; i
< nr_pages
; i
++) {
1228 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1231 bpage
= list_entry(p
, struct buffer_page
, list
);
1232 list_del_init(&bpage
->list
);
1233 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1235 rb_reset_cpu(cpu_buffer
);
1236 rb_check_pages(cpu_buffer
);
1238 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1242 * ring_buffer_resize - resize the ring buffer
1243 * @buffer: the buffer to resize.
1244 * @size: the new size.
1246 * Minimum size is 2 * BUF_PAGE_SIZE.
1248 * Returns -1 on failure.
1250 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1252 struct ring_buffer_per_cpu
*cpu_buffer
;
1253 unsigned nr_pages
, rm_pages
, new_pages
;
1254 struct buffer_page
*bpage
, *tmp
;
1255 unsigned long buffer_size
;
1261 * Always succeed at resizing a non-existent buffer:
1266 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1267 size
*= BUF_PAGE_SIZE
;
1268 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1270 /* we need a minimum of two pages */
1271 if (size
< BUF_PAGE_SIZE
* 2)
1272 size
= BUF_PAGE_SIZE
* 2;
1274 if (size
== buffer_size
)
1277 atomic_inc(&buffer
->record_disabled
);
1279 /* Make sure all writers are done with this buffer. */
1280 synchronize_sched();
1282 mutex_lock(&buffer
->mutex
);
1285 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1287 if (size
< buffer_size
) {
1289 /* easy case, just free pages */
1290 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1293 rm_pages
= buffer
->pages
- nr_pages
;
1295 for_each_buffer_cpu(buffer
, cpu
) {
1296 cpu_buffer
= buffer
->buffers
[cpu
];
1297 rb_remove_pages(cpu_buffer
, rm_pages
);
1303 * This is a bit more difficult. We only want to add pages
1304 * when we can allocate enough for all CPUs. We do this
1305 * by allocating all the pages and storing them on a local
1306 * link list. If we succeed in our allocation, then we
1307 * add these pages to the cpu_buffers. Otherwise we just free
1308 * them all and return -ENOMEM;
1310 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1313 new_pages
= nr_pages
- buffer
->pages
;
1315 for_each_buffer_cpu(buffer
, cpu
) {
1316 for (i
= 0; i
< new_pages
; i
++) {
1317 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1319 GFP_KERNEL
, cpu_to_node(cpu
));
1322 list_add(&bpage
->list
, &pages
);
1323 addr
= __get_free_page(GFP_KERNEL
);
1326 bpage
->page
= (void *)addr
;
1327 rb_init_page(bpage
->page
);
1331 for_each_buffer_cpu(buffer
, cpu
) {
1332 cpu_buffer
= buffer
->buffers
[cpu
];
1333 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1336 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1340 buffer
->pages
= nr_pages
;
1342 mutex_unlock(&buffer
->mutex
);
1344 atomic_dec(&buffer
->record_disabled
);
1349 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1350 list_del_init(&bpage
->list
);
1351 free_buffer_page(bpage
);
1354 mutex_unlock(&buffer
->mutex
);
1355 atomic_dec(&buffer
->record_disabled
);
1359 * Something went totally wrong, and we are too paranoid
1360 * to even clean up the mess.
1364 mutex_unlock(&buffer
->mutex
);
1365 atomic_dec(&buffer
->record_disabled
);
1368 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1370 static inline void *
1371 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1373 return bpage
->data
+ index
;
1376 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1378 return bpage
->page
->data
+ index
;
1381 static inline struct ring_buffer_event
*
1382 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1384 return __rb_page_index(cpu_buffer
->reader_page
,
1385 cpu_buffer
->reader_page
->read
);
1388 static inline struct ring_buffer_event
*
1389 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1391 return __rb_page_index(iter
->head_page
, iter
->head
);
1394 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1396 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1399 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1401 return local_read(&bpage
->page
->commit
);
1404 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1406 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1409 /* Size is determined by what has been commited */
1410 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1412 return rb_page_commit(bpage
);
1415 static inline unsigned
1416 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1418 return rb_page_commit(cpu_buffer
->commit_page
);
1421 static inline unsigned
1422 rb_event_index(struct ring_buffer_event
*event
)
1424 unsigned long addr
= (unsigned long)event
;
1426 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1430 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1431 struct ring_buffer_event
*event
)
1433 unsigned long addr
= (unsigned long)event
;
1434 unsigned long index
;
1436 index
= rb_event_index(event
);
1439 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1440 rb_commit_index(cpu_buffer
) == index
;
1444 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1446 unsigned long max_count
;
1449 * We only race with interrupts and NMIs on this CPU.
1450 * If we own the commit event, then we can commit
1451 * all others that interrupted us, since the interruptions
1452 * are in stack format (they finish before they come
1453 * back to us). This allows us to do a simple loop to
1454 * assign the commit to the tail.
1457 max_count
= cpu_buffer
->buffer
->pages
* 100;
1459 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1460 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1462 if (RB_WARN_ON(cpu_buffer
,
1463 rb_is_reader_page(cpu_buffer
->tail_page
)))
1465 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1466 rb_page_write(cpu_buffer
->commit_page
));
1467 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1468 cpu_buffer
->write_stamp
=
1469 cpu_buffer
->commit_page
->page
->time_stamp
;
1470 /* add barrier to keep gcc from optimizing too much */
1473 while (rb_commit_index(cpu_buffer
) !=
1474 rb_page_write(cpu_buffer
->commit_page
)) {
1476 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1477 rb_page_write(cpu_buffer
->commit_page
));
1478 RB_WARN_ON(cpu_buffer
,
1479 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1484 /* again, keep gcc from optimizing */
1488 * If an interrupt came in just after the first while loop
1489 * and pushed the tail page forward, we will be left with
1490 * a dangling commit that will never go forward.
1492 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1496 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1498 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1499 cpu_buffer
->reader_page
->read
= 0;
1502 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1504 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1507 * The iterator could be on the reader page (it starts there).
1508 * But the head could have moved, since the reader was
1509 * found. Check for this case and assign the iterator
1510 * to the head page instead of next.
1512 if (iter
->head_page
== cpu_buffer
->reader_page
)
1513 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1515 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1517 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1522 * ring_buffer_update_event - update event type and data
1523 * @event: the even to update
1524 * @type: the type of event
1525 * @length: the size of the event field in the ring buffer
1527 * Update the type and data fields of the event. The length
1528 * is the actual size that is written to the ring buffer,
1529 * and with this, we can determine what to place into the
1533 rb_update_event(struct ring_buffer_event
*event
,
1534 unsigned type
, unsigned length
)
1536 event
->type_len
= type
;
1540 case RINGBUF_TYPE_PADDING
:
1541 case RINGBUF_TYPE_TIME_EXTEND
:
1542 case RINGBUF_TYPE_TIME_STAMP
:
1546 length
-= RB_EVNT_HDR_SIZE
;
1547 if (length
> RB_MAX_SMALL_DATA
)
1548 event
->array
[0] = length
;
1550 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1558 * rb_handle_head_page - writer hit the head page
1560 * Returns: +1 to retry page
1565 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1566 struct buffer_page
*tail_page
,
1567 struct buffer_page
*next_page
)
1569 struct buffer_page
*new_head
;
1574 entries
= rb_page_entries(next_page
);
1577 * The hard part is here. We need to move the head
1578 * forward, and protect against both readers on
1579 * other CPUs and writers coming in via interrupts.
1581 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1585 * type can be one of four:
1586 * NORMAL - an interrupt already moved it for us
1587 * HEAD - we are the first to get here.
1588 * UPDATE - we are the interrupt interrupting
1590 * MOVED - a reader on another CPU moved the next
1591 * pointer to its reader page. Give up
1598 * We changed the head to UPDATE, thus
1599 * it is our responsibility to update
1602 local_add(entries
, &cpu_buffer
->overrun
);
1605 * The entries will be zeroed out when we move the
1609 /* still more to do */
1612 case RB_PAGE_UPDATE
:
1614 * This is an interrupt that interrupt the
1615 * previous update. Still more to do.
1618 case RB_PAGE_NORMAL
:
1620 * An interrupt came in before the update
1621 * and processed this for us.
1622 * Nothing left to do.
1627 * The reader is on another CPU and just did
1628 * a swap with our next_page.
1633 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1638 * Now that we are here, the old head pointer is
1639 * set to UPDATE. This will keep the reader from
1640 * swapping the head page with the reader page.
1641 * The reader (on another CPU) will spin till
1644 * We just need to protect against interrupts
1645 * doing the job. We will set the next pointer
1646 * to HEAD. After that, we set the old pointer
1647 * to NORMAL, but only if it was HEAD before.
1648 * otherwise we are an interrupt, and only
1649 * want the outer most commit to reset it.
1651 new_head
= next_page
;
1652 rb_inc_page(cpu_buffer
, &new_head
);
1654 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1658 * Valid returns are:
1659 * HEAD - an interrupt came in and already set it.
1660 * NORMAL - One of two things:
1661 * 1) We really set it.
1662 * 2) A bunch of interrupts came in and moved
1663 * the page forward again.
1667 case RB_PAGE_NORMAL
:
1671 RB_WARN_ON(cpu_buffer
, 1);
1676 * It is possible that an interrupt came in,
1677 * set the head up, then more interrupts came in
1678 * and moved it again. When we get back here,
1679 * the page would have been set to NORMAL but we
1680 * just set it back to HEAD.
1682 * How do you detect this? Well, if that happened
1683 * the tail page would have moved.
1685 if (ret
== RB_PAGE_NORMAL
) {
1687 * If the tail had moved passed next, then we need
1688 * to reset the pointer.
1690 if (cpu_buffer
->tail_page
!= tail_page
&&
1691 cpu_buffer
->tail_page
!= next_page
)
1692 rb_head_page_set_normal(cpu_buffer
, new_head
,
1698 * If this was the outer most commit (the one that
1699 * changed the original pointer from HEAD to UPDATE),
1700 * then it is up to us to reset it to NORMAL.
1702 if (type
== RB_PAGE_HEAD
) {
1703 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1706 if (RB_WARN_ON(cpu_buffer
,
1707 ret
!= RB_PAGE_UPDATE
))
1714 static unsigned rb_calculate_event_length(unsigned length
)
1716 struct ring_buffer_event event
; /* Used only for sizeof array */
1718 /* zero length can cause confusions */
1722 if (length
> RB_MAX_SMALL_DATA
)
1723 length
+= sizeof(event
.array
[0]);
1725 length
+= RB_EVNT_HDR_SIZE
;
1726 length
= ALIGN(length
, RB_ALIGNMENT
);
1732 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1733 struct buffer_page
*tail_page
,
1734 unsigned long tail
, unsigned long length
)
1736 struct ring_buffer_event
*event
;
1739 * Only the event that crossed the page boundary
1740 * must fill the old tail_page with padding.
1742 if (tail
>= BUF_PAGE_SIZE
) {
1743 local_sub(length
, &tail_page
->write
);
1747 event
= __rb_page_index(tail_page
, tail
);
1748 kmemcheck_annotate_bitfield(event
, bitfield
);
1751 * If this event is bigger than the minimum size, then
1752 * we need to be careful that we don't subtract the
1753 * write counter enough to allow another writer to slip
1755 * We put in a discarded commit instead, to make sure
1756 * that this space is not used again.
1758 * If we are less than the minimum size, we don't need to
1761 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1762 /* No room for any events */
1764 /* Mark the rest of the page with padding */
1765 rb_event_set_padding(event
);
1767 /* Set the write back to the previous setting */
1768 local_sub(length
, &tail_page
->write
);
1772 /* Put in a discarded event */
1773 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1774 event
->type_len
= RINGBUF_TYPE_PADDING
;
1775 /* time delta must be non zero */
1776 event
->time_delta
= 1;
1778 /* Set write to end of buffer */
1779 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1780 local_sub(length
, &tail_page
->write
);
1783 static struct ring_buffer_event
*
1784 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1785 unsigned long length
, unsigned long tail
,
1786 struct buffer_page
*tail_page
, u64
*ts
)
1788 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1789 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1790 struct buffer_page
*next_page
;
1793 next_page
= tail_page
;
1795 rb_inc_page(cpu_buffer
, &next_page
);
1798 * If for some reason, we had an interrupt storm that made
1799 * it all the way around the buffer, bail, and warn
1802 if (unlikely(next_page
== commit_page
)) {
1803 local_inc(&cpu_buffer
->commit_overrun
);
1808 * This is where the fun begins!
1810 * We are fighting against races between a reader that
1811 * could be on another CPU trying to swap its reader
1812 * page with the buffer head.
1814 * We are also fighting against interrupts coming in and
1815 * moving the head or tail on us as well.
1817 * If the next page is the head page then we have filled
1818 * the buffer, unless the commit page is still on the
1821 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1824 * If the commit is not on the reader page, then
1825 * move the header page.
1827 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1829 * If we are not in overwrite mode,
1830 * this is easy, just stop here.
1832 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1835 ret
= rb_handle_head_page(cpu_buffer
,
1844 * We need to be careful here too. The
1845 * commit page could still be on the reader
1846 * page. We could have a small buffer, and
1847 * have filled up the buffer with events
1848 * from interrupts and such, and wrapped.
1850 * Note, if the tail page is also the on the
1851 * reader_page, we let it move out.
1853 if (unlikely((cpu_buffer
->commit_page
!=
1854 cpu_buffer
->tail_page
) &&
1855 (cpu_buffer
->commit_page
==
1856 cpu_buffer
->reader_page
))) {
1857 local_inc(&cpu_buffer
->commit_overrun
);
1863 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1866 * Nested commits always have zero deltas, so
1867 * just reread the time stamp
1869 *ts
= rb_time_stamp(buffer
);
1870 next_page
->page
->time_stamp
= *ts
;
1875 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1877 /* fail and let the caller try again */
1878 return ERR_PTR(-EAGAIN
);
1882 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1887 static struct ring_buffer_event
*
1888 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1889 unsigned type
, unsigned long length
, u64
*ts
)
1891 struct buffer_page
*tail_page
;
1892 struct ring_buffer_event
*event
;
1893 unsigned long tail
, write
;
1895 tail_page
= cpu_buffer
->tail_page
;
1896 write
= local_add_return(length
, &tail_page
->write
);
1898 /* set write to only the index of the write */
1899 write
&= RB_WRITE_MASK
;
1900 tail
= write
- length
;
1902 /* See if we shot pass the end of this buffer page */
1903 if (write
> BUF_PAGE_SIZE
)
1904 return rb_move_tail(cpu_buffer
, length
, tail
,
1907 /* We reserved something on the buffer */
1909 event
= __rb_page_index(tail_page
, tail
);
1910 kmemcheck_annotate_bitfield(event
, bitfield
);
1911 rb_update_event(event
, type
, length
);
1913 /* The passed in type is zero for DATA */
1915 local_inc(&tail_page
->entries
);
1918 * If this is the first commit on the page, then update
1922 tail_page
->page
->time_stamp
= *ts
;
1928 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
1929 struct ring_buffer_event
*event
)
1931 unsigned long new_index
, old_index
;
1932 struct buffer_page
*bpage
;
1933 unsigned long index
;
1936 new_index
= rb_event_index(event
);
1937 old_index
= new_index
+ rb_event_length(event
);
1938 addr
= (unsigned long)event
;
1941 bpage
= cpu_buffer
->tail_page
;
1943 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
1944 unsigned long write_mask
=
1945 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
1947 * This is on the tail page. It is possible that
1948 * a write could come in and move the tail page
1949 * and write to the next page. That is fine
1950 * because we just shorten what is on this page.
1952 old_index
+= write_mask
;
1953 new_index
+= write_mask
;
1954 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
1955 if (index
== old_index
)
1959 /* could not discard */
1964 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
1965 u64
*ts
, u64
*delta
)
1967 struct ring_buffer_event
*event
;
1971 if (unlikely(*delta
> (1ULL << 59) && !once
++)) {
1972 printk(KERN_WARNING
"Delta way too big! %llu"
1973 " ts=%llu write stamp = %llu\n",
1974 (unsigned long long)*delta
,
1975 (unsigned long long)*ts
,
1976 (unsigned long long)cpu_buffer
->write_stamp
);
1981 * The delta is too big, we to add a
1984 event
= __rb_reserve_next(cpu_buffer
,
1985 RINGBUF_TYPE_TIME_EXTEND
,
1991 if (PTR_ERR(event
) == -EAGAIN
)
1994 /* Only a commited time event can update the write stamp */
1995 if (rb_event_is_commit(cpu_buffer
, event
)) {
1997 * If this is the first on the page, then it was
1998 * updated with the page itself. Try to discard it
1999 * and if we can't just make it zero.
2001 if (rb_event_index(event
)) {
2002 event
->time_delta
= *delta
& TS_MASK
;
2003 event
->array
[0] = *delta
>> TS_SHIFT
;
2005 /* try to discard, since we do not need this */
2006 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2007 /* nope, just zero it */
2008 event
->time_delta
= 0;
2009 event
->array
[0] = 0;
2012 cpu_buffer
->write_stamp
= *ts
;
2013 /* let the caller know this was the commit */
2016 /* Try to discard the event */
2017 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2018 /* Darn, this is just wasted space */
2019 event
->time_delta
= 0;
2020 event
->array
[0] = 0;
2030 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2032 local_inc(&cpu_buffer
->committing
);
2033 local_inc(&cpu_buffer
->commits
);
2036 static void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2038 unsigned long commits
;
2040 if (RB_WARN_ON(cpu_buffer
,
2041 !local_read(&cpu_buffer
->committing
)))
2045 commits
= local_read(&cpu_buffer
->commits
);
2046 /* synchronize with interrupts */
2048 if (local_read(&cpu_buffer
->committing
) == 1)
2049 rb_set_commit_to_write(cpu_buffer
);
2051 local_dec(&cpu_buffer
->committing
);
2053 /* synchronize with interrupts */
2057 * Need to account for interrupts coming in between the
2058 * updating of the commit page and the clearing of the
2059 * committing counter.
2061 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2062 !local_read(&cpu_buffer
->committing
)) {
2063 local_inc(&cpu_buffer
->committing
);
2068 static struct ring_buffer_event
*
2069 rb_reserve_next_event(struct ring_buffer
*buffer
,
2070 struct ring_buffer_per_cpu
*cpu_buffer
,
2071 unsigned long length
)
2073 struct ring_buffer_event
*event
;
2078 rb_start_commit(cpu_buffer
);
2080 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2082 * Due to the ability to swap a cpu buffer from a buffer
2083 * it is possible it was swapped before we committed.
2084 * (committing stops a swap). We check for it here and
2085 * if it happened, we have to fail the write.
2088 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2089 local_dec(&cpu_buffer
->committing
);
2090 local_dec(&cpu_buffer
->commits
);
2095 length
= rb_calculate_event_length(length
);
2098 * We allow for interrupts to reenter here and do a trace.
2099 * If one does, it will cause this original code to loop
2100 * back here. Even with heavy interrupts happening, this
2101 * should only happen a few times in a row. If this happens
2102 * 1000 times in a row, there must be either an interrupt
2103 * storm or we have something buggy.
2106 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2109 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2112 * Only the first commit can update the timestamp.
2113 * Yes there is a race here. If an interrupt comes in
2114 * just after the conditional and it traces too, then it
2115 * will also check the deltas. More than one timestamp may
2116 * also be made. But only the entry that did the actual
2117 * commit will be something other than zero.
2119 if (likely(cpu_buffer
->tail_page
== cpu_buffer
->commit_page
&&
2120 rb_page_write(cpu_buffer
->tail_page
) ==
2121 rb_commit_index(cpu_buffer
))) {
2124 diff
= ts
- cpu_buffer
->write_stamp
;
2126 /* make sure this diff is calculated here */
2129 /* Did the write stamp get updated already? */
2130 if (unlikely(ts
< cpu_buffer
->write_stamp
))
2134 if (unlikely(test_time_stamp(delta
))) {
2136 commit
= rb_add_time_stamp(cpu_buffer
, &ts
, &delta
);
2137 if (commit
== -EBUSY
)
2140 if (commit
== -EAGAIN
)
2143 RB_WARN_ON(cpu_buffer
, commit
< 0);
2148 event
= __rb_reserve_next(cpu_buffer
, 0, length
, &ts
);
2149 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2155 if (!rb_event_is_commit(cpu_buffer
, event
))
2158 event
->time_delta
= delta
;
2163 rb_end_commit(cpu_buffer
);
2167 #ifdef CONFIG_TRACING
2169 #define TRACE_RECURSIVE_DEPTH 16
2171 static int trace_recursive_lock(void)
2173 current
->trace_recursion
++;
2175 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
2178 /* Disable all tracing before we do anything else */
2179 tracing_off_permanent();
2181 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2182 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2183 current
->trace_recursion
,
2184 hardirq_count() >> HARDIRQ_SHIFT
,
2185 softirq_count() >> SOFTIRQ_SHIFT
,
2192 static void trace_recursive_unlock(void)
2194 WARN_ON_ONCE(!current
->trace_recursion
);
2196 current
->trace_recursion
--;
2201 #define trace_recursive_lock() (0)
2202 #define trace_recursive_unlock() do { } while (0)
2206 static DEFINE_PER_CPU(int, rb_need_resched
);
2209 * ring_buffer_lock_reserve - reserve a part of the buffer
2210 * @buffer: the ring buffer to reserve from
2211 * @length: the length of the data to reserve (excluding event header)
2213 * Returns a reseverd event on the ring buffer to copy directly to.
2214 * The user of this interface will need to get the body to write into
2215 * and can use the ring_buffer_event_data() interface.
2217 * The length is the length of the data needed, not the event length
2218 * which also includes the event header.
2220 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2221 * If NULL is returned, then nothing has been allocated or locked.
2223 struct ring_buffer_event
*
2224 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2226 struct ring_buffer_per_cpu
*cpu_buffer
;
2227 struct ring_buffer_event
*event
;
2230 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2233 if (atomic_read(&buffer
->record_disabled
))
2236 /* If we are tracing schedule, we don't want to recurse */
2237 resched
= ftrace_preempt_disable();
2239 if (trace_recursive_lock())
2242 cpu
= raw_smp_processor_id();
2244 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2247 cpu_buffer
= buffer
->buffers
[cpu
];
2249 if (atomic_read(&cpu_buffer
->record_disabled
))
2252 if (length
> BUF_MAX_DATA_SIZE
)
2255 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2260 * Need to store resched state on this cpu.
2261 * Only the first needs to.
2264 if (preempt_count() == 1)
2265 per_cpu(rb_need_resched
, cpu
) = resched
;
2270 trace_recursive_unlock();
2273 ftrace_preempt_enable(resched
);
2276 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2279 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2280 struct ring_buffer_event
*event
)
2283 * The event first in the commit queue updates the
2286 if (rb_event_is_commit(cpu_buffer
, event
))
2287 cpu_buffer
->write_stamp
+= event
->time_delta
;
2290 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2291 struct ring_buffer_event
*event
)
2293 local_inc(&cpu_buffer
->entries
);
2294 rb_update_write_stamp(cpu_buffer
, event
);
2295 rb_end_commit(cpu_buffer
);
2299 * ring_buffer_unlock_commit - commit a reserved
2300 * @buffer: The buffer to commit to
2301 * @event: The event pointer to commit.
2303 * This commits the data to the ring buffer, and releases any locks held.
2305 * Must be paired with ring_buffer_lock_reserve.
2307 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2308 struct ring_buffer_event
*event
)
2310 struct ring_buffer_per_cpu
*cpu_buffer
;
2311 int cpu
= raw_smp_processor_id();
2313 cpu_buffer
= buffer
->buffers
[cpu
];
2315 rb_commit(cpu_buffer
, event
);
2317 trace_recursive_unlock();
2320 * Only the last preempt count needs to restore preemption.
2322 if (preempt_count() == 1)
2323 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2325 preempt_enable_no_resched_notrace();
2329 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2331 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2333 /* array[0] holds the actual length for the discarded event */
2334 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2335 event
->type_len
= RINGBUF_TYPE_PADDING
;
2336 /* time delta must be non zero */
2337 if (!event
->time_delta
)
2338 event
->time_delta
= 1;
2342 * Decrement the entries to the page that an event is on.
2343 * The event does not even need to exist, only the pointer
2344 * to the page it is on. This may only be called before the commit
2348 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2349 struct ring_buffer_event
*event
)
2351 unsigned long addr
= (unsigned long)event
;
2352 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2353 struct buffer_page
*start
;
2357 /* Do the likely case first */
2358 if (likely(bpage
->page
== (void *)addr
)) {
2359 local_dec(&bpage
->entries
);
2364 * Because the commit page may be on the reader page we
2365 * start with the next page and check the end loop there.
2367 rb_inc_page(cpu_buffer
, &bpage
);
2370 if (bpage
->page
== (void *)addr
) {
2371 local_dec(&bpage
->entries
);
2374 rb_inc_page(cpu_buffer
, &bpage
);
2375 } while (bpage
!= start
);
2377 /* commit not part of this buffer?? */
2378 RB_WARN_ON(cpu_buffer
, 1);
2382 * ring_buffer_commit_discard - discard an event that has not been committed
2383 * @buffer: the ring buffer
2384 * @event: non committed event to discard
2386 * Sometimes an event that is in the ring buffer needs to be ignored.
2387 * This function lets the user discard an event in the ring buffer
2388 * and then that event will not be read later.
2390 * This function only works if it is called before the the item has been
2391 * committed. It will try to free the event from the ring buffer
2392 * if another event has not been added behind it.
2394 * If another event has been added behind it, it will set the event
2395 * up as discarded, and perform the commit.
2397 * If this function is called, do not call ring_buffer_unlock_commit on
2400 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2401 struct ring_buffer_event
*event
)
2403 struct ring_buffer_per_cpu
*cpu_buffer
;
2406 /* The event is discarded regardless */
2407 rb_event_discard(event
);
2409 cpu
= smp_processor_id();
2410 cpu_buffer
= buffer
->buffers
[cpu
];
2413 * This must only be called if the event has not been
2414 * committed yet. Thus we can assume that preemption
2415 * is still disabled.
2417 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2419 rb_decrement_entry(cpu_buffer
, event
);
2420 if (rb_try_to_discard(cpu_buffer
, event
))
2424 * The commit is still visible by the reader, so we
2425 * must still update the timestamp.
2427 rb_update_write_stamp(cpu_buffer
, event
);
2429 rb_end_commit(cpu_buffer
);
2431 trace_recursive_unlock();
2434 * Only the last preempt count needs to restore preemption.
2436 if (preempt_count() == 1)
2437 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2439 preempt_enable_no_resched_notrace();
2442 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2445 * ring_buffer_write - write data to the buffer without reserving
2446 * @buffer: The ring buffer to write to.
2447 * @length: The length of the data being written (excluding the event header)
2448 * @data: The data to write to the buffer.
2450 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2451 * one function. If you already have the data to write to the buffer, it
2452 * may be easier to simply call this function.
2454 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2455 * and not the length of the event which would hold the header.
2457 int ring_buffer_write(struct ring_buffer
*buffer
,
2458 unsigned long length
,
2461 struct ring_buffer_per_cpu
*cpu_buffer
;
2462 struct ring_buffer_event
*event
;
2467 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2470 if (atomic_read(&buffer
->record_disabled
))
2473 resched
= ftrace_preempt_disable();
2475 cpu
= raw_smp_processor_id();
2477 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2480 cpu_buffer
= buffer
->buffers
[cpu
];
2482 if (atomic_read(&cpu_buffer
->record_disabled
))
2485 if (length
> BUF_MAX_DATA_SIZE
)
2488 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2492 body
= rb_event_data(event
);
2494 memcpy(body
, data
, length
);
2496 rb_commit(cpu_buffer
, event
);
2500 ftrace_preempt_enable(resched
);
2504 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2506 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2508 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2509 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2510 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2512 /* In case of error, head will be NULL */
2513 if (unlikely(!head
))
2516 return reader
->read
== rb_page_commit(reader
) &&
2517 (commit
== reader
||
2519 head
->read
== rb_page_commit(commit
)));
2523 * ring_buffer_record_disable - stop all writes into the buffer
2524 * @buffer: The ring buffer to stop writes to.
2526 * This prevents all writes to the buffer. Any attempt to write
2527 * to the buffer after this will fail and return NULL.
2529 * The caller should call synchronize_sched() after this.
2531 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2533 atomic_inc(&buffer
->record_disabled
);
2535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2538 * ring_buffer_record_enable - enable writes to the buffer
2539 * @buffer: The ring buffer to enable writes
2541 * Note, multiple disables will need the same number of enables
2542 * to truely enable the writing (much like preempt_disable).
2544 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2546 atomic_dec(&buffer
->record_disabled
);
2548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2551 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2552 * @buffer: The ring buffer to stop writes to.
2553 * @cpu: The CPU buffer to stop
2555 * This prevents all writes to the buffer. Any attempt to write
2556 * to the buffer after this will fail and return NULL.
2558 * The caller should call synchronize_sched() after this.
2560 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2562 struct ring_buffer_per_cpu
*cpu_buffer
;
2564 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2567 cpu_buffer
= buffer
->buffers
[cpu
];
2568 atomic_inc(&cpu_buffer
->record_disabled
);
2570 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2573 * ring_buffer_record_enable_cpu - enable writes to the buffer
2574 * @buffer: The ring buffer to enable writes
2575 * @cpu: The CPU to enable.
2577 * Note, multiple disables will need the same number of enables
2578 * to truely enable the writing (much like preempt_disable).
2580 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2582 struct ring_buffer_per_cpu
*cpu_buffer
;
2584 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2587 cpu_buffer
= buffer
->buffers
[cpu
];
2588 atomic_dec(&cpu_buffer
->record_disabled
);
2590 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2593 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2594 * @buffer: The ring buffer
2595 * @cpu: The per CPU buffer to get the entries from.
2597 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2599 struct ring_buffer_per_cpu
*cpu_buffer
;
2602 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2605 cpu_buffer
= buffer
->buffers
[cpu
];
2606 ret
= (local_read(&cpu_buffer
->entries
) - local_read(&cpu_buffer
->overrun
))
2611 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2614 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2615 * @buffer: The ring buffer
2616 * @cpu: The per CPU buffer to get the number of overruns from
2618 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2620 struct ring_buffer_per_cpu
*cpu_buffer
;
2623 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2626 cpu_buffer
= buffer
->buffers
[cpu
];
2627 ret
= local_read(&cpu_buffer
->overrun
);
2631 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2634 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2635 * @buffer: The ring buffer
2636 * @cpu: The per CPU buffer to get the number of overruns from
2639 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2641 struct ring_buffer_per_cpu
*cpu_buffer
;
2644 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2647 cpu_buffer
= buffer
->buffers
[cpu
];
2648 ret
= local_read(&cpu_buffer
->commit_overrun
);
2652 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2655 * ring_buffer_entries - get the number of entries in a buffer
2656 * @buffer: The ring buffer
2658 * Returns the total number of entries in the ring buffer
2661 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2663 struct ring_buffer_per_cpu
*cpu_buffer
;
2664 unsigned long entries
= 0;
2667 /* if you care about this being correct, lock the buffer */
2668 for_each_buffer_cpu(buffer
, cpu
) {
2669 cpu_buffer
= buffer
->buffers
[cpu
];
2670 entries
+= (local_read(&cpu_buffer
->entries
) -
2671 local_read(&cpu_buffer
->overrun
)) - cpu_buffer
->read
;
2676 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2679 * ring_buffer_overruns - get the number of overruns in buffer
2680 * @buffer: The ring buffer
2682 * Returns the total number of overruns in the ring buffer
2685 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2687 struct ring_buffer_per_cpu
*cpu_buffer
;
2688 unsigned long overruns
= 0;
2691 /* if you care about this being correct, lock the buffer */
2692 for_each_buffer_cpu(buffer
, cpu
) {
2693 cpu_buffer
= buffer
->buffers
[cpu
];
2694 overruns
+= local_read(&cpu_buffer
->overrun
);
2699 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2701 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2703 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2705 /* Iterator usage is expected to have record disabled */
2706 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2707 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2708 if (unlikely(!iter
->head_page
))
2710 iter
->head
= iter
->head_page
->read
;
2712 iter
->head_page
= cpu_buffer
->reader_page
;
2713 iter
->head
= cpu_buffer
->reader_page
->read
;
2716 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2718 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2722 * ring_buffer_iter_reset - reset an iterator
2723 * @iter: The iterator to reset
2725 * Resets the iterator, so that it will start from the beginning
2728 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2730 struct ring_buffer_per_cpu
*cpu_buffer
;
2731 unsigned long flags
;
2736 cpu_buffer
= iter
->cpu_buffer
;
2738 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2739 rb_iter_reset(iter
);
2740 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2742 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2745 * ring_buffer_iter_empty - check if an iterator has no more to read
2746 * @iter: The iterator to check
2748 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2750 struct ring_buffer_per_cpu
*cpu_buffer
;
2752 cpu_buffer
= iter
->cpu_buffer
;
2754 return iter
->head_page
== cpu_buffer
->commit_page
&&
2755 iter
->head
== rb_commit_index(cpu_buffer
);
2757 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2760 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2761 struct ring_buffer_event
*event
)
2765 switch (event
->type_len
) {
2766 case RINGBUF_TYPE_PADDING
:
2769 case RINGBUF_TYPE_TIME_EXTEND
:
2770 delta
= event
->array
[0];
2772 delta
+= event
->time_delta
;
2773 cpu_buffer
->read_stamp
+= delta
;
2776 case RINGBUF_TYPE_TIME_STAMP
:
2777 /* FIXME: not implemented */
2780 case RINGBUF_TYPE_DATA
:
2781 cpu_buffer
->read_stamp
+= event
->time_delta
;
2791 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2792 struct ring_buffer_event
*event
)
2796 switch (event
->type_len
) {
2797 case RINGBUF_TYPE_PADDING
:
2800 case RINGBUF_TYPE_TIME_EXTEND
:
2801 delta
= event
->array
[0];
2803 delta
+= event
->time_delta
;
2804 iter
->read_stamp
+= delta
;
2807 case RINGBUF_TYPE_TIME_STAMP
:
2808 /* FIXME: not implemented */
2811 case RINGBUF_TYPE_DATA
:
2812 iter
->read_stamp
+= event
->time_delta
;
2821 static struct buffer_page
*
2822 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2824 struct buffer_page
*reader
= NULL
;
2825 unsigned long flags
;
2829 local_irq_save(flags
);
2830 arch_spin_lock(&cpu_buffer
->lock
);
2834 * This should normally only loop twice. But because the
2835 * start of the reader inserts an empty page, it causes
2836 * a case where we will loop three times. There should be no
2837 * reason to loop four times (that I know of).
2839 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2844 reader
= cpu_buffer
->reader_page
;
2846 /* If there's more to read, return this page */
2847 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2850 /* Never should we have an index greater than the size */
2851 if (RB_WARN_ON(cpu_buffer
,
2852 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2855 /* check if we caught up to the tail */
2857 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2861 * Reset the reader page to size zero.
2863 local_set(&cpu_buffer
->reader_page
->write
, 0);
2864 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2865 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2869 * Splice the empty reader page into the list around the head.
2871 reader
= rb_set_head_page(cpu_buffer
);
2872 cpu_buffer
->reader_page
->list
.next
= reader
->list
.next
;
2873 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2876 * cpu_buffer->pages just needs to point to the buffer, it
2877 * has no specific buffer page to point to. Lets move it out
2878 * of our way so we don't accidently swap it.
2880 cpu_buffer
->pages
= reader
->list
.prev
;
2882 /* The reader page will be pointing to the new head */
2883 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2886 * Here's the tricky part.
2888 * We need to move the pointer past the header page.
2889 * But we can only do that if a writer is not currently
2890 * moving it. The page before the header page has the
2891 * flag bit '1' set if it is pointing to the page we want.
2892 * but if the writer is in the process of moving it
2893 * than it will be '2' or already moved '0'.
2896 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2899 * If we did not convert it, then we must try again.
2905 * Yeah! We succeeded in replacing the page.
2907 * Now make the new head point back to the reader page.
2909 reader
->list
.next
->prev
= &cpu_buffer
->reader_page
->list
;
2910 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2912 /* Finally update the reader page to the new head */
2913 cpu_buffer
->reader_page
= reader
;
2914 rb_reset_reader_page(cpu_buffer
);
2919 arch_spin_unlock(&cpu_buffer
->lock
);
2920 local_irq_restore(flags
);
2925 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2927 struct ring_buffer_event
*event
;
2928 struct buffer_page
*reader
;
2931 reader
= rb_get_reader_page(cpu_buffer
);
2933 /* This function should not be called when buffer is empty */
2934 if (RB_WARN_ON(cpu_buffer
, !reader
))
2937 event
= rb_reader_event(cpu_buffer
);
2939 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
2942 rb_update_read_stamp(cpu_buffer
, event
);
2944 length
= rb_event_length(event
);
2945 cpu_buffer
->reader_page
->read
+= length
;
2948 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
2950 struct ring_buffer
*buffer
;
2951 struct ring_buffer_per_cpu
*cpu_buffer
;
2952 struct ring_buffer_event
*event
;
2955 cpu_buffer
= iter
->cpu_buffer
;
2956 buffer
= cpu_buffer
->buffer
;
2959 * Check if we are at the end of the buffer.
2961 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
2962 /* discarded commits can make the page empty */
2963 if (iter
->head_page
== cpu_buffer
->commit_page
)
2969 event
= rb_iter_head_event(iter
);
2971 length
= rb_event_length(event
);
2974 * This should not be called to advance the header if we are
2975 * at the tail of the buffer.
2977 if (RB_WARN_ON(cpu_buffer
,
2978 (iter
->head_page
== cpu_buffer
->commit_page
) &&
2979 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
2982 rb_update_iter_read_stamp(iter
, event
);
2984 iter
->head
+= length
;
2986 /* check for end of page padding */
2987 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
2988 (iter
->head_page
!= cpu_buffer
->commit_page
))
2989 rb_advance_iter(iter
);
2992 static struct ring_buffer_event
*
2993 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
)
2995 struct ring_buffer_event
*event
;
2996 struct buffer_page
*reader
;
3001 * We repeat when a timestamp is encountered. It is possible
3002 * to get multiple timestamps from an interrupt entering just
3003 * as one timestamp is about to be written, or from discarded
3004 * commits. The most that we can have is the number on a single page.
3006 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3009 reader
= rb_get_reader_page(cpu_buffer
);
3013 event
= rb_reader_event(cpu_buffer
);
3015 switch (event
->type_len
) {
3016 case RINGBUF_TYPE_PADDING
:
3017 if (rb_null_event(event
))
3018 RB_WARN_ON(cpu_buffer
, 1);
3020 * Because the writer could be discarding every
3021 * event it creates (which would probably be bad)
3022 * if we were to go back to "again" then we may never
3023 * catch up, and will trigger the warn on, or lock
3024 * the box. Return the padding, and we will release
3025 * the current locks, and try again.
3029 case RINGBUF_TYPE_TIME_EXTEND
:
3030 /* Internal data, OK to advance */
3031 rb_advance_reader(cpu_buffer
);
3034 case RINGBUF_TYPE_TIME_STAMP
:
3035 /* FIXME: not implemented */
3036 rb_advance_reader(cpu_buffer
);
3039 case RINGBUF_TYPE_DATA
:
3041 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3042 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3043 cpu_buffer
->cpu
, ts
);
3053 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3055 static struct ring_buffer_event
*
3056 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3058 struct ring_buffer
*buffer
;
3059 struct ring_buffer_per_cpu
*cpu_buffer
;
3060 struct ring_buffer_event
*event
;
3063 if (ring_buffer_iter_empty(iter
))
3066 cpu_buffer
= iter
->cpu_buffer
;
3067 buffer
= cpu_buffer
->buffer
;
3071 * We repeat when a timestamp is encountered.
3072 * We can get multiple timestamps by nested interrupts or also
3073 * if filtering is on (discarding commits). Since discarding
3074 * commits can be frequent we can get a lot of timestamps.
3075 * But we limit them by not adding timestamps if they begin
3076 * at the start of a page.
3078 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3081 if (rb_per_cpu_empty(cpu_buffer
))
3084 event
= rb_iter_head_event(iter
);
3086 switch (event
->type_len
) {
3087 case RINGBUF_TYPE_PADDING
:
3088 if (rb_null_event(event
)) {
3092 rb_advance_iter(iter
);
3095 case RINGBUF_TYPE_TIME_EXTEND
:
3096 /* Internal data, OK to advance */
3097 rb_advance_iter(iter
);
3100 case RINGBUF_TYPE_TIME_STAMP
:
3101 /* FIXME: not implemented */
3102 rb_advance_iter(iter
);
3105 case RINGBUF_TYPE_DATA
:
3107 *ts
= iter
->read_stamp
+ event
->time_delta
;
3108 ring_buffer_normalize_time_stamp(buffer
,
3109 cpu_buffer
->cpu
, ts
);
3119 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3121 static inline int rb_ok_to_lock(void)
3124 * If an NMI die dumps out the content of the ring buffer
3125 * do not grab locks. We also permanently disable the ring
3126 * buffer too. A one time deal is all you get from reading
3127 * the ring buffer from an NMI.
3129 if (likely(!in_nmi()))
3132 tracing_off_permanent();
3137 * ring_buffer_peek - peek at the next event to be read
3138 * @buffer: The ring buffer to read
3139 * @cpu: The cpu to peak at
3140 * @ts: The timestamp counter of this event.
3142 * This will return the event that will be read next, but does
3143 * not consume the data.
3145 struct ring_buffer_event
*
3146 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3148 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3149 struct ring_buffer_event
*event
;
3150 unsigned long flags
;
3153 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3156 dolock
= rb_ok_to_lock();
3158 local_irq_save(flags
);
3160 spin_lock(&cpu_buffer
->reader_lock
);
3161 event
= rb_buffer_peek(cpu_buffer
, ts
);
3162 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3163 rb_advance_reader(cpu_buffer
);
3165 spin_unlock(&cpu_buffer
->reader_lock
);
3166 local_irq_restore(flags
);
3168 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3175 * ring_buffer_iter_peek - peek at the next event to be read
3176 * @iter: The ring buffer iterator
3177 * @ts: The timestamp counter of this event.
3179 * This will return the event that will be read next, but does
3180 * not increment the iterator.
3182 struct ring_buffer_event
*
3183 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3185 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3186 struct ring_buffer_event
*event
;
3187 unsigned long flags
;
3190 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3191 event
= rb_iter_peek(iter
, ts
);
3192 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3194 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3201 * ring_buffer_consume - return an event and consume it
3202 * @buffer: The ring buffer to get the next event from
3204 * Returns the next event in the ring buffer, and that event is consumed.
3205 * Meaning, that sequential reads will keep returning a different event,
3206 * and eventually empty the ring buffer if the producer is slower.
3208 struct ring_buffer_event
*
3209 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3211 struct ring_buffer_per_cpu
*cpu_buffer
;
3212 struct ring_buffer_event
*event
= NULL
;
3213 unsigned long flags
;
3216 dolock
= rb_ok_to_lock();
3219 /* might be called in atomic */
3222 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3225 cpu_buffer
= buffer
->buffers
[cpu
];
3226 local_irq_save(flags
);
3228 spin_lock(&cpu_buffer
->reader_lock
);
3230 event
= rb_buffer_peek(cpu_buffer
, ts
);
3232 rb_advance_reader(cpu_buffer
);
3235 spin_unlock(&cpu_buffer
->reader_lock
);
3236 local_irq_restore(flags
);
3241 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3246 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3249 * ring_buffer_read_start - start a non consuming read of the buffer
3250 * @buffer: The ring buffer to read from
3251 * @cpu: The cpu buffer to iterate over
3253 * This starts up an iteration through the buffer. It also disables
3254 * the recording to the buffer until the reading is finished.
3255 * This prevents the reading from being corrupted. This is not
3256 * a consuming read, so a producer is not expected.
3258 * Must be paired with ring_buffer_finish.
3260 struct ring_buffer_iter
*
3261 ring_buffer_read_start(struct ring_buffer
*buffer
, int cpu
)
3263 struct ring_buffer_per_cpu
*cpu_buffer
;
3264 struct ring_buffer_iter
*iter
;
3265 unsigned long flags
;
3267 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3270 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3274 cpu_buffer
= buffer
->buffers
[cpu
];
3276 iter
->cpu_buffer
= cpu_buffer
;
3278 atomic_inc(&cpu_buffer
->record_disabled
);
3279 synchronize_sched();
3281 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3282 arch_spin_lock(&cpu_buffer
->lock
);
3283 rb_iter_reset(iter
);
3284 arch_spin_unlock(&cpu_buffer
->lock
);
3285 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3289 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3292 * ring_buffer_finish - finish reading the iterator of the buffer
3293 * @iter: The iterator retrieved by ring_buffer_start
3295 * This re-enables the recording to the buffer, and frees the
3299 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3301 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3303 atomic_dec(&cpu_buffer
->record_disabled
);
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3309 * ring_buffer_read - read the next item in the ring buffer by the iterator
3310 * @iter: The ring buffer iterator
3311 * @ts: The time stamp of the event read.
3313 * This reads the next event in the ring buffer and increments the iterator.
3315 struct ring_buffer_event
*
3316 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3318 struct ring_buffer_event
*event
;
3319 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3320 unsigned long flags
;
3322 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3324 event
= rb_iter_peek(iter
, ts
);
3328 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3331 rb_advance_iter(iter
);
3333 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3337 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3340 * ring_buffer_size - return the size of the ring buffer (in bytes)
3341 * @buffer: The ring buffer.
3343 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3345 return BUF_PAGE_SIZE
* buffer
->pages
;
3347 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3350 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3352 rb_head_page_deactivate(cpu_buffer
);
3354 cpu_buffer
->head_page
3355 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3356 local_set(&cpu_buffer
->head_page
->write
, 0);
3357 local_set(&cpu_buffer
->head_page
->entries
, 0);
3358 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3360 cpu_buffer
->head_page
->read
= 0;
3362 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3363 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3365 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3366 local_set(&cpu_buffer
->reader_page
->write
, 0);
3367 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3368 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3369 cpu_buffer
->reader_page
->read
= 0;
3371 local_set(&cpu_buffer
->commit_overrun
, 0);
3372 local_set(&cpu_buffer
->overrun
, 0);
3373 local_set(&cpu_buffer
->entries
, 0);
3374 local_set(&cpu_buffer
->committing
, 0);
3375 local_set(&cpu_buffer
->commits
, 0);
3376 cpu_buffer
->read
= 0;
3378 cpu_buffer
->write_stamp
= 0;
3379 cpu_buffer
->read_stamp
= 0;
3381 rb_head_page_activate(cpu_buffer
);
3385 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3386 * @buffer: The ring buffer to reset a per cpu buffer of
3387 * @cpu: The CPU buffer to be reset
3389 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3391 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3392 unsigned long flags
;
3394 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3397 atomic_inc(&cpu_buffer
->record_disabled
);
3399 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3401 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3404 arch_spin_lock(&cpu_buffer
->lock
);
3406 rb_reset_cpu(cpu_buffer
);
3408 arch_spin_unlock(&cpu_buffer
->lock
);
3411 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3413 atomic_dec(&cpu_buffer
->record_disabled
);
3415 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3418 * ring_buffer_reset - reset a ring buffer
3419 * @buffer: The ring buffer to reset all cpu buffers
3421 void ring_buffer_reset(struct ring_buffer
*buffer
)
3425 for_each_buffer_cpu(buffer
, cpu
)
3426 ring_buffer_reset_cpu(buffer
, cpu
);
3428 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3431 * rind_buffer_empty - is the ring buffer empty?
3432 * @buffer: The ring buffer to test
3434 int ring_buffer_empty(struct ring_buffer
*buffer
)
3436 struct ring_buffer_per_cpu
*cpu_buffer
;
3437 unsigned long flags
;
3442 dolock
= rb_ok_to_lock();
3444 /* yes this is racy, but if you don't like the race, lock the buffer */
3445 for_each_buffer_cpu(buffer
, cpu
) {
3446 cpu_buffer
= buffer
->buffers
[cpu
];
3447 local_irq_save(flags
);
3449 spin_lock(&cpu_buffer
->reader_lock
);
3450 ret
= rb_per_cpu_empty(cpu_buffer
);
3452 spin_unlock(&cpu_buffer
->reader_lock
);
3453 local_irq_restore(flags
);
3461 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3464 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3465 * @buffer: The ring buffer
3466 * @cpu: The CPU buffer to test
3468 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3470 struct ring_buffer_per_cpu
*cpu_buffer
;
3471 unsigned long flags
;
3475 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3478 dolock
= rb_ok_to_lock();
3480 cpu_buffer
= buffer
->buffers
[cpu
];
3481 local_irq_save(flags
);
3483 spin_lock(&cpu_buffer
->reader_lock
);
3484 ret
= rb_per_cpu_empty(cpu_buffer
);
3486 spin_unlock(&cpu_buffer
->reader_lock
);
3487 local_irq_restore(flags
);
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3495 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3496 * @buffer_a: One buffer to swap with
3497 * @buffer_b: The other buffer to swap with
3499 * This function is useful for tracers that want to take a "snapshot"
3500 * of a CPU buffer and has another back up buffer lying around.
3501 * it is expected that the tracer handles the cpu buffer not being
3502 * used at the moment.
3504 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3505 struct ring_buffer
*buffer_b
, int cpu
)
3507 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3508 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3511 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3512 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3515 /* At least make sure the two buffers are somewhat the same */
3516 if (buffer_a
->pages
!= buffer_b
->pages
)
3521 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3524 if (atomic_read(&buffer_a
->record_disabled
))
3527 if (atomic_read(&buffer_b
->record_disabled
))
3530 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3531 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3533 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3536 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3540 * We can't do a synchronize_sched here because this
3541 * function can be called in atomic context.
3542 * Normally this will be called from the same CPU as cpu.
3543 * If not it's up to the caller to protect this.
3545 atomic_inc(&cpu_buffer_a
->record_disabled
);
3546 atomic_inc(&cpu_buffer_b
->record_disabled
);
3549 if (local_read(&cpu_buffer_a
->committing
))
3551 if (local_read(&cpu_buffer_b
->committing
))
3554 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3555 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3557 cpu_buffer_b
->buffer
= buffer_a
;
3558 cpu_buffer_a
->buffer
= buffer_b
;
3563 atomic_dec(&cpu_buffer_a
->record_disabled
);
3564 atomic_dec(&cpu_buffer_b
->record_disabled
);
3568 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3569 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3572 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3573 * @buffer: the buffer to allocate for.
3575 * This function is used in conjunction with ring_buffer_read_page.
3576 * When reading a full page from the ring buffer, these functions
3577 * can be used to speed up the process. The calling function should
3578 * allocate a few pages first with this function. Then when it
3579 * needs to get pages from the ring buffer, it passes the result
3580 * of this function into ring_buffer_read_page, which will swap
3581 * the page that was allocated, with the read page of the buffer.
3584 * The page allocated, or NULL on error.
3586 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3588 struct buffer_data_page
*bpage
;
3591 addr
= __get_free_page(GFP_KERNEL
);
3595 bpage
= (void *)addr
;
3597 rb_init_page(bpage
);
3601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3604 * ring_buffer_free_read_page - free an allocated read page
3605 * @buffer: the buffer the page was allocate for
3606 * @data: the page to free
3608 * Free a page allocated from ring_buffer_alloc_read_page.
3610 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3612 free_page((unsigned long)data
);
3614 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3617 * ring_buffer_read_page - extract a page from the ring buffer
3618 * @buffer: buffer to extract from
3619 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3620 * @len: amount to extract
3621 * @cpu: the cpu of the buffer to extract
3622 * @full: should the extraction only happen when the page is full.
3624 * This function will pull out a page from the ring buffer and consume it.
3625 * @data_page must be the address of the variable that was returned
3626 * from ring_buffer_alloc_read_page. This is because the page might be used
3627 * to swap with a page in the ring buffer.
3630 * rpage = ring_buffer_alloc_read_page(buffer);
3633 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3635 * process_page(rpage, ret);
3637 * When @full is set, the function will not return true unless
3638 * the writer is off the reader page.
3640 * Note: it is up to the calling functions to handle sleeps and wakeups.
3641 * The ring buffer can be used anywhere in the kernel and can not
3642 * blindly call wake_up. The layer that uses the ring buffer must be
3643 * responsible for that.
3646 * >=0 if data has been transferred, returns the offset of consumed data.
3647 * <0 if no data has been transferred.
3649 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3650 void **data_page
, size_t len
, int cpu
, int full
)
3652 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3653 struct ring_buffer_event
*event
;
3654 struct buffer_data_page
*bpage
;
3655 struct buffer_page
*reader
;
3656 unsigned long flags
;
3657 unsigned int commit
;
3662 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3666 * If len is not big enough to hold the page header, then
3667 * we can not copy anything.
3669 if (len
<= BUF_PAGE_HDR_SIZE
)
3672 len
-= BUF_PAGE_HDR_SIZE
;
3681 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3683 reader
= rb_get_reader_page(cpu_buffer
);
3687 event
= rb_reader_event(cpu_buffer
);
3689 read
= reader
->read
;
3690 commit
= rb_page_commit(reader
);
3693 * If this page has been partially read or
3694 * if len is not big enough to read the rest of the page or
3695 * a writer is still on the page, then
3696 * we must copy the data from the page to the buffer.
3697 * Otherwise, we can simply swap the page with the one passed in.
3699 if (read
|| (len
< (commit
- read
)) ||
3700 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3701 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3702 unsigned int rpos
= read
;
3703 unsigned int pos
= 0;
3709 if (len
> (commit
- read
))
3710 len
= (commit
- read
);
3712 size
= rb_event_length(event
);
3717 /* save the current timestamp, since the user will need it */
3718 save_timestamp
= cpu_buffer
->read_stamp
;
3720 /* Need to copy one event at a time */
3722 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3726 rb_advance_reader(cpu_buffer
);
3727 rpos
= reader
->read
;
3730 event
= rb_reader_event(cpu_buffer
);
3731 size
= rb_event_length(event
);
3732 } while (len
> size
);
3735 local_set(&bpage
->commit
, pos
);
3736 bpage
->time_stamp
= save_timestamp
;
3738 /* we copied everything to the beginning */
3741 /* update the entry counter */
3742 cpu_buffer
->read
+= rb_page_entries(reader
);
3744 /* swap the pages */
3745 rb_init_page(bpage
);
3746 bpage
= reader
->page
;
3747 reader
->page
= *data_page
;
3748 local_set(&reader
->write
, 0);
3749 local_set(&reader
->entries
, 0);
3756 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3761 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3763 #ifdef CONFIG_TRACING
3765 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3766 size_t cnt
, loff_t
*ppos
)
3768 unsigned long *p
= filp
->private_data
;
3772 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3773 r
= sprintf(buf
, "permanently disabled\n");
3775 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3777 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3781 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3782 size_t cnt
, loff_t
*ppos
)
3784 unsigned long *p
= filp
->private_data
;
3789 if (cnt
>= sizeof(buf
))
3792 if (copy_from_user(&buf
, ubuf
, cnt
))
3797 ret
= strict_strtoul(buf
, 10, &val
);
3802 set_bit(RB_BUFFERS_ON_BIT
, p
);
3804 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3811 static const struct file_operations rb_simple_fops
= {
3812 .open
= tracing_open_generic
,
3813 .read
= rb_simple_read
,
3814 .write
= rb_simple_write
,
3818 static __init
int rb_init_debugfs(void)
3820 struct dentry
*d_tracer
;
3822 d_tracer
= tracing_init_dentry();
3824 trace_create_file("tracing_on", 0644, d_tracer
,
3825 &ring_buffer_flags
, &rb_simple_fops
);
3830 fs_initcall(rb_init_debugfs
);
3833 #ifdef CONFIG_HOTPLUG_CPU
3834 static int rb_cpu_notify(struct notifier_block
*self
,
3835 unsigned long action
, void *hcpu
)
3837 struct ring_buffer
*buffer
=
3838 container_of(self
, struct ring_buffer
, cpu_notify
);
3839 long cpu
= (long)hcpu
;
3842 case CPU_UP_PREPARE
:
3843 case CPU_UP_PREPARE_FROZEN
:
3844 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
3847 buffer
->buffers
[cpu
] =
3848 rb_allocate_cpu_buffer(buffer
, cpu
);
3849 if (!buffer
->buffers
[cpu
]) {
3850 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3855 cpumask_set_cpu(cpu
, buffer
->cpumask
);
3857 case CPU_DOWN_PREPARE
:
3858 case CPU_DOWN_PREPARE_FROZEN
:
3861 * If we were to free the buffer, then the user would
3862 * lose any trace that was in the buffer.