[PATCH] ext4 balloc: say rb_entry not list_entry
[firewire-audio.git] / drivers / md / raid1.c
blob656fae912fe3550e06a17f14a851f05a7dd63fd2
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t *mddev);
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
65 unplug_slaves(pi->mddev);
67 return r1_bio;
70 static void r1bio_pool_free(void *r1_bio, void *data)
72 kfree(r1_bio);
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
105 * Allocate RESYNC_PAGES data pages and attach them to
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
121 bio->bi_io_vec[i].bv_page = page;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
132 r1_bio->master_bio = NULL;
134 return r1_bio;
136 out_free_pages:
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 j = -1;
141 out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
148 static void r1buf_pool_free(void *__r1_bio, void *data)
150 struct pool_info *pi = data;
151 int i,j;
152 r1bio_t *r1bio = __r1_bio;
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
164 r1bio_pool_free(r1bio, data);
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 int i;
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r1bio(r1bio_t *r1_bio)
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
193 static void put_buf(r1bio_t *r1_bio)
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 int i;
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 mempool_free(r1_bio, conf->r1buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r1bio_t *r1_bio)
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r1bio_t *r1_bio)
231 struct bio *bio = r1_bio->master_bio;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
241 bio_endio(bio, bio->bi_size,
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 free_r1bio(r1_bio);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 if (bio->bi_size)
266 return 1;
268 mirror = r1_bio->read_disk;
270 * this branch is our 'one mirror IO has finished' event handler:
272 update_head_pos(mirror, r1_bio);
274 if (uptodate || (conf->raid_disks - conf->mddev->degraded) <= 1) {
276 * Set R1BIO_Uptodate in our master bio, so that
277 * we will return a good error code for to the higher
278 * levels even if IO on some other mirrored buffer fails.
280 * The 'master' represents the composite IO operation to
281 * user-side. So if something waits for IO, then it will
282 * wait for the 'master' bio.
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
287 raid_end_bio_io(r1_bio);
288 } else {
290 * oops, read error:
292 char b[BDEVNAME_SIZE];
293 if (printk_ratelimit())
294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 reschedule_retry(r1_bio);
299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 return 0;
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 struct bio *to_put = NULL;
311 if (bio->bi_size)
312 return 1;
314 for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 if (r1_bio->bios[mirror] == bio)
316 break;
318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 r1_bio->mddev->barriers_work = 0;
322 /* Don't rdev_dec_pending in this branch - keep it for the retry */
323 } else {
325 * this branch is our 'one mirror IO has finished' event handler:
327 r1_bio->bios[mirror] = NULL;
328 to_put = bio;
329 if (!uptodate) {
330 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
331 /* an I/O failed, we can't clear the bitmap */
332 set_bit(R1BIO_Degraded, &r1_bio->state);
333 } else
335 * Set R1BIO_Uptodate in our master bio, so that
336 * we will return a good error code for to the higher
337 * levels even if IO on some other mirrored buffer fails.
339 * The 'master' represents the composite IO operation to
340 * user-side. So if something waits for IO, then it will
341 * wait for the 'master' bio.
343 set_bit(R1BIO_Uptodate, &r1_bio->state);
345 update_head_pos(mirror, r1_bio);
347 if (behind) {
348 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
349 atomic_dec(&r1_bio->behind_remaining);
351 /* In behind mode, we ACK the master bio once the I/O has safely
352 * reached all non-writemostly disks. Setting the Returned bit
353 * ensures that this gets done only once -- we don't ever want to
354 * return -EIO here, instead we'll wait */
356 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
357 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
358 /* Maybe we can return now */
359 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
360 struct bio *mbio = r1_bio->master_bio;
361 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
362 (unsigned long long) mbio->bi_sector,
363 (unsigned long long) mbio->bi_sector +
364 (mbio->bi_size >> 9) - 1);
365 bio_endio(mbio, mbio->bi_size, 0);
369 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
373 * Let's see if all mirrored write operations have finished
374 * already.
376 if (atomic_dec_and_test(&r1_bio->remaining)) {
377 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
378 reschedule_retry(r1_bio);
379 else {
380 /* it really is the end of this request */
381 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
382 /* free extra copy of the data pages */
383 int i = bio->bi_vcnt;
384 while (i--)
385 safe_put_page(bio->bi_io_vec[i].bv_page);
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 behind);
392 md_write_end(r1_bio->mddev);
393 raid_end_bio_io(r1_bio);
397 if (to_put)
398 bio_put(to_put);
400 return 0;
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 const unsigned long this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
422 int wonly_disk = -1;
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
425 mdk_rdev_t *rdev;
427 rcu_read_lock();
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operation device, for consistancy */
437 new_disk = 0;
439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 r1_bio->bios[new_disk] == IO_BLOCKED ||
441 !rdev || !test_bit(In_sync, &rdev->flags)
442 || test_bit(WriteMostly, &rdev->flags);
443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
447 wonly_disk = new_disk;
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
451 break;
454 goto rb_out;
458 /* make sure the disk is operational */
459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 r1_bio->bios[new_disk] == IO_BLOCKED ||
461 !rdev || !test_bit(In_sync, &rdev->flags) ||
462 test_bit(WriteMostly, &rdev->flags);
463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
467 wonly_disk = new_disk;
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
473 new_disk = wonly_disk;
474 break;
478 if (new_disk < 0)
479 goto rb_out;
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 /* Find the disk whose head is closest */
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags) ||
505 test_bit(WriteMostly, &rdev->flags))
506 continue;
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
510 break;
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
517 } while (disk != conf->last_used);
519 rb_out:
522 if (new_disk >= 0) {
523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
527 if (!test_bit(In_sync, &rdev->flags)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev, conf->mddev);
532 goto retry;
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
537 rcu_read_unlock();
539 return new_disk;
542 static void unplug_slaves(mddev_t *mddev)
544 conf_t *conf = mddev_to_conf(mddev);
545 int i;
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
556 if (r_queue->unplug_fn)
557 r_queue->unplug_fn(r_queue);
559 rdev_dec_pending(rdev, mddev);
560 rcu_read_lock();
563 rcu_read_unlock();
566 static void raid1_unplug(request_queue_t *q)
568 mddev_t *mddev = q->queuedata;
570 unplug_slaves(mddev);
571 md_wakeup_thread(mddev->thread);
574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
575 sector_t *error_sector)
577 mddev_t *mddev = q->queuedata;
578 conf_t *conf = mddev_to_conf(mddev);
579 int i, ret = 0;
581 rcu_read_lock();
582 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
583 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
584 if (rdev && !test_bit(Faulty, &rdev->flags)) {
585 struct block_device *bdev = rdev->bdev;
586 request_queue_t *r_queue = bdev_get_queue(bdev);
588 if (!r_queue->issue_flush_fn)
589 ret = -EOPNOTSUPP;
590 else {
591 atomic_inc(&rdev->nr_pending);
592 rcu_read_unlock();
593 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
594 error_sector);
595 rdev_dec_pending(rdev, mddev);
596 rcu_read_lock();
600 rcu_read_unlock();
601 return ret;
604 static int raid1_congested(void *data, int bits)
606 mddev_t *mddev = data;
607 conf_t *conf = mddev_to_conf(mddev);
608 int i, ret = 0;
610 rcu_read_lock();
611 for (i = 0; i < mddev->raid_disks; i++) {
612 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
613 if (rdev && !test_bit(Faulty, &rdev->flags)) {
614 request_queue_t *q = bdev_get_queue(rdev->bdev);
616 /* Note the '|| 1' - when read_balance prefers
617 * non-congested targets, it can be removed
619 if ((bits & (1<<BDI_write_congested)) || 1)
620 ret |= bdi_congested(&q->backing_dev_info, bits);
621 else
622 ret &= bdi_congested(&q->backing_dev_info, bits);
625 rcu_read_unlock();
626 return ret;
630 /* Barriers....
631 * Sometimes we need to suspend IO while we do something else,
632 * either some resync/recovery, or reconfigure the array.
633 * To do this we raise a 'barrier'.
634 * The 'barrier' is a counter that can be raised multiple times
635 * to count how many activities are happening which preclude
636 * normal IO.
637 * We can only raise the barrier if there is no pending IO.
638 * i.e. if nr_pending == 0.
639 * We choose only to raise the barrier if no-one is waiting for the
640 * barrier to go down. This means that as soon as an IO request
641 * is ready, no other operations which require a barrier will start
642 * until the IO request has had a chance.
644 * So: regular IO calls 'wait_barrier'. When that returns there
645 * is no backgroup IO happening, It must arrange to call
646 * allow_barrier when it has finished its IO.
647 * backgroup IO calls must call raise_barrier. Once that returns
648 * there is no normal IO happeing. It must arrange to call
649 * lower_barrier when the particular background IO completes.
651 #define RESYNC_DEPTH 32
653 static void raise_barrier(conf_t *conf)
655 spin_lock_irq(&conf->resync_lock);
657 /* Wait until no block IO is waiting */
658 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
659 conf->resync_lock,
660 raid1_unplug(conf->mddev->queue));
662 /* block any new IO from starting */
663 conf->barrier++;
665 /* No wait for all pending IO to complete */
666 wait_event_lock_irq(conf->wait_barrier,
667 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
668 conf->resync_lock,
669 raid1_unplug(conf->mddev->queue));
671 spin_unlock_irq(&conf->resync_lock);
674 static void lower_barrier(conf_t *conf)
676 unsigned long flags;
677 spin_lock_irqsave(&conf->resync_lock, flags);
678 conf->barrier--;
679 spin_unlock_irqrestore(&conf->resync_lock, flags);
680 wake_up(&conf->wait_barrier);
683 static void wait_barrier(conf_t *conf)
685 spin_lock_irq(&conf->resync_lock);
686 if (conf->barrier) {
687 conf->nr_waiting++;
688 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
689 conf->resync_lock,
690 raid1_unplug(conf->mddev->queue));
691 conf->nr_waiting--;
693 conf->nr_pending++;
694 spin_unlock_irq(&conf->resync_lock);
697 static void allow_barrier(conf_t *conf)
699 unsigned long flags;
700 spin_lock_irqsave(&conf->resync_lock, flags);
701 conf->nr_pending--;
702 spin_unlock_irqrestore(&conf->resync_lock, flags);
703 wake_up(&conf->wait_barrier);
706 static void freeze_array(conf_t *conf)
708 /* stop syncio and normal IO and wait for everything to
709 * go quite.
710 * We increment barrier and nr_waiting, and then
711 * wait until barrier+nr_pending match nr_queued+2
713 spin_lock_irq(&conf->resync_lock);
714 conf->barrier++;
715 conf->nr_waiting++;
716 wait_event_lock_irq(conf->wait_barrier,
717 conf->barrier+conf->nr_pending == conf->nr_queued+2,
718 conf->resync_lock,
719 raid1_unplug(conf->mddev->queue));
720 spin_unlock_irq(&conf->resync_lock);
722 static void unfreeze_array(conf_t *conf)
724 /* reverse the effect of the freeze */
725 spin_lock_irq(&conf->resync_lock);
726 conf->barrier--;
727 conf->nr_waiting--;
728 wake_up(&conf->wait_barrier);
729 spin_unlock_irq(&conf->resync_lock);
733 /* duplicate the data pages for behind I/O */
734 static struct page **alloc_behind_pages(struct bio *bio)
736 int i;
737 struct bio_vec *bvec;
738 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
739 GFP_NOIO);
740 if (unlikely(!pages))
741 goto do_sync_io;
743 bio_for_each_segment(bvec, bio, i) {
744 pages[i] = alloc_page(GFP_NOIO);
745 if (unlikely(!pages[i]))
746 goto do_sync_io;
747 memcpy(kmap(pages[i]) + bvec->bv_offset,
748 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
749 kunmap(pages[i]);
750 kunmap(bvec->bv_page);
753 return pages;
755 do_sync_io:
756 if (pages)
757 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
758 put_page(pages[i]);
759 kfree(pages);
760 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
761 return NULL;
764 static int make_request(request_queue_t *q, struct bio * bio)
766 mddev_t *mddev = q->queuedata;
767 conf_t *conf = mddev_to_conf(mddev);
768 mirror_info_t *mirror;
769 r1bio_t *r1_bio;
770 struct bio *read_bio;
771 int i, targets = 0, disks;
772 mdk_rdev_t *rdev;
773 struct bitmap *bitmap = mddev->bitmap;
774 unsigned long flags;
775 struct bio_list bl;
776 struct page **behind_pages = NULL;
777 const int rw = bio_data_dir(bio);
778 int do_barriers;
781 * Register the new request and wait if the reconstruction
782 * thread has put up a bar for new requests.
783 * Continue immediately if no resync is active currently.
784 * We test barriers_work *after* md_write_start as md_write_start
785 * may cause the first superblock write, and that will check out
786 * if barriers work.
789 md_write_start(mddev, bio); /* wait on superblock update early */
791 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
792 if (rw == WRITE)
793 md_write_end(mddev);
794 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
795 return 0;
798 wait_barrier(conf);
800 disk_stat_inc(mddev->gendisk, ios[rw]);
801 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
804 * make_request() can abort the operation when READA is being
805 * used and no empty request is available.
808 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
810 r1_bio->master_bio = bio;
811 r1_bio->sectors = bio->bi_size >> 9;
812 r1_bio->state = 0;
813 r1_bio->mddev = mddev;
814 r1_bio->sector = bio->bi_sector;
816 if (rw == READ) {
818 * read balancing logic:
820 int rdisk = read_balance(conf, r1_bio);
822 if (rdisk < 0) {
823 /* couldn't find anywhere to read from */
824 raid_end_bio_io(r1_bio);
825 return 0;
827 mirror = conf->mirrors + rdisk;
829 r1_bio->read_disk = rdisk;
831 read_bio = bio_clone(bio, GFP_NOIO);
833 r1_bio->bios[rdisk] = read_bio;
835 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
836 read_bio->bi_bdev = mirror->rdev->bdev;
837 read_bio->bi_end_io = raid1_end_read_request;
838 read_bio->bi_rw = READ;
839 read_bio->bi_private = r1_bio;
841 generic_make_request(read_bio);
842 return 0;
846 * WRITE:
848 /* first select target devices under spinlock and
849 * inc refcount on their rdev. Record them by setting
850 * bios[x] to bio
852 disks = conf->raid_disks;
853 #if 0
854 { static int first=1;
855 if (first) printk("First Write sector %llu disks %d\n",
856 (unsigned long long)r1_bio->sector, disks);
857 first = 0;
859 #endif
860 rcu_read_lock();
861 for (i = 0; i < disks; i++) {
862 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
863 !test_bit(Faulty, &rdev->flags)) {
864 atomic_inc(&rdev->nr_pending);
865 if (test_bit(Faulty, &rdev->flags)) {
866 rdev_dec_pending(rdev, mddev);
867 r1_bio->bios[i] = NULL;
868 } else
869 r1_bio->bios[i] = bio;
870 targets++;
871 } else
872 r1_bio->bios[i] = NULL;
874 rcu_read_unlock();
876 BUG_ON(targets == 0); /* we never fail the last device */
878 if (targets < conf->raid_disks) {
879 /* array is degraded, we will not clear the bitmap
880 * on I/O completion (see raid1_end_write_request) */
881 set_bit(R1BIO_Degraded, &r1_bio->state);
884 /* do behind I/O ? */
885 if (bitmap &&
886 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
887 (behind_pages = alloc_behind_pages(bio)) != NULL)
888 set_bit(R1BIO_BehindIO, &r1_bio->state);
890 atomic_set(&r1_bio->remaining, 0);
891 atomic_set(&r1_bio->behind_remaining, 0);
893 do_barriers = bio_barrier(bio);
894 if (do_barriers)
895 set_bit(R1BIO_Barrier, &r1_bio->state);
897 bio_list_init(&bl);
898 for (i = 0; i < disks; i++) {
899 struct bio *mbio;
900 if (!r1_bio->bios[i])
901 continue;
903 mbio = bio_clone(bio, GFP_NOIO);
904 r1_bio->bios[i] = mbio;
906 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
907 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
908 mbio->bi_end_io = raid1_end_write_request;
909 mbio->bi_rw = WRITE | do_barriers;
910 mbio->bi_private = r1_bio;
912 if (behind_pages) {
913 struct bio_vec *bvec;
914 int j;
916 /* Yes, I really want the '__' version so that
917 * we clear any unused pointer in the io_vec, rather
918 * than leave them unchanged. This is important
919 * because when we come to free the pages, we won't
920 * know the originial bi_idx, so we just free
921 * them all
923 __bio_for_each_segment(bvec, mbio, j, 0)
924 bvec->bv_page = behind_pages[j];
925 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
926 atomic_inc(&r1_bio->behind_remaining);
929 atomic_inc(&r1_bio->remaining);
931 bio_list_add(&bl, mbio);
933 kfree(behind_pages); /* the behind pages are attached to the bios now */
935 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
936 test_bit(R1BIO_BehindIO, &r1_bio->state));
937 spin_lock_irqsave(&conf->device_lock, flags);
938 bio_list_merge(&conf->pending_bio_list, &bl);
939 bio_list_init(&bl);
941 blk_plug_device(mddev->queue);
942 spin_unlock_irqrestore(&conf->device_lock, flags);
944 #if 0
945 while ((bio = bio_list_pop(&bl)) != NULL)
946 generic_make_request(bio);
947 #endif
949 return 0;
952 static void status(struct seq_file *seq, mddev_t *mddev)
954 conf_t *conf = mddev_to_conf(mddev);
955 int i;
957 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
958 conf->raid_disks - mddev->degraded);
959 rcu_read_lock();
960 for (i = 0; i < conf->raid_disks; i++) {
961 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
962 seq_printf(seq, "%s",
963 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
965 rcu_read_unlock();
966 seq_printf(seq, "]");
970 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
972 char b[BDEVNAME_SIZE];
973 conf_t *conf = mddev_to_conf(mddev);
976 * If it is not operational, then we have already marked it as dead
977 * else if it is the last working disks, ignore the error, let the
978 * next level up know.
979 * else mark the drive as failed
981 if (test_bit(In_sync, &rdev->flags)
982 && (conf->raid_disks - mddev->degraded) == 1)
984 * Don't fail the drive, act as though we were just a
985 * normal single drive
987 return;
988 if (test_and_clear_bit(In_sync, &rdev->flags)) {
989 unsigned long flags;
990 spin_lock_irqsave(&conf->device_lock, flags);
991 mddev->degraded++;
992 spin_unlock_irqrestore(&conf->device_lock, flags);
994 * if recovery is running, make sure it aborts.
996 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
998 set_bit(Faulty, &rdev->flags);
999 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1000 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1001 " Operation continuing on %d devices\n",
1002 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1005 static void print_conf(conf_t *conf)
1007 int i;
1009 printk("RAID1 conf printout:\n");
1010 if (!conf) {
1011 printk("(!conf)\n");
1012 return;
1014 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1015 conf->raid_disks);
1017 rcu_read_lock();
1018 for (i = 0; i < conf->raid_disks; i++) {
1019 char b[BDEVNAME_SIZE];
1020 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1021 if (rdev)
1022 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1023 i, !test_bit(In_sync, &rdev->flags),
1024 !test_bit(Faulty, &rdev->flags),
1025 bdevname(rdev->bdev,b));
1027 rcu_read_unlock();
1030 static void close_sync(conf_t *conf)
1032 wait_barrier(conf);
1033 allow_barrier(conf);
1035 mempool_destroy(conf->r1buf_pool);
1036 conf->r1buf_pool = NULL;
1039 static int raid1_spare_active(mddev_t *mddev)
1041 int i;
1042 conf_t *conf = mddev->private;
1045 * Find all failed disks within the RAID1 configuration
1046 * and mark them readable.
1047 * Called under mddev lock, so rcu protection not needed.
1049 for (i = 0; i < conf->raid_disks; i++) {
1050 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1051 if (rdev
1052 && !test_bit(Faulty, &rdev->flags)
1053 && !test_and_set_bit(In_sync, &rdev->flags)) {
1054 unsigned long flags;
1055 spin_lock_irqsave(&conf->device_lock, flags);
1056 mddev->degraded--;
1057 spin_unlock_irqrestore(&conf->device_lock, flags);
1061 print_conf(conf);
1062 return 0;
1066 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1068 conf_t *conf = mddev->private;
1069 int found = 0;
1070 int mirror = 0;
1071 mirror_info_t *p;
1073 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1074 if ( !(p=conf->mirrors+mirror)->rdev) {
1076 blk_queue_stack_limits(mddev->queue,
1077 rdev->bdev->bd_disk->queue);
1078 /* as we don't honour merge_bvec_fn, we must never risk
1079 * violating it, so limit ->max_sector to one PAGE, as
1080 * a one page request is never in violation.
1082 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1083 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1084 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1086 p->head_position = 0;
1087 rdev->raid_disk = mirror;
1088 found = 1;
1089 /* As all devices are equivalent, we don't need a full recovery
1090 * if this was recently any drive of the array
1092 if (rdev->saved_raid_disk < 0)
1093 conf->fullsync = 1;
1094 rcu_assign_pointer(p->rdev, rdev);
1095 break;
1098 print_conf(conf);
1099 return found;
1102 static int raid1_remove_disk(mddev_t *mddev, int number)
1104 conf_t *conf = mddev->private;
1105 int err = 0;
1106 mdk_rdev_t *rdev;
1107 mirror_info_t *p = conf->mirrors+ number;
1109 print_conf(conf);
1110 rdev = p->rdev;
1111 if (rdev) {
1112 if (test_bit(In_sync, &rdev->flags) ||
1113 atomic_read(&rdev->nr_pending)) {
1114 err = -EBUSY;
1115 goto abort;
1117 p->rdev = NULL;
1118 synchronize_rcu();
1119 if (atomic_read(&rdev->nr_pending)) {
1120 /* lost the race, try later */
1121 err = -EBUSY;
1122 p->rdev = rdev;
1125 abort:
1127 print_conf(conf);
1128 return err;
1132 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1134 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1135 int i;
1137 if (bio->bi_size)
1138 return 1;
1140 for (i=r1_bio->mddev->raid_disks; i--; )
1141 if (r1_bio->bios[i] == bio)
1142 break;
1143 BUG_ON(i < 0);
1144 update_head_pos(i, r1_bio);
1146 * we have read a block, now it needs to be re-written,
1147 * or re-read if the read failed.
1148 * We don't do much here, just schedule handling by raid1d
1150 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1151 set_bit(R1BIO_Uptodate, &r1_bio->state);
1153 if (atomic_dec_and_test(&r1_bio->remaining))
1154 reschedule_retry(r1_bio);
1155 return 0;
1158 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1160 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1161 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1162 mddev_t *mddev = r1_bio->mddev;
1163 conf_t *conf = mddev_to_conf(mddev);
1164 int i;
1165 int mirror=0;
1167 if (bio->bi_size)
1168 return 1;
1170 for (i = 0; i < conf->raid_disks; i++)
1171 if (r1_bio->bios[i] == bio) {
1172 mirror = i;
1173 break;
1175 if (!uptodate) {
1176 int sync_blocks = 0;
1177 sector_t s = r1_bio->sector;
1178 long sectors_to_go = r1_bio->sectors;
1179 /* make sure these bits doesn't get cleared. */
1180 do {
1181 bitmap_end_sync(mddev->bitmap, s,
1182 &sync_blocks, 1);
1183 s += sync_blocks;
1184 sectors_to_go -= sync_blocks;
1185 } while (sectors_to_go > 0);
1186 md_error(mddev, conf->mirrors[mirror].rdev);
1189 update_head_pos(mirror, r1_bio);
1191 if (atomic_dec_and_test(&r1_bio->remaining)) {
1192 md_done_sync(mddev, r1_bio->sectors, uptodate);
1193 put_buf(r1_bio);
1195 return 0;
1198 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1200 conf_t *conf = mddev_to_conf(mddev);
1201 int i;
1202 int disks = conf->raid_disks;
1203 struct bio *bio, *wbio;
1205 bio = r1_bio->bios[r1_bio->read_disk];
1208 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1209 /* We have read all readable devices. If we haven't
1210 * got the block, then there is no hope left.
1211 * If we have, then we want to do a comparison
1212 * and skip the write if everything is the same.
1213 * If any blocks failed to read, then we need to
1214 * attempt an over-write
1216 int primary;
1217 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1218 for (i=0; i<mddev->raid_disks; i++)
1219 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1220 md_error(mddev, conf->mirrors[i].rdev);
1222 md_done_sync(mddev, r1_bio->sectors, 1);
1223 put_buf(r1_bio);
1224 return;
1226 for (primary=0; primary<mddev->raid_disks; primary++)
1227 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1228 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1229 r1_bio->bios[primary]->bi_end_io = NULL;
1230 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1231 break;
1233 r1_bio->read_disk = primary;
1234 for (i=0; i<mddev->raid_disks; i++)
1235 if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1236 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1237 int j;
1238 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1239 struct bio *pbio = r1_bio->bios[primary];
1240 struct bio *sbio = r1_bio->bios[i];
1241 for (j = vcnt; j-- ; )
1242 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1243 page_address(sbio->bi_io_vec[j].bv_page),
1244 PAGE_SIZE))
1245 break;
1246 if (j >= 0)
1247 mddev->resync_mismatches += r1_bio->sectors;
1248 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1249 sbio->bi_end_io = NULL;
1250 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1251 } else {
1252 /* fixup the bio for reuse */
1253 sbio->bi_vcnt = vcnt;
1254 sbio->bi_size = r1_bio->sectors << 9;
1255 sbio->bi_idx = 0;
1256 sbio->bi_phys_segments = 0;
1257 sbio->bi_hw_segments = 0;
1258 sbio->bi_hw_front_size = 0;
1259 sbio->bi_hw_back_size = 0;
1260 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1261 sbio->bi_flags |= 1 << BIO_UPTODATE;
1262 sbio->bi_next = NULL;
1263 sbio->bi_sector = r1_bio->sector +
1264 conf->mirrors[i].rdev->data_offset;
1265 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1269 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1270 /* ouch - failed to read all of that.
1271 * Try some synchronous reads of other devices to get
1272 * good data, much like with normal read errors. Only
1273 * read into the pages we already have so we don't
1274 * need to re-issue the read request.
1275 * We don't need to freeze the array, because being in an
1276 * active sync request, there is no normal IO, and
1277 * no overlapping syncs.
1279 sector_t sect = r1_bio->sector;
1280 int sectors = r1_bio->sectors;
1281 int idx = 0;
1283 while(sectors) {
1284 int s = sectors;
1285 int d = r1_bio->read_disk;
1286 int success = 0;
1287 mdk_rdev_t *rdev;
1289 if (s > (PAGE_SIZE>>9))
1290 s = PAGE_SIZE >> 9;
1291 do {
1292 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1293 /* No rcu protection needed here devices
1294 * can only be removed when no resync is
1295 * active, and resync is currently active
1297 rdev = conf->mirrors[d].rdev;
1298 if (sync_page_io(rdev->bdev,
1299 sect + rdev->data_offset,
1300 s<<9,
1301 bio->bi_io_vec[idx].bv_page,
1302 READ)) {
1303 success = 1;
1304 break;
1307 d++;
1308 if (d == conf->raid_disks)
1309 d = 0;
1310 } while (!success && d != r1_bio->read_disk);
1312 if (success) {
1313 int start = d;
1314 /* write it back and re-read */
1315 set_bit(R1BIO_Uptodate, &r1_bio->state);
1316 while (d != r1_bio->read_disk) {
1317 if (d == 0)
1318 d = conf->raid_disks;
1319 d--;
1320 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1321 continue;
1322 rdev = conf->mirrors[d].rdev;
1323 atomic_add(s, &rdev->corrected_errors);
1324 if (sync_page_io(rdev->bdev,
1325 sect + rdev->data_offset,
1326 s<<9,
1327 bio->bi_io_vec[idx].bv_page,
1328 WRITE) == 0)
1329 md_error(mddev, rdev);
1331 d = start;
1332 while (d != r1_bio->read_disk) {
1333 if (d == 0)
1334 d = conf->raid_disks;
1335 d--;
1336 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1337 continue;
1338 rdev = conf->mirrors[d].rdev;
1339 if (sync_page_io(rdev->bdev,
1340 sect + rdev->data_offset,
1341 s<<9,
1342 bio->bi_io_vec[idx].bv_page,
1343 READ) == 0)
1344 md_error(mddev, rdev);
1346 } else {
1347 char b[BDEVNAME_SIZE];
1348 /* Cannot read from anywhere, array is toast */
1349 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1350 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1351 " for block %llu\n",
1352 bdevname(bio->bi_bdev,b),
1353 (unsigned long long)r1_bio->sector);
1354 md_done_sync(mddev, r1_bio->sectors, 0);
1355 put_buf(r1_bio);
1356 return;
1358 sectors -= s;
1359 sect += s;
1360 idx ++;
1365 * schedule writes
1367 atomic_set(&r1_bio->remaining, 1);
1368 for (i = 0; i < disks ; i++) {
1369 wbio = r1_bio->bios[i];
1370 if (wbio->bi_end_io == NULL ||
1371 (wbio->bi_end_io == end_sync_read &&
1372 (i == r1_bio->read_disk ||
1373 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1374 continue;
1376 wbio->bi_rw = WRITE;
1377 wbio->bi_end_io = end_sync_write;
1378 atomic_inc(&r1_bio->remaining);
1379 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1381 generic_make_request(wbio);
1384 if (atomic_dec_and_test(&r1_bio->remaining)) {
1385 /* if we're here, all write(s) have completed, so clean up */
1386 md_done_sync(mddev, r1_bio->sectors, 1);
1387 put_buf(r1_bio);
1392 * This is a kernel thread which:
1394 * 1. Retries failed read operations on working mirrors.
1395 * 2. Updates the raid superblock when problems encounter.
1396 * 3. Performs writes following reads for array syncronising.
1399 static void fix_read_error(conf_t *conf, int read_disk,
1400 sector_t sect, int sectors)
1402 mddev_t *mddev = conf->mddev;
1403 while(sectors) {
1404 int s = sectors;
1405 int d = read_disk;
1406 int success = 0;
1407 int start;
1408 mdk_rdev_t *rdev;
1410 if (s > (PAGE_SIZE>>9))
1411 s = PAGE_SIZE >> 9;
1413 do {
1414 /* Note: no rcu protection needed here
1415 * as this is synchronous in the raid1d thread
1416 * which is the thread that might remove
1417 * a device. If raid1d ever becomes multi-threaded....
1419 rdev = conf->mirrors[d].rdev;
1420 if (rdev &&
1421 test_bit(In_sync, &rdev->flags) &&
1422 sync_page_io(rdev->bdev,
1423 sect + rdev->data_offset,
1424 s<<9,
1425 conf->tmppage, READ))
1426 success = 1;
1427 else {
1428 d++;
1429 if (d == conf->raid_disks)
1430 d = 0;
1432 } while (!success && d != read_disk);
1434 if (!success) {
1435 /* Cannot read from anywhere -- bye bye array */
1436 md_error(mddev, conf->mirrors[read_disk].rdev);
1437 break;
1439 /* write it back and re-read */
1440 start = d;
1441 while (d != read_disk) {
1442 if (d==0)
1443 d = conf->raid_disks;
1444 d--;
1445 rdev = conf->mirrors[d].rdev;
1446 if (rdev &&
1447 test_bit(In_sync, &rdev->flags)) {
1448 if (sync_page_io(rdev->bdev,
1449 sect + rdev->data_offset,
1450 s<<9, conf->tmppage, WRITE)
1451 == 0)
1452 /* Well, this device is dead */
1453 md_error(mddev, rdev);
1456 d = start;
1457 while (d != read_disk) {
1458 char b[BDEVNAME_SIZE];
1459 if (d==0)
1460 d = conf->raid_disks;
1461 d--;
1462 rdev = conf->mirrors[d].rdev;
1463 if (rdev &&
1464 test_bit(In_sync, &rdev->flags)) {
1465 if (sync_page_io(rdev->bdev,
1466 sect + rdev->data_offset,
1467 s<<9, conf->tmppage, READ)
1468 == 0)
1469 /* Well, this device is dead */
1470 md_error(mddev, rdev);
1471 else {
1472 atomic_add(s, &rdev->corrected_errors);
1473 printk(KERN_INFO
1474 "raid1:%s: read error corrected "
1475 "(%d sectors at %llu on %s)\n",
1476 mdname(mddev), s,
1477 (unsigned long long)(sect +
1478 rdev->data_offset),
1479 bdevname(rdev->bdev, b));
1483 sectors -= s;
1484 sect += s;
1488 static void raid1d(mddev_t *mddev)
1490 r1bio_t *r1_bio;
1491 struct bio *bio;
1492 unsigned long flags;
1493 conf_t *conf = mddev_to_conf(mddev);
1494 struct list_head *head = &conf->retry_list;
1495 int unplug=0;
1496 mdk_rdev_t *rdev;
1498 md_check_recovery(mddev);
1500 for (;;) {
1501 char b[BDEVNAME_SIZE];
1502 spin_lock_irqsave(&conf->device_lock, flags);
1504 if (conf->pending_bio_list.head) {
1505 bio = bio_list_get(&conf->pending_bio_list);
1506 blk_remove_plug(mddev->queue);
1507 spin_unlock_irqrestore(&conf->device_lock, flags);
1508 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1509 if (bitmap_unplug(mddev->bitmap) != 0)
1510 printk("%s: bitmap file write failed!\n", mdname(mddev));
1512 while (bio) { /* submit pending writes */
1513 struct bio *next = bio->bi_next;
1514 bio->bi_next = NULL;
1515 generic_make_request(bio);
1516 bio = next;
1518 unplug = 1;
1520 continue;
1523 if (list_empty(head))
1524 break;
1525 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1526 list_del(head->prev);
1527 conf->nr_queued--;
1528 spin_unlock_irqrestore(&conf->device_lock, flags);
1530 mddev = r1_bio->mddev;
1531 conf = mddev_to_conf(mddev);
1532 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1533 sync_request_write(mddev, r1_bio);
1534 unplug = 1;
1535 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1536 /* some requests in the r1bio were BIO_RW_BARRIER
1537 * requests which failed with -EOPNOTSUPP. Hohumm..
1538 * Better resubmit without the barrier.
1539 * We know which devices to resubmit for, because
1540 * all others have had their bios[] entry cleared.
1541 * We already have a nr_pending reference on these rdevs.
1543 int i;
1544 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1545 clear_bit(R1BIO_Barrier, &r1_bio->state);
1546 for (i=0; i < conf->raid_disks; i++)
1547 if (r1_bio->bios[i])
1548 atomic_inc(&r1_bio->remaining);
1549 for (i=0; i < conf->raid_disks; i++)
1550 if (r1_bio->bios[i]) {
1551 struct bio_vec *bvec;
1552 int j;
1554 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1555 /* copy pages from the failed bio, as
1556 * this might be a write-behind device */
1557 __bio_for_each_segment(bvec, bio, j, 0)
1558 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1559 bio_put(r1_bio->bios[i]);
1560 bio->bi_sector = r1_bio->sector +
1561 conf->mirrors[i].rdev->data_offset;
1562 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1563 bio->bi_end_io = raid1_end_write_request;
1564 bio->bi_rw = WRITE;
1565 bio->bi_private = r1_bio;
1566 r1_bio->bios[i] = bio;
1567 generic_make_request(bio);
1569 } else {
1570 int disk;
1572 /* we got a read error. Maybe the drive is bad. Maybe just
1573 * the block and we can fix it.
1574 * We freeze all other IO, and try reading the block from
1575 * other devices. When we find one, we re-write
1576 * and check it that fixes the read error.
1577 * This is all done synchronously while the array is
1578 * frozen
1580 if (mddev->ro == 0) {
1581 freeze_array(conf);
1582 fix_read_error(conf, r1_bio->read_disk,
1583 r1_bio->sector,
1584 r1_bio->sectors);
1585 unfreeze_array(conf);
1588 bio = r1_bio->bios[r1_bio->read_disk];
1589 if ((disk=read_balance(conf, r1_bio)) == -1) {
1590 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1591 " read error for block %llu\n",
1592 bdevname(bio->bi_bdev,b),
1593 (unsigned long long)r1_bio->sector);
1594 raid_end_bio_io(r1_bio);
1595 } else {
1596 r1_bio->bios[r1_bio->read_disk] =
1597 mddev->ro ? IO_BLOCKED : NULL;
1598 r1_bio->read_disk = disk;
1599 bio_put(bio);
1600 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1601 r1_bio->bios[r1_bio->read_disk] = bio;
1602 rdev = conf->mirrors[disk].rdev;
1603 if (printk_ratelimit())
1604 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1605 " another mirror\n",
1606 bdevname(rdev->bdev,b),
1607 (unsigned long long)r1_bio->sector);
1608 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1609 bio->bi_bdev = rdev->bdev;
1610 bio->bi_end_io = raid1_end_read_request;
1611 bio->bi_rw = READ;
1612 bio->bi_private = r1_bio;
1613 unplug = 1;
1614 generic_make_request(bio);
1618 spin_unlock_irqrestore(&conf->device_lock, flags);
1619 if (unplug)
1620 unplug_slaves(mddev);
1624 static int init_resync(conf_t *conf)
1626 int buffs;
1628 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1629 BUG_ON(conf->r1buf_pool);
1630 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1631 conf->poolinfo);
1632 if (!conf->r1buf_pool)
1633 return -ENOMEM;
1634 conf->next_resync = 0;
1635 return 0;
1639 * perform a "sync" on one "block"
1641 * We need to make sure that no normal I/O request - particularly write
1642 * requests - conflict with active sync requests.
1644 * This is achieved by tracking pending requests and a 'barrier' concept
1645 * that can be installed to exclude normal IO requests.
1648 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1650 conf_t *conf = mddev_to_conf(mddev);
1651 r1bio_t *r1_bio;
1652 struct bio *bio;
1653 sector_t max_sector, nr_sectors;
1654 int disk = -1;
1655 int i;
1656 int wonly = -1;
1657 int write_targets = 0, read_targets = 0;
1658 int sync_blocks;
1659 int still_degraded = 0;
1661 if (!conf->r1buf_pool)
1664 printk("sync start - bitmap %p\n", mddev->bitmap);
1666 if (init_resync(conf))
1667 return 0;
1670 max_sector = mddev->size << 1;
1671 if (sector_nr >= max_sector) {
1672 /* If we aborted, we need to abort the
1673 * sync on the 'current' bitmap chunk (there will
1674 * only be one in raid1 resync.
1675 * We can find the current addess in mddev->curr_resync
1677 if (mddev->curr_resync < max_sector) /* aborted */
1678 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1679 &sync_blocks, 1);
1680 else /* completed sync */
1681 conf->fullsync = 0;
1683 bitmap_close_sync(mddev->bitmap);
1684 close_sync(conf);
1685 return 0;
1688 if (mddev->bitmap == NULL &&
1689 mddev->recovery_cp == MaxSector &&
1690 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1691 conf->fullsync == 0) {
1692 *skipped = 1;
1693 return max_sector - sector_nr;
1695 /* before building a request, check if we can skip these blocks..
1696 * This call the bitmap_start_sync doesn't actually record anything
1698 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1699 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1700 /* We can skip this block, and probably several more */
1701 *skipped = 1;
1702 return sync_blocks;
1705 * If there is non-resync activity waiting for a turn,
1706 * and resync is going fast enough,
1707 * then let it though before starting on this new sync request.
1709 if (!go_faster && conf->nr_waiting)
1710 msleep_interruptible(1000);
1712 raise_barrier(conf);
1714 conf->next_resync = sector_nr;
1716 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1717 rcu_read_lock();
1719 * If we get a correctably read error during resync or recovery,
1720 * we might want to read from a different device. So we
1721 * flag all drives that could conceivably be read from for READ,
1722 * and any others (which will be non-In_sync devices) for WRITE.
1723 * If a read fails, we try reading from something else for which READ
1724 * is OK.
1727 r1_bio->mddev = mddev;
1728 r1_bio->sector = sector_nr;
1729 r1_bio->state = 0;
1730 set_bit(R1BIO_IsSync, &r1_bio->state);
1732 for (i=0; i < conf->raid_disks; i++) {
1733 mdk_rdev_t *rdev;
1734 bio = r1_bio->bios[i];
1736 /* take from bio_init */
1737 bio->bi_next = NULL;
1738 bio->bi_flags |= 1 << BIO_UPTODATE;
1739 bio->bi_rw = 0;
1740 bio->bi_vcnt = 0;
1741 bio->bi_idx = 0;
1742 bio->bi_phys_segments = 0;
1743 bio->bi_hw_segments = 0;
1744 bio->bi_size = 0;
1745 bio->bi_end_io = NULL;
1746 bio->bi_private = NULL;
1748 rdev = rcu_dereference(conf->mirrors[i].rdev);
1749 if (rdev == NULL ||
1750 test_bit(Faulty, &rdev->flags)) {
1751 still_degraded = 1;
1752 continue;
1753 } else if (!test_bit(In_sync, &rdev->flags)) {
1754 bio->bi_rw = WRITE;
1755 bio->bi_end_io = end_sync_write;
1756 write_targets ++;
1757 } else {
1758 /* may need to read from here */
1759 bio->bi_rw = READ;
1760 bio->bi_end_io = end_sync_read;
1761 if (test_bit(WriteMostly, &rdev->flags)) {
1762 if (wonly < 0)
1763 wonly = i;
1764 } else {
1765 if (disk < 0)
1766 disk = i;
1768 read_targets++;
1770 atomic_inc(&rdev->nr_pending);
1771 bio->bi_sector = sector_nr + rdev->data_offset;
1772 bio->bi_bdev = rdev->bdev;
1773 bio->bi_private = r1_bio;
1775 rcu_read_unlock();
1776 if (disk < 0)
1777 disk = wonly;
1778 r1_bio->read_disk = disk;
1780 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1781 /* extra read targets are also write targets */
1782 write_targets += read_targets-1;
1784 if (write_targets == 0 || read_targets == 0) {
1785 /* There is nowhere to write, so all non-sync
1786 * drives must be failed - so we are finished
1788 sector_t rv = max_sector - sector_nr;
1789 *skipped = 1;
1790 put_buf(r1_bio);
1791 return rv;
1794 nr_sectors = 0;
1795 sync_blocks = 0;
1796 do {
1797 struct page *page;
1798 int len = PAGE_SIZE;
1799 if (sector_nr + (len>>9) > max_sector)
1800 len = (max_sector - sector_nr) << 9;
1801 if (len == 0)
1802 break;
1803 if (sync_blocks == 0) {
1804 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1805 &sync_blocks, still_degraded) &&
1806 !conf->fullsync &&
1807 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1808 break;
1809 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1810 if (len > (sync_blocks<<9))
1811 len = sync_blocks<<9;
1814 for (i=0 ; i < conf->raid_disks; i++) {
1815 bio = r1_bio->bios[i];
1816 if (bio->bi_end_io) {
1817 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1818 if (bio_add_page(bio, page, len, 0) == 0) {
1819 /* stop here */
1820 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1821 while (i > 0) {
1822 i--;
1823 bio = r1_bio->bios[i];
1824 if (bio->bi_end_io==NULL)
1825 continue;
1826 /* remove last page from this bio */
1827 bio->bi_vcnt--;
1828 bio->bi_size -= len;
1829 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1831 goto bio_full;
1835 nr_sectors += len>>9;
1836 sector_nr += len>>9;
1837 sync_blocks -= (len>>9);
1838 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1839 bio_full:
1840 r1_bio->sectors = nr_sectors;
1842 /* For a user-requested sync, we read all readable devices and do a
1843 * compare
1845 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1846 atomic_set(&r1_bio->remaining, read_targets);
1847 for (i=0; i<conf->raid_disks; i++) {
1848 bio = r1_bio->bios[i];
1849 if (bio->bi_end_io == end_sync_read) {
1850 md_sync_acct(bio->bi_bdev, nr_sectors);
1851 generic_make_request(bio);
1854 } else {
1855 atomic_set(&r1_bio->remaining, 1);
1856 bio = r1_bio->bios[r1_bio->read_disk];
1857 md_sync_acct(bio->bi_bdev, nr_sectors);
1858 generic_make_request(bio);
1861 return nr_sectors;
1864 static int run(mddev_t *mddev)
1866 conf_t *conf;
1867 int i, j, disk_idx;
1868 mirror_info_t *disk;
1869 mdk_rdev_t *rdev;
1870 struct list_head *tmp;
1872 if (mddev->level != 1) {
1873 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1874 mdname(mddev), mddev->level);
1875 goto out;
1877 if (mddev->reshape_position != MaxSector) {
1878 printk("raid1: %s: reshape_position set but not supported\n",
1879 mdname(mddev));
1880 goto out;
1883 * copy the already verified devices into our private RAID1
1884 * bookkeeping area. [whatever we allocate in run(),
1885 * should be freed in stop()]
1887 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1888 mddev->private = conf;
1889 if (!conf)
1890 goto out_no_mem;
1892 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1893 GFP_KERNEL);
1894 if (!conf->mirrors)
1895 goto out_no_mem;
1897 conf->tmppage = alloc_page(GFP_KERNEL);
1898 if (!conf->tmppage)
1899 goto out_no_mem;
1901 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1902 if (!conf->poolinfo)
1903 goto out_no_mem;
1904 conf->poolinfo->mddev = mddev;
1905 conf->poolinfo->raid_disks = mddev->raid_disks;
1906 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1907 r1bio_pool_free,
1908 conf->poolinfo);
1909 if (!conf->r1bio_pool)
1910 goto out_no_mem;
1912 ITERATE_RDEV(mddev, rdev, tmp) {
1913 disk_idx = rdev->raid_disk;
1914 if (disk_idx >= mddev->raid_disks
1915 || disk_idx < 0)
1916 continue;
1917 disk = conf->mirrors + disk_idx;
1919 disk->rdev = rdev;
1921 blk_queue_stack_limits(mddev->queue,
1922 rdev->bdev->bd_disk->queue);
1923 /* as we don't honour merge_bvec_fn, we must never risk
1924 * violating it, so limit ->max_sector to one PAGE, as
1925 * a one page request is never in violation.
1927 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1928 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1929 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1931 disk->head_position = 0;
1933 conf->raid_disks = mddev->raid_disks;
1934 conf->mddev = mddev;
1935 spin_lock_init(&conf->device_lock);
1936 INIT_LIST_HEAD(&conf->retry_list);
1938 spin_lock_init(&conf->resync_lock);
1939 init_waitqueue_head(&conf->wait_barrier);
1941 bio_list_init(&conf->pending_bio_list);
1942 bio_list_init(&conf->flushing_bio_list);
1945 mddev->degraded = 0;
1946 for (i = 0; i < conf->raid_disks; i++) {
1948 disk = conf->mirrors + i;
1950 if (!disk->rdev ||
1951 !test_bit(In_sync, &disk->rdev->flags)) {
1952 disk->head_position = 0;
1953 mddev->degraded++;
1956 if (mddev->degraded == conf->raid_disks) {
1957 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1958 mdname(mddev));
1959 goto out_free_conf;
1961 if (conf->raid_disks - mddev->degraded == 1)
1962 mddev->recovery_cp = MaxSector;
1965 * find the first working one and use it as a starting point
1966 * to read balancing.
1968 for (j = 0; j < conf->raid_disks &&
1969 (!conf->mirrors[j].rdev ||
1970 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1971 /* nothing */;
1972 conf->last_used = j;
1975 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1976 if (!mddev->thread) {
1977 printk(KERN_ERR
1978 "raid1: couldn't allocate thread for %s\n",
1979 mdname(mddev));
1980 goto out_free_conf;
1983 printk(KERN_INFO
1984 "raid1: raid set %s active with %d out of %d mirrors\n",
1985 mdname(mddev), mddev->raid_disks - mddev->degraded,
1986 mddev->raid_disks);
1988 * Ok, everything is just fine now
1990 mddev->array_size = mddev->size;
1992 mddev->queue->unplug_fn = raid1_unplug;
1993 mddev->queue->issue_flush_fn = raid1_issue_flush;
1994 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1995 mddev->queue->backing_dev_info.congested_data = mddev;
1997 return 0;
1999 out_no_mem:
2000 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2001 mdname(mddev));
2003 out_free_conf:
2004 if (conf) {
2005 if (conf->r1bio_pool)
2006 mempool_destroy(conf->r1bio_pool);
2007 kfree(conf->mirrors);
2008 safe_put_page(conf->tmppage);
2009 kfree(conf->poolinfo);
2010 kfree(conf);
2011 mddev->private = NULL;
2013 out:
2014 return -EIO;
2017 static int stop(mddev_t *mddev)
2019 conf_t *conf = mddev_to_conf(mddev);
2020 struct bitmap *bitmap = mddev->bitmap;
2021 int behind_wait = 0;
2023 /* wait for behind writes to complete */
2024 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2025 behind_wait++;
2026 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2027 set_current_state(TASK_UNINTERRUPTIBLE);
2028 schedule_timeout(HZ); /* wait a second */
2029 /* need to kick something here to make sure I/O goes? */
2032 md_unregister_thread(mddev->thread);
2033 mddev->thread = NULL;
2034 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2035 if (conf->r1bio_pool)
2036 mempool_destroy(conf->r1bio_pool);
2037 kfree(conf->mirrors);
2038 kfree(conf->poolinfo);
2039 kfree(conf);
2040 mddev->private = NULL;
2041 return 0;
2044 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2046 /* no resync is happening, and there is enough space
2047 * on all devices, so we can resize.
2048 * We need to make sure resync covers any new space.
2049 * If the array is shrinking we should possibly wait until
2050 * any io in the removed space completes, but it hardly seems
2051 * worth it.
2053 mddev->array_size = sectors>>1;
2054 set_capacity(mddev->gendisk, mddev->array_size << 1);
2055 mddev->changed = 1;
2056 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2057 mddev->recovery_cp = mddev->size << 1;
2058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2060 mddev->size = mddev->array_size;
2061 mddev->resync_max_sectors = sectors;
2062 return 0;
2065 static int raid1_reshape(mddev_t *mddev)
2067 /* We need to:
2068 * 1/ resize the r1bio_pool
2069 * 2/ resize conf->mirrors
2071 * We allocate a new r1bio_pool if we can.
2072 * Then raise a device barrier and wait until all IO stops.
2073 * Then resize conf->mirrors and swap in the new r1bio pool.
2075 * At the same time, we "pack" the devices so that all the missing
2076 * devices have the higher raid_disk numbers.
2078 mempool_t *newpool, *oldpool;
2079 struct pool_info *newpoolinfo;
2080 mirror_info_t *newmirrors;
2081 conf_t *conf = mddev_to_conf(mddev);
2082 int cnt, raid_disks;
2083 unsigned long flags;
2084 int d, d2;
2086 /* Cannot change chunk_size, layout, or level */
2087 if (mddev->chunk_size != mddev->new_chunk ||
2088 mddev->layout != mddev->new_layout ||
2089 mddev->level != mddev->new_level) {
2090 mddev->new_chunk = mddev->chunk_size;
2091 mddev->new_layout = mddev->layout;
2092 mddev->new_level = mddev->level;
2093 return -EINVAL;
2096 raid_disks = mddev->raid_disks + mddev->delta_disks;
2098 if (raid_disks < conf->raid_disks) {
2099 cnt=0;
2100 for (d= 0; d < conf->raid_disks; d++)
2101 if (conf->mirrors[d].rdev)
2102 cnt++;
2103 if (cnt > raid_disks)
2104 return -EBUSY;
2107 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2108 if (!newpoolinfo)
2109 return -ENOMEM;
2110 newpoolinfo->mddev = mddev;
2111 newpoolinfo->raid_disks = raid_disks;
2113 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2114 r1bio_pool_free, newpoolinfo);
2115 if (!newpool) {
2116 kfree(newpoolinfo);
2117 return -ENOMEM;
2119 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2120 if (!newmirrors) {
2121 kfree(newpoolinfo);
2122 mempool_destroy(newpool);
2123 return -ENOMEM;
2126 raise_barrier(conf);
2128 /* ok, everything is stopped */
2129 oldpool = conf->r1bio_pool;
2130 conf->r1bio_pool = newpool;
2132 for (d=d2=0; d < conf->raid_disks; d++)
2133 if (conf->mirrors[d].rdev) {
2134 conf->mirrors[d].rdev->raid_disk = d2;
2135 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2137 kfree(conf->mirrors);
2138 conf->mirrors = newmirrors;
2139 kfree(conf->poolinfo);
2140 conf->poolinfo = newpoolinfo;
2142 spin_lock_irqsave(&conf->device_lock, flags);
2143 mddev->degraded += (raid_disks - conf->raid_disks);
2144 spin_unlock_irqrestore(&conf->device_lock, flags);
2145 conf->raid_disks = mddev->raid_disks = raid_disks;
2146 mddev->delta_disks = 0;
2148 conf->last_used = 0; /* just make sure it is in-range */
2149 lower_barrier(conf);
2151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2152 md_wakeup_thread(mddev->thread);
2154 mempool_destroy(oldpool);
2155 return 0;
2158 static void raid1_quiesce(mddev_t *mddev, int state)
2160 conf_t *conf = mddev_to_conf(mddev);
2162 switch(state) {
2163 case 1:
2164 raise_barrier(conf);
2165 break;
2166 case 0:
2167 lower_barrier(conf);
2168 break;
2173 static struct mdk_personality raid1_personality =
2175 .name = "raid1",
2176 .level = 1,
2177 .owner = THIS_MODULE,
2178 .make_request = make_request,
2179 .run = run,
2180 .stop = stop,
2181 .status = status,
2182 .error_handler = error,
2183 .hot_add_disk = raid1_add_disk,
2184 .hot_remove_disk= raid1_remove_disk,
2185 .spare_active = raid1_spare_active,
2186 .sync_request = sync_request,
2187 .resize = raid1_resize,
2188 .check_reshape = raid1_reshape,
2189 .quiesce = raid1_quiesce,
2192 static int __init raid_init(void)
2194 return register_md_personality(&raid1_personality);
2197 static void raid_exit(void)
2199 unregister_md_personality(&raid1_personality);
2202 module_init(raid_init);
2203 module_exit(raid_exit);
2204 MODULE_LICENSE("GPL");
2205 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2206 MODULE_ALIAS("md-raid1");
2207 MODULE_ALIAS("md-level-1");