mm: introduce non panic alloc_bootmem
[firewire-audio.git] / mm / hugetlb.c
blob5e620e25cf0820bd80efc5c1b2608f9bccb0cc6e
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/sysfs.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
22 #include <linux/hugetlb.h>
23 #include "internal.h"
25 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
26 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
27 unsigned long hugepages_treat_as_movable;
29 static int max_hstate;
30 unsigned int default_hstate_idx;
31 struct hstate hstates[HUGE_MAX_HSTATE];
33 /* for command line parsing */
34 static struct hstate * __initdata parsed_hstate;
35 static unsigned long __initdata default_hstate_max_huge_pages;
37 #define for_each_hstate(h) \
38 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
41 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
43 static DEFINE_SPINLOCK(hugetlb_lock);
46 * Region tracking -- allows tracking of reservations and instantiated pages
47 * across the pages in a mapping.
49 * The region data structures are protected by a combination of the mmap_sem
50 * and the hugetlb_instantion_mutex. To access or modify a region the caller
51 * must either hold the mmap_sem for write, or the mmap_sem for read and
52 * the hugetlb_instantiation mutex:
54 * down_write(&mm->mmap_sem);
55 * or
56 * down_read(&mm->mmap_sem);
57 * mutex_lock(&hugetlb_instantiation_mutex);
59 struct file_region {
60 struct list_head link;
61 long from;
62 long to;
65 static long region_add(struct list_head *head, long f, long t)
67 struct file_region *rg, *nrg, *trg;
69 /* Locate the region we are either in or before. */
70 list_for_each_entry(rg, head, link)
71 if (f <= rg->to)
72 break;
74 /* Round our left edge to the current segment if it encloses us. */
75 if (f > rg->from)
76 f = rg->from;
78 /* Check for and consume any regions we now overlap with. */
79 nrg = rg;
80 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
81 if (&rg->link == head)
82 break;
83 if (rg->from > t)
84 break;
86 /* If this area reaches higher then extend our area to
87 * include it completely. If this is not the first area
88 * which we intend to reuse, free it. */
89 if (rg->to > t)
90 t = rg->to;
91 if (rg != nrg) {
92 list_del(&rg->link);
93 kfree(rg);
96 nrg->from = f;
97 nrg->to = t;
98 return 0;
101 static long region_chg(struct list_head *head, long f, long t)
103 struct file_region *rg, *nrg;
104 long chg = 0;
106 /* Locate the region we are before or in. */
107 list_for_each_entry(rg, head, link)
108 if (f <= rg->to)
109 break;
111 /* If we are below the current region then a new region is required.
112 * Subtle, allocate a new region at the position but make it zero
113 * size such that we can guarantee to record the reservation. */
114 if (&rg->link == head || t < rg->from) {
115 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
116 if (!nrg)
117 return -ENOMEM;
118 nrg->from = f;
119 nrg->to = f;
120 INIT_LIST_HEAD(&nrg->link);
121 list_add(&nrg->link, rg->link.prev);
123 return t - f;
126 /* Round our left edge to the current segment if it encloses us. */
127 if (f > rg->from)
128 f = rg->from;
129 chg = t - f;
131 /* Check for and consume any regions we now overlap with. */
132 list_for_each_entry(rg, rg->link.prev, link) {
133 if (&rg->link == head)
134 break;
135 if (rg->from > t)
136 return chg;
138 /* We overlap with this area, if it extends futher than
139 * us then we must extend ourselves. Account for its
140 * existing reservation. */
141 if (rg->to > t) {
142 chg += rg->to - t;
143 t = rg->to;
145 chg -= rg->to - rg->from;
147 return chg;
150 static long region_truncate(struct list_head *head, long end)
152 struct file_region *rg, *trg;
153 long chg = 0;
155 /* Locate the region we are either in or before. */
156 list_for_each_entry(rg, head, link)
157 if (end <= rg->to)
158 break;
159 if (&rg->link == head)
160 return 0;
162 /* If we are in the middle of a region then adjust it. */
163 if (end > rg->from) {
164 chg = rg->to - end;
165 rg->to = end;
166 rg = list_entry(rg->link.next, typeof(*rg), link);
169 /* Drop any remaining regions. */
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 chg += rg->to - rg->from;
174 list_del(&rg->link);
175 kfree(rg);
177 return chg;
180 static long region_count(struct list_head *head, long f, long t)
182 struct file_region *rg;
183 long chg = 0;
185 /* Locate each segment we overlap with, and count that overlap. */
186 list_for_each_entry(rg, head, link) {
187 int seg_from;
188 int seg_to;
190 if (rg->to <= f)
191 continue;
192 if (rg->from >= t)
193 break;
195 seg_from = max(rg->from, f);
196 seg_to = min(rg->to, t);
198 chg += seg_to - seg_from;
201 return chg;
205 * Convert the address within this vma to the page offset within
206 * the mapping, in pagecache page units; huge pages here.
208 static pgoff_t vma_hugecache_offset(struct hstate *h,
209 struct vm_area_struct *vma, unsigned long address)
211 return ((address - vma->vm_start) >> huge_page_shift(h)) +
212 (vma->vm_pgoff >> huge_page_order(h));
216 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
217 * bits of the reservation map pointer, which are always clear due to
218 * alignment.
220 #define HPAGE_RESV_OWNER (1UL << 0)
221 #define HPAGE_RESV_UNMAPPED (1UL << 1)
222 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
225 * These helpers are used to track how many pages are reserved for
226 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
227 * is guaranteed to have their future faults succeed.
229 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
230 * the reserve counters are updated with the hugetlb_lock held. It is safe
231 * to reset the VMA at fork() time as it is not in use yet and there is no
232 * chance of the global counters getting corrupted as a result of the values.
234 * The private mapping reservation is represented in a subtly different
235 * manner to a shared mapping. A shared mapping has a region map associated
236 * with the underlying file, this region map represents the backing file
237 * pages which have ever had a reservation assigned which this persists even
238 * after the page is instantiated. A private mapping has a region map
239 * associated with the original mmap which is attached to all VMAs which
240 * reference it, this region map represents those offsets which have consumed
241 * reservation ie. where pages have been instantiated.
243 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
245 return (unsigned long)vma->vm_private_data;
248 static void set_vma_private_data(struct vm_area_struct *vma,
249 unsigned long value)
251 vma->vm_private_data = (void *)value;
254 struct resv_map {
255 struct kref refs;
256 struct list_head regions;
259 struct resv_map *resv_map_alloc(void)
261 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
262 if (!resv_map)
263 return NULL;
265 kref_init(&resv_map->refs);
266 INIT_LIST_HEAD(&resv_map->regions);
268 return resv_map;
271 void resv_map_release(struct kref *ref)
273 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
275 /* Clear out any active regions before we release the map. */
276 region_truncate(&resv_map->regions, 0);
277 kfree(resv_map);
280 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
282 VM_BUG_ON(!is_vm_hugetlb_page(vma));
283 if (!(vma->vm_flags & VM_SHARED))
284 return (struct resv_map *)(get_vma_private_data(vma) &
285 ~HPAGE_RESV_MASK);
286 return 0;
289 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
291 VM_BUG_ON(!is_vm_hugetlb_page(vma));
292 VM_BUG_ON(vma->vm_flags & VM_SHARED);
294 set_vma_private_data(vma, (get_vma_private_data(vma) &
295 HPAGE_RESV_MASK) | (unsigned long)map);
298 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
300 VM_BUG_ON(!is_vm_hugetlb_page(vma));
301 VM_BUG_ON(vma->vm_flags & VM_SHARED);
303 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
306 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
308 VM_BUG_ON(!is_vm_hugetlb_page(vma));
310 return (get_vma_private_data(vma) & flag) != 0;
313 /* Decrement the reserved pages in the hugepage pool by one */
314 static void decrement_hugepage_resv_vma(struct hstate *h,
315 struct vm_area_struct *vma)
317 if (vma->vm_flags & VM_NORESERVE)
318 return;
320 if (vma->vm_flags & VM_SHARED) {
321 /* Shared mappings always use reserves */
322 h->resv_huge_pages--;
323 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
325 * Only the process that called mmap() has reserves for
326 * private mappings.
328 h->resv_huge_pages--;
332 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
333 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
335 VM_BUG_ON(!is_vm_hugetlb_page(vma));
336 if (!(vma->vm_flags & VM_SHARED))
337 vma->vm_private_data = (void *)0;
340 /* Returns true if the VMA has associated reserve pages */
341 static int vma_has_private_reserves(struct vm_area_struct *vma)
343 if (vma->vm_flags & VM_SHARED)
344 return 0;
345 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
346 return 0;
347 return 1;
350 static void clear_huge_page(struct page *page,
351 unsigned long addr, unsigned long sz)
353 int i;
355 might_sleep();
356 for (i = 0; i < sz/PAGE_SIZE; i++) {
357 cond_resched();
358 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
362 static void copy_huge_page(struct page *dst, struct page *src,
363 unsigned long addr, struct vm_area_struct *vma)
365 int i;
366 struct hstate *h = hstate_vma(vma);
368 might_sleep();
369 for (i = 0; i < pages_per_huge_page(h); i++) {
370 cond_resched();
371 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
375 static void enqueue_huge_page(struct hstate *h, struct page *page)
377 int nid = page_to_nid(page);
378 list_add(&page->lru, &h->hugepage_freelists[nid]);
379 h->free_huge_pages++;
380 h->free_huge_pages_node[nid]++;
383 static struct page *dequeue_huge_page(struct hstate *h)
385 int nid;
386 struct page *page = NULL;
388 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
389 if (!list_empty(&h->hugepage_freelists[nid])) {
390 page = list_entry(h->hugepage_freelists[nid].next,
391 struct page, lru);
392 list_del(&page->lru);
393 h->free_huge_pages--;
394 h->free_huge_pages_node[nid]--;
395 break;
398 return page;
401 static struct page *dequeue_huge_page_vma(struct hstate *h,
402 struct vm_area_struct *vma,
403 unsigned long address, int avoid_reserve)
405 int nid;
406 struct page *page = NULL;
407 struct mempolicy *mpol;
408 nodemask_t *nodemask;
409 struct zonelist *zonelist = huge_zonelist(vma, address,
410 htlb_alloc_mask, &mpol, &nodemask);
411 struct zone *zone;
412 struct zoneref *z;
415 * A child process with MAP_PRIVATE mappings created by their parent
416 * have no page reserves. This check ensures that reservations are
417 * not "stolen". The child may still get SIGKILLed
419 if (!vma_has_private_reserves(vma) &&
420 h->free_huge_pages - h->resv_huge_pages == 0)
421 return NULL;
423 /* If reserves cannot be used, ensure enough pages are in the pool */
424 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
425 return NULL;
427 for_each_zone_zonelist_nodemask(zone, z, zonelist,
428 MAX_NR_ZONES - 1, nodemask) {
429 nid = zone_to_nid(zone);
430 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
431 !list_empty(&h->hugepage_freelists[nid])) {
432 page = list_entry(h->hugepage_freelists[nid].next,
433 struct page, lru);
434 list_del(&page->lru);
435 h->free_huge_pages--;
436 h->free_huge_pages_node[nid]--;
438 if (!avoid_reserve)
439 decrement_hugepage_resv_vma(h, vma);
441 break;
444 mpol_cond_put(mpol);
445 return page;
448 static void update_and_free_page(struct hstate *h, struct page *page)
450 int i;
452 h->nr_huge_pages--;
453 h->nr_huge_pages_node[page_to_nid(page)]--;
454 for (i = 0; i < pages_per_huge_page(h); i++) {
455 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
456 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
457 1 << PG_private | 1<< PG_writeback);
459 set_compound_page_dtor(page, NULL);
460 set_page_refcounted(page);
461 arch_release_hugepage(page);
462 __free_pages(page, huge_page_order(h));
465 struct hstate *size_to_hstate(unsigned long size)
467 struct hstate *h;
469 for_each_hstate(h) {
470 if (huge_page_size(h) == size)
471 return h;
473 return NULL;
476 static void free_huge_page(struct page *page)
479 * Can't pass hstate in here because it is called from the
480 * compound page destructor.
482 struct hstate *h = page_hstate(page);
483 int nid = page_to_nid(page);
484 struct address_space *mapping;
486 mapping = (struct address_space *) page_private(page);
487 set_page_private(page, 0);
488 BUG_ON(page_count(page));
489 INIT_LIST_HEAD(&page->lru);
491 spin_lock(&hugetlb_lock);
492 if (h->surplus_huge_pages_node[nid]) {
493 update_and_free_page(h, page);
494 h->surplus_huge_pages--;
495 h->surplus_huge_pages_node[nid]--;
496 } else {
497 enqueue_huge_page(h, page);
499 spin_unlock(&hugetlb_lock);
500 if (mapping)
501 hugetlb_put_quota(mapping, 1);
505 * Increment or decrement surplus_huge_pages. Keep node-specific counters
506 * balanced by operating on them in a round-robin fashion.
507 * Returns 1 if an adjustment was made.
509 static int adjust_pool_surplus(struct hstate *h, int delta)
511 static int prev_nid;
512 int nid = prev_nid;
513 int ret = 0;
515 VM_BUG_ON(delta != -1 && delta != 1);
516 do {
517 nid = next_node(nid, node_online_map);
518 if (nid == MAX_NUMNODES)
519 nid = first_node(node_online_map);
521 /* To shrink on this node, there must be a surplus page */
522 if (delta < 0 && !h->surplus_huge_pages_node[nid])
523 continue;
524 /* Surplus cannot exceed the total number of pages */
525 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
526 h->nr_huge_pages_node[nid])
527 continue;
529 h->surplus_huge_pages += delta;
530 h->surplus_huge_pages_node[nid] += delta;
531 ret = 1;
532 break;
533 } while (nid != prev_nid);
535 prev_nid = nid;
536 return ret;
539 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
541 set_compound_page_dtor(page, free_huge_page);
542 spin_lock(&hugetlb_lock);
543 h->nr_huge_pages++;
544 h->nr_huge_pages_node[nid]++;
545 spin_unlock(&hugetlb_lock);
546 put_page(page); /* free it into the hugepage allocator */
549 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
551 struct page *page;
553 page = alloc_pages_node(nid,
554 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
555 __GFP_REPEAT|__GFP_NOWARN,
556 huge_page_order(h));
557 if (page) {
558 if (arch_prepare_hugepage(page)) {
559 __free_pages(page, HUGETLB_PAGE_ORDER);
560 return NULL;
562 prep_new_huge_page(h, page, nid);
565 return page;
569 * Use a helper variable to find the next node and then
570 * copy it back to hugetlb_next_nid afterwards:
571 * otherwise there's a window in which a racer might
572 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
573 * But we don't need to use a spin_lock here: it really
574 * doesn't matter if occasionally a racer chooses the
575 * same nid as we do. Move nid forward in the mask even
576 * if we just successfully allocated a hugepage so that
577 * the next caller gets hugepages on the next node.
579 static int hstate_next_node(struct hstate *h)
581 int next_nid;
582 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
583 if (next_nid == MAX_NUMNODES)
584 next_nid = first_node(node_online_map);
585 h->hugetlb_next_nid = next_nid;
586 return next_nid;
589 static int alloc_fresh_huge_page(struct hstate *h)
591 struct page *page;
592 int start_nid;
593 int next_nid;
594 int ret = 0;
596 start_nid = h->hugetlb_next_nid;
598 do {
599 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
600 if (page)
601 ret = 1;
602 next_nid = hstate_next_node(h);
603 } while (!page && h->hugetlb_next_nid != start_nid);
605 if (ret)
606 count_vm_event(HTLB_BUDDY_PGALLOC);
607 else
608 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
610 return ret;
613 static struct page *alloc_buddy_huge_page(struct hstate *h,
614 struct vm_area_struct *vma, unsigned long address)
616 struct page *page;
617 unsigned int nid;
620 * Assume we will successfully allocate the surplus page to
621 * prevent racing processes from causing the surplus to exceed
622 * overcommit
624 * This however introduces a different race, where a process B
625 * tries to grow the static hugepage pool while alloc_pages() is
626 * called by process A. B will only examine the per-node
627 * counters in determining if surplus huge pages can be
628 * converted to normal huge pages in adjust_pool_surplus(). A
629 * won't be able to increment the per-node counter, until the
630 * lock is dropped by B, but B doesn't drop hugetlb_lock until
631 * no more huge pages can be converted from surplus to normal
632 * state (and doesn't try to convert again). Thus, we have a
633 * case where a surplus huge page exists, the pool is grown, and
634 * the surplus huge page still exists after, even though it
635 * should just have been converted to a normal huge page. This
636 * does not leak memory, though, as the hugepage will be freed
637 * once it is out of use. It also does not allow the counters to
638 * go out of whack in adjust_pool_surplus() as we don't modify
639 * the node values until we've gotten the hugepage and only the
640 * per-node value is checked there.
642 spin_lock(&hugetlb_lock);
643 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
644 spin_unlock(&hugetlb_lock);
645 return NULL;
646 } else {
647 h->nr_huge_pages++;
648 h->surplus_huge_pages++;
650 spin_unlock(&hugetlb_lock);
652 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
653 __GFP_REPEAT|__GFP_NOWARN,
654 huge_page_order(h));
656 spin_lock(&hugetlb_lock);
657 if (page) {
659 * This page is now managed by the hugetlb allocator and has
660 * no users -- drop the buddy allocator's reference.
662 put_page_testzero(page);
663 VM_BUG_ON(page_count(page));
664 nid = page_to_nid(page);
665 set_compound_page_dtor(page, free_huge_page);
667 * We incremented the global counters already
669 h->nr_huge_pages_node[nid]++;
670 h->surplus_huge_pages_node[nid]++;
671 __count_vm_event(HTLB_BUDDY_PGALLOC);
672 } else {
673 h->nr_huge_pages--;
674 h->surplus_huge_pages--;
675 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
677 spin_unlock(&hugetlb_lock);
679 return page;
683 * Increase the hugetlb pool such that it can accomodate a reservation
684 * of size 'delta'.
686 static int gather_surplus_pages(struct hstate *h, int delta)
688 struct list_head surplus_list;
689 struct page *page, *tmp;
690 int ret, i;
691 int needed, allocated;
693 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
694 if (needed <= 0) {
695 h->resv_huge_pages += delta;
696 return 0;
699 allocated = 0;
700 INIT_LIST_HEAD(&surplus_list);
702 ret = -ENOMEM;
703 retry:
704 spin_unlock(&hugetlb_lock);
705 for (i = 0; i < needed; i++) {
706 page = alloc_buddy_huge_page(h, NULL, 0);
707 if (!page) {
709 * We were not able to allocate enough pages to
710 * satisfy the entire reservation so we free what
711 * we've allocated so far.
713 spin_lock(&hugetlb_lock);
714 needed = 0;
715 goto free;
718 list_add(&page->lru, &surplus_list);
720 allocated += needed;
723 * After retaking hugetlb_lock, we need to recalculate 'needed'
724 * because either resv_huge_pages or free_huge_pages may have changed.
726 spin_lock(&hugetlb_lock);
727 needed = (h->resv_huge_pages + delta) -
728 (h->free_huge_pages + allocated);
729 if (needed > 0)
730 goto retry;
733 * The surplus_list now contains _at_least_ the number of extra pages
734 * needed to accomodate the reservation. Add the appropriate number
735 * of pages to the hugetlb pool and free the extras back to the buddy
736 * allocator. Commit the entire reservation here to prevent another
737 * process from stealing the pages as they are added to the pool but
738 * before they are reserved.
740 needed += allocated;
741 h->resv_huge_pages += delta;
742 ret = 0;
743 free:
744 /* Free the needed pages to the hugetlb pool */
745 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
746 if ((--needed) < 0)
747 break;
748 list_del(&page->lru);
749 enqueue_huge_page(h, page);
752 /* Free unnecessary surplus pages to the buddy allocator */
753 if (!list_empty(&surplus_list)) {
754 spin_unlock(&hugetlb_lock);
755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756 list_del(&page->lru);
758 * The page has a reference count of zero already, so
759 * call free_huge_page directly instead of using
760 * put_page. This must be done with hugetlb_lock
761 * unlocked which is safe because free_huge_page takes
762 * hugetlb_lock before deciding how to free the page.
764 free_huge_page(page);
766 spin_lock(&hugetlb_lock);
769 return ret;
773 * When releasing a hugetlb pool reservation, any surplus pages that were
774 * allocated to satisfy the reservation must be explicitly freed if they were
775 * never used.
777 static void return_unused_surplus_pages(struct hstate *h,
778 unsigned long unused_resv_pages)
780 static int nid = -1;
781 struct page *page;
782 unsigned long nr_pages;
785 * We want to release as many surplus pages as possible, spread
786 * evenly across all nodes. Iterate across all nodes until we
787 * can no longer free unreserved surplus pages. This occurs when
788 * the nodes with surplus pages have no free pages.
790 unsigned long remaining_iterations = num_online_nodes();
792 /* Uncommit the reservation */
793 h->resv_huge_pages -= unused_resv_pages;
795 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
797 while (remaining_iterations-- && nr_pages) {
798 nid = next_node(nid, node_online_map);
799 if (nid == MAX_NUMNODES)
800 nid = first_node(node_online_map);
802 if (!h->surplus_huge_pages_node[nid])
803 continue;
805 if (!list_empty(&h->hugepage_freelists[nid])) {
806 page = list_entry(h->hugepage_freelists[nid].next,
807 struct page, lru);
808 list_del(&page->lru);
809 update_and_free_page(h, page);
810 h->free_huge_pages--;
811 h->free_huge_pages_node[nid]--;
812 h->surplus_huge_pages--;
813 h->surplus_huge_pages_node[nid]--;
814 nr_pages--;
815 remaining_iterations = num_online_nodes();
821 * Determine if the huge page at addr within the vma has an associated
822 * reservation. Where it does not we will need to logically increase
823 * reservation and actually increase quota before an allocation can occur.
824 * Where any new reservation would be required the reservation change is
825 * prepared, but not committed. Once the page has been quota'd allocated
826 * an instantiated the change should be committed via vma_commit_reservation.
827 * No action is required on failure.
829 static int vma_needs_reservation(struct hstate *h,
830 struct vm_area_struct *vma, unsigned long addr)
832 struct address_space *mapping = vma->vm_file->f_mapping;
833 struct inode *inode = mapping->host;
835 if (vma->vm_flags & VM_SHARED) {
836 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
837 return region_chg(&inode->i_mapping->private_list,
838 idx, idx + 1);
840 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 return 1;
843 } else {
844 int err;
845 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
846 struct resv_map *reservations = vma_resv_map(vma);
848 err = region_chg(&reservations->regions, idx, idx + 1);
849 if (err < 0)
850 return err;
851 return 0;
854 static void vma_commit_reservation(struct hstate *h,
855 struct vm_area_struct *vma, unsigned long addr)
857 struct address_space *mapping = vma->vm_file->f_mapping;
858 struct inode *inode = mapping->host;
860 if (vma->vm_flags & VM_SHARED) {
861 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
862 region_add(&inode->i_mapping->private_list, idx, idx + 1);
864 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
865 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
866 struct resv_map *reservations = vma_resv_map(vma);
868 /* Mark this page used in the map. */
869 region_add(&reservations->regions, idx, idx + 1);
873 static struct page *alloc_huge_page(struct vm_area_struct *vma,
874 unsigned long addr, int avoid_reserve)
876 struct hstate *h = hstate_vma(vma);
877 struct page *page;
878 struct address_space *mapping = vma->vm_file->f_mapping;
879 struct inode *inode = mapping->host;
880 unsigned int chg;
883 * Processes that did not create the mapping will have no reserves and
884 * will not have accounted against quota. Check that the quota can be
885 * made before satisfying the allocation
886 * MAP_NORESERVE mappings may also need pages and quota allocated
887 * if no reserve mapping overlaps.
889 chg = vma_needs_reservation(h, vma, addr);
890 if (chg < 0)
891 return ERR_PTR(chg);
892 if (chg)
893 if (hugetlb_get_quota(inode->i_mapping, chg))
894 return ERR_PTR(-ENOSPC);
896 spin_lock(&hugetlb_lock);
897 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
898 spin_unlock(&hugetlb_lock);
900 if (!page) {
901 page = alloc_buddy_huge_page(h, vma, addr);
902 if (!page) {
903 hugetlb_put_quota(inode->i_mapping, chg);
904 return ERR_PTR(-VM_FAULT_OOM);
908 set_page_refcounted(page);
909 set_page_private(page, (unsigned long) mapping);
911 vma_commit_reservation(h, vma, addr);
913 return page;
916 static void __init hugetlb_init_one_hstate(struct hstate *h)
918 unsigned long i;
920 for (i = 0; i < MAX_NUMNODES; ++i)
921 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
923 h->hugetlb_next_nid = first_node(node_online_map);
925 for (i = 0; i < h->max_huge_pages; ++i) {
926 if (!alloc_fresh_huge_page(h))
927 break;
929 h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
932 static void __init hugetlb_init_hstates(void)
934 struct hstate *h;
936 for_each_hstate(h) {
937 hugetlb_init_one_hstate(h);
941 static void __init report_hugepages(void)
943 struct hstate *h;
945 for_each_hstate(h) {
946 printk(KERN_INFO "Total HugeTLB memory allocated, "
947 "%ld %dMB pages\n",
948 h->free_huge_pages,
949 1 << (h->order + PAGE_SHIFT - 20));
953 #ifdef CONFIG_SYSCTL
954 #ifdef CONFIG_HIGHMEM
955 static void try_to_free_low(struct hstate *h, unsigned long count)
957 int i;
959 for (i = 0; i < MAX_NUMNODES; ++i) {
960 struct page *page, *next;
961 struct list_head *freel = &h->hugepage_freelists[i];
962 list_for_each_entry_safe(page, next, freel, lru) {
963 if (count >= h->nr_huge_pages)
964 return;
965 if (PageHighMem(page))
966 continue;
967 list_del(&page->lru);
968 update_and_free_page(h, page);
969 h->free_huge_pages--;
970 h->free_huge_pages_node[page_to_nid(page)]--;
974 #else
975 static inline void try_to_free_low(struct hstate *h, unsigned long count)
978 #endif
980 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
981 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
983 unsigned long min_count, ret;
986 * Increase the pool size
987 * First take pages out of surplus state. Then make up the
988 * remaining difference by allocating fresh huge pages.
990 * We might race with alloc_buddy_huge_page() here and be unable
991 * to convert a surplus huge page to a normal huge page. That is
992 * not critical, though, it just means the overall size of the
993 * pool might be one hugepage larger than it needs to be, but
994 * within all the constraints specified by the sysctls.
996 spin_lock(&hugetlb_lock);
997 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
998 if (!adjust_pool_surplus(h, -1))
999 break;
1002 while (count > persistent_huge_pages(h)) {
1004 * If this allocation races such that we no longer need the
1005 * page, free_huge_page will handle it by freeing the page
1006 * and reducing the surplus.
1008 spin_unlock(&hugetlb_lock);
1009 ret = alloc_fresh_huge_page(h);
1010 spin_lock(&hugetlb_lock);
1011 if (!ret)
1012 goto out;
1017 * Decrease the pool size
1018 * First return free pages to the buddy allocator (being careful
1019 * to keep enough around to satisfy reservations). Then place
1020 * pages into surplus state as needed so the pool will shrink
1021 * to the desired size as pages become free.
1023 * By placing pages into the surplus state independent of the
1024 * overcommit value, we are allowing the surplus pool size to
1025 * exceed overcommit. There are few sane options here. Since
1026 * alloc_buddy_huge_page() is checking the global counter,
1027 * though, we'll note that we're not allowed to exceed surplus
1028 * and won't grow the pool anywhere else. Not until one of the
1029 * sysctls are changed, or the surplus pages go out of use.
1031 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1032 min_count = max(count, min_count);
1033 try_to_free_low(h, min_count);
1034 while (min_count < persistent_huge_pages(h)) {
1035 struct page *page = dequeue_huge_page(h);
1036 if (!page)
1037 break;
1038 update_and_free_page(h, page);
1040 while (count < persistent_huge_pages(h)) {
1041 if (!adjust_pool_surplus(h, 1))
1042 break;
1044 out:
1045 ret = persistent_huge_pages(h);
1046 spin_unlock(&hugetlb_lock);
1047 return ret;
1050 #define HSTATE_ATTR_RO(_name) \
1051 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1053 #define HSTATE_ATTR(_name) \
1054 static struct kobj_attribute _name##_attr = \
1055 __ATTR(_name, 0644, _name##_show, _name##_store)
1057 static struct kobject *hugepages_kobj;
1058 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1060 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1062 int i;
1063 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1064 if (hstate_kobjs[i] == kobj)
1065 return &hstates[i];
1066 BUG();
1067 return NULL;
1070 static ssize_t nr_hugepages_show(struct kobject *kobj,
1071 struct kobj_attribute *attr, char *buf)
1073 struct hstate *h = kobj_to_hstate(kobj);
1074 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1076 static ssize_t nr_hugepages_store(struct kobject *kobj,
1077 struct kobj_attribute *attr, const char *buf, size_t count)
1079 int err;
1080 unsigned long input;
1081 struct hstate *h = kobj_to_hstate(kobj);
1083 err = strict_strtoul(buf, 10, &input);
1084 if (err)
1085 return 0;
1087 h->max_huge_pages = set_max_huge_pages(h, input);
1089 return count;
1091 HSTATE_ATTR(nr_hugepages);
1093 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1094 struct kobj_attribute *attr, char *buf)
1096 struct hstate *h = kobj_to_hstate(kobj);
1097 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1099 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1100 struct kobj_attribute *attr, const char *buf, size_t count)
1102 int err;
1103 unsigned long input;
1104 struct hstate *h = kobj_to_hstate(kobj);
1106 err = strict_strtoul(buf, 10, &input);
1107 if (err)
1108 return 0;
1110 spin_lock(&hugetlb_lock);
1111 h->nr_overcommit_huge_pages = input;
1112 spin_unlock(&hugetlb_lock);
1114 return count;
1116 HSTATE_ATTR(nr_overcommit_hugepages);
1118 static ssize_t free_hugepages_show(struct kobject *kobj,
1119 struct kobj_attribute *attr, char *buf)
1121 struct hstate *h = kobj_to_hstate(kobj);
1122 return sprintf(buf, "%lu\n", h->free_huge_pages);
1124 HSTATE_ATTR_RO(free_hugepages);
1126 static ssize_t resv_hugepages_show(struct kobject *kobj,
1127 struct kobj_attribute *attr, char *buf)
1129 struct hstate *h = kobj_to_hstate(kobj);
1130 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1132 HSTATE_ATTR_RO(resv_hugepages);
1134 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1135 struct kobj_attribute *attr, char *buf)
1137 struct hstate *h = kobj_to_hstate(kobj);
1138 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1140 HSTATE_ATTR_RO(surplus_hugepages);
1142 static struct attribute *hstate_attrs[] = {
1143 &nr_hugepages_attr.attr,
1144 &nr_overcommit_hugepages_attr.attr,
1145 &free_hugepages_attr.attr,
1146 &resv_hugepages_attr.attr,
1147 &surplus_hugepages_attr.attr,
1148 NULL,
1151 static struct attribute_group hstate_attr_group = {
1152 .attrs = hstate_attrs,
1155 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1157 int retval;
1159 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1160 hugepages_kobj);
1161 if (!hstate_kobjs[h - hstates])
1162 return -ENOMEM;
1164 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1165 &hstate_attr_group);
1166 if (retval)
1167 kobject_put(hstate_kobjs[h - hstates]);
1169 return retval;
1172 static void __init hugetlb_sysfs_init(void)
1174 struct hstate *h;
1175 int err;
1177 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1178 if (!hugepages_kobj)
1179 return;
1181 for_each_hstate(h) {
1182 err = hugetlb_sysfs_add_hstate(h);
1183 if (err)
1184 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1185 h->name);
1189 static void __exit hugetlb_exit(void)
1191 struct hstate *h;
1193 for_each_hstate(h) {
1194 kobject_put(hstate_kobjs[h - hstates]);
1197 kobject_put(hugepages_kobj);
1199 module_exit(hugetlb_exit);
1201 static int __init hugetlb_init(void)
1203 BUILD_BUG_ON(HPAGE_SHIFT == 0);
1205 if (!size_to_hstate(HPAGE_SIZE)) {
1206 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1207 parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
1209 default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;
1211 hugetlb_init_hstates();
1213 report_hugepages();
1215 hugetlb_sysfs_init();
1217 return 0;
1219 module_init(hugetlb_init);
1221 /* Should be called on processing a hugepagesz=... option */
1222 void __init hugetlb_add_hstate(unsigned order)
1224 struct hstate *h;
1225 if (size_to_hstate(PAGE_SIZE << order)) {
1226 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1227 return;
1229 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1230 BUG_ON(order == 0);
1231 h = &hstates[max_hstate++];
1232 h->order = order;
1233 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1234 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1235 huge_page_size(h)/1024);
1236 hugetlb_init_one_hstate(h);
1237 parsed_hstate = h;
1240 static int __init hugetlb_setup(char *s)
1242 unsigned long *mhp;
1245 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1246 * so this hugepages= parameter goes to the "default hstate".
1248 if (!max_hstate)
1249 mhp = &default_hstate_max_huge_pages;
1250 else
1251 mhp = &parsed_hstate->max_huge_pages;
1253 if (sscanf(s, "%lu", mhp) <= 0)
1254 *mhp = 0;
1256 return 1;
1258 __setup("hugepages=", hugetlb_setup);
1260 static unsigned int cpuset_mems_nr(unsigned int *array)
1262 int node;
1263 unsigned int nr = 0;
1265 for_each_node_mask(node, cpuset_current_mems_allowed)
1266 nr += array[node];
1268 return nr;
1271 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1272 struct file *file, void __user *buffer,
1273 size_t *length, loff_t *ppos)
1275 struct hstate *h = &default_hstate;
1276 unsigned long tmp;
1278 if (!write)
1279 tmp = h->max_huge_pages;
1281 table->data = &tmp;
1282 table->maxlen = sizeof(unsigned long);
1283 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1285 if (write)
1286 h->max_huge_pages = set_max_huge_pages(h, tmp);
1288 return 0;
1291 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1292 struct file *file, void __user *buffer,
1293 size_t *length, loff_t *ppos)
1295 proc_dointvec(table, write, file, buffer, length, ppos);
1296 if (hugepages_treat_as_movable)
1297 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1298 else
1299 htlb_alloc_mask = GFP_HIGHUSER;
1300 return 0;
1303 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1304 struct file *file, void __user *buffer,
1305 size_t *length, loff_t *ppos)
1307 struct hstate *h = &default_hstate;
1308 unsigned long tmp;
1310 if (!write)
1311 tmp = h->nr_overcommit_huge_pages;
1313 table->data = &tmp;
1314 table->maxlen = sizeof(unsigned long);
1315 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1317 if (write) {
1318 spin_lock(&hugetlb_lock);
1319 h->nr_overcommit_huge_pages = tmp;
1320 spin_unlock(&hugetlb_lock);
1323 return 0;
1326 #endif /* CONFIG_SYSCTL */
1328 int hugetlb_report_meminfo(char *buf)
1330 struct hstate *h = &default_hstate;
1331 return sprintf(buf,
1332 "HugePages_Total: %5lu\n"
1333 "HugePages_Free: %5lu\n"
1334 "HugePages_Rsvd: %5lu\n"
1335 "HugePages_Surp: %5lu\n"
1336 "Hugepagesize: %5lu kB\n",
1337 h->nr_huge_pages,
1338 h->free_huge_pages,
1339 h->resv_huge_pages,
1340 h->surplus_huge_pages,
1341 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1344 int hugetlb_report_node_meminfo(int nid, char *buf)
1346 struct hstate *h = &default_hstate;
1347 return sprintf(buf,
1348 "Node %d HugePages_Total: %5u\n"
1349 "Node %d HugePages_Free: %5u\n"
1350 "Node %d HugePages_Surp: %5u\n",
1351 nid, h->nr_huge_pages_node[nid],
1352 nid, h->free_huge_pages_node[nid],
1353 nid, h->surplus_huge_pages_node[nid]);
1356 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1357 unsigned long hugetlb_total_pages(void)
1359 struct hstate *h = &default_hstate;
1360 return h->nr_huge_pages * pages_per_huge_page(h);
1363 static int hugetlb_acct_memory(struct hstate *h, long delta)
1365 int ret = -ENOMEM;
1367 spin_lock(&hugetlb_lock);
1369 * When cpuset is configured, it breaks the strict hugetlb page
1370 * reservation as the accounting is done on a global variable. Such
1371 * reservation is completely rubbish in the presence of cpuset because
1372 * the reservation is not checked against page availability for the
1373 * current cpuset. Application can still potentially OOM'ed by kernel
1374 * with lack of free htlb page in cpuset that the task is in.
1375 * Attempt to enforce strict accounting with cpuset is almost
1376 * impossible (or too ugly) because cpuset is too fluid that
1377 * task or memory node can be dynamically moved between cpusets.
1379 * The change of semantics for shared hugetlb mapping with cpuset is
1380 * undesirable. However, in order to preserve some of the semantics,
1381 * we fall back to check against current free page availability as
1382 * a best attempt and hopefully to minimize the impact of changing
1383 * semantics that cpuset has.
1385 if (delta > 0) {
1386 if (gather_surplus_pages(h, delta) < 0)
1387 goto out;
1389 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1390 return_unused_surplus_pages(h, delta);
1391 goto out;
1395 ret = 0;
1396 if (delta < 0)
1397 return_unused_surplus_pages(h, (unsigned long) -delta);
1399 out:
1400 spin_unlock(&hugetlb_lock);
1401 return ret;
1404 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1406 struct resv_map *reservations = vma_resv_map(vma);
1409 * This new VMA should share its siblings reservation map if present.
1410 * The VMA will only ever have a valid reservation map pointer where
1411 * it is being copied for another still existing VMA. As that VMA
1412 * has a reference to the reservation map it cannot dissappear until
1413 * after this open call completes. It is therefore safe to take a
1414 * new reference here without additional locking.
1416 if (reservations)
1417 kref_get(&reservations->refs);
1420 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1422 struct hstate *h = hstate_vma(vma);
1423 struct resv_map *reservations = vma_resv_map(vma);
1424 unsigned long reserve;
1425 unsigned long start;
1426 unsigned long end;
1428 if (reservations) {
1429 start = vma_hugecache_offset(h, vma, vma->vm_start);
1430 end = vma_hugecache_offset(h, vma, vma->vm_end);
1432 reserve = (end - start) -
1433 region_count(&reservations->regions, start, end);
1435 kref_put(&reservations->refs, resv_map_release);
1437 if (reserve)
1438 hugetlb_acct_memory(h, -reserve);
1443 * We cannot handle pagefaults against hugetlb pages at all. They cause
1444 * handle_mm_fault() to try to instantiate regular-sized pages in the
1445 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1446 * this far.
1448 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1450 BUG();
1451 return 0;
1454 struct vm_operations_struct hugetlb_vm_ops = {
1455 .fault = hugetlb_vm_op_fault,
1456 .open = hugetlb_vm_op_open,
1457 .close = hugetlb_vm_op_close,
1460 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1461 int writable)
1463 pte_t entry;
1465 if (writable) {
1466 entry =
1467 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1468 } else {
1469 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1471 entry = pte_mkyoung(entry);
1472 entry = pte_mkhuge(entry);
1474 return entry;
1477 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1478 unsigned long address, pte_t *ptep)
1480 pte_t entry;
1482 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1483 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1484 update_mmu_cache(vma, address, entry);
1489 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1490 struct vm_area_struct *vma)
1492 pte_t *src_pte, *dst_pte, entry;
1493 struct page *ptepage;
1494 unsigned long addr;
1495 int cow;
1496 struct hstate *h = hstate_vma(vma);
1497 unsigned long sz = huge_page_size(h);
1499 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1501 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1502 src_pte = huge_pte_offset(src, addr);
1503 if (!src_pte)
1504 continue;
1505 dst_pte = huge_pte_alloc(dst, addr, sz);
1506 if (!dst_pte)
1507 goto nomem;
1509 /* If the pagetables are shared don't copy or take references */
1510 if (dst_pte == src_pte)
1511 continue;
1513 spin_lock(&dst->page_table_lock);
1514 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1515 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1516 if (cow)
1517 huge_ptep_set_wrprotect(src, addr, src_pte);
1518 entry = huge_ptep_get(src_pte);
1519 ptepage = pte_page(entry);
1520 get_page(ptepage);
1521 set_huge_pte_at(dst, addr, dst_pte, entry);
1523 spin_unlock(&src->page_table_lock);
1524 spin_unlock(&dst->page_table_lock);
1526 return 0;
1528 nomem:
1529 return -ENOMEM;
1532 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1533 unsigned long end, struct page *ref_page)
1535 struct mm_struct *mm = vma->vm_mm;
1536 unsigned long address;
1537 pte_t *ptep;
1538 pte_t pte;
1539 struct page *page;
1540 struct page *tmp;
1541 struct hstate *h = hstate_vma(vma);
1542 unsigned long sz = huge_page_size(h);
1545 * A page gathering list, protected by per file i_mmap_lock. The
1546 * lock is used to avoid list corruption from multiple unmapping
1547 * of the same page since we are using page->lru.
1549 LIST_HEAD(page_list);
1551 WARN_ON(!is_vm_hugetlb_page(vma));
1552 BUG_ON(start & ~huge_page_mask(h));
1553 BUG_ON(end & ~huge_page_mask(h));
1555 spin_lock(&mm->page_table_lock);
1556 for (address = start; address < end; address += sz) {
1557 ptep = huge_pte_offset(mm, address);
1558 if (!ptep)
1559 continue;
1561 if (huge_pmd_unshare(mm, &address, ptep))
1562 continue;
1565 * If a reference page is supplied, it is because a specific
1566 * page is being unmapped, not a range. Ensure the page we
1567 * are about to unmap is the actual page of interest.
1569 if (ref_page) {
1570 pte = huge_ptep_get(ptep);
1571 if (huge_pte_none(pte))
1572 continue;
1573 page = pte_page(pte);
1574 if (page != ref_page)
1575 continue;
1578 * Mark the VMA as having unmapped its page so that
1579 * future faults in this VMA will fail rather than
1580 * looking like data was lost
1582 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1585 pte = huge_ptep_get_and_clear(mm, address, ptep);
1586 if (huge_pte_none(pte))
1587 continue;
1589 page = pte_page(pte);
1590 if (pte_dirty(pte))
1591 set_page_dirty(page);
1592 list_add(&page->lru, &page_list);
1594 spin_unlock(&mm->page_table_lock);
1595 flush_tlb_range(vma, start, end);
1596 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1597 list_del(&page->lru);
1598 put_page(page);
1602 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1603 unsigned long end, struct page *ref_page)
1605 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1606 __unmap_hugepage_range(vma, start, end, ref_page);
1607 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1611 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1612 * mappping it owns the reserve page for. The intention is to unmap the page
1613 * from other VMAs and let the children be SIGKILLed if they are faulting the
1614 * same region.
1616 int unmap_ref_private(struct mm_struct *mm,
1617 struct vm_area_struct *vma,
1618 struct page *page,
1619 unsigned long address)
1621 struct vm_area_struct *iter_vma;
1622 struct address_space *mapping;
1623 struct prio_tree_iter iter;
1624 pgoff_t pgoff;
1627 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1628 * from page cache lookup which is in HPAGE_SIZE units.
1630 address = address & huge_page_mask(hstate_vma(vma));
1631 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1632 + (vma->vm_pgoff >> PAGE_SHIFT);
1633 mapping = (struct address_space *)page_private(page);
1635 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1636 /* Do not unmap the current VMA */
1637 if (iter_vma == vma)
1638 continue;
1641 * Unmap the page from other VMAs without their own reserves.
1642 * They get marked to be SIGKILLed if they fault in these
1643 * areas. This is because a future no-page fault on this VMA
1644 * could insert a zeroed page instead of the data existing
1645 * from the time of fork. This would look like data corruption
1647 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1648 unmap_hugepage_range(iter_vma,
1649 address, address + HPAGE_SIZE,
1650 page);
1653 return 1;
1656 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1657 unsigned long address, pte_t *ptep, pte_t pte,
1658 struct page *pagecache_page)
1660 struct hstate *h = hstate_vma(vma);
1661 struct page *old_page, *new_page;
1662 int avoidcopy;
1663 int outside_reserve = 0;
1665 old_page = pte_page(pte);
1667 retry_avoidcopy:
1668 /* If no-one else is actually using this page, avoid the copy
1669 * and just make the page writable */
1670 avoidcopy = (page_count(old_page) == 1);
1671 if (avoidcopy) {
1672 set_huge_ptep_writable(vma, address, ptep);
1673 return 0;
1677 * If the process that created a MAP_PRIVATE mapping is about to
1678 * perform a COW due to a shared page count, attempt to satisfy
1679 * the allocation without using the existing reserves. The pagecache
1680 * page is used to determine if the reserve at this address was
1681 * consumed or not. If reserves were used, a partial faulted mapping
1682 * at the time of fork() could consume its reserves on COW instead
1683 * of the full address range.
1685 if (!(vma->vm_flags & VM_SHARED) &&
1686 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1687 old_page != pagecache_page)
1688 outside_reserve = 1;
1690 page_cache_get(old_page);
1691 new_page = alloc_huge_page(vma, address, outside_reserve);
1693 if (IS_ERR(new_page)) {
1694 page_cache_release(old_page);
1697 * If a process owning a MAP_PRIVATE mapping fails to COW,
1698 * it is due to references held by a child and an insufficient
1699 * huge page pool. To guarantee the original mappers
1700 * reliability, unmap the page from child processes. The child
1701 * may get SIGKILLed if it later faults.
1703 if (outside_reserve) {
1704 BUG_ON(huge_pte_none(pte));
1705 if (unmap_ref_private(mm, vma, old_page, address)) {
1706 BUG_ON(page_count(old_page) != 1);
1707 BUG_ON(huge_pte_none(pte));
1708 goto retry_avoidcopy;
1710 WARN_ON_ONCE(1);
1713 return -PTR_ERR(new_page);
1716 spin_unlock(&mm->page_table_lock);
1717 copy_huge_page(new_page, old_page, address, vma);
1718 __SetPageUptodate(new_page);
1719 spin_lock(&mm->page_table_lock);
1721 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1722 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1723 /* Break COW */
1724 huge_ptep_clear_flush(vma, address, ptep);
1725 set_huge_pte_at(mm, address, ptep,
1726 make_huge_pte(vma, new_page, 1));
1727 /* Make the old page be freed below */
1728 new_page = old_page;
1730 page_cache_release(new_page);
1731 page_cache_release(old_page);
1732 return 0;
1735 /* Return the pagecache page at a given address within a VMA */
1736 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1737 struct vm_area_struct *vma, unsigned long address)
1739 struct address_space *mapping;
1740 pgoff_t idx;
1742 mapping = vma->vm_file->f_mapping;
1743 idx = vma_hugecache_offset(h, vma, address);
1745 return find_lock_page(mapping, idx);
1748 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1749 unsigned long address, pte_t *ptep, int write_access)
1751 struct hstate *h = hstate_vma(vma);
1752 int ret = VM_FAULT_SIGBUS;
1753 pgoff_t idx;
1754 unsigned long size;
1755 struct page *page;
1756 struct address_space *mapping;
1757 pte_t new_pte;
1760 * Currently, we are forced to kill the process in the event the
1761 * original mapper has unmapped pages from the child due to a failed
1762 * COW. Warn that such a situation has occured as it may not be obvious
1764 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1765 printk(KERN_WARNING
1766 "PID %d killed due to inadequate hugepage pool\n",
1767 current->pid);
1768 return ret;
1771 mapping = vma->vm_file->f_mapping;
1772 idx = vma_hugecache_offset(h, vma, address);
1775 * Use page lock to guard against racing truncation
1776 * before we get page_table_lock.
1778 retry:
1779 page = find_lock_page(mapping, idx);
1780 if (!page) {
1781 size = i_size_read(mapping->host) >> huge_page_shift(h);
1782 if (idx >= size)
1783 goto out;
1784 page = alloc_huge_page(vma, address, 0);
1785 if (IS_ERR(page)) {
1786 ret = -PTR_ERR(page);
1787 goto out;
1789 clear_huge_page(page, address, huge_page_size(h));
1790 __SetPageUptodate(page);
1792 if (vma->vm_flags & VM_SHARED) {
1793 int err;
1794 struct inode *inode = mapping->host;
1796 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1797 if (err) {
1798 put_page(page);
1799 if (err == -EEXIST)
1800 goto retry;
1801 goto out;
1804 spin_lock(&inode->i_lock);
1805 inode->i_blocks += blocks_per_huge_page(h);
1806 spin_unlock(&inode->i_lock);
1807 } else
1808 lock_page(page);
1811 spin_lock(&mm->page_table_lock);
1812 size = i_size_read(mapping->host) >> huge_page_shift(h);
1813 if (idx >= size)
1814 goto backout;
1816 ret = 0;
1817 if (!huge_pte_none(huge_ptep_get(ptep)))
1818 goto backout;
1820 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1821 && (vma->vm_flags & VM_SHARED)));
1822 set_huge_pte_at(mm, address, ptep, new_pte);
1824 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1825 /* Optimization, do the COW without a second fault */
1826 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1829 spin_unlock(&mm->page_table_lock);
1830 unlock_page(page);
1831 out:
1832 return ret;
1834 backout:
1835 spin_unlock(&mm->page_table_lock);
1836 unlock_page(page);
1837 put_page(page);
1838 goto out;
1841 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1842 unsigned long address, int write_access)
1844 pte_t *ptep;
1845 pte_t entry;
1846 int ret;
1847 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1848 struct hstate *h = hstate_vma(vma);
1850 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1851 if (!ptep)
1852 return VM_FAULT_OOM;
1855 * Serialize hugepage allocation and instantiation, so that we don't
1856 * get spurious allocation failures if two CPUs race to instantiate
1857 * the same page in the page cache.
1859 mutex_lock(&hugetlb_instantiation_mutex);
1860 entry = huge_ptep_get(ptep);
1861 if (huge_pte_none(entry)) {
1862 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1863 mutex_unlock(&hugetlb_instantiation_mutex);
1864 return ret;
1867 ret = 0;
1869 spin_lock(&mm->page_table_lock);
1870 /* Check for a racing update before calling hugetlb_cow */
1871 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1872 if (write_access && !pte_write(entry)) {
1873 struct page *page;
1874 page = hugetlbfs_pagecache_page(h, vma, address);
1875 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1876 if (page) {
1877 unlock_page(page);
1878 put_page(page);
1881 spin_unlock(&mm->page_table_lock);
1882 mutex_unlock(&hugetlb_instantiation_mutex);
1884 return ret;
1887 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1888 struct page **pages, struct vm_area_struct **vmas,
1889 unsigned long *position, int *length, int i,
1890 int write)
1892 unsigned long pfn_offset;
1893 unsigned long vaddr = *position;
1894 int remainder = *length;
1895 struct hstate *h = hstate_vma(vma);
1897 spin_lock(&mm->page_table_lock);
1898 while (vaddr < vma->vm_end && remainder) {
1899 pte_t *pte;
1900 struct page *page;
1903 * Some archs (sparc64, sh*) have multiple pte_ts to
1904 * each hugepage. We have to make * sure we get the
1905 * first, for the page indexing below to work.
1907 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1909 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1910 (write && !pte_write(huge_ptep_get(pte)))) {
1911 int ret;
1913 spin_unlock(&mm->page_table_lock);
1914 ret = hugetlb_fault(mm, vma, vaddr, write);
1915 spin_lock(&mm->page_table_lock);
1916 if (!(ret & VM_FAULT_ERROR))
1917 continue;
1919 remainder = 0;
1920 if (!i)
1921 i = -EFAULT;
1922 break;
1925 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1926 page = pte_page(huge_ptep_get(pte));
1927 same_page:
1928 if (pages) {
1929 get_page(page);
1930 pages[i] = page + pfn_offset;
1933 if (vmas)
1934 vmas[i] = vma;
1936 vaddr += PAGE_SIZE;
1937 ++pfn_offset;
1938 --remainder;
1939 ++i;
1940 if (vaddr < vma->vm_end && remainder &&
1941 pfn_offset < pages_per_huge_page(h)) {
1943 * We use pfn_offset to avoid touching the pageframes
1944 * of this compound page.
1946 goto same_page;
1949 spin_unlock(&mm->page_table_lock);
1950 *length = remainder;
1951 *position = vaddr;
1953 return i;
1956 void hugetlb_change_protection(struct vm_area_struct *vma,
1957 unsigned long address, unsigned long end, pgprot_t newprot)
1959 struct mm_struct *mm = vma->vm_mm;
1960 unsigned long start = address;
1961 pte_t *ptep;
1962 pte_t pte;
1963 struct hstate *h = hstate_vma(vma);
1965 BUG_ON(address >= end);
1966 flush_cache_range(vma, address, end);
1968 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1969 spin_lock(&mm->page_table_lock);
1970 for (; address < end; address += huge_page_size(h)) {
1971 ptep = huge_pte_offset(mm, address);
1972 if (!ptep)
1973 continue;
1974 if (huge_pmd_unshare(mm, &address, ptep))
1975 continue;
1976 if (!huge_pte_none(huge_ptep_get(ptep))) {
1977 pte = huge_ptep_get_and_clear(mm, address, ptep);
1978 pte = pte_mkhuge(pte_modify(pte, newprot));
1979 set_huge_pte_at(mm, address, ptep, pte);
1982 spin_unlock(&mm->page_table_lock);
1983 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1985 flush_tlb_range(vma, start, end);
1988 int hugetlb_reserve_pages(struct inode *inode,
1989 long from, long to,
1990 struct vm_area_struct *vma)
1992 long ret, chg;
1993 struct hstate *h = hstate_inode(inode);
1995 if (vma && vma->vm_flags & VM_NORESERVE)
1996 return 0;
1999 * Shared mappings base their reservation on the number of pages that
2000 * are already allocated on behalf of the file. Private mappings need
2001 * to reserve the full area even if read-only as mprotect() may be
2002 * called to make the mapping read-write. Assume !vma is a shm mapping
2004 if (!vma || vma->vm_flags & VM_SHARED)
2005 chg = region_chg(&inode->i_mapping->private_list, from, to);
2006 else {
2007 struct resv_map *resv_map = resv_map_alloc();
2008 if (!resv_map)
2009 return -ENOMEM;
2011 chg = to - from;
2013 set_vma_resv_map(vma, resv_map);
2014 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2017 if (chg < 0)
2018 return chg;
2020 if (hugetlb_get_quota(inode->i_mapping, chg))
2021 return -ENOSPC;
2022 ret = hugetlb_acct_memory(h, chg);
2023 if (ret < 0) {
2024 hugetlb_put_quota(inode->i_mapping, chg);
2025 return ret;
2027 if (!vma || vma->vm_flags & VM_SHARED)
2028 region_add(&inode->i_mapping->private_list, from, to);
2029 return 0;
2032 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2034 struct hstate *h = hstate_inode(inode);
2035 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2037 spin_lock(&inode->i_lock);
2038 inode->i_blocks -= blocks_per_huge_page(h);
2039 spin_unlock(&inode->i_lock);
2041 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2042 hugetlb_acct_memory(h, -(chg - freed));