firewire: net: throttle TX queue before running out of tlabels
[firewire-audio.git] / drivers / firewire / net.c
blob1a467a91fb0b2c8ee4c7ac577f02c497d249e1dc
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6 * based on eth1394 by Ben Collins et al
7 */
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 #include <asm/unaligned.h>
28 #include <net/arp.h>
30 /* rx limits */
31 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
32 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
34 /* tx limits */
35 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
36 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
37 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39 #define IEEE1394_BROADCAST_CHANNEL 31
40 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
41 #define IEEE1394_MAX_PAYLOAD_S100 512
42 #define FWNET_NO_FIFO_ADDR (~0ULL)
44 #define IANA_SPECIFIER_ID 0x00005eU
45 #define RFC2734_SW_VERSION 0x000001U
47 #define IEEE1394_GASP_HDR_SIZE 8
49 #define RFC2374_UNFRAG_HDR_SIZE 4
50 #define RFC2374_FRAG_HDR_SIZE 8
51 #define RFC2374_FRAG_OVERHEAD 4
53 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
54 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
55 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
56 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
58 #define RFC2734_HW_ADDR_LEN 16
60 struct rfc2734_arp {
61 __be16 hw_type; /* 0x0018 */
62 __be16 proto_type; /* 0x0806 */
63 u8 hw_addr_len; /* 16 */
64 u8 ip_addr_len; /* 4 */
65 __be16 opcode; /* ARP Opcode */
66 /* Above is exactly the same format as struct arphdr */
68 __be64 s_uniq_id; /* Sender's 64bit EUI */
69 u8 max_rec; /* Sender's max packet size */
70 u8 sspd; /* Sender's max speed */
71 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
72 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
73 __be32 sip; /* Sender's IP Address */
74 __be32 tip; /* IP Address of requested hw addr */
75 } __attribute__((packed));
77 /* This header format is specific to this driver implementation. */
78 #define FWNET_ALEN 8
79 #define FWNET_HLEN 10
80 struct fwnet_header {
81 u8 h_dest[FWNET_ALEN]; /* destination address */
82 __be16 h_proto; /* packet type ID field */
83 } __attribute__((packed));
85 /* IPv4 and IPv6 encapsulation header */
86 struct rfc2734_header {
87 u32 w0;
88 u32 w1;
91 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
92 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
93 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
94 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
95 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
97 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
98 #define fwnet_set_hdr_ether_type(et) (et)
99 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
100 #define fwnet_set_hdr_fg_off(fgo) (fgo)
102 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
104 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
105 unsigned ether_type)
107 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
108 | fwnet_set_hdr_ether_type(ether_type);
111 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
112 unsigned ether_type, unsigned dg_size, unsigned dgl)
114 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
115 | fwnet_set_hdr_dg_size(dg_size)
116 | fwnet_set_hdr_ether_type(ether_type);
117 hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
121 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 hdr->w0 = fwnet_set_hdr_lf(lf)
124 | fwnet_set_hdr_dg_size(dg_size)
125 | fwnet_set_hdr_fg_off(fg_off);
126 hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 /* This list keeps track of what parts of the datagram have been filled in */
130 struct fwnet_fragment_info {
131 struct list_head fi_link;
132 u16 offset;
133 u16 len;
136 struct fwnet_partial_datagram {
137 struct list_head pd_link;
138 struct list_head fi_list;
139 struct sk_buff *skb;
140 /* FIXME Why not use skb->data? */
141 char *pbuf;
142 u16 datagram_label;
143 u16 ether_type;
144 u16 datagram_size;
147 static DEFINE_MUTEX(fwnet_device_mutex);
148 static LIST_HEAD(fwnet_device_list);
150 struct fwnet_device {
151 struct list_head dev_link;
152 spinlock_t lock;
153 enum {
154 FWNET_BROADCAST_ERROR,
155 FWNET_BROADCAST_RUNNING,
156 FWNET_BROADCAST_STOPPED,
157 } broadcast_state;
158 struct fw_iso_context *broadcast_rcv_context;
159 struct fw_iso_buffer broadcast_rcv_buffer;
160 void **broadcast_rcv_buffer_ptrs;
161 unsigned broadcast_rcv_next_ptr;
162 unsigned num_broadcast_rcv_ptrs;
163 unsigned rcv_buffer_size;
165 * This value is the maximum unfragmented datagram size that can be
166 * sent by the hardware. It already has the GASP overhead and the
167 * unfragmented datagram header overhead calculated into it.
169 unsigned broadcast_xmt_max_payload;
170 u16 broadcast_xmt_datagramlabel;
173 * The CSR address that remote nodes must send datagrams to for us to
174 * receive them.
176 struct fw_address_handler handler;
177 u64 local_fifo;
179 /* Number of tx datagrams that have been queued but not yet acked */
180 int queued_datagrams;
182 struct list_head peer_list;
183 struct fw_card *card;
184 struct net_device *netdev;
187 struct fwnet_peer {
188 struct list_head peer_link;
189 struct fwnet_device *dev;
190 u64 guid;
191 u64 fifo;
193 /* guarded by dev->lock */
194 struct list_head pd_list; /* received partial datagrams */
195 unsigned pdg_size; /* pd_list size */
197 u16 datagram_label; /* outgoing datagram label */
198 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 int node_id;
200 int generation;
201 unsigned speed;
204 /* This is our task struct. It's used for the packet complete callback. */
205 struct fwnet_packet_task {
206 struct fw_transaction transaction;
207 struct rfc2734_header hdr;
208 struct sk_buff *skb;
209 struct fwnet_device *dev;
211 int outstanding_pkts;
212 u64 fifo_addr;
213 u16 dest_node;
214 u16 max_payload;
215 u8 generation;
216 u8 speed;
217 u8 enqueued;
221 * saddr == NULL means use device source address.
222 * daddr == NULL means leave destination address (eg unresolved arp).
224 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
225 unsigned short type, const void *daddr,
226 const void *saddr, unsigned len)
228 struct fwnet_header *h;
230 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
231 put_unaligned_be16(type, &h->h_proto);
233 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
234 memset(h->h_dest, 0, net->addr_len);
236 return net->hard_header_len;
239 if (daddr) {
240 memcpy(h->h_dest, daddr, net->addr_len);
242 return net->hard_header_len;
245 return -net->hard_header_len;
248 static int fwnet_header_rebuild(struct sk_buff *skb)
250 struct fwnet_header *h = (struct fwnet_header *)skb->data;
252 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
253 return arp_find((unsigned char *)&h->h_dest, skb);
255 fw_notify("%s: unable to resolve type %04x addresses\n",
256 skb->dev->name, be16_to_cpu(h->h_proto));
257 return 0;
260 static int fwnet_header_cache(const struct neighbour *neigh,
261 struct hh_cache *hh)
263 struct net_device *net;
264 struct fwnet_header *h;
266 if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
267 return -1;
268 net = neigh->dev;
269 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
270 h->h_proto = hh->hh_type;
271 memcpy(h->h_dest, neigh->ha, net->addr_len);
272 hh->hh_len = FWNET_HLEN;
274 return 0;
277 /* Called by Address Resolution module to notify changes in address. */
278 static void fwnet_header_cache_update(struct hh_cache *hh,
279 const struct net_device *net, const unsigned char *haddr)
281 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
284 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
286 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
288 return FWNET_ALEN;
291 static const struct header_ops fwnet_header_ops = {
292 .create = fwnet_header_create,
293 .rebuild = fwnet_header_rebuild,
294 .cache = fwnet_header_cache,
295 .cache_update = fwnet_header_cache_update,
296 .parse = fwnet_header_parse,
299 /* FIXME: is this correct for all cases? */
300 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
301 unsigned offset, unsigned len)
303 struct fwnet_fragment_info *fi;
304 unsigned end = offset + len;
306 list_for_each_entry(fi, &pd->fi_list, fi_link)
307 if (offset < fi->offset + fi->len && end > fi->offset)
308 return true;
310 return false;
313 /* Assumes that new fragment does not overlap any existing fragments */
314 static struct fwnet_fragment_info *fwnet_frag_new(
315 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
317 struct fwnet_fragment_info *fi, *fi2, *new;
318 struct list_head *list;
320 list = &pd->fi_list;
321 list_for_each_entry(fi, &pd->fi_list, fi_link) {
322 if (fi->offset + fi->len == offset) {
323 /* The new fragment can be tacked on to the end */
324 /* Did the new fragment plug a hole? */
325 fi2 = list_entry(fi->fi_link.next,
326 struct fwnet_fragment_info, fi_link);
327 if (fi->offset + fi->len == fi2->offset) {
328 /* glue fragments together */
329 fi->len += len + fi2->len;
330 list_del(&fi2->fi_link);
331 kfree(fi2);
332 } else {
333 fi->len += len;
336 return fi;
338 if (offset + len == fi->offset) {
339 /* The new fragment can be tacked on to the beginning */
340 /* Did the new fragment plug a hole? */
341 fi2 = list_entry(fi->fi_link.prev,
342 struct fwnet_fragment_info, fi_link);
343 if (fi2->offset + fi2->len == fi->offset) {
344 /* glue fragments together */
345 fi2->len += fi->len + len;
346 list_del(&fi->fi_link);
347 kfree(fi);
349 return fi2;
351 fi->offset = offset;
352 fi->len += len;
354 return fi;
356 if (offset > fi->offset + fi->len) {
357 list = &fi->fi_link;
358 break;
360 if (offset + len < fi->offset) {
361 list = fi->fi_link.prev;
362 break;
366 new = kmalloc(sizeof(*new), GFP_ATOMIC);
367 if (!new) {
368 fw_error("out of memory\n");
369 return NULL;
372 new->offset = offset;
373 new->len = len;
374 list_add(&new->fi_link, list);
376 return new;
379 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
380 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
381 void *frag_buf, unsigned frag_off, unsigned frag_len)
383 struct fwnet_partial_datagram *new;
384 struct fwnet_fragment_info *fi;
386 new = kmalloc(sizeof(*new), GFP_ATOMIC);
387 if (!new)
388 goto fail;
390 INIT_LIST_HEAD(&new->fi_list);
391 fi = fwnet_frag_new(new, frag_off, frag_len);
392 if (fi == NULL)
393 goto fail_w_new;
395 new->datagram_label = datagram_label;
396 new->datagram_size = dg_size;
397 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
398 if (new->skb == NULL)
399 goto fail_w_fi;
401 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
402 new->pbuf = skb_put(new->skb, dg_size);
403 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
404 list_add_tail(&new->pd_link, &peer->pd_list);
406 return new;
408 fail_w_fi:
409 kfree(fi);
410 fail_w_new:
411 kfree(new);
412 fail:
413 fw_error("out of memory\n");
415 return NULL;
418 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
419 u16 datagram_label)
421 struct fwnet_partial_datagram *pd;
423 list_for_each_entry(pd, &peer->pd_list, pd_link)
424 if (pd->datagram_label == datagram_label)
425 return pd;
427 return NULL;
431 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
433 struct fwnet_fragment_info *fi, *n;
435 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
436 kfree(fi);
438 list_del(&old->pd_link);
439 dev_kfree_skb_any(old->skb);
440 kfree(old);
443 static bool fwnet_pd_update(struct fwnet_peer *peer,
444 struct fwnet_partial_datagram *pd, void *frag_buf,
445 unsigned frag_off, unsigned frag_len)
447 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
448 return false;
450 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
453 * Move list entry to beginnig of list so that oldest partial
454 * datagrams percolate to the end of the list
456 list_move_tail(&pd->pd_link, &peer->pd_list);
458 return true;
461 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
463 struct fwnet_fragment_info *fi;
465 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
467 return fi->len == pd->datagram_size;
470 /* caller must hold dev->lock */
471 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
472 u64 guid)
474 struct fwnet_peer *peer;
476 list_for_each_entry(peer, &dev->peer_list, peer_link)
477 if (peer->guid == guid)
478 return peer;
480 return NULL;
483 /* caller must hold dev->lock */
484 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
485 int node_id, int generation)
487 struct fwnet_peer *peer;
489 list_for_each_entry(peer, &dev->peer_list, peer_link)
490 if (peer->node_id == node_id &&
491 peer->generation == generation)
492 return peer;
494 return NULL;
497 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
498 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
500 max_rec = min(max_rec, speed + 8);
501 max_rec = min(max_rec, 0xbU); /* <= 4096 */
502 if (max_rec < 8) {
503 fw_notify("max_rec %x out of range\n", max_rec);
504 max_rec = 8;
507 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512 struct sk_buff *skb, u16 source_node_id,
513 bool is_broadcast, u16 ether_type)
515 struct fwnet_device *dev;
516 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517 int status;
518 __be64 guid;
520 dev = netdev_priv(net);
521 /* Write metadata, and then pass to the receive level */
522 skb->dev = net;
523 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
526 * Parse the encapsulation header. This actually does the job of
527 * converting to an ethernet frame header, as well as arp
528 * conversion if needed. ARP conversion is easier in this
529 * direction, since we are using ethernet as our backend.
532 * If this is an ARP packet, convert it. First, we want to make
533 * use of some of the fields, since they tell us a little bit
534 * about the sending machine.
536 if (ether_type == ETH_P_ARP) {
537 struct rfc2734_arp *arp1394;
538 struct arphdr *arp;
539 unsigned char *arp_ptr;
540 u64 fifo_addr;
541 u64 peer_guid;
542 unsigned sspd;
543 u16 max_payload;
544 struct fwnet_peer *peer;
545 unsigned long flags;
547 arp1394 = (struct rfc2734_arp *)skb->data;
548 arp = (struct arphdr *)skb->data;
549 arp_ptr = (unsigned char *)(arp + 1);
550 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552 | get_unaligned_be32(&arp1394->fifo_lo);
554 sspd = arp1394->sspd;
555 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
556 if (sspd > SCODE_3200) {
557 fw_notify("sspd %x out of range\n", sspd);
558 sspd = SCODE_3200;
560 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
562 spin_lock_irqsave(&dev->lock, flags);
563 peer = fwnet_peer_find_by_guid(dev, peer_guid);
564 if (peer) {
565 peer->fifo = fifo_addr;
567 if (peer->speed > sspd)
568 peer->speed = sspd;
569 if (peer->max_payload > max_payload)
570 peer->max_payload = max_payload;
572 spin_unlock_irqrestore(&dev->lock, flags);
574 if (!peer) {
575 fw_notify("No peer for ARP packet from %016llx\n",
576 (unsigned long long)peer_guid);
577 goto no_peer;
581 * Now that we're done with the 1394 specific stuff, we'll
582 * need to alter some of the data. Believe it or not, all
583 * that needs to be done is sender_IP_address needs to be
584 * moved, the destination hardware address get stuffed
585 * in and the hardware address length set to 8.
587 * IMPORTANT: The code below overwrites 1394 specific data
588 * needed above so keep the munging of the data for the
589 * higher level IP stack last.
592 arp->ar_hln = 8;
593 /* skip over sender unique id */
594 arp_ptr += arp->ar_hln;
595 /* move sender IP addr */
596 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
597 /* skip over sender IP addr */
598 arp_ptr += arp->ar_pln;
600 if (arp->ar_op == htons(ARPOP_REQUEST))
601 memset(arp_ptr, 0, sizeof(u64));
602 else
603 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606 /* Now add the ethernet header. */
607 guid = cpu_to_be64(dev->card->guid);
608 if (dev_hard_header(skb, net, ether_type,
609 is_broadcast ? &broadcast_hw : &guid,
610 NULL, skb->len) >= 0) {
611 struct fwnet_header *eth;
612 u16 *rawp;
613 __be16 protocol;
615 skb_reset_mac_header(skb);
616 skb_pull(skb, sizeof(*eth));
617 eth = (struct fwnet_header *)skb_mac_header(skb);
618 if (*eth->h_dest & 1) {
619 if (memcmp(eth->h_dest, net->broadcast,
620 net->addr_len) == 0)
621 skb->pkt_type = PACKET_BROADCAST;
622 #if 0
623 else
624 skb->pkt_type = PACKET_MULTICAST;
625 #endif
626 } else {
627 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
628 skb->pkt_type = PACKET_OTHERHOST;
630 if (ntohs(eth->h_proto) >= 1536) {
631 protocol = eth->h_proto;
632 } else {
633 rawp = (u16 *)skb->data;
634 if (*rawp == 0xffff)
635 protocol = htons(ETH_P_802_3);
636 else
637 protocol = htons(ETH_P_802_2);
639 skb->protocol = protocol;
641 status = netif_rx(skb);
642 if (status == NET_RX_DROP) {
643 net->stats.rx_errors++;
644 net->stats.rx_dropped++;
645 } else {
646 net->stats.rx_packets++;
647 net->stats.rx_bytes += skb->len;
650 return 0;
652 no_peer:
653 net->stats.rx_errors++;
654 net->stats.rx_dropped++;
656 dev_kfree_skb_any(skb);
658 return -ENOENT;
661 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
662 int source_node_id, int generation,
663 bool is_broadcast)
665 struct sk_buff *skb;
666 struct net_device *net = dev->netdev;
667 struct rfc2734_header hdr;
668 unsigned lf;
669 unsigned long flags;
670 struct fwnet_peer *peer;
671 struct fwnet_partial_datagram *pd;
672 int fg_off;
673 int dg_size;
674 u16 datagram_label;
675 int retval;
676 u16 ether_type;
678 hdr.w0 = be32_to_cpu(buf[0]);
679 lf = fwnet_get_hdr_lf(&hdr);
680 if (lf == RFC2374_HDR_UNFRAG) {
682 * An unfragmented datagram has been received by the ieee1394
683 * bus. Build an skbuff around it so we can pass it to the
684 * high level network layer.
686 ether_type = fwnet_get_hdr_ether_type(&hdr);
687 buf++;
688 len -= RFC2374_UNFRAG_HDR_SIZE;
690 skb = dev_alloc_skb(len + net->hard_header_len + 15);
691 if (unlikely(!skb)) {
692 fw_error("out of memory\n");
693 net->stats.rx_dropped++;
695 return -ENOMEM;
697 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
698 memcpy(skb_put(skb, len), buf, len);
700 return fwnet_finish_incoming_packet(net, skb, source_node_id,
701 is_broadcast, ether_type);
703 /* A datagram fragment has been received, now the fun begins. */
704 hdr.w1 = ntohl(buf[1]);
705 buf += 2;
706 len -= RFC2374_FRAG_HDR_SIZE;
707 if (lf == RFC2374_HDR_FIRSTFRAG) {
708 ether_type = fwnet_get_hdr_ether_type(&hdr);
709 fg_off = 0;
710 } else {
711 ether_type = 0;
712 fg_off = fwnet_get_hdr_fg_off(&hdr);
714 datagram_label = fwnet_get_hdr_dgl(&hdr);
715 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
717 spin_lock_irqsave(&dev->lock, flags);
719 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
720 if (!peer) {
721 retval = -ENOENT;
722 goto fail;
725 pd = fwnet_pd_find(peer, datagram_label);
726 if (pd == NULL) {
727 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
728 /* remove the oldest */
729 fwnet_pd_delete(list_first_entry(&peer->pd_list,
730 struct fwnet_partial_datagram, pd_link));
731 peer->pdg_size--;
733 pd = fwnet_pd_new(net, peer, datagram_label,
734 dg_size, buf, fg_off, len);
735 if (pd == NULL) {
736 retval = -ENOMEM;
737 goto fail;
739 peer->pdg_size++;
740 } else {
741 if (fwnet_frag_overlap(pd, fg_off, len) ||
742 pd->datagram_size != dg_size) {
744 * Differing datagram sizes or overlapping fragments,
745 * discard old datagram and start a new one.
747 fwnet_pd_delete(pd);
748 pd = fwnet_pd_new(net, peer, datagram_label,
749 dg_size, buf, fg_off, len);
750 if (pd == NULL) {
751 peer->pdg_size--;
752 retval = -ENOMEM;
753 goto fail;
755 } else {
756 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
758 * Couldn't save off fragment anyway
759 * so might as well obliterate the
760 * datagram now.
762 fwnet_pd_delete(pd);
763 peer->pdg_size--;
764 retval = -ENOMEM;
765 goto fail;
768 } /* new datagram or add to existing one */
770 if (lf == RFC2374_HDR_FIRSTFRAG)
771 pd->ether_type = ether_type;
773 if (fwnet_pd_is_complete(pd)) {
774 ether_type = pd->ether_type;
775 peer->pdg_size--;
776 skb = skb_get(pd->skb);
777 fwnet_pd_delete(pd);
779 spin_unlock_irqrestore(&dev->lock, flags);
781 return fwnet_finish_incoming_packet(net, skb, source_node_id,
782 false, ether_type);
785 * Datagram is not complete, we're done for the
786 * moment.
788 retval = 0;
789 fail:
790 spin_unlock_irqrestore(&dev->lock, flags);
792 return retval;
795 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
796 int tcode, int destination, int source, int generation,
797 unsigned long long offset, void *payload, size_t length,
798 void *callback_data)
800 struct fwnet_device *dev = callback_data;
801 int rcode;
803 if (destination == IEEE1394_ALL_NODES) {
804 kfree(r);
806 return;
809 if (offset != dev->handler.offset)
810 rcode = RCODE_ADDRESS_ERROR;
811 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
812 rcode = RCODE_TYPE_ERROR;
813 else if (fwnet_incoming_packet(dev, payload, length,
814 source, generation, false) != 0) {
815 fw_error("Incoming packet failure\n");
816 rcode = RCODE_CONFLICT_ERROR;
817 } else
818 rcode = RCODE_COMPLETE;
820 fw_send_response(card, r, rcode);
823 static void fwnet_receive_broadcast(struct fw_iso_context *context,
824 u32 cycle, size_t header_length, void *header, void *data)
826 struct fwnet_device *dev;
827 struct fw_iso_packet packet;
828 struct fw_card *card;
829 __be16 *hdr_ptr;
830 __be32 *buf_ptr;
831 int retval;
832 u32 length;
833 u16 source_node_id;
834 u32 specifier_id;
835 u32 ver;
836 unsigned long offset;
837 unsigned long flags;
839 dev = data;
840 card = dev->card;
841 hdr_ptr = header;
842 length = be16_to_cpup(hdr_ptr);
844 spin_lock_irqsave(&dev->lock, flags);
846 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
847 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
848 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
849 dev->broadcast_rcv_next_ptr = 0;
851 spin_unlock_irqrestore(&dev->lock, flags);
853 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
854 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
855 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
856 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
858 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
859 buf_ptr += 2;
860 length -= IEEE1394_GASP_HDR_SIZE;
861 fwnet_incoming_packet(dev, buf_ptr, length,
862 source_node_id, -1, true);
865 packet.payload_length = dev->rcv_buffer_size;
866 packet.interrupt = 1;
867 packet.skip = 0;
868 packet.tag = 3;
869 packet.sy = 0;
870 packet.header_length = IEEE1394_GASP_HDR_SIZE;
872 spin_lock_irqsave(&dev->lock, flags);
874 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
875 &dev->broadcast_rcv_buffer, offset);
877 spin_unlock_irqrestore(&dev->lock, flags);
879 if (retval < 0)
880 fw_error("requeue failed\n");
883 static struct kmem_cache *fwnet_packet_task_cache;
885 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
887 dev_kfree_skb_any(ptask->skb);
888 kmem_cache_free(fwnet_packet_task_cache, ptask);
891 /* Caller must hold dev->lock. */
892 static void dec_queued_datagrams(struct fwnet_device *dev)
894 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
895 netif_wake_queue(dev->netdev);
898 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
902 struct fwnet_device *dev = ptask->dev;
903 struct sk_buff *skb = ptask->skb;
904 unsigned long flags;
905 bool free;
907 spin_lock_irqsave(&dev->lock, flags);
909 ptask->outstanding_pkts--;
911 /* Check whether we or the networking TX soft-IRQ is last user. */
912 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
913 if (free)
914 dec_queued_datagrams(dev);
916 if (ptask->outstanding_pkts == 0) {
917 dev->netdev->stats.tx_packets++;
918 dev->netdev->stats.tx_bytes += skb->len;
921 spin_unlock_irqrestore(&dev->lock, flags);
923 if (ptask->outstanding_pkts > 0) {
924 u16 dg_size;
925 u16 fg_off;
926 u16 datagram_label;
927 u16 lf;
929 /* Update the ptask to point to the next fragment and send it */
930 lf = fwnet_get_hdr_lf(&ptask->hdr);
931 switch (lf) {
932 case RFC2374_HDR_LASTFRAG:
933 case RFC2374_HDR_UNFRAG:
934 default:
935 fw_error("Outstanding packet %x lf %x, header %x,%x\n",
936 ptask->outstanding_pkts, lf, ptask->hdr.w0,
937 ptask->hdr.w1);
938 BUG();
940 case RFC2374_HDR_FIRSTFRAG:
941 /* Set frag type here for future interior fragments */
942 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
943 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
944 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
945 break;
947 case RFC2374_HDR_INTFRAG:
948 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
950 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952 break;
955 skb_pull(skb, ptask->max_payload);
956 if (ptask->outstanding_pkts > 1) {
957 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
958 dg_size, fg_off, datagram_label);
959 } else {
960 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
961 dg_size, fg_off, datagram_label);
962 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
964 fwnet_send_packet(ptask);
967 if (free)
968 fwnet_free_ptask(ptask);
971 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
973 struct fwnet_device *dev = ptask->dev;
974 unsigned long flags;
975 bool free;
977 spin_lock_irqsave(&dev->lock, flags);
979 /* One fragment failed; don't try to send remaining fragments. */
980 ptask->outstanding_pkts = 0;
982 /* Check whether we or the networking TX soft-IRQ is last user. */
983 free = ptask->enqueued;
984 if (free)
985 dec_queued_datagrams(dev);
987 dev->netdev->stats.tx_dropped++;
988 dev->netdev->stats.tx_errors++;
990 spin_unlock_irqrestore(&dev->lock, flags);
992 if (free)
993 fwnet_free_ptask(ptask);
996 static void fwnet_write_complete(struct fw_card *card, int rcode,
997 void *payload, size_t length, void *data)
999 struct fwnet_packet_task *ptask;
1001 ptask = data;
1003 if (rcode == RCODE_COMPLETE) {
1004 fwnet_transmit_packet_done(ptask);
1005 } else {
1006 fw_error("fwnet_write_complete: failed: %x\n", rcode);
1007 fwnet_transmit_packet_failed(ptask);
1011 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1013 struct fwnet_device *dev;
1014 unsigned tx_len;
1015 struct rfc2734_header *bufhdr;
1016 unsigned long flags;
1017 bool free;
1019 dev = ptask->dev;
1020 tx_len = ptask->max_payload;
1021 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1022 case RFC2374_HDR_UNFRAG:
1023 bufhdr = (struct rfc2734_header *)
1024 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1025 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1026 break;
1028 case RFC2374_HDR_FIRSTFRAG:
1029 case RFC2374_HDR_INTFRAG:
1030 case RFC2374_HDR_LASTFRAG:
1031 bufhdr = (struct rfc2734_header *)
1032 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1033 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1034 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1035 break;
1037 default:
1038 BUG();
1040 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1041 u8 *p;
1042 int generation;
1043 int node_id;
1045 /* ptask->generation may not have been set yet */
1046 generation = dev->card->generation;
1047 smp_rmb();
1048 node_id = dev->card->node_id;
1050 p = skb_push(ptask->skb, 8);
1051 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1052 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1053 | RFC2734_SW_VERSION, &p[4]);
1055 /* We should not transmit if broadcast_channel.valid == 0. */
1056 fw_send_request(dev->card, &ptask->transaction,
1057 TCODE_STREAM_DATA,
1058 fw_stream_packet_destination_id(3,
1059 IEEE1394_BROADCAST_CHANNEL, 0),
1060 generation, SCODE_100, 0ULL, ptask->skb->data,
1061 tx_len + 8, fwnet_write_complete, ptask);
1063 spin_lock_irqsave(&dev->lock, flags);
1065 /* If the AT tasklet already ran, we may be last user. */
1066 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1067 if (!free)
1068 ptask->enqueued = true;
1069 else
1070 dec_queued_datagrams(dev);
1072 spin_unlock_irqrestore(&dev->lock, flags);
1074 goto out;
1077 fw_send_request(dev->card, &ptask->transaction,
1078 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1079 ptask->generation, ptask->speed, ptask->fifo_addr,
1080 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1082 spin_lock_irqsave(&dev->lock, flags);
1084 /* If the AT tasklet already ran, we may be last user. */
1085 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1086 if (!free)
1087 ptask->enqueued = true;
1088 else
1089 dec_queued_datagrams(dev);
1091 spin_unlock_irqrestore(&dev->lock, flags);
1093 dev->netdev->trans_start = jiffies;
1094 out:
1095 if (free)
1096 fwnet_free_ptask(ptask);
1098 return 0;
1101 static int fwnet_broadcast_start(struct fwnet_device *dev)
1103 struct fw_iso_context *context;
1104 int retval;
1105 unsigned num_packets;
1106 unsigned max_receive;
1107 struct fw_iso_packet packet;
1108 unsigned long offset;
1109 unsigned u;
1111 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1112 /* outside OHCI posted write area? */
1113 static const struct fw_address_region region = {
1114 .start = 0xffff00000000ULL,
1115 .end = CSR_REGISTER_BASE,
1118 dev->handler.length = 4096;
1119 dev->handler.address_callback = fwnet_receive_packet;
1120 dev->handler.callback_data = dev;
1122 retval = fw_core_add_address_handler(&dev->handler, &region);
1123 if (retval < 0)
1124 goto failed_initial;
1126 dev->local_fifo = dev->handler.offset;
1129 max_receive = 1U << (dev->card->max_receive + 1);
1130 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1132 if (!dev->broadcast_rcv_context) {
1133 void **ptrptr;
1135 context = fw_iso_context_create(dev->card,
1136 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1137 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1138 if (IS_ERR(context)) {
1139 retval = PTR_ERR(context);
1140 goto failed_context_create;
1143 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1144 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1145 if (retval < 0)
1146 goto failed_buffer_init;
1148 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1149 if (!ptrptr) {
1150 retval = -ENOMEM;
1151 goto failed_ptrs_alloc;
1154 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1155 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1156 void *ptr;
1157 unsigned v;
1159 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1160 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1161 *ptrptr++ = (void *)
1162 ((char *)ptr + v * max_receive);
1164 dev->broadcast_rcv_context = context;
1165 } else {
1166 context = dev->broadcast_rcv_context;
1169 packet.payload_length = max_receive;
1170 packet.interrupt = 1;
1171 packet.skip = 0;
1172 packet.tag = 3;
1173 packet.sy = 0;
1174 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1175 offset = 0;
1177 for (u = 0; u < num_packets; u++) {
1178 retval = fw_iso_context_queue(context, &packet,
1179 &dev->broadcast_rcv_buffer, offset);
1180 if (retval < 0)
1181 goto failed_rcv_queue;
1183 offset += max_receive;
1185 dev->num_broadcast_rcv_ptrs = num_packets;
1186 dev->rcv_buffer_size = max_receive;
1187 dev->broadcast_rcv_next_ptr = 0U;
1188 retval = fw_iso_context_start(context, -1, 0,
1189 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1190 if (retval < 0)
1191 goto failed_rcv_queue;
1193 /* FIXME: adjust it according to the min. speed of all known peers? */
1194 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1195 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1196 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1198 return 0;
1200 failed_rcv_queue:
1201 kfree(dev->broadcast_rcv_buffer_ptrs);
1202 dev->broadcast_rcv_buffer_ptrs = NULL;
1203 failed_ptrs_alloc:
1204 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1205 failed_buffer_init:
1206 fw_iso_context_destroy(context);
1207 dev->broadcast_rcv_context = NULL;
1208 failed_context_create:
1209 fw_core_remove_address_handler(&dev->handler);
1210 failed_initial:
1211 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1213 return retval;
1216 /* ifup */
1217 static int fwnet_open(struct net_device *net)
1219 struct fwnet_device *dev = netdev_priv(net);
1220 int ret;
1222 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1223 ret = fwnet_broadcast_start(dev);
1224 if (ret)
1225 return ret;
1227 netif_start_queue(net);
1229 return 0;
1232 /* ifdown */
1233 static int fwnet_stop(struct net_device *net)
1235 netif_stop_queue(net);
1237 /* Deallocate iso context for use by other applications? */
1239 return 0;
1242 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1244 struct fwnet_header hdr_buf;
1245 struct fwnet_device *dev = netdev_priv(net);
1246 __be16 proto;
1247 u16 dest_node;
1248 unsigned max_payload;
1249 u16 dg_size;
1250 u16 *datagram_label_ptr;
1251 struct fwnet_packet_task *ptask;
1252 struct fwnet_peer *peer;
1253 unsigned long flags;
1255 spin_lock_irqsave(&dev->lock, flags);
1257 /* Can this happen? */
1258 if (netif_queue_stopped(dev->netdev)) {
1259 spin_unlock_irqrestore(&dev->lock, flags);
1261 return NETDEV_TX_BUSY;
1264 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1265 if (ptask == NULL)
1266 goto fail;
1268 skb = skb_share_check(skb, GFP_ATOMIC);
1269 if (!skb)
1270 goto fail;
1273 * Make a copy of the driver-specific header.
1274 * We might need to rebuild the header on tx failure.
1276 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1277 skb_pull(skb, sizeof(hdr_buf));
1279 proto = hdr_buf.h_proto;
1280 dg_size = skb->len;
1283 * Set the transmission type for the packet. ARP packets and IP
1284 * broadcast packets are sent via GASP.
1286 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1287 || proto == htons(ETH_P_ARP)
1288 || (proto == htons(ETH_P_IP)
1289 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1290 max_payload = dev->broadcast_xmt_max_payload;
1291 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1293 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1294 ptask->generation = 0;
1295 ptask->dest_node = IEEE1394_ALL_NODES;
1296 ptask->speed = SCODE_100;
1297 } else {
1298 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1299 u8 generation;
1301 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1302 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1303 goto fail;
1305 generation = peer->generation;
1306 dest_node = peer->node_id;
1307 max_payload = peer->max_payload;
1308 datagram_label_ptr = &peer->datagram_label;
1310 ptask->fifo_addr = peer->fifo;
1311 ptask->generation = generation;
1312 ptask->dest_node = dest_node;
1313 ptask->speed = peer->speed;
1316 /* If this is an ARP packet, convert it */
1317 if (proto == htons(ETH_P_ARP)) {
1318 struct arphdr *arp = (struct arphdr *)skb->data;
1319 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1320 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1321 __be32 ipaddr;
1323 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1325 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1326 arp1394->max_rec = dev->card->max_receive;
1327 arp1394->sspd = dev->card->link_speed;
1329 put_unaligned_be16(dev->local_fifo >> 32,
1330 &arp1394->fifo_hi);
1331 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1332 &arp1394->fifo_lo);
1333 put_unaligned(ipaddr, &arp1394->sip);
1336 ptask->hdr.w0 = 0;
1337 ptask->hdr.w1 = 0;
1338 ptask->skb = skb;
1339 ptask->dev = dev;
1341 /* Does it all fit in one packet? */
1342 if (dg_size <= max_payload) {
1343 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1344 ptask->outstanding_pkts = 1;
1345 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1346 } else {
1347 u16 datagram_label;
1349 max_payload -= RFC2374_FRAG_OVERHEAD;
1350 datagram_label = (*datagram_label_ptr)++;
1351 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1352 datagram_label);
1353 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1354 max_payload += RFC2374_FRAG_HDR_SIZE;
1357 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1358 netif_stop_queue(dev->netdev);
1360 spin_unlock_irqrestore(&dev->lock, flags);
1362 ptask->max_payload = max_payload;
1363 ptask->enqueued = 0;
1365 fwnet_send_packet(ptask);
1367 return NETDEV_TX_OK;
1369 fail:
1370 spin_unlock_irqrestore(&dev->lock, flags);
1372 if (ptask)
1373 kmem_cache_free(fwnet_packet_task_cache, ptask);
1375 if (skb != NULL)
1376 dev_kfree_skb(skb);
1378 net->stats.tx_dropped++;
1379 net->stats.tx_errors++;
1382 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1383 * causes serious problems" here, allegedly. Before that patch,
1384 * -ERRNO was returned which is not appropriate under Linux 2.6.
1385 * Perhaps more needs to be done? Stop the queue in serious
1386 * conditions and restart it elsewhere?
1388 return NETDEV_TX_OK;
1391 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1393 if (new_mtu < 68)
1394 return -EINVAL;
1396 net->mtu = new_mtu;
1397 return 0;
1400 static const struct net_device_ops fwnet_netdev_ops = {
1401 .ndo_open = fwnet_open,
1402 .ndo_stop = fwnet_stop,
1403 .ndo_start_xmit = fwnet_tx,
1404 .ndo_change_mtu = fwnet_change_mtu,
1407 static void fwnet_init_dev(struct net_device *net)
1409 net->header_ops = &fwnet_header_ops;
1410 net->netdev_ops = &fwnet_netdev_ops;
1411 net->watchdog_timeo = 2 * HZ;
1412 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1413 net->features = NETIF_F_HIGHDMA;
1414 net->addr_len = FWNET_ALEN;
1415 net->hard_header_len = FWNET_HLEN;
1416 net->type = ARPHRD_IEEE1394;
1417 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1420 /* caller must hold fwnet_device_mutex */
1421 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1423 struct fwnet_device *dev;
1425 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1426 if (dev->card == card)
1427 return dev;
1429 return NULL;
1432 static int fwnet_add_peer(struct fwnet_device *dev,
1433 struct fw_unit *unit, struct fw_device *device)
1435 struct fwnet_peer *peer;
1437 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1438 if (!peer)
1439 return -ENOMEM;
1441 dev_set_drvdata(&unit->device, peer);
1443 peer->dev = dev;
1444 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1445 peer->fifo = FWNET_NO_FIFO_ADDR;
1446 INIT_LIST_HEAD(&peer->pd_list);
1447 peer->pdg_size = 0;
1448 peer->datagram_label = 0;
1449 peer->speed = device->max_speed;
1450 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1452 peer->generation = device->generation;
1453 smp_rmb();
1454 peer->node_id = device->node_id;
1456 spin_lock_irq(&dev->lock);
1457 list_add_tail(&peer->peer_link, &dev->peer_list);
1458 spin_unlock_irq(&dev->lock);
1460 return 0;
1463 static int fwnet_probe(struct device *_dev)
1465 struct fw_unit *unit = fw_unit(_dev);
1466 struct fw_device *device = fw_parent_device(unit);
1467 struct fw_card *card = device->card;
1468 struct net_device *net;
1469 bool allocated_netdev = false;
1470 struct fwnet_device *dev;
1471 unsigned max_mtu;
1472 int ret;
1474 mutex_lock(&fwnet_device_mutex);
1476 dev = fwnet_dev_find(card);
1477 if (dev) {
1478 net = dev->netdev;
1479 goto have_dev;
1482 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1483 if (net == NULL) {
1484 ret = -ENOMEM;
1485 goto out;
1488 allocated_netdev = true;
1489 SET_NETDEV_DEV(net, card->device);
1490 dev = netdev_priv(net);
1492 spin_lock_init(&dev->lock);
1493 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1494 dev->broadcast_rcv_context = NULL;
1495 dev->broadcast_xmt_max_payload = 0;
1496 dev->broadcast_xmt_datagramlabel = 0;
1497 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1498 dev->queued_datagrams = 0;
1499 INIT_LIST_HEAD(&dev->peer_list);
1500 dev->card = card;
1501 dev->netdev = net;
1504 * Use the RFC 2734 default 1500 octets or the maximum payload
1505 * as initial MTU
1507 max_mtu = (1 << (card->max_receive + 1))
1508 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1509 net->mtu = min(1500U, max_mtu);
1511 /* Set our hardware address while we're at it */
1512 put_unaligned_be64(card->guid, net->dev_addr);
1513 put_unaligned_be64(~0ULL, net->broadcast);
1514 ret = register_netdev(net);
1515 if (ret) {
1516 fw_error("Cannot register the driver\n");
1517 goto out;
1520 list_add_tail(&dev->dev_link, &fwnet_device_list);
1521 fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1522 net->name, (unsigned long long)card->guid);
1523 have_dev:
1524 ret = fwnet_add_peer(dev, unit, device);
1525 if (ret && allocated_netdev) {
1526 unregister_netdev(net);
1527 list_del(&dev->dev_link);
1529 out:
1530 if (ret && allocated_netdev)
1531 free_netdev(net);
1533 mutex_unlock(&fwnet_device_mutex);
1535 return ret;
1538 static void fwnet_remove_peer(struct fwnet_peer *peer)
1540 struct fwnet_partial_datagram *pd, *pd_next;
1542 spin_lock_irq(&peer->dev->lock);
1543 list_del(&peer->peer_link);
1544 spin_unlock_irq(&peer->dev->lock);
1546 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547 fwnet_pd_delete(pd);
1549 kfree(peer);
1552 static int fwnet_remove(struct device *_dev)
1554 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1555 struct fwnet_device *dev = peer->dev;
1556 struct net_device *net;
1557 int i;
1559 mutex_lock(&fwnet_device_mutex);
1561 fwnet_remove_peer(peer);
1563 if (list_empty(&dev->peer_list)) {
1564 net = dev->netdev;
1565 unregister_netdev(net);
1567 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1568 fw_core_remove_address_handler(&dev->handler);
1569 if (dev->broadcast_rcv_context) {
1570 fw_iso_context_stop(dev->broadcast_rcv_context);
1571 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1572 dev->card);
1573 fw_iso_context_destroy(dev->broadcast_rcv_context);
1575 for (i = 0; dev->queued_datagrams && i < 5; i++)
1576 ssleep(1);
1577 WARN_ON(dev->queued_datagrams);
1578 list_del(&dev->dev_link);
1580 free_netdev(net);
1583 mutex_unlock(&fwnet_device_mutex);
1585 return 0;
1589 * FIXME abort partially sent fragmented datagrams,
1590 * discard partially received fragmented datagrams
1592 static void fwnet_update(struct fw_unit *unit)
1594 struct fw_device *device = fw_parent_device(unit);
1595 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1596 int generation;
1598 generation = device->generation;
1600 spin_lock_irq(&peer->dev->lock);
1601 peer->node_id = device->node_id;
1602 peer->generation = generation;
1603 spin_unlock_irq(&peer->dev->lock);
1606 static const struct ieee1394_device_id fwnet_id_table[] = {
1608 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1609 IEEE1394_MATCH_VERSION,
1610 .specifier_id = IANA_SPECIFIER_ID,
1611 .version = RFC2734_SW_VERSION,
1616 static struct fw_driver fwnet_driver = {
1617 .driver = {
1618 .owner = THIS_MODULE,
1619 .name = "net",
1620 .bus = &fw_bus_type,
1621 .probe = fwnet_probe,
1622 .remove = fwnet_remove,
1624 .update = fwnet_update,
1625 .id_table = fwnet_id_table,
1628 static const u32 rfc2374_unit_directory_data[] = {
1629 0x00040000, /* directory_length */
1630 0x1200005e, /* unit_specifier_id: IANA */
1631 0x81000003, /* textual descriptor offset */
1632 0x13000001, /* unit_sw_version: RFC 2734 */
1633 0x81000005, /* textual descriptor offset */
1634 0x00030000, /* descriptor_length */
1635 0x00000000, /* text */
1636 0x00000000, /* minimal ASCII, en */
1637 0x49414e41, /* I A N A */
1638 0x00030000, /* descriptor_length */
1639 0x00000000, /* text */
1640 0x00000000, /* minimal ASCII, en */
1641 0x49507634, /* I P v 4 */
1644 static struct fw_descriptor rfc2374_unit_directory = {
1645 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1646 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1647 .data = rfc2374_unit_directory_data
1650 static int __init fwnet_init(void)
1652 int err;
1654 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1655 if (err)
1656 return err;
1658 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1659 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1660 if (!fwnet_packet_task_cache) {
1661 err = -ENOMEM;
1662 goto out;
1665 err = driver_register(&fwnet_driver.driver);
1666 if (!err)
1667 return 0;
1669 kmem_cache_destroy(fwnet_packet_task_cache);
1670 out:
1671 fw_core_remove_descriptor(&rfc2374_unit_directory);
1673 return err;
1675 module_init(fwnet_init);
1677 static void __exit fwnet_cleanup(void)
1679 driver_unregister(&fwnet_driver.driver);
1680 kmem_cache_destroy(fwnet_packet_task_cache);
1681 fw_core_remove_descriptor(&rfc2374_unit_directory);
1683 module_exit(fwnet_cleanup);
1685 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1686 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1687 MODULE_LICENSE("GPL");
1688 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);