2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
30 * local_clock() -- is cpu_clock() on the current cpu.
34 * The implementation either uses sched_clock() when
35 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
36 * sched_clock() is assumed to provide these properties (mostly it means
37 * the architecture provides a globally synchronized highres time source).
39 * Otherwise it tries to create a semi stable clock from a mixture of other
42 * - GTOD (clock monotomic)
44 * - explicit idle events
46 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
47 * deltas are filtered to provide monotonicity and keeping it within an
50 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
51 * that is otherwise invisible (TSC gets stopped).
56 * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
57 * like cpufreq interrupts that can change the base clock (TSC) multiplier
58 * and cause funny jumps in time -- although the filtering provided by
59 * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
60 * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
63 #include <linux/spinlock.h>
64 #include <linux/hardirq.h>
65 #include <linux/module.h>
66 #include <linux/percpu.h>
67 #include <linux/ktime.h>
68 #include <linux/sched.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
78 * (NSEC_PER_SEC
/ HZ
);
80 EXPORT_SYMBOL_GPL(sched_clock
);
82 __read_mostly
int sched_clock_running
;
84 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
85 __read_mostly
int sched_clock_stable
;
87 struct sched_clock_data
{
93 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
95 static inline struct sched_clock_data
*this_scd(void)
97 return &__get_cpu_var(sched_clock_data
);
100 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
102 return &per_cpu(sched_clock_data
, cpu
);
105 void sched_clock_init(void)
107 u64 ktime_now
= ktime_to_ns(ktime_get());
110 for_each_possible_cpu(cpu
) {
111 struct sched_clock_data
*scd
= cpu_sdc(cpu
);
114 scd
->tick_gtod
= ktime_now
;
115 scd
->clock
= ktime_now
;
118 sched_clock_running
= 1;
122 * min, max except they take wrapping into account
125 static inline u64
wrap_min(u64 x
, u64 y
)
127 return (s64
)(x
- y
) < 0 ? x
: y
;
130 static inline u64
wrap_max(u64 x
, u64 y
)
132 return (s64
)(x
- y
) > 0 ? x
: y
;
136 * update the percpu scd from the raw @now value
138 * - filter out backward motion
139 * - use the GTOD tick value to create a window to filter crazy TSC values
141 static u64
sched_clock_local(struct sched_clock_data
*scd
)
143 u64 now
, clock
, old_clock
, min_clock
, max_clock
;
148 delta
= now
- scd
->tick_raw
;
149 if (unlikely(delta
< 0))
152 old_clock
= scd
->clock
;
155 * scd->clock = clamp(scd->tick_gtod + delta,
156 * max(scd->tick_gtod, scd->clock),
157 * scd->tick_gtod + TICK_NSEC);
160 clock
= scd
->tick_gtod
+ delta
;
161 min_clock
= wrap_max(scd
->tick_gtod
, old_clock
);
162 max_clock
= wrap_max(old_clock
, scd
->tick_gtod
+ TICK_NSEC
);
164 clock
= wrap_max(clock
, min_clock
);
165 clock
= wrap_min(clock
, max_clock
);
167 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
173 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
175 struct sched_clock_data
*my_scd
= this_scd();
176 u64 this_clock
, remote_clock
;
177 u64
*ptr
, old_val
, val
;
179 sched_clock_local(my_scd
);
181 this_clock
= my_scd
->clock
;
182 remote_clock
= scd
->clock
;
185 * Use the opportunity that we have both locks
186 * taken to couple the two clocks: we take the
187 * larger time as the latest time for both
188 * runqueues. (this creates monotonic movement)
190 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
192 old_val
= remote_clock
;
196 * Should be rare, but possible:
198 ptr
= &my_scd
->clock
;
199 old_val
= this_clock
;
203 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
210 * Similar to cpu_clock(), but requires local IRQs to be disabled.
214 u64
sched_clock_cpu(int cpu
)
216 struct sched_clock_data
*scd
;
219 WARN_ON_ONCE(!irqs_disabled());
221 if (sched_clock_stable
)
222 return sched_clock();
224 if (unlikely(!sched_clock_running
))
229 if (cpu
!= smp_processor_id())
230 clock
= sched_clock_remote(scd
);
232 clock
= sched_clock_local(scd
);
237 void sched_clock_tick(void)
239 struct sched_clock_data
*scd
;
242 if (sched_clock_stable
)
245 if (unlikely(!sched_clock_running
))
248 WARN_ON_ONCE(!irqs_disabled());
251 now_gtod
= ktime_to_ns(ktime_get());
255 scd
->tick_gtod
= now_gtod
;
256 sched_clock_local(scd
);
260 * We are going deep-idle (irqs are disabled):
262 void sched_clock_idle_sleep_event(void)
264 sched_clock_cpu(smp_processor_id());
266 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
269 * We just idled delta nanoseconds (called with irqs disabled):
271 void sched_clock_idle_wakeup_event(u64 delta_ns
)
273 if (timekeeping_suspended
)
277 touch_softlockup_watchdog();
279 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
282 * As outlined at the top, provides a fast, high resolution, nanosecond
283 * time source that is monotonic per cpu argument and has bounded drift
286 * ######################### BIG FAT WARNING ##########################
287 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
288 * # go backwards !! #
289 * ####################################################################
291 u64
cpu_clock(int cpu
)
296 local_irq_save(flags
);
297 clock
= sched_clock_cpu(cpu
);
298 local_irq_restore(flags
);
304 * Similar to cpu_clock() for the current cpu. Time will only be observed
305 * to be monotonic if care is taken to only compare timestampt taken on the
310 u64
local_clock(void)
315 local_irq_save(flags
);
316 clock
= sched_clock_cpu(smp_processor_id());
317 local_irq_restore(flags
);
322 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
324 void sched_clock_init(void)
326 sched_clock_running
= 1;
329 u64
sched_clock_cpu(int cpu
)
331 if (unlikely(!sched_clock_running
))
334 return sched_clock();
337 u64
cpu_clock(int cpu
)
339 return sched_clock_cpu(cpu
);
342 u64
local_clock(void)
344 return sched_clock_cpu(0);
347 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
349 EXPORT_SYMBOL_GPL(cpu_clock
);
350 EXPORT_SYMBOL_GPL(local_clock
);