1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 static const struct e1000_info
*e1000_info_tbl
[] = {
56 [board_82571
] = &e1000_82571_info
,
57 [board_82572
] = &e1000_82572_info
,
58 [board_82573
] = &e1000_82573_info
,
59 [board_82574
] = &e1000_82574_info
,
60 [board_82583
] = &e1000_82583_info
,
61 [board_80003es2lan
] = &e1000_es2_info
,
62 [board_ich8lan
] = &e1000_ich8_info
,
63 [board_ich9lan
] = &e1000_ich9_info
,
64 [board_ich10lan
] = &e1000_ich10_info
,
65 [board_pchlan
] = &e1000_pch_info
,
69 * e1000_desc_unused - calculate if we have unused descriptors
71 static int e1000_desc_unused(struct e1000_ring
*ring
)
73 if (ring
->next_to_clean
> ring
->next_to_use
)
74 return ring
->next_to_clean
- ring
->next_to_use
- 1;
76 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
80 * e1000_receive_skb - helper function to handle Rx indications
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
86 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
87 struct net_device
*netdev
,
89 u8 status
, __le16 vlan
)
91 skb
->protocol
= eth_type_trans(skb
, netdev
);
93 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
94 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
95 le16_to_cpu(vlan
), skb
);
97 napi_gro_receive(&adapter
->napi
, skb
);
101 * e1000_rx_checksum - Receive Checksum Offload for 82543
102 * @adapter: board private structure
103 * @status_err: receive descriptor status and error fields
104 * @csum: receive descriptor csum field
105 * @sk_buff: socket buffer with received data
107 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
108 u32 csum
, struct sk_buff
*skb
)
110 u16 status
= (u16
)status_err
;
111 u8 errors
= (u8
)(status_err
>> 24);
112 skb
->ip_summed
= CHECKSUM_NONE
;
114 /* Ignore Checksum bit is set */
115 if (status
& E1000_RXD_STAT_IXSM
)
117 /* TCP/UDP checksum error bit is set */
118 if (errors
& E1000_RXD_ERR_TCPE
) {
119 /* let the stack verify checksum errors */
120 adapter
->hw_csum_err
++;
124 /* TCP/UDP Checksum has not been calculated */
125 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status
& E1000_RXD_STAT_TCPCS
) {
130 /* TCP checksum is good */
131 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
134 * IP fragment with UDP payload
135 * Hardware complements the payload checksum, so we undo it
136 * and then put the value in host order for further stack use.
138 __sum16 sum
= (__force __sum16
)htons(csum
);
139 skb
->csum
= csum_unfold(~sum
);
140 skb
->ip_summed
= CHECKSUM_COMPLETE
;
142 adapter
->hw_csum_good
++;
146 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147 * @adapter: address of board private structure
149 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
152 struct net_device
*netdev
= adapter
->netdev
;
153 struct pci_dev
*pdev
= adapter
->pdev
;
154 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
155 struct e1000_rx_desc
*rx_desc
;
156 struct e1000_buffer
*buffer_info
;
159 unsigned int bufsz
= adapter
->rx_buffer_len
;
161 i
= rx_ring
->next_to_use
;
162 buffer_info
= &rx_ring
->buffer_info
[i
];
164 while (cleaned_count
--) {
165 skb
= buffer_info
->skb
;
171 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
173 /* Better luck next round */
174 adapter
->alloc_rx_buff_failed
++;
178 buffer_info
->skb
= skb
;
180 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
181 adapter
->rx_buffer_len
,
183 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
184 dev_err(&pdev
->dev
, "RX DMA map failed\n");
185 adapter
->rx_dma_failed
++;
189 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
190 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
193 if (i
== rx_ring
->count
)
195 buffer_info
= &rx_ring
->buffer_info
[i
];
198 if (rx_ring
->next_to_use
!= i
) {
199 rx_ring
->next_to_use
= i
;
201 i
= (rx_ring
->count
- 1);
204 * Force memory writes to complete before letting h/w
205 * know there are new descriptors to fetch. (Only
206 * applicable for weak-ordered memory model archs,
210 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
215 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216 * @adapter: address of board private structure
218 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
221 struct net_device
*netdev
= adapter
->netdev
;
222 struct pci_dev
*pdev
= adapter
->pdev
;
223 union e1000_rx_desc_packet_split
*rx_desc
;
224 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
225 struct e1000_buffer
*buffer_info
;
226 struct e1000_ps_page
*ps_page
;
230 i
= rx_ring
->next_to_use
;
231 buffer_info
= &rx_ring
->buffer_info
[i
];
233 while (cleaned_count
--) {
234 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
236 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
237 ps_page
= &buffer_info
->ps_pages
[j
];
238 if (j
>= adapter
->rx_ps_pages
) {
239 /* all unused desc entries get hw null ptr */
240 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
243 if (!ps_page
->page
) {
244 ps_page
->page
= alloc_page(GFP_ATOMIC
);
245 if (!ps_page
->page
) {
246 adapter
->alloc_rx_buff_failed
++;
249 ps_page
->dma
= pci_map_page(pdev
,
253 if (pci_dma_mapping_error(pdev
, ps_page
->dma
)) {
254 dev_err(&adapter
->pdev
->dev
,
255 "RX DMA page map failed\n");
256 adapter
->rx_dma_failed
++;
261 * Refresh the desc even if buffer_addrs
262 * didn't change because each write-back
265 rx_desc
->read
.buffer_addr
[j
+1] =
266 cpu_to_le64(ps_page
->dma
);
269 skb
= netdev_alloc_skb_ip_align(netdev
,
270 adapter
->rx_ps_bsize0
);
273 adapter
->alloc_rx_buff_failed
++;
277 buffer_info
->skb
= skb
;
278 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
279 adapter
->rx_ps_bsize0
,
281 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
282 dev_err(&pdev
->dev
, "RX DMA map failed\n");
283 adapter
->rx_dma_failed
++;
285 dev_kfree_skb_any(skb
);
286 buffer_info
->skb
= NULL
;
290 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
293 if (i
== rx_ring
->count
)
295 buffer_info
= &rx_ring
->buffer_info
[i
];
299 if (rx_ring
->next_to_use
!= i
) {
300 rx_ring
->next_to_use
= i
;
303 i
= (rx_ring
->count
- 1);
306 * Force memory writes to complete before letting h/w
307 * know there are new descriptors to fetch. (Only
308 * applicable for weak-ordered memory model archs,
313 * Hardware increments by 16 bytes, but packet split
314 * descriptors are 32 bytes...so we increment tail
317 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
322 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323 * @adapter: address of board private structure
324 * @cleaned_count: number of buffers to allocate this pass
327 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
330 struct net_device
*netdev
= adapter
->netdev
;
331 struct pci_dev
*pdev
= adapter
->pdev
;
332 struct e1000_rx_desc
*rx_desc
;
333 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
334 struct e1000_buffer
*buffer_info
;
337 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
339 i
= rx_ring
->next_to_use
;
340 buffer_info
= &rx_ring
->buffer_info
[i
];
342 while (cleaned_count
--) {
343 skb
= buffer_info
->skb
;
349 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
350 if (unlikely(!skb
)) {
351 /* Better luck next round */
352 adapter
->alloc_rx_buff_failed
++;
356 buffer_info
->skb
= skb
;
358 /* allocate a new page if necessary */
359 if (!buffer_info
->page
) {
360 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
361 if (unlikely(!buffer_info
->page
)) {
362 adapter
->alloc_rx_buff_failed
++;
367 if (!buffer_info
->dma
)
368 buffer_info
->dma
= pci_map_page(pdev
,
369 buffer_info
->page
, 0,
373 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
374 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
376 if (unlikely(++i
== rx_ring
->count
))
378 buffer_info
= &rx_ring
->buffer_info
[i
];
381 if (likely(rx_ring
->next_to_use
!= i
)) {
382 rx_ring
->next_to_use
= i
;
383 if (unlikely(i
-- == 0))
384 i
= (rx_ring
->count
- 1);
386 /* Force memory writes to complete before letting h/w
387 * know there are new descriptors to fetch. (Only
388 * applicable for weak-ordered memory model archs,
391 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
397 * @adapter: board private structure
399 * the return value indicates whether actual cleaning was done, there
400 * is no guarantee that everything was cleaned
402 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
403 int *work_done
, int work_to_do
)
405 struct net_device
*netdev
= adapter
->netdev
;
406 struct pci_dev
*pdev
= adapter
->pdev
;
407 struct e1000_hw
*hw
= &adapter
->hw
;
408 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
409 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
410 struct e1000_buffer
*buffer_info
, *next_buffer
;
413 int cleaned_count
= 0;
415 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
417 i
= rx_ring
->next_to_clean
;
418 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
419 buffer_info
= &rx_ring
->buffer_info
[i
];
421 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
425 if (*work_done
>= work_to_do
)
429 status
= rx_desc
->status
;
430 skb
= buffer_info
->skb
;
431 buffer_info
->skb
= NULL
;
433 prefetch(skb
->data
- NET_IP_ALIGN
);
436 if (i
== rx_ring
->count
)
438 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
441 next_buffer
= &rx_ring
->buffer_info
[i
];
445 pci_unmap_single(pdev
,
447 adapter
->rx_buffer_len
,
449 buffer_info
->dma
= 0;
451 length
= le16_to_cpu(rx_desc
->length
);
453 /* !EOP means multiple descriptors were used to store a single
454 * packet, also make sure the frame isn't just CRC only */
455 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
456 /* All receives must fit into a single buffer */
457 e_dbg("Receive packet consumed multiple buffers\n");
459 buffer_info
->skb
= skb
;
463 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
465 buffer_info
->skb
= skb
;
469 /* adjust length to remove Ethernet CRC */
470 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
473 total_rx_bytes
+= length
;
477 * code added for copybreak, this should improve
478 * performance for small packets with large amounts
479 * of reassembly being done in the stack
481 if (length
< copybreak
) {
482 struct sk_buff
*new_skb
=
483 netdev_alloc_skb_ip_align(netdev
, length
);
485 skb_copy_to_linear_data_offset(new_skb
,
491 /* save the skb in buffer_info as good */
492 buffer_info
->skb
= skb
;
495 /* else just continue with the old one */
497 /* end copybreak code */
498 skb_put(skb
, length
);
500 /* Receive Checksum Offload */
501 e1000_rx_checksum(adapter
,
503 ((u32
)(rx_desc
->errors
) << 24),
504 le16_to_cpu(rx_desc
->csum
), skb
);
506 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
511 /* return some buffers to hardware, one at a time is too slow */
512 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
513 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
517 /* use prefetched values */
519 buffer_info
= next_buffer
;
521 rx_ring
->next_to_clean
= i
;
523 cleaned_count
= e1000_desc_unused(rx_ring
);
525 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
527 adapter
->total_rx_bytes
+= total_rx_bytes
;
528 adapter
->total_rx_packets
+= total_rx_packets
;
529 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
530 netdev
->stats
.rx_packets
+= total_rx_packets
;
534 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
535 struct e1000_buffer
*buffer_info
)
537 if (buffer_info
->dma
) {
538 if (buffer_info
->mapped_as_page
)
539 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
540 buffer_info
->length
, PCI_DMA_TODEVICE
);
542 pci_unmap_single(adapter
->pdev
, buffer_info
->dma
,
545 buffer_info
->dma
= 0;
547 if (buffer_info
->skb
) {
548 dev_kfree_skb_any(buffer_info
->skb
);
549 buffer_info
->skb
= NULL
;
551 buffer_info
->time_stamp
= 0;
554 static void e1000_print_hw_hang(struct work_struct
*work
)
556 struct e1000_adapter
*adapter
= container_of(work
,
557 struct e1000_adapter
,
559 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
560 unsigned int i
= tx_ring
->next_to_clean
;
561 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
562 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
563 struct e1000_hw
*hw
= &adapter
->hw
;
564 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
567 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
568 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
569 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
571 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
573 /* detected Hardware unit hang */
574 e_err("Detected Hardware Unit Hang:\n"
577 " next_to_use <%x>\n"
578 " next_to_clean <%x>\n"
579 "buffer_info[next_to_clean]:\n"
580 " time_stamp <%lx>\n"
581 " next_to_watch <%x>\n"
583 " next_to_watch.status <%x>\n"
586 "PHY 1000BASE-T Status <%x>\n"
587 "PHY Extended Status <%x>\n"
589 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
590 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
591 tx_ring
->next_to_use
,
592 tx_ring
->next_to_clean
,
593 tx_ring
->buffer_info
[eop
].time_stamp
,
596 eop_desc
->upper
.fields
.status
,
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
613 struct net_device
*netdev
= adapter
->netdev
;
614 struct e1000_hw
*hw
= &adapter
->hw
;
615 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
616 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
617 struct e1000_buffer
*buffer_info
;
619 unsigned int count
= 0;
620 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
622 i
= tx_ring
->next_to_clean
;
623 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
624 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
626 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
627 (count
< tx_ring
->count
)) {
628 bool cleaned
= false;
629 for (; !cleaned
; count
++) {
630 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
631 buffer_info
= &tx_ring
->buffer_info
[i
];
632 cleaned
= (i
== eop
);
635 struct sk_buff
*skb
= buffer_info
->skb
;
636 unsigned int segs
, bytecount
;
637 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
638 /* multiply data chunks by size of headers */
639 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
641 total_tx_packets
+= segs
;
642 total_tx_bytes
+= bytecount
;
645 e1000_put_txbuf(adapter
, buffer_info
);
646 tx_desc
->upper
.data
= 0;
649 if (i
== tx_ring
->count
)
653 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
654 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
657 tx_ring
->next_to_clean
= i
;
659 #define TX_WAKE_THRESHOLD 32
660 if (count
&& netif_carrier_ok(netdev
) &&
661 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
662 /* Make sure that anybody stopping the queue after this
663 * sees the new next_to_clean.
667 if (netif_queue_stopped(netdev
) &&
668 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
669 netif_wake_queue(netdev
);
670 ++adapter
->restart_queue
;
674 if (adapter
->detect_tx_hung
) {
676 * Detect a transmit hang in hardware, this serializes the
677 * check with the clearing of time_stamp and movement of i
679 adapter
->detect_tx_hung
= 0;
680 if (tx_ring
->buffer_info
[i
].time_stamp
&&
681 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
682 + (adapter
->tx_timeout_factor
* HZ
)) &&
683 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
684 schedule_work(&adapter
->print_hang_task
);
685 netif_stop_queue(netdev
);
688 adapter
->total_tx_bytes
+= total_tx_bytes
;
689 adapter
->total_tx_packets
+= total_tx_packets
;
690 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
691 netdev
->stats
.tx_packets
+= total_tx_packets
;
692 return (count
< tx_ring
->count
);
696 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
697 * @adapter: board private structure
699 * the return value indicates whether actual cleaning was done, there
700 * is no guarantee that everything was cleaned
702 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
703 int *work_done
, int work_to_do
)
705 struct e1000_hw
*hw
= &adapter
->hw
;
706 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
707 struct net_device
*netdev
= adapter
->netdev
;
708 struct pci_dev
*pdev
= adapter
->pdev
;
709 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
710 struct e1000_buffer
*buffer_info
, *next_buffer
;
711 struct e1000_ps_page
*ps_page
;
715 int cleaned_count
= 0;
717 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
719 i
= rx_ring
->next_to_clean
;
720 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
721 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
722 buffer_info
= &rx_ring
->buffer_info
[i
];
724 while (staterr
& E1000_RXD_STAT_DD
) {
725 if (*work_done
>= work_to_do
)
728 skb
= buffer_info
->skb
;
730 /* in the packet split case this is header only */
731 prefetch(skb
->data
- NET_IP_ALIGN
);
734 if (i
== rx_ring
->count
)
736 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
739 next_buffer
= &rx_ring
->buffer_info
[i
];
743 pci_unmap_single(pdev
, buffer_info
->dma
,
744 adapter
->rx_ps_bsize0
,
746 buffer_info
->dma
= 0;
748 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
749 e_dbg("Packet Split buffers didn't pick up the full "
751 dev_kfree_skb_irq(skb
);
755 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
756 dev_kfree_skb_irq(skb
);
760 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
763 e_dbg("Last part of the packet spanning multiple "
765 dev_kfree_skb_irq(skb
);
770 skb_put(skb
, length
);
774 * this looks ugly, but it seems compiler issues make it
775 * more efficient than reusing j
777 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
780 * page alloc/put takes too long and effects small packet
781 * throughput, so unsplit small packets and save the alloc/put
782 * only valid in softirq (napi) context to call kmap_*
784 if (l1
&& (l1
<= copybreak
) &&
785 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
788 ps_page
= &buffer_info
->ps_pages
[0];
791 * there is no documentation about how to call
792 * kmap_atomic, so we can't hold the mapping
795 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
796 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
797 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
798 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
799 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
800 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
801 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
804 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
812 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
813 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
817 ps_page
= &buffer_info
->ps_pages
[j
];
818 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
821 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
822 ps_page
->page
= NULL
;
824 skb
->data_len
+= length
;
825 skb
->truesize
+= length
;
828 /* strip the ethernet crc, problem is we're using pages now so
829 * this whole operation can get a little cpu intensive
831 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
832 pskb_trim(skb
, skb
->len
- 4);
835 total_rx_bytes
+= skb
->len
;
838 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
839 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
841 if (rx_desc
->wb
.upper
.header_status
&
842 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
843 adapter
->rx_hdr_split
++;
845 e1000_receive_skb(adapter
, netdev
, skb
,
846 staterr
, rx_desc
->wb
.middle
.vlan
);
849 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
850 buffer_info
->skb
= NULL
;
852 /* return some buffers to hardware, one at a time is too slow */
853 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
854 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
858 /* use prefetched values */
860 buffer_info
= next_buffer
;
862 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
864 rx_ring
->next_to_clean
= i
;
866 cleaned_count
= e1000_desc_unused(rx_ring
);
868 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
870 adapter
->total_rx_bytes
+= total_rx_bytes
;
871 adapter
->total_rx_packets
+= total_rx_packets
;
872 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
873 netdev
->stats
.rx_packets
+= total_rx_packets
;
878 * e1000_consume_page - helper function
880 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
885 skb
->data_len
+= length
;
886 skb
->truesize
+= length
;
890 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
891 * @adapter: board private structure
893 * the return value indicates whether actual cleaning was done, there
894 * is no guarantee that everything was cleaned
897 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
898 int *work_done
, int work_to_do
)
900 struct net_device
*netdev
= adapter
->netdev
;
901 struct pci_dev
*pdev
= adapter
->pdev
;
902 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
903 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
904 struct e1000_buffer
*buffer_info
, *next_buffer
;
907 int cleaned_count
= 0;
908 bool cleaned
= false;
909 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
911 i
= rx_ring
->next_to_clean
;
912 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
913 buffer_info
= &rx_ring
->buffer_info
[i
];
915 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
919 if (*work_done
>= work_to_do
)
923 status
= rx_desc
->status
;
924 skb
= buffer_info
->skb
;
925 buffer_info
->skb
= NULL
;
928 if (i
== rx_ring
->count
)
930 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
933 next_buffer
= &rx_ring
->buffer_info
[i
];
937 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
939 buffer_info
->dma
= 0;
941 length
= le16_to_cpu(rx_desc
->length
);
943 /* errors is only valid for DD + EOP descriptors */
944 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
945 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
946 /* recycle both page and skb */
947 buffer_info
->skb
= skb
;
948 /* an error means any chain goes out the window
950 if (rx_ring
->rx_skb_top
)
951 dev_kfree_skb(rx_ring
->rx_skb_top
);
952 rx_ring
->rx_skb_top
= NULL
;
956 #define rxtop rx_ring->rx_skb_top
957 if (!(status
& E1000_RXD_STAT_EOP
)) {
958 /* this descriptor is only the beginning (or middle) */
960 /* this is the beginning of a chain */
962 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
965 /* this is the middle of a chain */
966 skb_fill_page_desc(rxtop
,
967 skb_shinfo(rxtop
)->nr_frags
,
968 buffer_info
->page
, 0, length
);
969 /* re-use the skb, only consumed the page */
970 buffer_info
->skb
= skb
;
972 e1000_consume_page(buffer_info
, rxtop
, length
);
976 /* end of the chain */
977 skb_fill_page_desc(rxtop
,
978 skb_shinfo(rxtop
)->nr_frags
,
979 buffer_info
->page
, 0, length
);
980 /* re-use the current skb, we only consumed the
982 buffer_info
->skb
= skb
;
985 e1000_consume_page(buffer_info
, skb
, length
);
987 /* no chain, got EOP, this buf is the packet
988 * copybreak to save the put_page/alloc_page */
989 if (length
<= copybreak
&&
990 skb_tailroom(skb
) >= length
) {
992 vaddr
= kmap_atomic(buffer_info
->page
,
993 KM_SKB_DATA_SOFTIRQ
);
994 memcpy(skb_tail_pointer(skb
), vaddr
,
997 KM_SKB_DATA_SOFTIRQ
);
998 /* re-use the page, so don't erase
999 * buffer_info->page */
1000 skb_put(skb
, length
);
1002 skb_fill_page_desc(skb
, 0,
1003 buffer_info
->page
, 0,
1005 e1000_consume_page(buffer_info
, skb
,
1011 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1012 e1000_rx_checksum(adapter
,
1014 ((u32
)(rx_desc
->errors
) << 24),
1015 le16_to_cpu(rx_desc
->csum
), skb
);
1017 /* probably a little skewed due to removing CRC */
1018 total_rx_bytes
+= skb
->len
;
1021 /* eth type trans needs skb->data to point to something */
1022 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1023 e_err("pskb_may_pull failed.\n");
1028 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1032 rx_desc
->status
= 0;
1034 /* return some buffers to hardware, one at a time is too slow */
1035 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1036 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1040 /* use prefetched values */
1042 buffer_info
= next_buffer
;
1044 rx_ring
->next_to_clean
= i
;
1046 cleaned_count
= e1000_desc_unused(rx_ring
);
1048 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1050 adapter
->total_rx_bytes
+= total_rx_bytes
;
1051 adapter
->total_rx_packets
+= total_rx_packets
;
1052 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1053 netdev
->stats
.rx_packets
+= total_rx_packets
;
1058 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1059 * @adapter: board private structure
1061 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1063 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1064 struct e1000_buffer
*buffer_info
;
1065 struct e1000_ps_page
*ps_page
;
1066 struct pci_dev
*pdev
= adapter
->pdev
;
1069 /* Free all the Rx ring sk_buffs */
1070 for (i
= 0; i
< rx_ring
->count
; i
++) {
1071 buffer_info
= &rx_ring
->buffer_info
[i
];
1072 if (buffer_info
->dma
) {
1073 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1074 pci_unmap_single(pdev
, buffer_info
->dma
,
1075 adapter
->rx_buffer_len
,
1076 PCI_DMA_FROMDEVICE
);
1077 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1078 pci_unmap_page(pdev
, buffer_info
->dma
,
1080 PCI_DMA_FROMDEVICE
);
1081 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1082 pci_unmap_single(pdev
, buffer_info
->dma
,
1083 adapter
->rx_ps_bsize0
,
1084 PCI_DMA_FROMDEVICE
);
1085 buffer_info
->dma
= 0;
1088 if (buffer_info
->page
) {
1089 put_page(buffer_info
->page
);
1090 buffer_info
->page
= NULL
;
1093 if (buffer_info
->skb
) {
1094 dev_kfree_skb(buffer_info
->skb
);
1095 buffer_info
->skb
= NULL
;
1098 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1099 ps_page
= &buffer_info
->ps_pages
[j
];
1102 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1103 PCI_DMA_FROMDEVICE
);
1105 put_page(ps_page
->page
);
1106 ps_page
->page
= NULL
;
1110 /* there also may be some cached data from a chained receive */
1111 if (rx_ring
->rx_skb_top
) {
1112 dev_kfree_skb(rx_ring
->rx_skb_top
);
1113 rx_ring
->rx_skb_top
= NULL
;
1116 /* Zero out the descriptor ring */
1117 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1119 rx_ring
->next_to_clean
= 0;
1120 rx_ring
->next_to_use
= 0;
1122 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1123 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1126 static void e1000e_downshift_workaround(struct work_struct
*work
)
1128 struct e1000_adapter
*adapter
= container_of(work
,
1129 struct e1000_adapter
, downshift_task
);
1131 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1135 * e1000_intr_msi - Interrupt Handler
1136 * @irq: interrupt number
1137 * @data: pointer to a network interface device structure
1139 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1141 struct net_device
*netdev
= data
;
1142 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1143 struct e1000_hw
*hw
= &adapter
->hw
;
1144 u32 icr
= er32(ICR
);
1147 * read ICR disables interrupts using IAM
1150 if (icr
& E1000_ICR_LSC
) {
1151 hw
->mac
.get_link_status
= 1;
1153 * ICH8 workaround-- Call gig speed drop workaround on cable
1154 * disconnect (LSC) before accessing any PHY registers
1156 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1157 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1158 schedule_work(&adapter
->downshift_task
);
1161 * 80003ES2LAN workaround-- For packet buffer work-around on
1162 * link down event; disable receives here in the ISR and reset
1163 * adapter in watchdog
1165 if (netif_carrier_ok(netdev
) &&
1166 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1167 /* disable receives */
1168 u32 rctl
= er32(RCTL
);
1169 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1170 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1172 /* guard against interrupt when we're going down */
1173 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1174 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1177 if (napi_schedule_prep(&adapter
->napi
)) {
1178 adapter
->total_tx_bytes
= 0;
1179 adapter
->total_tx_packets
= 0;
1180 adapter
->total_rx_bytes
= 0;
1181 adapter
->total_rx_packets
= 0;
1182 __napi_schedule(&adapter
->napi
);
1189 * e1000_intr - Interrupt Handler
1190 * @irq: interrupt number
1191 * @data: pointer to a network interface device structure
1193 static irqreturn_t
e1000_intr(int irq
, void *data
)
1195 struct net_device
*netdev
= data
;
1196 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1197 struct e1000_hw
*hw
= &adapter
->hw
;
1198 u32 rctl
, icr
= er32(ICR
);
1200 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1201 return IRQ_NONE
; /* Not our interrupt */
1204 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1205 * not set, then the adapter didn't send an interrupt
1207 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1211 * Interrupt Auto-Mask...upon reading ICR,
1212 * interrupts are masked. No need for the
1216 if (icr
& E1000_ICR_LSC
) {
1217 hw
->mac
.get_link_status
= 1;
1219 * ICH8 workaround-- Call gig speed drop workaround on cable
1220 * disconnect (LSC) before accessing any PHY registers
1222 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1223 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1224 schedule_work(&adapter
->downshift_task
);
1227 * 80003ES2LAN workaround--
1228 * For packet buffer work-around on link down event;
1229 * disable receives here in the ISR and
1230 * reset adapter in watchdog
1232 if (netif_carrier_ok(netdev
) &&
1233 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1234 /* disable receives */
1236 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1237 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1239 /* guard against interrupt when we're going down */
1240 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1241 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1244 if (napi_schedule_prep(&adapter
->napi
)) {
1245 adapter
->total_tx_bytes
= 0;
1246 adapter
->total_tx_packets
= 0;
1247 adapter
->total_rx_bytes
= 0;
1248 adapter
->total_rx_packets
= 0;
1249 __napi_schedule(&adapter
->napi
);
1255 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1257 struct net_device
*netdev
= data
;
1258 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1259 struct e1000_hw
*hw
= &adapter
->hw
;
1260 u32 icr
= er32(ICR
);
1262 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1263 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1264 ew32(IMS
, E1000_IMS_OTHER
);
1268 if (icr
& adapter
->eiac_mask
)
1269 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1271 if (icr
& E1000_ICR_OTHER
) {
1272 if (!(icr
& E1000_ICR_LSC
))
1273 goto no_link_interrupt
;
1274 hw
->mac
.get_link_status
= 1;
1275 /* guard against interrupt when we're going down */
1276 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1277 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1281 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1282 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1288 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1290 struct net_device
*netdev
= data
;
1291 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1292 struct e1000_hw
*hw
= &adapter
->hw
;
1293 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1296 adapter
->total_tx_bytes
= 0;
1297 adapter
->total_tx_packets
= 0;
1299 if (!e1000_clean_tx_irq(adapter
))
1300 /* Ring was not completely cleaned, so fire another interrupt */
1301 ew32(ICS
, tx_ring
->ims_val
);
1306 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1308 struct net_device
*netdev
= data
;
1309 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1311 /* Write the ITR value calculated at the end of the
1312 * previous interrupt.
1314 if (adapter
->rx_ring
->set_itr
) {
1315 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1316 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1317 adapter
->rx_ring
->set_itr
= 0;
1320 if (napi_schedule_prep(&adapter
->napi
)) {
1321 adapter
->total_rx_bytes
= 0;
1322 adapter
->total_rx_packets
= 0;
1323 __napi_schedule(&adapter
->napi
);
1329 * e1000_configure_msix - Configure MSI-X hardware
1331 * e1000_configure_msix sets up the hardware to properly
1332 * generate MSI-X interrupts.
1334 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1336 struct e1000_hw
*hw
= &adapter
->hw
;
1337 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1338 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1340 u32 ctrl_ext
, ivar
= 0;
1342 adapter
->eiac_mask
= 0;
1344 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1345 if (hw
->mac
.type
== e1000_82574
) {
1346 u32 rfctl
= er32(RFCTL
);
1347 rfctl
|= E1000_RFCTL_ACK_DIS
;
1351 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1352 /* Configure Rx vector */
1353 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1354 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1355 if (rx_ring
->itr_val
)
1356 writel(1000000000 / (rx_ring
->itr_val
* 256),
1357 hw
->hw_addr
+ rx_ring
->itr_register
);
1359 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1360 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1362 /* Configure Tx vector */
1363 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1365 if (tx_ring
->itr_val
)
1366 writel(1000000000 / (tx_ring
->itr_val
* 256),
1367 hw
->hw_addr
+ tx_ring
->itr_register
);
1369 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1370 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1371 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1373 /* set vector for Other Causes, e.g. link changes */
1375 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1376 if (rx_ring
->itr_val
)
1377 writel(1000000000 / (rx_ring
->itr_val
* 256),
1378 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1380 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1382 /* Cause Tx interrupts on every write back */
1387 /* enable MSI-X PBA support */
1388 ctrl_ext
= er32(CTRL_EXT
);
1389 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1391 /* Auto-Mask Other interrupts upon ICR read */
1392 #define E1000_EIAC_MASK_82574 0x01F00000
1393 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1394 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1395 ew32(CTRL_EXT
, ctrl_ext
);
1399 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1401 if (adapter
->msix_entries
) {
1402 pci_disable_msix(adapter
->pdev
);
1403 kfree(adapter
->msix_entries
);
1404 adapter
->msix_entries
= NULL
;
1405 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1406 pci_disable_msi(adapter
->pdev
);
1407 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1414 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1416 * Attempt to configure interrupts using the best available
1417 * capabilities of the hardware and kernel.
1419 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1425 switch (adapter
->int_mode
) {
1426 case E1000E_INT_MODE_MSIX
:
1427 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1428 numvecs
= 3; /* RxQ0, TxQ0 and other */
1429 adapter
->msix_entries
= kcalloc(numvecs
,
1430 sizeof(struct msix_entry
),
1432 if (adapter
->msix_entries
) {
1433 for (i
= 0; i
< numvecs
; i
++)
1434 adapter
->msix_entries
[i
].entry
= i
;
1436 err
= pci_enable_msix(adapter
->pdev
,
1437 adapter
->msix_entries
,
1442 /* MSI-X failed, so fall through and try MSI */
1443 e_err("Failed to initialize MSI-X interrupts. "
1444 "Falling back to MSI interrupts.\n");
1445 e1000e_reset_interrupt_capability(adapter
);
1447 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1449 case E1000E_INT_MODE_MSI
:
1450 if (!pci_enable_msi(adapter
->pdev
)) {
1451 adapter
->flags
|= FLAG_MSI_ENABLED
;
1453 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1454 e_err("Failed to initialize MSI interrupts. Falling "
1455 "back to legacy interrupts.\n");
1458 case E1000E_INT_MODE_LEGACY
:
1459 /* Don't do anything; this is the system default */
1467 * e1000_request_msix - Initialize MSI-X interrupts
1469 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1472 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1474 struct net_device
*netdev
= adapter
->netdev
;
1475 int err
= 0, vector
= 0;
1477 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1478 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1480 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1481 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1482 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1486 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1487 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1490 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1491 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1493 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1494 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1495 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1499 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1500 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1503 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1504 e1000_msix_other
, 0, netdev
->name
, netdev
);
1508 e1000_configure_msix(adapter
);
1515 * e1000_request_irq - initialize interrupts
1517 * Attempts to configure interrupts using the best available
1518 * capabilities of the hardware and kernel.
1520 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1522 struct net_device
*netdev
= adapter
->netdev
;
1525 if (adapter
->msix_entries
) {
1526 err
= e1000_request_msix(adapter
);
1529 /* fall back to MSI */
1530 e1000e_reset_interrupt_capability(adapter
);
1531 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1532 e1000e_set_interrupt_capability(adapter
);
1534 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1535 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1536 netdev
->name
, netdev
);
1540 /* fall back to legacy interrupt */
1541 e1000e_reset_interrupt_capability(adapter
);
1542 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1545 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1546 netdev
->name
, netdev
);
1548 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1553 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1555 struct net_device
*netdev
= adapter
->netdev
;
1557 if (adapter
->msix_entries
) {
1560 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1563 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1566 /* Other Causes interrupt vector */
1567 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1571 free_irq(adapter
->pdev
->irq
, netdev
);
1575 * e1000_irq_disable - Mask off interrupt generation on the NIC
1577 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1579 struct e1000_hw
*hw
= &adapter
->hw
;
1582 if (adapter
->msix_entries
)
1583 ew32(EIAC_82574
, 0);
1585 synchronize_irq(adapter
->pdev
->irq
);
1589 * e1000_irq_enable - Enable default interrupt generation settings
1591 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1593 struct e1000_hw
*hw
= &adapter
->hw
;
1595 if (adapter
->msix_entries
) {
1596 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1597 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1599 ew32(IMS
, IMS_ENABLE_MASK
);
1605 * e1000_get_hw_control - get control of the h/w from f/w
1606 * @adapter: address of board private structure
1608 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1609 * For ASF and Pass Through versions of f/w this means that
1610 * the driver is loaded. For AMT version (only with 82573)
1611 * of the f/w this means that the network i/f is open.
1613 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1615 struct e1000_hw
*hw
= &adapter
->hw
;
1619 /* Let firmware know the driver has taken over */
1620 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1622 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1623 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1624 ctrl_ext
= er32(CTRL_EXT
);
1625 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1630 * e1000_release_hw_control - release control of the h/w to f/w
1631 * @adapter: address of board private structure
1633 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1634 * For ASF and Pass Through versions of f/w this means that the
1635 * driver is no longer loaded. For AMT version (only with 82573) i
1636 * of the f/w this means that the network i/f is closed.
1639 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1641 struct e1000_hw
*hw
= &adapter
->hw
;
1645 /* Let firmware taken over control of h/w */
1646 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1648 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1649 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1650 ctrl_ext
= er32(CTRL_EXT
);
1651 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1656 * @e1000_alloc_ring - allocate memory for a ring structure
1658 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1659 struct e1000_ring
*ring
)
1661 struct pci_dev
*pdev
= adapter
->pdev
;
1663 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1672 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1673 * @adapter: board private structure
1675 * Return 0 on success, negative on failure
1677 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1679 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1680 int err
= -ENOMEM
, size
;
1682 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1683 tx_ring
->buffer_info
= vmalloc(size
);
1684 if (!tx_ring
->buffer_info
)
1686 memset(tx_ring
->buffer_info
, 0, size
);
1688 /* round up to nearest 4K */
1689 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1690 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1692 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1696 tx_ring
->next_to_use
= 0;
1697 tx_ring
->next_to_clean
= 0;
1701 vfree(tx_ring
->buffer_info
);
1702 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1707 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1708 * @adapter: board private structure
1710 * Returns 0 on success, negative on failure
1712 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1714 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1715 struct e1000_buffer
*buffer_info
;
1716 int i
, size
, desc_len
, err
= -ENOMEM
;
1718 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1719 rx_ring
->buffer_info
= vmalloc(size
);
1720 if (!rx_ring
->buffer_info
)
1722 memset(rx_ring
->buffer_info
, 0, size
);
1724 for (i
= 0; i
< rx_ring
->count
; i
++) {
1725 buffer_info
= &rx_ring
->buffer_info
[i
];
1726 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1727 sizeof(struct e1000_ps_page
),
1729 if (!buffer_info
->ps_pages
)
1733 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1735 /* Round up to nearest 4K */
1736 rx_ring
->size
= rx_ring
->count
* desc_len
;
1737 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1739 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1743 rx_ring
->next_to_clean
= 0;
1744 rx_ring
->next_to_use
= 0;
1745 rx_ring
->rx_skb_top
= NULL
;
1750 for (i
= 0; i
< rx_ring
->count
; i
++) {
1751 buffer_info
= &rx_ring
->buffer_info
[i
];
1752 kfree(buffer_info
->ps_pages
);
1755 vfree(rx_ring
->buffer_info
);
1756 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1761 * e1000_clean_tx_ring - Free Tx Buffers
1762 * @adapter: board private structure
1764 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1766 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1767 struct e1000_buffer
*buffer_info
;
1771 for (i
= 0; i
< tx_ring
->count
; i
++) {
1772 buffer_info
= &tx_ring
->buffer_info
[i
];
1773 e1000_put_txbuf(adapter
, buffer_info
);
1776 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1777 memset(tx_ring
->buffer_info
, 0, size
);
1779 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1781 tx_ring
->next_to_use
= 0;
1782 tx_ring
->next_to_clean
= 0;
1784 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1785 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1789 * e1000e_free_tx_resources - Free Tx Resources per Queue
1790 * @adapter: board private structure
1792 * Free all transmit software resources
1794 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1796 struct pci_dev
*pdev
= adapter
->pdev
;
1797 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1799 e1000_clean_tx_ring(adapter
);
1801 vfree(tx_ring
->buffer_info
);
1802 tx_ring
->buffer_info
= NULL
;
1804 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1806 tx_ring
->desc
= NULL
;
1810 * e1000e_free_rx_resources - Free Rx Resources
1811 * @adapter: board private structure
1813 * Free all receive software resources
1816 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1818 struct pci_dev
*pdev
= adapter
->pdev
;
1819 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1822 e1000_clean_rx_ring(adapter
);
1824 for (i
= 0; i
< rx_ring
->count
; i
++) {
1825 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1828 vfree(rx_ring
->buffer_info
);
1829 rx_ring
->buffer_info
= NULL
;
1831 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1833 rx_ring
->desc
= NULL
;
1837 * e1000_update_itr - update the dynamic ITR value based on statistics
1838 * @adapter: pointer to adapter
1839 * @itr_setting: current adapter->itr
1840 * @packets: the number of packets during this measurement interval
1841 * @bytes: the number of bytes during this measurement interval
1843 * Stores a new ITR value based on packets and byte
1844 * counts during the last interrupt. The advantage of per interrupt
1845 * computation is faster updates and more accurate ITR for the current
1846 * traffic pattern. Constants in this function were computed
1847 * based on theoretical maximum wire speed and thresholds were set based
1848 * on testing data as well as attempting to minimize response time
1849 * while increasing bulk throughput. This functionality is controlled
1850 * by the InterruptThrottleRate module parameter.
1852 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1853 u16 itr_setting
, int packets
,
1856 unsigned int retval
= itr_setting
;
1859 goto update_itr_done
;
1861 switch (itr_setting
) {
1862 case lowest_latency
:
1863 /* handle TSO and jumbo frames */
1864 if (bytes
/packets
> 8000)
1865 retval
= bulk_latency
;
1866 else if ((packets
< 5) && (bytes
> 512)) {
1867 retval
= low_latency
;
1870 case low_latency
: /* 50 usec aka 20000 ints/s */
1871 if (bytes
> 10000) {
1872 /* this if handles the TSO accounting */
1873 if (bytes
/packets
> 8000) {
1874 retval
= bulk_latency
;
1875 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1876 retval
= bulk_latency
;
1877 } else if ((packets
> 35)) {
1878 retval
= lowest_latency
;
1880 } else if (bytes
/packets
> 2000) {
1881 retval
= bulk_latency
;
1882 } else if (packets
<= 2 && bytes
< 512) {
1883 retval
= lowest_latency
;
1886 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1887 if (bytes
> 25000) {
1889 retval
= low_latency
;
1891 } else if (bytes
< 6000) {
1892 retval
= low_latency
;
1901 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1903 struct e1000_hw
*hw
= &adapter
->hw
;
1905 u32 new_itr
= adapter
->itr
;
1907 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1908 if (adapter
->link_speed
!= SPEED_1000
) {
1914 adapter
->tx_itr
= e1000_update_itr(adapter
,
1916 adapter
->total_tx_packets
,
1917 adapter
->total_tx_bytes
);
1918 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1919 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1920 adapter
->tx_itr
= low_latency
;
1922 adapter
->rx_itr
= e1000_update_itr(adapter
,
1924 adapter
->total_rx_packets
,
1925 adapter
->total_rx_bytes
);
1926 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1927 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1928 adapter
->rx_itr
= low_latency
;
1930 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1932 switch (current_itr
) {
1933 /* counts and packets in update_itr are dependent on these numbers */
1934 case lowest_latency
:
1938 new_itr
= 20000; /* aka hwitr = ~200 */
1948 if (new_itr
!= adapter
->itr
) {
1950 * this attempts to bias the interrupt rate towards Bulk
1951 * by adding intermediate steps when interrupt rate is
1954 new_itr
= new_itr
> adapter
->itr
?
1955 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1957 adapter
->itr
= new_itr
;
1958 adapter
->rx_ring
->itr_val
= new_itr
;
1959 if (adapter
->msix_entries
)
1960 adapter
->rx_ring
->set_itr
= 1;
1962 ew32(ITR
, 1000000000 / (new_itr
* 256));
1967 * e1000_alloc_queues - Allocate memory for all rings
1968 * @adapter: board private structure to initialize
1970 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1972 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1973 if (!adapter
->tx_ring
)
1976 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1977 if (!adapter
->rx_ring
)
1982 e_err("Unable to allocate memory for queues\n");
1983 kfree(adapter
->rx_ring
);
1984 kfree(adapter
->tx_ring
);
1989 * e1000_clean - NAPI Rx polling callback
1990 * @napi: struct associated with this polling callback
1991 * @budget: amount of packets driver is allowed to process this poll
1993 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1995 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1996 struct e1000_hw
*hw
= &adapter
->hw
;
1997 struct net_device
*poll_dev
= adapter
->netdev
;
1998 int tx_cleaned
= 1, work_done
= 0;
2000 adapter
= netdev_priv(poll_dev
);
2002 if (adapter
->msix_entries
&&
2003 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2006 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2009 adapter
->clean_rx(adapter
, &work_done
, budget
);
2014 /* If budget not fully consumed, exit the polling mode */
2015 if (work_done
< budget
) {
2016 if (adapter
->itr_setting
& 3)
2017 e1000_set_itr(adapter
);
2018 napi_complete(napi
);
2019 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2020 if (adapter
->msix_entries
)
2021 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2023 e1000_irq_enable(adapter
);
2030 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2032 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2033 struct e1000_hw
*hw
= &adapter
->hw
;
2036 /* don't update vlan cookie if already programmed */
2037 if ((adapter
->hw
.mng_cookie
.status
&
2038 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2039 (vid
== adapter
->mng_vlan_id
))
2042 /* add VID to filter table */
2043 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2044 index
= (vid
>> 5) & 0x7F;
2045 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2046 vfta
|= (1 << (vid
& 0x1F));
2047 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2051 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2053 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2054 struct e1000_hw
*hw
= &adapter
->hw
;
2057 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2058 e1000_irq_disable(adapter
);
2059 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2061 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2062 e1000_irq_enable(adapter
);
2064 if ((adapter
->hw
.mng_cookie
.status
&
2065 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2066 (vid
== adapter
->mng_vlan_id
)) {
2067 /* release control to f/w */
2068 e1000_release_hw_control(adapter
);
2072 /* remove VID from filter table */
2073 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2074 index
= (vid
>> 5) & 0x7F;
2075 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2076 vfta
&= ~(1 << (vid
& 0x1F));
2077 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2081 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2083 struct net_device
*netdev
= adapter
->netdev
;
2084 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2085 u16 old_vid
= adapter
->mng_vlan_id
;
2087 if (!adapter
->vlgrp
)
2090 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2091 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2092 if (adapter
->hw
.mng_cookie
.status
&
2093 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2094 e1000_vlan_rx_add_vid(netdev
, vid
);
2095 adapter
->mng_vlan_id
= vid
;
2098 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2100 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2101 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2103 adapter
->mng_vlan_id
= vid
;
2108 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2109 struct vlan_group
*grp
)
2111 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2112 struct e1000_hw
*hw
= &adapter
->hw
;
2115 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2116 e1000_irq_disable(adapter
);
2117 adapter
->vlgrp
= grp
;
2120 /* enable VLAN tag insert/strip */
2122 ctrl
|= E1000_CTRL_VME
;
2125 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2126 /* enable VLAN receive filtering */
2128 rctl
&= ~E1000_RCTL_CFIEN
;
2130 e1000_update_mng_vlan(adapter
);
2133 /* disable VLAN tag insert/strip */
2135 ctrl
&= ~E1000_CTRL_VME
;
2138 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2139 if (adapter
->mng_vlan_id
!=
2140 (u16
)E1000_MNG_VLAN_NONE
) {
2141 e1000_vlan_rx_kill_vid(netdev
,
2142 adapter
->mng_vlan_id
);
2143 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2148 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2149 e1000_irq_enable(adapter
);
2152 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2156 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2158 if (!adapter
->vlgrp
)
2161 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
2162 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2164 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2168 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
2170 struct e1000_hw
*hw
= &adapter
->hw
;
2173 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2179 * enable receiving management packets to the host. this will probably
2180 * generate destination unreachable messages from the host OS, but
2181 * the packets will be handled on SMBUS
2183 manc
|= E1000_MANC_EN_MNG2HOST
;
2184 manc2h
= er32(MANC2H
);
2185 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2186 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2187 manc2h
|= E1000_MNG2HOST_PORT_623
;
2188 manc2h
|= E1000_MNG2HOST_PORT_664
;
2189 ew32(MANC2H
, manc2h
);
2194 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2195 * @adapter: board private structure
2197 * Configure the Tx unit of the MAC after a reset.
2199 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2201 struct e1000_hw
*hw
= &adapter
->hw
;
2202 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2204 u32 tdlen
, tctl
, tipg
, tarc
;
2207 /* Setup the HW Tx Head and Tail descriptor pointers */
2208 tdba
= tx_ring
->dma
;
2209 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2210 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2211 ew32(TDBAH
, (tdba
>> 32));
2215 tx_ring
->head
= E1000_TDH
;
2216 tx_ring
->tail
= E1000_TDT
;
2218 /* Set the default values for the Tx Inter Packet Gap timer */
2219 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2220 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2221 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2223 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2224 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2226 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2227 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2230 /* Set the Tx Interrupt Delay register */
2231 ew32(TIDV
, adapter
->tx_int_delay
);
2232 /* Tx irq moderation */
2233 ew32(TADV
, adapter
->tx_abs_int_delay
);
2235 /* Program the Transmit Control Register */
2237 tctl
&= ~E1000_TCTL_CT
;
2238 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2239 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2241 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2242 tarc
= er32(TARC(0));
2244 * set the speed mode bit, we'll clear it if we're not at
2245 * gigabit link later
2247 #define SPEED_MODE_BIT (1 << 21)
2248 tarc
|= SPEED_MODE_BIT
;
2249 ew32(TARC(0), tarc
);
2252 /* errata: program both queues to unweighted RR */
2253 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2254 tarc
= er32(TARC(0));
2256 ew32(TARC(0), tarc
);
2257 tarc
= er32(TARC(1));
2259 ew32(TARC(1), tarc
);
2262 /* Setup Transmit Descriptor Settings for eop descriptor */
2263 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2265 /* only set IDE if we are delaying interrupts using the timers */
2266 if (adapter
->tx_int_delay
)
2267 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2269 /* enable Report Status bit */
2270 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2274 e1000e_config_collision_dist(hw
);
2276 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
2280 * e1000_setup_rctl - configure the receive control registers
2281 * @adapter: Board private structure
2283 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2284 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2285 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2287 struct e1000_hw
*hw
= &adapter
->hw
;
2292 /* Program MC offset vector base */
2294 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2295 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2296 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2297 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2299 /* Do not Store bad packets */
2300 rctl
&= ~E1000_RCTL_SBP
;
2302 /* Enable Long Packet receive */
2303 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2304 rctl
&= ~E1000_RCTL_LPE
;
2306 rctl
|= E1000_RCTL_LPE
;
2308 /* Some systems expect that the CRC is included in SMBUS traffic. The
2309 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2310 * host memory when this is enabled
2312 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2313 rctl
|= E1000_RCTL_SECRC
;
2315 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2316 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2319 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2321 phy_data
|= (1 << 2);
2322 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2324 e1e_rphy(hw
, 22, &phy_data
);
2326 phy_data
|= (1 << 14);
2327 e1e_wphy(hw
, 0x10, 0x2823);
2328 e1e_wphy(hw
, 0x11, 0x0003);
2329 e1e_wphy(hw
, 22, phy_data
);
2332 /* Setup buffer sizes */
2333 rctl
&= ~E1000_RCTL_SZ_4096
;
2334 rctl
|= E1000_RCTL_BSEX
;
2335 switch (adapter
->rx_buffer_len
) {
2337 rctl
|= E1000_RCTL_SZ_256
;
2338 rctl
&= ~E1000_RCTL_BSEX
;
2341 rctl
|= E1000_RCTL_SZ_512
;
2342 rctl
&= ~E1000_RCTL_BSEX
;
2345 rctl
|= E1000_RCTL_SZ_1024
;
2346 rctl
&= ~E1000_RCTL_BSEX
;
2350 rctl
|= E1000_RCTL_SZ_2048
;
2351 rctl
&= ~E1000_RCTL_BSEX
;
2354 rctl
|= E1000_RCTL_SZ_4096
;
2357 rctl
|= E1000_RCTL_SZ_8192
;
2360 rctl
|= E1000_RCTL_SZ_16384
;
2365 * 82571 and greater support packet-split where the protocol
2366 * header is placed in skb->data and the packet data is
2367 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2368 * In the case of a non-split, skb->data is linearly filled,
2369 * followed by the page buffers. Therefore, skb->data is
2370 * sized to hold the largest protocol header.
2372 * allocations using alloc_page take too long for regular MTU
2373 * so only enable packet split for jumbo frames
2375 * Using pages when the page size is greater than 16k wastes
2376 * a lot of memory, since we allocate 3 pages at all times
2379 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2380 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2381 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2382 adapter
->rx_ps_pages
= pages
;
2384 adapter
->rx_ps_pages
= 0;
2386 if (adapter
->rx_ps_pages
) {
2387 /* Configure extra packet-split registers */
2388 rfctl
= er32(RFCTL
);
2389 rfctl
|= E1000_RFCTL_EXTEN
;
2391 * disable packet split support for IPv6 extension headers,
2392 * because some malformed IPv6 headers can hang the Rx
2394 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2395 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2399 /* Enable Packet split descriptors */
2400 rctl
|= E1000_RCTL_DTYP_PS
;
2402 psrctl
|= adapter
->rx_ps_bsize0
>>
2403 E1000_PSRCTL_BSIZE0_SHIFT
;
2405 switch (adapter
->rx_ps_pages
) {
2407 psrctl
|= PAGE_SIZE
<<
2408 E1000_PSRCTL_BSIZE3_SHIFT
;
2410 psrctl
|= PAGE_SIZE
<<
2411 E1000_PSRCTL_BSIZE2_SHIFT
;
2413 psrctl
|= PAGE_SIZE
>>
2414 E1000_PSRCTL_BSIZE1_SHIFT
;
2418 ew32(PSRCTL
, psrctl
);
2422 /* just started the receive unit, no need to restart */
2423 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2427 * e1000_configure_rx - Configure Receive Unit after Reset
2428 * @adapter: board private structure
2430 * Configure the Rx unit of the MAC after a reset.
2432 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2434 struct e1000_hw
*hw
= &adapter
->hw
;
2435 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2437 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2439 if (adapter
->rx_ps_pages
) {
2440 /* this is a 32 byte descriptor */
2441 rdlen
= rx_ring
->count
*
2442 sizeof(union e1000_rx_desc_packet_split
);
2443 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2444 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2445 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2446 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2447 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2448 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2450 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2451 adapter
->clean_rx
= e1000_clean_rx_irq
;
2452 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2455 /* disable receives while setting up the descriptors */
2457 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2461 /* set the Receive Delay Timer Register */
2462 ew32(RDTR
, adapter
->rx_int_delay
);
2464 /* irq moderation */
2465 ew32(RADV
, adapter
->rx_abs_int_delay
);
2466 if (adapter
->itr_setting
!= 0)
2467 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2469 ctrl_ext
= er32(CTRL_EXT
);
2470 /* Auto-Mask interrupts upon ICR access */
2471 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2472 ew32(IAM
, 0xffffffff);
2473 ew32(CTRL_EXT
, ctrl_ext
);
2477 * Setup the HW Rx Head and Tail Descriptor Pointers and
2478 * the Base and Length of the Rx Descriptor Ring
2480 rdba
= rx_ring
->dma
;
2481 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2482 ew32(RDBAH
, (rdba
>> 32));
2486 rx_ring
->head
= E1000_RDH
;
2487 rx_ring
->tail
= E1000_RDT
;
2489 /* Enable Receive Checksum Offload for TCP and UDP */
2490 rxcsum
= er32(RXCSUM
);
2491 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2492 rxcsum
|= E1000_RXCSUM_TUOFL
;
2495 * IPv4 payload checksum for UDP fragments must be
2496 * used in conjunction with packet-split.
2498 if (adapter
->rx_ps_pages
)
2499 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2501 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2502 /* no need to clear IPPCSE as it defaults to 0 */
2504 ew32(RXCSUM
, rxcsum
);
2507 * Enable early receives on supported devices, only takes effect when
2508 * packet size is equal or larger than the specified value (in 8 byte
2509 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2511 if (adapter
->flags
& FLAG_HAS_ERT
) {
2512 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2513 u32 rxdctl
= er32(RXDCTL(0));
2514 ew32(RXDCTL(0), rxdctl
| 0x3);
2515 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2517 * With jumbo frames and early-receive enabled,
2518 * excessive C-state transition latencies result in
2519 * dropped transactions.
2521 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2522 adapter
->netdev
->name
, 55);
2524 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2525 adapter
->netdev
->name
,
2526 PM_QOS_DEFAULT_VALUE
);
2530 /* Enable Receives */
2535 * e1000_update_mc_addr_list - Update Multicast addresses
2536 * @hw: pointer to the HW structure
2537 * @mc_addr_list: array of multicast addresses to program
2538 * @mc_addr_count: number of multicast addresses to program
2539 * @rar_used_count: the first RAR register free to program
2540 * @rar_count: total number of supported Receive Address Registers
2542 * Updates the Receive Address Registers and Multicast Table Array.
2543 * The caller must have a packed mc_addr_list of multicast addresses.
2544 * The parameter rar_count will usually be hw->mac.rar_entry_count
2545 * unless there are workarounds that change this. Currently no func pointer
2546 * exists and all implementations are handled in the generic version of this
2549 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2550 u32 mc_addr_count
, u32 rar_used_count
,
2553 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
,
2554 rar_used_count
, rar_count
);
2558 * e1000_set_multi - Multicast and Promiscuous mode set
2559 * @netdev: network interface device structure
2561 * The set_multi entry point is called whenever the multicast address
2562 * list or the network interface flags are updated. This routine is
2563 * responsible for configuring the hardware for proper multicast,
2564 * promiscuous mode, and all-multi behavior.
2566 static void e1000_set_multi(struct net_device
*netdev
)
2568 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2569 struct e1000_hw
*hw
= &adapter
->hw
;
2570 struct e1000_mac_info
*mac
= &hw
->mac
;
2571 struct dev_mc_list
*mc_ptr
;
2576 /* Check for Promiscuous and All Multicast modes */
2580 if (netdev
->flags
& IFF_PROMISC
) {
2581 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2582 rctl
&= ~E1000_RCTL_VFE
;
2584 if (netdev
->flags
& IFF_ALLMULTI
) {
2585 rctl
|= E1000_RCTL_MPE
;
2586 rctl
&= ~E1000_RCTL_UPE
;
2588 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2590 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2591 rctl
|= E1000_RCTL_VFE
;
2596 if (netdev
->mc_count
) {
2597 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2601 /* prepare a packed array of only addresses. */
2602 mc_ptr
= netdev
->mc_list
;
2604 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2607 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2609 mc_ptr
= mc_ptr
->next
;
2612 e1000_update_mc_addr_list(hw
, mta_list
, i
, 1,
2613 mac
->rar_entry_count
);
2617 * if we're called from probe, we might not have
2618 * anything to do here, so clear out the list
2620 e1000_update_mc_addr_list(hw
, NULL
, 0, 1, mac
->rar_entry_count
);
2625 * e1000_configure - configure the hardware for Rx and Tx
2626 * @adapter: private board structure
2628 static void e1000_configure(struct e1000_adapter
*adapter
)
2630 e1000_set_multi(adapter
->netdev
);
2632 e1000_restore_vlan(adapter
);
2633 e1000_init_manageability(adapter
);
2635 e1000_configure_tx(adapter
);
2636 e1000_setup_rctl(adapter
);
2637 e1000_configure_rx(adapter
);
2638 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2642 * e1000e_power_up_phy - restore link in case the phy was powered down
2643 * @adapter: address of board private structure
2645 * The phy may be powered down to save power and turn off link when the
2646 * driver is unloaded and wake on lan is not enabled (among others)
2647 * *** this routine MUST be followed by a call to e1000e_reset ***
2649 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2651 if (adapter
->hw
.phy
.ops
.power_up
)
2652 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
2654 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2658 * e1000_power_down_phy - Power down the PHY
2660 * Power down the PHY so no link is implied when interface is down.
2661 * The PHY cannot be powered down if management or WoL is active.
2663 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2665 /* WoL is enabled */
2669 if (adapter
->hw
.phy
.ops
.power_down
)
2670 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
2674 * e1000e_reset - bring the hardware into a known good state
2676 * This function boots the hardware and enables some settings that
2677 * require a configuration cycle of the hardware - those cannot be
2678 * set/changed during runtime. After reset the device needs to be
2679 * properly configured for Rx, Tx etc.
2681 void e1000e_reset(struct e1000_adapter
*adapter
)
2683 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2684 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2685 struct e1000_hw
*hw
= &adapter
->hw
;
2686 u32 tx_space
, min_tx_space
, min_rx_space
;
2687 u32 pba
= adapter
->pba
;
2690 /* reset Packet Buffer Allocation to default */
2693 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2695 * To maintain wire speed transmits, the Tx FIFO should be
2696 * large enough to accommodate two full transmit packets,
2697 * rounded up to the next 1KB and expressed in KB. Likewise,
2698 * the Rx FIFO should be large enough to accommodate at least
2699 * one full receive packet and is similarly rounded up and
2703 /* upper 16 bits has Tx packet buffer allocation size in KB */
2704 tx_space
= pba
>> 16;
2705 /* lower 16 bits has Rx packet buffer allocation size in KB */
2708 * the Tx fifo also stores 16 bytes of information about the tx
2709 * but don't include ethernet FCS because hardware appends it
2711 min_tx_space
= (adapter
->max_frame_size
+
2712 sizeof(struct e1000_tx_desc
) -
2714 min_tx_space
= ALIGN(min_tx_space
, 1024);
2715 min_tx_space
>>= 10;
2716 /* software strips receive CRC, so leave room for it */
2717 min_rx_space
= adapter
->max_frame_size
;
2718 min_rx_space
= ALIGN(min_rx_space
, 1024);
2719 min_rx_space
>>= 10;
2722 * If current Tx allocation is less than the min Tx FIFO size,
2723 * and the min Tx FIFO size is less than the current Rx FIFO
2724 * allocation, take space away from current Rx allocation
2726 if ((tx_space
< min_tx_space
) &&
2727 ((min_tx_space
- tx_space
) < pba
)) {
2728 pba
-= min_tx_space
- tx_space
;
2731 * if short on Rx space, Rx wins and must trump tx
2732 * adjustment or use Early Receive if available
2734 if ((pba
< min_rx_space
) &&
2735 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2736 /* ERT enabled in e1000_configure_rx */
2745 * flow control settings
2747 * The high water mark must be low enough to fit one full frame
2748 * (or the size used for early receive) above it in the Rx FIFO.
2749 * Set it to the lower of:
2750 * - 90% of the Rx FIFO size, and
2751 * - the full Rx FIFO size minus the early receive size (for parts
2752 * with ERT support assuming ERT set to E1000_ERT_2048), or
2753 * - the full Rx FIFO size minus one full frame
2755 if (hw
->mac
.type
== e1000_pchlan
) {
2757 * Workaround PCH LOM adapter hangs with certain network
2758 * loads. If hangs persist, try disabling Tx flow control.
2760 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2761 fc
->high_water
= 0x3500;
2762 fc
->low_water
= 0x1500;
2764 fc
->high_water
= 0x5000;
2765 fc
->low_water
= 0x3000;
2768 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2769 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
2770 hwm
= min(((pba
<< 10) * 9 / 10),
2771 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2773 hwm
= min(((pba
<< 10) * 9 / 10),
2774 ((pba
<< 10) - adapter
->max_frame_size
));
2776 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
2777 fc
->low_water
= fc
->high_water
- 8;
2780 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2781 fc
->pause_time
= 0xFFFF;
2783 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2785 fc
->current_mode
= fc
->requested_mode
;
2787 /* Allow time for pending master requests to run */
2788 mac
->ops
.reset_hw(hw
);
2791 * For parts with AMT enabled, let the firmware know
2792 * that the network interface is in control
2794 if (adapter
->flags
& FLAG_HAS_AMT
)
2795 e1000_get_hw_control(adapter
);
2798 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
)
2799 e1e_wphy(&adapter
->hw
, BM_WUC
, 0);
2801 if (mac
->ops
.init_hw(hw
))
2802 e_err("Hardware Error\n");
2804 /* additional part of the flow-control workaround above */
2805 if (hw
->mac
.type
== e1000_pchlan
)
2806 ew32(FCRTV_PCH
, 0x1000);
2808 e1000_update_mng_vlan(adapter
);
2810 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2811 ew32(VET
, ETH_P_8021Q
);
2813 e1000e_reset_adaptive(hw
);
2814 e1000_get_phy_info(hw
);
2816 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
2817 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2820 * speed up time to link by disabling smart power down, ignore
2821 * the return value of this function because there is nothing
2822 * different we would do if it failed
2824 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2825 phy_data
&= ~IGP02E1000_PM_SPD
;
2826 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2830 int e1000e_up(struct e1000_adapter
*adapter
)
2832 struct e1000_hw
*hw
= &adapter
->hw
;
2834 /* DMA latency requirement to workaround early-receive/jumbo issue */
2835 if (adapter
->flags
& FLAG_HAS_ERT
)
2836 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
,
2837 adapter
->netdev
->name
,
2838 PM_QOS_DEFAULT_VALUE
);
2840 /* hardware has been reset, we need to reload some things */
2841 e1000_configure(adapter
);
2843 clear_bit(__E1000_DOWN
, &adapter
->state
);
2845 napi_enable(&adapter
->napi
);
2846 if (adapter
->msix_entries
)
2847 e1000_configure_msix(adapter
);
2848 e1000_irq_enable(adapter
);
2850 netif_wake_queue(adapter
->netdev
);
2852 /* fire a link change interrupt to start the watchdog */
2853 ew32(ICS
, E1000_ICS_LSC
);
2857 void e1000e_down(struct e1000_adapter
*adapter
)
2859 struct net_device
*netdev
= adapter
->netdev
;
2860 struct e1000_hw
*hw
= &adapter
->hw
;
2864 * signal that we're down so the interrupt handler does not
2865 * reschedule our watchdog timer
2867 set_bit(__E1000_DOWN
, &adapter
->state
);
2869 /* disable receives in the hardware */
2871 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2872 /* flush and sleep below */
2874 netif_stop_queue(netdev
);
2876 /* disable transmits in the hardware */
2878 tctl
&= ~E1000_TCTL_EN
;
2880 /* flush both disables and wait for them to finish */
2884 napi_disable(&adapter
->napi
);
2885 e1000_irq_disable(adapter
);
2887 del_timer_sync(&adapter
->watchdog_timer
);
2888 del_timer_sync(&adapter
->phy_info_timer
);
2890 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2891 netif_carrier_off(netdev
);
2892 adapter
->link_speed
= 0;
2893 adapter
->link_duplex
= 0;
2895 if (!pci_channel_offline(adapter
->pdev
))
2896 e1000e_reset(adapter
);
2897 e1000_clean_tx_ring(adapter
);
2898 e1000_clean_rx_ring(adapter
);
2900 if (adapter
->flags
& FLAG_HAS_ERT
)
2901 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
,
2902 adapter
->netdev
->name
);
2905 * TODO: for power management, we could drop the link and
2906 * pci_disable_device here.
2910 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2913 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2915 e1000e_down(adapter
);
2917 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2921 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2922 * @adapter: board private structure to initialize
2924 * e1000_sw_init initializes the Adapter private data structure.
2925 * Fields are initialized based on PCI device information and
2926 * OS network device settings (MTU size).
2928 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2930 struct net_device
*netdev
= adapter
->netdev
;
2932 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2933 adapter
->rx_ps_bsize0
= 128;
2934 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2935 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2937 e1000e_set_interrupt_capability(adapter
);
2939 if (e1000_alloc_queues(adapter
))
2942 /* Explicitly disable IRQ since the NIC can be in any state. */
2943 e1000_irq_disable(adapter
);
2945 set_bit(__E1000_DOWN
, &adapter
->state
);
2950 * e1000_intr_msi_test - Interrupt Handler
2951 * @irq: interrupt number
2952 * @data: pointer to a network interface device structure
2954 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
2956 struct net_device
*netdev
= data
;
2957 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2958 struct e1000_hw
*hw
= &adapter
->hw
;
2959 u32 icr
= er32(ICR
);
2961 e_dbg("icr is %08X\n", icr
);
2962 if (icr
& E1000_ICR_RXSEQ
) {
2963 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
2971 * e1000_test_msi_interrupt - Returns 0 for successful test
2972 * @adapter: board private struct
2974 * code flow taken from tg3.c
2976 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
2978 struct net_device
*netdev
= adapter
->netdev
;
2979 struct e1000_hw
*hw
= &adapter
->hw
;
2982 /* poll_enable hasn't been called yet, so don't need disable */
2983 /* clear any pending events */
2986 /* free the real vector and request a test handler */
2987 e1000_free_irq(adapter
);
2988 e1000e_reset_interrupt_capability(adapter
);
2990 /* Assume that the test fails, if it succeeds then the test
2991 * MSI irq handler will unset this flag */
2992 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
2994 err
= pci_enable_msi(adapter
->pdev
);
2996 goto msi_test_failed
;
2998 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
2999 netdev
->name
, netdev
);
3001 pci_disable_msi(adapter
->pdev
);
3002 goto msi_test_failed
;
3007 e1000_irq_enable(adapter
);
3009 /* fire an unusual interrupt on the test handler */
3010 ew32(ICS
, E1000_ICS_RXSEQ
);
3014 e1000_irq_disable(adapter
);
3018 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3019 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3021 e_info("MSI interrupt test failed!\n");
3024 free_irq(adapter
->pdev
->irq
, netdev
);
3025 pci_disable_msi(adapter
->pdev
);
3028 goto msi_test_failed
;
3030 /* okay so the test worked, restore settings */
3031 e_dbg("MSI interrupt test succeeded!\n");
3033 e1000e_set_interrupt_capability(adapter
);
3034 e1000_request_irq(adapter
);
3039 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3040 * @adapter: board private struct
3042 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3044 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3049 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3052 /* disable SERR in case the MSI write causes a master abort */
3053 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3054 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3055 pci_cmd
& ~PCI_COMMAND_SERR
);
3057 err
= e1000_test_msi_interrupt(adapter
);
3059 /* restore previous setting of command word */
3060 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3066 /* EIO means MSI test failed */
3070 /* back to INTx mode */
3071 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3073 e1000_free_irq(adapter
);
3075 err
= e1000_request_irq(adapter
);
3081 * e1000_open - Called when a network interface is made active
3082 * @netdev: network interface device structure
3084 * Returns 0 on success, negative value on failure
3086 * The open entry point is called when a network interface is made
3087 * active by the system (IFF_UP). At this point all resources needed
3088 * for transmit and receive operations are allocated, the interrupt
3089 * handler is registered with the OS, the watchdog timer is started,
3090 * and the stack is notified that the interface is ready.
3092 static int e1000_open(struct net_device
*netdev
)
3094 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3095 struct e1000_hw
*hw
= &adapter
->hw
;
3098 /* disallow open during test */
3099 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3102 netif_carrier_off(netdev
);
3104 /* allocate transmit descriptors */
3105 err
= e1000e_setup_tx_resources(adapter
);
3109 /* allocate receive descriptors */
3110 err
= e1000e_setup_rx_resources(adapter
);
3114 e1000e_power_up_phy(adapter
);
3116 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3117 if ((adapter
->hw
.mng_cookie
.status
&
3118 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3119 e1000_update_mng_vlan(adapter
);
3122 * If AMT is enabled, let the firmware know that the network
3123 * interface is now open
3125 if (adapter
->flags
& FLAG_HAS_AMT
)
3126 e1000_get_hw_control(adapter
);
3129 * before we allocate an interrupt, we must be ready to handle it.
3130 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3131 * as soon as we call pci_request_irq, so we have to setup our
3132 * clean_rx handler before we do so.
3134 e1000_configure(adapter
);
3136 err
= e1000_request_irq(adapter
);
3141 * Work around PCIe errata with MSI interrupts causing some chipsets to
3142 * ignore e1000e MSI messages, which means we need to test our MSI
3145 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3146 err
= e1000_test_msi(adapter
);
3148 e_err("Interrupt allocation failed\n");
3153 /* From here on the code is the same as e1000e_up() */
3154 clear_bit(__E1000_DOWN
, &adapter
->state
);
3156 napi_enable(&adapter
->napi
);
3158 e1000_irq_enable(adapter
);
3160 netif_start_queue(netdev
);
3162 /* fire a link status change interrupt to start the watchdog */
3163 ew32(ICS
, E1000_ICS_LSC
);
3168 e1000_release_hw_control(adapter
);
3169 e1000_power_down_phy(adapter
);
3170 e1000e_free_rx_resources(adapter
);
3172 e1000e_free_tx_resources(adapter
);
3174 e1000e_reset(adapter
);
3180 * e1000_close - Disables a network interface
3181 * @netdev: network interface device structure
3183 * Returns 0, this is not allowed to fail
3185 * The close entry point is called when an interface is de-activated
3186 * by the OS. The hardware is still under the drivers control, but
3187 * needs to be disabled. A global MAC reset is issued to stop the
3188 * hardware, and all transmit and receive resources are freed.
3190 static int e1000_close(struct net_device
*netdev
)
3192 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3194 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3195 e1000e_down(adapter
);
3196 e1000_power_down_phy(adapter
);
3197 e1000_free_irq(adapter
);
3199 e1000e_free_tx_resources(adapter
);
3200 e1000e_free_rx_resources(adapter
);
3203 * kill manageability vlan ID if supported, but not if a vlan with
3204 * the same ID is registered on the host OS (let 8021q kill it)
3206 if ((adapter
->hw
.mng_cookie
.status
&
3207 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3209 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3210 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3213 * If AMT is enabled, let the firmware know that the network
3214 * interface is now closed
3216 if (adapter
->flags
& FLAG_HAS_AMT
)
3217 e1000_release_hw_control(adapter
);
3222 * e1000_set_mac - Change the Ethernet Address of the NIC
3223 * @netdev: network interface device structure
3224 * @p: pointer to an address structure
3226 * Returns 0 on success, negative on failure
3228 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3231 struct sockaddr
*addr
= p
;
3233 if (!is_valid_ether_addr(addr
->sa_data
))
3234 return -EADDRNOTAVAIL
;
3236 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3237 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3239 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3241 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3242 /* activate the work around */
3243 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3246 * Hold a copy of the LAA in RAR[14] This is done so that
3247 * between the time RAR[0] gets clobbered and the time it
3248 * gets fixed (in e1000_watchdog), the actual LAA is in one
3249 * of the RARs and no incoming packets directed to this port
3250 * are dropped. Eventually the LAA will be in RAR[0] and
3253 e1000e_rar_set(&adapter
->hw
,
3254 adapter
->hw
.mac
.addr
,
3255 adapter
->hw
.mac
.rar_entry_count
- 1);
3262 * e1000e_update_phy_task - work thread to update phy
3263 * @work: pointer to our work struct
3265 * this worker thread exists because we must acquire a
3266 * semaphore to read the phy, which we could msleep while
3267 * waiting for it, and we can't msleep in a timer.
3269 static void e1000e_update_phy_task(struct work_struct
*work
)
3271 struct e1000_adapter
*adapter
= container_of(work
,
3272 struct e1000_adapter
, update_phy_task
);
3273 e1000_get_phy_info(&adapter
->hw
);
3277 * Need to wait a few seconds after link up to get diagnostic information from
3280 static void e1000_update_phy_info(unsigned long data
)
3282 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3283 schedule_work(&adapter
->update_phy_task
);
3287 * e1000e_update_stats - Update the board statistics counters
3288 * @adapter: board private structure
3290 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3292 struct net_device
*netdev
= adapter
->netdev
;
3293 struct e1000_hw
*hw
= &adapter
->hw
;
3294 struct pci_dev
*pdev
= adapter
->pdev
;
3298 * Prevent stats update while adapter is being reset, or if the pci
3299 * connection is down.
3301 if (adapter
->link_speed
== 0)
3303 if (pci_channel_offline(pdev
))
3306 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3307 adapter
->stats
.gprc
+= er32(GPRC
);
3308 adapter
->stats
.gorc
+= er32(GORCL
);
3309 er32(GORCH
); /* Clear gorc */
3310 adapter
->stats
.bprc
+= er32(BPRC
);
3311 adapter
->stats
.mprc
+= er32(MPRC
);
3312 adapter
->stats
.roc
+= er32(ROC
);
3314 adapter
->stats
.mpc
+= er32(MPC
);
3315 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3316 (hw
->phy
.type
== e1000_phy_82577
)) {
3317 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3318 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3319 adapter
->stats
.scc
+= phy_data
;
3321 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3322 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3323 adapter
->stats
.ecol
+= phy_data
;
3325 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3326 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3327 adapter
->stats
.mcc
+= phy_data
;
3329 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3330 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3331 adapter
->stats
.latecol
+= phy_data
;
3333 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3334 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3335 adapter
->stats
.dc
+= phy_data
;
3337 adapter
->stats
.scc
+= er32(SCC
);
3338 adapter
->stats
.ecol
+= er32(ECOL
);
3339 adapter
->stats
.mcc
+= er32(MCC
);
3340 adapter
->stats
.latecol
+= er32(LATECOL
);
3341 adapter
->stats
.dc
+= er32(DC
);
3343 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3344 adapter
->stats
.xontxc
+= er32(XONTXC
);
3345 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3346 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3347 adapter
->stats
.gptc
+= er32(GPTC
);
3348 adapter
->stats
.gotc
+= er32(GOTCL
);
3349 er32(GOTCH
); /* Clear gotc */
3350 adapter
->stats
.rnbc
+= er32(RNBC
);
3351 adapter
->stats
.ruc
+= er32(RUC
);
3353 adapter
->stats
.mptc
+= er32(MPTC
);
3354 adapter
->stats
.bptc
+= er32(BPTC
);
3356 /* used for adaptive IFS */
3358 hw
->mac
.tx_packet_delta
= er32(TPT
);
3359 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3360 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3361 (hw
->phy
.type
== e1000_phy_82577
)) {
3362 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3363 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3364 hw
->mac
.collision_delta
= phy_data
;
3366 hw
->mac
.collision_delta
= er32(COLC
);
3368 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3370 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3371 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3372 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3373 (hw
->phy
.type
== e1000_phy_82577
)) {
3374 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3375 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3376 adapter
->stats
.tncrs
+= phy_data
;
3378 if ((hw
->mac
.type
!= e1000_82574
) &&
3379 (hw
->mac
.type
!= e1000_82583
))
3380 adapter
->stats
.tncrs
+= er32(TNCRS
);
3382 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3383 adapter
->stats
.tsctc
+= er32(TSCTC
);
3384 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3386 /* Fill out the OS statistics structure */
3387 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3388 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3393 * RLEC on some newer hardware can be incorrect so build
3394 * our own version based on RUC and ROC
3396 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3397 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3398 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3399 adapter
->stats
.cexterr
;
3400 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
3402 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3403 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3404 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3407 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
3408 adapter
->stats
.latecol
;
3409 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3410 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3411 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3413 /* Tx Dropped needs to be maintained elsewhere */
3415 /* Management Stats */
3416 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3417 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3418 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3422 * e1000_phy_read_status - Update the PHY register status snapshot
3423 * @adapter: board private structure
3425 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3427 struct e1000_hw
*hw
= &adapter
->hw
;
3428 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3431 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3432 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3433 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3434 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3435 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3436 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3437 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3438 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3439 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3440 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3442 e_warn("Error reading PHY register\n");
3445 * Do not read PHY registers if link is not up
3446 * Set values to typical power-on defaults
3448 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3449 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3450 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3452 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3453 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3455 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3456 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3458 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3462 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3464 struct e1000_hw
*hw
= &adapter
->hw
;
3465 u32 ctrl
= er32(CTRL
);
3467 /* Link status message must follow this format for user tools */
3468 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
3469 "Flow Control: %s\n",
3470 adapter
->netdev
->name
,
3471 adapter
->link_speed
,
3472 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3473 "Full Duplex" : "Half Duplex",
3474 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3476 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3477 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3480 bool e1000_has_link(struct e1000_adapter
*adapter
)
3482 struct e1000_hw
*hw
= &adapter
->hw
;
3483 bool link_active
= 0;
3487 * get_link_status is set on LSC (link status) interrupt or
3488 * Rx sequence error interrupt. get_link_status will stay
3489 * false until the check_for_link establishes link
3490 * for copper adapters ONLY
3492 switch (hw
->phy
.media_type
) {
3493 case e1000_media_type_copper
:
3494 if (hw
->mac
.get_link_status
) {
3495 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3496 link_active
= !hw
->mac
.get_link_status
;
3501 case e1000_media_type_fiber
:
3502 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3503 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3505 case e1000_media_type_internal_serdes
:
3506 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3507 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3510 case e1000_media_type_unknown
:
3514 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3515 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3516 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3517 e_info("Gigabit has been disabled, downgrading speed\n");
3523 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3525 /* make sure the receive unit is started */
3526 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3527 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3528 struct e1000_hw
*hw
= &adapter
->hw
;
3529 u32 rctl
= er32(RCTL
);
3530 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3531 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3536 * e1000_watchdog - Timer Call-back
3537 * @data: pointer to adapter cast into an unsigned long
3539 static void e1000_watchdog(unsigned long data
)
3541 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3543 /* Do the rest outside of interrupt context */
3544 schedule_work(&adapter
->watchdog_task
);
3546 /* TODO: make this use queue_delayed_work() */
3549 static void e1000_watchdog_task(struct work_struct
*work
)
3551 struct e1000_adapter
*adapter
= container_of(work
,
3552 struct e1000_adapter
, watchdog_task
);
3553 struct net_device
*netdev
= adapter
->netdev
;
3554 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3555 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
3556 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3557 struct e1000_hw
*hw
= &adapter
->hw
;
3561 link
= e1000_has_link(adapter
);
3562 if ((netif_carrier_ok(netdev
)) && link
) {
3563 e1000e_enable_receives(adapter
);
3567 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3568 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3569 e1000_update_mng_vlan(adapter
);
3572 if (!netif_carrier_ok(netdev
)) {
3574 /* update snapshot of PHY registers on LSC */
3575 e1000_phy_read_status(adapter
);
3576 mac
->ops
.get_link_up_info(&adapter
->hw
,
3577 &adapter
->link_speed
,
3578 &adapter
->link_duplex
);
3579 e1000_print_link_info(adapter
);
3581 * On supported PHYs, check for duplex mismatch only
3582 * if link has autonegotiated at 10/100 half
3584 if ((hw
->phy
.type
== e1000_phy_igp_3
||
3585 hw
->phy
.type
== e1000_phy_bm
) &&
3586 (hw
->mac
.autoneg
== true) &&
3587 (adapter
->link_speed
== SPEED_10
||
3588 adapter
->link_speed
== SPEED_100
) &&
3589 (adapter
->link_duplex
== HALF_DUPLEX
)) {
3592 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
3594 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
3595 e_info("Autonegotiated half duplex but"
3596 " link partner cannot autoneg. "
3597 " Try forcing full duplex if "
3598 "link gets many collisions.\n");
3602 * tweak tx_queue_len according to speed/duplex
3603 * and adjust the timeout factor
3605 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
3606 adapter
->tx_timeout_factor
= 1;
3607 switch (adapter
->link_speed
) {
3610 netdev
->tx_queue_len
= 10;
3611 adapter
->tx_timeout_factor
= 16;
3615 netdev
->tx_queue_len
= 100;
3616 adapter
->tx_timeout_factor
= 10;
3621 * workaround: re-program speed mode bit after
3624 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3627 tarc0
= er32(TARC(0));
3628 tarc0
&= ~SPEED_MODE_BIT
;
3629 ew32(TARC(0), tarc0
);
3633 * disable TSO for pcie and 10/100 speeds, to avoid
3634 * some hardware issues
3636 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3637 switch (adapter
->link_speed
) {
3640 e_info("10/100 speed: disabling TSO\n");
3641 netdev
->features
&= ~NETIF_F_TSO
;
3642 netdev
->features
&= ~NETIF_F_TSO6
;
3645 netdev
->features
|= NETIF_F_TSO
;
3646 netdev
->features
|= NETIF_F_TSO6
;
3655 * enable transmits in the hardware, need to do this
3656 * after setting TARC(0)
3659 tctl
|= E1000_TCTL_EN
;
3663 * Perform any post-link-up configuration before
3664 * reporting link up.
3666 if (phy
->ops
.cfg_on_link_up
)
3667 phy
->ops
.cfg_on_link_up(hw
);
3669 netif_carrier_on(netdev
);
3671 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3672 mod_timer(&adapter
->phy_info_timer
,
3673 round_jiffies(jiffies
+ 2 * HZ
));
3676 if (netif_carrier_ok(netdev
)) {
3677 adapter
->link_speed
= 0;
3678 adapter
->link_duplex
= 0;
3679 /* Link status message must follow this format */
3680 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
3681 adapter
->netdev
->name
);
3682 netif_carrier_off(netdev
);
3683 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3684 mod_timer(&adapter
->phy_info_timer
,
3685 round_jiffies(jiffies
+ 2 * HZ
));
3687 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3688 schedule_work(&adapter
->reset_task
);
3693 e1000e_update_stats(adapter
);
3695 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3696 adapter
->tpt_old
= adapter
->stats
.tpt
;
3697 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3698 adapter
->colc_old
= adapter
->stats
.colc
;
3700 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3701 adapter
->gorc_old
= adapter
->stats
.gorc
;
3702 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3703 adapter
->gotc_old
= adapter
->stats
.gotc
;
3705 e1000e_update_adaptive(&adapter
->hw
);
3707 if (!netif_carrier_ok(netdev
)) {
3708 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3712 * We've lost link, so the controller stops DMA,
3713 * but we've got queued Tx work that's never going
3714 * to get done, so reset controller to flush Tx.
3715 * (Do the reset outside of interrupt context).
3717 adapter
->tx_timeout_count
++;
3718 schedule_work(&adapter
->reset_task
);
3719 /* return immediately since reset is imminent */
3724 /* Cause software interrupt to ensure Rx ring is cleaned */
3725 if (adapter
->msix_entries
)
3726 ew32(ICS
, adapter
->rx_ring
->ims_val
);
3728 ew32(ICS
, E1000_ICS_RXDMT0
);
3730 /* Force detection of hung controller every watchdog period */
3731 adapter
->detect_tx_hung
= 1;
3734 * With 82571 controllers, LAA may be overwritten due to controller
3735 * reset from the other port. Set the appropriate LAA in RAR[0]
3737 if (e1000e_get_laa_state_82571(hw
))
3738 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3740 /* Reset the timer */
3741 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3742 mod_timer(&adapter
->watchdog_timer
,
3743 round_jiffies(jiffies
+ 2 * HZ
));
3746 #define E1000_TX_FLAGS_CSUM 0x00000001
3747 #define E1000_TX_FLAGS_VLAN 0x00000002
3748 #define E1000_TX_FLAGS_TSO 0x00000004
3749 #define E1000_TX_FLAGS_IPV4 0x00000008
3750 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3751 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3753 static int e1000_tso(struct e1000_adapter
*adapter
,
3754 struct sk_buff
*skb
)
3756 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3757 struct e1000_context_desc
*context_desc
;
3758 struct e1000_buffer
*buffer_info
;
3761 u16 ipcse
= 0, tucse
, mss
;
3762 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3765 if (!skb_is_gso(skb
))
3768 if (skb_header_cloned(skb
)) {
3769 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3774 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3775 mss
= skb_shinfo(skb
)->gso_size
;
3776 if (skb
->protocol
== htons(ETH_P_IP
)) {
3777 struct iphdr
*iph
= ip_hdr(skb
);
3780 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
3782 cmd_length
= E1000_TXD_CMD_IP
;
3783 ipcse
= skb_transport_offset(skb
) - 1;
3784 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3785 ipv6_hdr(skb
)->payload_len
= 0;
3786 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3787 &ipv6_hdr(skb
)->daddr
,
3791 ipcss
= skb_network_offset(skb
);
3792 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3793 tucss
= skb_transport_offset(skb
);
3794 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3797 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3798 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3800 i
= tx_ring
->next_to_use
;
3801 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3802 buffer_info
= &tx_ring
->buffer_info
[i
];
3804 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3805 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3806 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3807 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3808 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3809 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3810 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3811 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3812 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3814 buffer_info
->time_stamp
= jiffies
;
3815 buffer_info
->next_to_watch
= i
;
3818 if (i
== tx_ring
->count
)
3820 tx_ring
->next_to_use
= i
;
3825 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3827 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3828 struct e1000_context_desc
*context_desc
;
3829 struct e1000_buffer
*buffer_info
;
3832 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
3835 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3838 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
3839 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
3841 protocol
= skb
->protocol
;
3844 case cpu_to_be16(ETH_P_IP
):
3845 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3846 cmd_len
|= E1000_TXD_CMD_TCP
;
3848 case cpu_to_be16(ETH_P_IPV6
):
3849 /* XXX not handling all IPV6 headers */
3850 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3851 cmd_len
|= E1000_TXD_CMD_TCP
;
3854 if (unlikely(net_ratelimit()))
3855 e_warn("checksum_partial proto=%x!\n",
3856 be16_to_cpu(protocol
));
3860 css
= skb_transport_offset(skb
);
3862 i
= tx_ring
->next_to_use
;
3863 buffer_info
= &tx_ring
->buffer_info
[i
];
3864 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3866 context_desc
->lower_setup
.ip_config
= 0;
3867 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3868 context_desc
->upper_setup
.tcp_fields
.tucso
=
3869 css
+ skb
->csum_offset
;
3870 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3871 context_desc
->tcp_seg_setup
.data
= 0;
3872 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
3874 buffer_info
->time_stamp
= jiffies
;
3875 buffer_info
->next_to_watch
= i
;
3878 if (i
== tx_ring
->count
)
3880 tx_ring
->next_to_use
= i
;
3885 #define E1000_MAX_PER_TXD 8192
3886 #define E1000_MAX_TXD_PWR 12
3888 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3889 struct sk_buff
*skb
, unsigned int first
,
3890 unsigned int max_per_txd
, unsigned int nr_frags
,
3893 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3894 struct pci_dev
*pdev
= adapter
->pdev
;
3895 struct e1000_buffer
*buffer_info
;
3896 unsigned int len
= skb_headlen(skb
);
3897 unsigned int offset
= 0, size
, count
= 0, i
;
3900 i
= tx_ring
->next_to_use
;
3903 buffer_info
= &tx_ring
->buffer_info
[i
];
3904 size
= min(len
, max_per_txd
);
3906 buffer_info
->length
= size
;
3907 buffer_info
->time_stamp
= jiffies
;
3908 buffer_info
->next_to_watch
= i
;
3909 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
+ offset
,
3910 size
, PCI_DMA_TODEVICE
);
3911 buffer_info
->mapped_as_page
= false;
3912 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
3921 if (i
== tx_ring
->count
)
3926 for (f
= 0; f
< nr_frags
; f
++) {
3927 struct skb_frag_struct
*frag
;
3929 frag
= &skb_shinfo(skb
)->frags
[f
];
3931 offset
= frag
->page_offset
;
3935 if (i
== tx_ring
->count
)
3938 buffer_info
= &tx_ring
->buffer_info
[i
];
3939 size
= min(len
, max_per_txd
);
3941 buffer_info
->length
= size
;
3942 buffer_info
->time_stamp
= jiffies
;
3943 buffer_info
->next_to_watch
= i
;
3944 buffer_info
->dma
= pci_map_page(pdev
, frag
->page
,
3947 buffer_info
->mapped_as_page
= true;
3948 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
3957 tx_ring
->buffer_info
[i
].skb
= skb
;
3958 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3963 dev_err(&pdev
->dev
, "TX DMA map failed\n");
3964 buffer_info
->dma
= 0;
3967 while (count
>= 0) {
3971 i
+= tx_ring
->count
;
3972 buffer_info
= &tx_ring
->buffer_info
[i
];
3973 e1000_put_txbuf(adapter
, buffer_info
);;
3979 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3980 int tx_flags
, int count
)
3982 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3983 struct e1000_tx_desc
*tx_desc
= NULL
;
3984 struct e1000_buffer
*buffer_info
;
3985 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3988 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3989 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3991 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3993 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3994 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3997 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3998 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3999 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4002 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4003 txd_lower
|= E1000_TXD_CMD_VLE
;
4004 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4007 i
= tx_ring
->next_to_use
;
4010 buffer_info
= &tx_ring
->buffer_info
[i
];
4011 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4012 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4013 tx_desc
->lower
.data
=
4014 cpu_to_le32(txd_lower
| buffer_info
->length
);
4015 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4018 if (i
== tx_ring
->count
)
4022 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4025 * Force memory writes to complete before letting h/w
4026 * know there are new descriptors to fetch. (Only
4027 * applicable for weak-ordered memory model archs,
4032 tx_ring
->next_to_use
= i
;
4033 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4035 * we need this if more than one processor can write to our tail
4036 * at a time, it synchronizes IO on IA64/Altix systems
4041 #define MINIMUM_DHCP_PACKET_SIZE 282
4042 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4043 struct sk_buff
*skb
)
4045 struct e1000_hw
*hw
= &adapter
->hw
;
4048 if (vlan_tx_tag_present(skb
)) {
4049 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4050 (adapter
->hw
.mng_cookie
.status
&
4051 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4055 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4058 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4062 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4065 if (ip
->protocol
!= IPPROTO_UDP
)
4068 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4069 if (ntohs(udp
->dest
) != 67)
4072 offset
= (u8
*)udp
+ 8 - skb
->data
;
4073 length
= skb
->len
- offset
;
4074 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4080 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4082 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4084 netif_stop_queue(netdev
);
4086 * Herbert's original patch had:
4087 * smp_mb__after_netif_stop_queue();
4088 * but since that doesn't exist yet, just open code it.
4093 * We need to check again in a case another CPU has just
4094 * made room available.
4096 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4100 netif_start_queue(netdev
);
4101 ++adapter
->restart_queue
;
4105 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4107 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4109 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4111 return __e1000_maybe_stop_tx(netdev
, size
);
4114 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4115 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4116 struct net_device
*netdev
)
4118 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4119 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4121 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4122 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4123 unsigned int tx_flags
= 0;
4124 unsigned int len
= skb
->len
- skb
->data_len
;
4125 unsigned int nr_frags
;
4131 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4132 dev_kfree_skb_any(skb
);
4133 return NETDEV_TX_OK
;
4136 if (skb
->len
<= 0) {
4137 dev_kfree_skb_any(skb
);
4138 return NETDEV_TX_OK
;
4141 mss
= skb_shinfo(skb
)->gso_size
;
4143 * The controller does a simple calculation to
4144 * make sure there is enough room in the FIFO before
4145 * initiating the DMA for each buffer. The calc is:
4146 * 4 = ceil(buffer len/mss). To make sure we don't
4147 * overrun the FIFO, adjust the max buffer len if mss
4152 max_per_txd
= min(mss
<< 2, max_per_txd
);
4153 max_txd_pwr
= fls(max_per_txd
) - 1;
4156 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4157 * points to just header, pull a few bytes of payload from
4158 * frags into skb->data
4160 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4162 * we do this workaround for ES2LAN, but it is un-necessary,
4163 * avoiding it could save a lot of cycles
4165 if (skb
->data_len
&& (hdr_len
== len
)) {
4166 unsigned int pull_size
;
4168 pull_size
= min((unsigned int)4, skb
->data_len
);
4169 if (!__pskb_pull_tail(skb
, pull_size
)) {
4170 e_err("__pskb_pull_tail failed.\n");
4171 dev_kfree_skb_any(skb
);
4172 return NETDEV_TX_OK
;
4174 len
= skb
->len
- skb
->data_len
;
4178 /* reserve a descriptor for the offload context */
4179 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4183 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4185 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4186 for (f
= 0; f
< nr_frags
; f
++)
4187 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4190 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4191 e1000_transfer_dhcp_info(adapter
, skb
);
4194 * need: count + 2 desc gap to keep tail from touching
4195 * head, otherwise try next time
4197 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4198 return NETDEV_TX_BUSY
;
4200 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4201 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4202 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4205 first
= tx_ring
->next_to_use
;
4207 tso
= e1000_tso(adapter
, skb
);
4209 dev_kfree_skb_any(skb
);
4210 return NETDEV_TX_OK
;
4214 tx_flags
|= E1000_TX_FLAGS_TSO
;
4215 else if (e1000_tx_csum(adapter
, skb
))
4216 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4219 * Old method was to assume IPv4 packet by default if TSO was enabled.
4220 * 82571 hardware supports TSO capabilities for IPv6 as well...
4221 * no longer assume, we must.
4223 if (skb
->protocol
== htons(ETH_P_IP
))
4224 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4226 /* if count is 0 then mapping error has occured */
4227 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4229 e1000_tx_queue(adapter
, tx_flags
, count
);
4230 /* Make sure there is space in the ring for the next send. */
4231 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4234 dev_kfree_skb_any(skb
);
4235 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4236 tx_ring
->next_to_use
= first
;
4239 return NETDEV_TX_OK
;
4243 * e1000_tx_timeout - Respond to a Tx Hang
4244 * @netdev: network interface device structure
4246 static void e1000_tx_timeout(struct net_device
*netdev
)
4248 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4250 /* Do the reset outside of interrupt context */
4251 adapter
->tx_timeout_count
++;
4252 schedule_work(&adapter
->reset_task
);
4255 static void e1000_reset_task(struct work_struct
*work
)
4257 struct e1000_adapter
*adapter
;
4258 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4260 e1000e_reinit_locked(adapter
);
4264 * e1000_get_stats - Get System Network Statistics
4265 * @netdev: network interface device structure
4267 * Returns the address of the device statistics structure.
4268 * The statistics are actually updated from the timer callback.
4270 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4272 /* only return the current stats */
4273 return &netdev
->stats
;
4277 * e1000_change_mtu - Change the Maximum Transfer Unit
4278 * @netdev: network interface device structure
4279 * @new_mtu: new value for maximum frame size
4281 * Returns 0 on success, negative on failure
4283 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4285 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4286 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4288 /* Jumbo frame support */
4289 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4290 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4291 e_err("Jumbo Frames not supported.\n");
4295 /* Supported frame sizes */
4296 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4297 (max_frame
> adapter
->max_hw_frame_size
)) {
4298 e_err("Unsupported MTU setting\n");
4302 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4304 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4305 adapter
->max_frame_size
= max_frame
;
4306 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4307 netdev
->mtu
= new_mtu
;
4308 if (netif_running(netdev
))
4309 e1000e_down(adapter
);
4312 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4313 * means we reserve 2 more, this pushes us to allocate from the next
4315 * i.e. RXBUFFER_2048 --> size-4096 slab
4316 * However with the new *_jumbo_rx* routines, jumbo receives will use
4320 if (max_frame
<= 256)
4321 adapter
->rx_buffer_len
= 256;
4322 else if (max_frame
<= 512)
4323 adapter
->rx_buffer_len
= 512;
4324 else if (max_frame
<= 1024)
4325 adapter
->rx_buffer_len
= 1024;
4326 else if (max_frame
<= 2048)
4327 adapter
->rx_buffer_len
= 2048;
4329 adapter
->rx_buffer_len
= 4096;
4331 /* adjust allocation if LPE protects us, and we aren't using SBP */
4332 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4333 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4334 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4337 if (netif_running(netdev
))
4340 e1000e_reset(adapter
);
4342 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4347 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4350 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4351 struct mii_ioctl_data
*data
= if_mii(ifr
);
4353 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4358 data
->phy_id
= adapter
->hw
.phy
.addr
;
4361 e1000_phy_read_status(adapter
);
4363 switch (data
->reg_num
& 0x1F) {
4365 data
->val_out
= adapter
->phy_regs
.bmcr
;
4368 data
->val_out
= adapter
->phy_regs
.bmsr
;
4371 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
4374 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
4377 data
->val_out
= adapter
->phy_regs
.advertise
;
4380 data
->val_out
= adapter
->phy_regs
.lpa
;
4383 data
->val_out
= adapter
->phy_regs
.expansion
;
4386 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
4389 data
->val_out
= adapter
->phy_regs
.stat1000
;
4392 data
->val_out
= adapter
->phy_regs
.estatus
;
4405 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4411 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4417 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
4419 struct e1000_hw
*hw
= &adapter
->hw
;
4424 /* copy MAC RARs to PHY RARs */
4425 for (i
= 0; i
< adapter
->hw
.mac
.rar_entry_count
; i
++) {
4426 mac_reg
= er32(RAL(i
));
4427 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
4428 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4429 mac_reg
= er32(RAH(i
));
4430 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
4431 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4434 /* copy MAC MTA to PHY MTA */
4435 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
4436 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
4437 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
4438 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
4441 /* configure PHY Rx Control register */
4442 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
4443 mac_reg
= er32(RCTL
);
4444 if (mac_reg
& E1000_RCTL_UPE
)
4445 phy_reg
|= BM_RCTL_UPE
;
4446 if (mac_reg
& E1000_RCTL_MPE
)
4447 phy_reg
|= BM_RCTL_MPE
;
4448 phy_reg
&= ~(BM_RCTL_MO_MASK
);
4449 if (mac_reg
& E1000_RCTL_MO_3
)
4450 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
4451 << BM_RCTL_MO_SHIFT
);
4452 if (mac_reg
& E1000_RCTL_BAM
)
4453 phy_reg
|= BM_RCTL_BAM
;
4454 if (mac_reg
& E1000_RCTL_PMCF
)
4455 phy_reg
|= BM_RCTL_PMCF
;
4456 mac_reg
= er32(CTRL
);
4457 if (mac_reg
& E1000_CTRL_RFCE
)
4458 phy_reg
|= BM_RCTL_RFCE
;
4459 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
4461 /* enable PHY wakeup in MAC register */
4463 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
4465 /* configure and enable PHY wakeup in PHY registers */
4466 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
4467 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
4469 /* activate PHY wakeup */
4470 retval
= hw
->phy
.ops
.acquire(hw
);
4472 e_err("Could not acquire PHY\n");
4475 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4476 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
4477 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
4479 e_err("Could not read PHY page 769\n");
4482 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
4483 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
4485 e_err("Could not set PHY Host Wakeup bit\n");
4487 hw
->phy
.ops
.release(hw
);
4492 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4494 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4495 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4496 struct e1000_hw
*hw
= &adapter
->hw
;
4497 u32 ctrl
, ctrl_ext
, rctl
, status
;
4498 u32 wufc
= adapter
->wol
;
4501 netif_device_detach(netdev
);
4503 if (netif_running(netdev
)) {
4504 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4505 e1000e_down(adapter
);
4506 e1000_free_irq(adapter
);
4508 e1000e_reset_interrupt_capability(adapter
);
4510 retval
= pci_save_state(pdev
);
4514 status
= er32(STATUS
);
4515 if (status
& E1000_STATUS_LU
)
4516 wufc
&= ~E1000_WUFC_LNKC
;
4519 e1000_setup_rctl(adapter
);
4520 e1000_set_multi(netdev
);
4522 /* turn on all-multi mode if wake on multicast is enabled */
4523 if (wufc
& E1000_WUFC_MC
) {
4525 rctl
|= E1000_RCTL_MPE
;
4530 /* advertise wake from D3Cold */
4531 #define E1000_CTRL_ADVD3WUC 0x00100000
4532 /* phy power management enable */
4533 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4534 ctrl
|= E1000_CTRL_ADVD3WUC
;
4535 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
4536 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
4539 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4540 adapter
->hw
.phy
.media_type
==
4541 e1000_media_type_internal_serdes
) {
4542 /* keep the laser running in D3 */
4543 ctrl_ext
= er32(CTRL_EXT
);
4544 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
4545 ew32(CTRL_EXT
, ctrl_ext
);
4548 if (adapter
->flags
& FLAG_IS_ICH
)
4549 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4551 /* Allow time for pending master requests to run */
4552 e1000e_disable_pcie_master(&adapter
->hw
);
4554 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4555 /* enable wakeup by the PHY */
4556 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
4560 /* enable wakeup by the MAC */
4562 ew32(WUC
, E1000_WUC_PME_EN
);
4569 *enable_wake
= !!wufc
;
4571 /* make sure adapter isn't asleep if manageability is enabled */
4572 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
4573 (hw
->mac
.ops
.check_mng_mode(hw
)))
4574 *enable_wake
= true;
4576 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4577 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
4580 * Release control of h/w to f/w. If f/w is AMT enabled, this
4581 * would have already happened in close and is redundant.
4583 e1000_release_hw_control(adapter
);
4585 pci_disable_device(pdev
);
4590 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
4592 if (sleep
&& wake
) {
4593 pci_prepare_to_sleep(pdev
);
4597 pci_wake_from_d3(pdev
, wake
);
4598 pci_set_power_state(pdev
, PCI_D3hot
);
4601 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
4604 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4605 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4608 * The pci-e switch on some quad port adapters will report a
4609 * correctable error when the MAC transitions from D0 to D3. To
4610 * prevent this we need to mask off the correctable errors on the
4611 * downstream port of the pci-e switch.
4613 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
4614 struct pci_dev
*us_dev
= pdev
->bus
->self
;
4615 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
4618 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
4619 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
4620 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
4622 e1000_power_off(pdev
, sleep
, wake
);
4624 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
4626 e1000_power_off(pdev
, sleep
, wake
);
4630 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
4636 * 82573 workaround - disable L1 ASPM on mobile chipsets
4638 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4639 * resulting in lost data or garbage information on the pci-e link
4640 * level. This could result in (false) bad EEPROM checksum errors,
4641 * long ping times (up to 2s) or even a system freeze/hang.
4643 * Unfortunately this feature saves about 1W power consumption when
4646 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
4647 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
4649 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
4651 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
4656 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4661 retval
= __e1000_shutdown(pdev
, &wake
);
4663 e1000_complete_shutdown(pdev
, true, wake
);
4668 static int e1000_resume(struct pci_dev
*pdev
)
4670 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4671 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4672 struct e1000_hw
*hw
= &adapter
->hw
;
4675 pci_set_power_state(pdev
, PCI_D0
);
4676 pci_restore_state(pdev
);
4677 e1000e_disable_l1aspm(pdev
);
4679 err
= pci_enable_device_mem(pdev
);
4682 "Cannot enable PCI device from suspend\n");
4686 pci_set_master(pdev
);
4688 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4689 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4691 e1000e_set_interrupt_capability(adapter
);
4692 if (netif_running(netdev
)) {
4693 err
= e1000_request_irq(adapter
);
4698 e1000e_power_up_phy(adapter
);
4700 /* report the system wakeup cause from S3/S4 */
4701 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4704 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
4706 e_info("PHY Wakeup cause - %s\n",
4707 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
4708 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
4709 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
4710 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
4711 phy_data
& E1000_WUS_LNKC
? "Link Status "
4712 " Change" : "other");
4714 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
4716 u32 wus
= er32(WUS
);
4718 e_info("MAC Wakeup cause - %s\n",
4719 wus
& E1000_WUS_EX
? "Unicast Packet" :
4720 wus
& E1000_WUS_MC
? "Multicast Packet" :
4721 wus
& E1000_WUS_BC
? "Broadcast Packet" :
4722 wus
& E1000_WUS_MAG
? "Magic Packet" :
4723 wus
& E1000_WUS_LNKC
? "Link Status Change" :
4729 e1000e_reset(adapter
);
4731 e1000_init_manageability(adapter
);
4733 if (netif_running(netdev
))
4736 netif_device_attach(netdev
);
4739 * If the controller has AMT, do not set DRV_LOAD until the interface
4740 * is up. For all other cases, let the f/w know that the h/w is now
4741 * under the control of the driver.
4743 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4744 e1000_get_hw_control(adapter
);
4750 static void e1000_shutdown(struct pci_dev
*pdev
)
4754 __e1000_shutdown(pdev
, &wake
);
4756 if (system_state
== SYSTEM_POWER_OFF
)
4757 e1000_complete_shutdown(pdev
, false, wake
);
4760 #ifdef CONFIG_NET_POLL_CONTROLLER
4762 * Polling 'interrupt' - used by things like netconsole to send skbs
4763 * without having to re-enable interrupts. It's not called while
4764 * the interrupt routine is executing.
4766 static void e1000_netpoll(struct net_device
*netdev
)
4768 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4770 disable_irq(adapter
->pdev
->irq
);
4771 e1000_intr(adapter
->pdev
->irq
, netdev
);
4773 enable_irq(adapter
->pdev
->irq
);
4778 * e1000_io_error_detected - called when PCI error is detected
4779 * @pdev: Pointer to PCI device
4780 * @state: The current pci connection state
4782 * This function is called after a PCI bus error affecting
4783 * this device has been detected.
4785 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4786 pci_channel_state_t state
)
4788 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4789 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4791 netif_device_detach(netdev
);
4793 if (state
== pci_channel_io_perm_failure
)
4794 return PCI_ERS_RESULT_DISCONNECT
;
4796 if (netif_running(netdev
))
4797 e1000e_down(adapter
);
4798 pci_disable_device(pdev
);
4800 /* Request a slot slot reset. */
4801 return PCI_ERS_RESULT_NEED_RESET
;
4805 * e1000_io_slot_reset - called after the pci bus has been reset.
4806 * @pdev: Pointer to PCI device
4808 * Restart the card from scratch, as if from a cold-boot. Implementation
4809 * resembles the first-half of the e1000_resume routine.
4811 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4813 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4814 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4815 struct e1000_hw
*hw
= &adapter
->hw
;
4817 pci_ers_result_t result
;
4819 e1000e_disable_l1aspm(pdev
);
4820 err
= pci_enable_device_mem(pdev
);
4823 "Cannot re-enable PCI device after reset.\n");
4824 result
= PCI_ERS_RESULT_DISCONNECT
;
4826 pci_set_master(pdev
);
4827 pci_restore_state(pdev
);
4829 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4830 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4832 e1000e_reset(adapter
);
4834 result
= PCI_ERS_RESULT_RECOVERED
;
4837 pci_cleanup_aer_uncorrect_error_status(pdev
);
4843 * e1000_io_resume - called when traffic can start flowing again.
4844 * @pdev: Pointer to PCI device
4846 * This callback is called when the error recovery driver tells us that
4847 * its OK to resume normal operation. Implementation resembles the
4848 * second-half of the e1000_resume routine.
4850 static void e1000_io_resume(struct pci_dev
*pdev
)
4852 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4853 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4855 e1000_init_manageability(adapter
);
4857 if (netif_running(netdev
)) {
4858 if (e1000e_up(adapter
)) {
4860 "can't bring device back up after reset\n");
4865 netif_device_attach(netdev
);
4868 * If the controller has AMT, do not set DRV_LOAD until the interface
4869 * is up. For all other cases, let the f/w know that the h/w is now
4870 * under the control of the driver.
4872 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4873 e1000_get_hw_control(adapter
);
4877 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4879 struct e1000_hw
*hw
= &adapter
->hw
;
4880 struct net_device
*netdev
= adapter
->netdev
;
4883 /* print bus type/speed/width info */
4884 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4886 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4890 e_info("Intel(R) PRO/%s Network Connection\n",
4891 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
4892 e1000e_read_pba_num(hw
, &pba_num
);
4893 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4894 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
4897 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
4899 struct e1000_hw
*hw
= &adapter
->hw
;
4903 if (hw
->mac
.type
!= e1000_82573
)
4906 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
4907 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
4908 /* Deep Smart Power Down (DSPD) */
4909 dev_warn(&adapter
->pdev
->dev
,
4910 "Warning: detected DSPD enabled in EEPROM\n");
4913 ret_val
= e1000_read_nvm(hw
, NVM_INIT_3GIO_3
, 1, &buf
);
4914 if (!ret_val
&& (le16_to_cpu(buf
) & (3 << 2))) {
4916 dev_warn(&adapter
->pdev
->dev
,
4917 "Warning: detected ASPM enabled in EEPROM\n");
4921 static const struct net_device_ops e1000e_netdev_ops
= {
4922 .ndo_open
= e1000_open
,
4923 .ndo_stop
= e1000_close
,
4924 .ndo_start_xmit
= e1000_xmit_frame
,
4925 .ndo_get_stats
= e1000_get_stats
,
4926 .ndo_set_multicast_list
= e1000_set_multi
,
4927 .ndo_set_mac_address
= e1000_set_mac
,
4928 .ndo_change_mtu
= e1000_change_mtu
,
4929 .ndo_do_ioctl
= e1000_ioctl
,
4930 .ndo_tx_timeout
= e1000_tx_timeout
,
4931 .ndo_validate_addr
= eth_validate_addr
,
4933 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
4934 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
4935 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
4936 #ifdef CONFIG_NET_POLL_CONTROLLER
4937 .ndo_poll_controller
= e1000_netpoll
,
4942 * e1000_probe - Device Initialization Routine
4943 * @pdev: PCI device information struct
4944 * @ent: entry in e1000_pci_tbl
4946 * Returns 0 on success, negative on failure
4948 * e1000_probe initializes an adapter identified by a pci_dev structure.
4949 * The OS initialization, configuring of the adapter private structure,
4950 * and a hardware reset occur.
4952 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4953 const struct pci_device_id
*ent
)
4955 struct net_device
*netdev
;
4956 struct e1000_adapter
*adapter
;
4957 struct e1000_hw
*hw
;
4958 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4959 resource_size_t mmio_start
, mmio_len
;
4960 resource_size_t flash_start
, flash_len
;
4962 static int cards_found
;
4963 int i
, err
, pci_using_dac
;
4964 u16 eeprom_data
= 0;
4965 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4967 e1000e_disable_l1aspm(pdev
);
4969 err
= pci_enable_device_mem(pdev
);
4974 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4976 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4980 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4982 err
= pci_set_consistent_dma_mask(pdev
,
4985 dev_err(&pdev
->dev
, "No usable DMA "
4986 "configuration, aborting\n");
4992 err
= pci_request_selected_regions_exclusive(pdev
,
4993 pci_select_bars(pdev
, IORESOURCE_MEM
),
4994 e1000e_driver_name
);
4998 /* AER (Advanced Error Reporting) hooks */
4999 pci_enable_pcie_error_reporting(pdev
);
5001 pci_set_master(pdev
);
5002 /* PCI config space info */
5003 err
= pci_save_state(pdev
);
5005 goto err_alloc_etherdev
;
5008 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5010 goto err_alloc_etherdev
;
5012 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5014 pci_set_drvdata(pdev
, netdev
);
5015 adapter
= netdev_priv(netdev
);
5017 adapter
->netdev
= netdev
;
5018 adapter
->pdev
= pdev
;
5020 adapter
->pba
= ei
->pba
;
5021 adapter
->flags
= ei
->flags
;
5022 adapter
->flags2
= ei
->flags2
;
5023 adapter
->hw
.adapter
= adapter
;
5024 adapter
->hw
.mac
.type
= ei
->mac
;
5025 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5026 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5028 mmio_start
= pci_resource_start(pdev
, 0);
5029 mmio_len
= pci_resource_len(pdev
, 0);
5032 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5033 if (!adapter
->hw
.hw_addr
)
5036 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5037 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5038 flash_start
= pci_resource_start(pdev
, 1);
5039 flash_len
= pci_resource_len(pdev
, 1);
5040 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5041 if (!adapter
->hw
.flash_address
)
5045 /* construct the net_device struct */
5046 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5047 e1000e_set_ethtool_ops(netdev
);
5048 netdev
->watchdog_timeo
= 5 * HZ
;
5049 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5050 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5052 netdev
->mem_start
= mmio_start
;
5053 netdev
->mem_end
= mmio_start
+ mmio_len
;
5055 adapter
->bd_number
= cards_found
++;
5057 e1000e_check_options(adapter
);
5059 /* setup adapter struct */
5060 err
= e1000_sw_init(adapter
);
5066 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5067 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5068 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5070 err
= ei
->get_variants(adapter
);
5074 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5075 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5076 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5078 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5080 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5082 /* Copper options */
5083 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5084 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5085 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5086 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5089 if (e1000_check_reset_block(&adapter
->hw
))
5090 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5092 netdev
->features
= NETIF_F_SG
|
5094 NETIF_F_HW_VLAN_TX
|
5097 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5098 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5100 netdev
->features
|= NETIF_F_TSO
;
5101 netdev
->features
|= NETIF_F_TSO6
;
5103 netdev
->vlan_features
|= NETIF_F_TSO
;
5104 netdev
->vlan_features
|= NETIF_F_TSO6
;
5105 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5106 netdev
->vlan_features
|= NETIF_F_SG
;
5109 netdev
->features
|= NETIF_F_HIGHDMA
;
5111 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5112 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5115 * before reading the NVM, reset the controller to
5116 * put the device in a known good starting state
5118 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5121 * systems with ASPM and others may see the checksum fail on the first
5122 * attempt. Let's give it a few tries
5125 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5128 e_err("The NVM Checksum Is Not Valid\n");
5134 e1000_eeprom_checks(adapter
);
5136 /* copy the MAC address out of the NVM */
5137 if (e1000e_read_mac_addr(&adapter
->hw
))
5138 e_err("NVM Read Error while reading MAC address\n");
5140 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5141 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5143 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5144 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5149 init_timer(&adapter
->watchdog_timer
);
5150 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
5151 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5153 init_timer(&adapter
->phy_info_timer
);
5154 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
5155 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5157 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5158 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5159 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5160 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5161 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
5163 /* Initialize link parameters. User can change them with ethtool */
5164 adapter
->hw
.mac
.autoneg
= 1;
5165 adapter
->fc_autoneg
= 1;
5166 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5167 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5168 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5170 /* ring size defaults */
5171 adapter
->rx_ring
->count
= 256;
5172 adapter
->tx_ring
->count
= 256;
5175 * Initial Wake on LAN setting - If APM wake is enabled in
5176 * the EEPROM, enable the ACPI Magic Packet filter
5178 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5179 /* APME bit in EEPROM is mapped to WUC.APME */
5180 eeprom_data
= er32(WUC
);
5181 eeprom_apme_mask
= E1000_WUC_APME
;
5182 if (eeprom_data
& E1000_WUC_PHY_WAKE
)
5183 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5184 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5185 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5186 (adapter
->hw
.bus
.func
== 1))
5187 e1000_read_nvm(&adapter
->hw
,
5188 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5190 e1000_read_nvm(&adapter
->hw
,
5191 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5194 /* fetch WoL from EEPROM */
5195 if (eeprom_data
& eeprom_apme_mask
)
5196 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5199 * now that we have the eeprom settings, apply the special cases
5200 * where the eeprom may be wrong or the board simply won't support
5201 * wake on lan on a particular port
5203 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5204 adapter
->eeprom_wol
= 0;
5206 /* initialize the wol settings based on the eeprom settings */
5207 adapter
->wol
= adapter
->eeprom_wol
;
5208 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5210 /* save off EEPROM version number */
5211 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5213 /* reset the hardware with the new settings */
5214 e1000e_reset(adapter
);
5217 * If the controller has AMT, do not set DRV_LOAD until the interface
5218 * is up. For all other cases, let the f/w know that the h/w is now
5219 * under the control of the driver.
5221 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5222 e1000_get_hw_control(adapter
);
5224 strcpy(netdev
->name
, "eth%d");
5225 err
= register_netdev(netdev
);
5229 /* carrier off reporting is important to ethtool even BEFORE open */
5230 netif_carrier_off(netdev
);
5232 e1000_print_device_info(adapter
);
5237 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5238 e1000_release_hw_control(adapter
);
5240 if (!e1000_check_reset_block(&adapter
->hw
))
5241 e1000_phy_hw_reset(&adapter
->hw
);
5244 kfree(adapter
->tx_ring
);
5245 kfree(adapter
->rx_ring
);
5247 if (adapter
->hw
.flash_address
)
5248 iounmap(adapter
->hw
.flash_address
);
5249 e1000e_reset_interrupt_capability(adapter
);
5251 iounmap(adapter
->hw
.hw_addr
);
5253 free_netdev(netdev
);
5255 pci_release_selected_regions(pdev
,
5256 pci_select_bars(pdev
, IORESOURCE_MEM
));
5259 pci_disable_device(pdev
);
5264 * e1000_remove - Device Removal Routine
5265 * @pdev: PCI device information struct
5267 * e1000_remove is called by the PCI subsystem to alert the driver
5268 * that it should release a PCI device. The could be caused by a
5269 * Hot-Plug event, or because the driver is going to be removed from
5272 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
5274 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5275 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5278 * flush_scheduled work may reschedule our watchdog task, so
5279 * explicitly disable watchdog tasks from being rescheduled
5281 set_bit(__E1000_DOWN
, &adapter
->state
);
5282 del_timer_sync(&adapter
->watchdog_timer
);
5283 del_timer_sync(&adapter
->phy_info_timer
);
5285 cancel_work_sync(&adapter
->reset_task
);
5286 cancel_work_sync(&adapter
->watchdog_task
);
5287 cancel_work_sync(&adapter
->downshift_task
);
5288 cancel_work_sync(&adapter
->update_phy_task
);
5289 cancel_work_sync(&adapter
->print_hang_task
);
5290 flush_scheduled_work();
5292 if (!(netdev
->flags
& IFF_UP
))
5293 e1000_power_down_phy(adapter
);
5295 unregister_netdev(netdev
);
5298 * Release control of h/w to f/w. If f/w is AMT enabled, this
5299 * would have already happened in close and is redundant.
5301 e1000_release_hw_control(adapter
);
5303 e1000e_reset_interrupt_capability(adapter
);
5304 kfree(adapter
->tx_ring
);
5305 kfree(adapter
->rx_ring
);
5307 iounmap(adapter
->hw
.hw_addr
);
5308 if (adapter
->hw
.flash_address
)
5309 iounmap(adapter
->hw
.flash_address
);
5310 pci_release_selected_regions(pdev
,
5311 pci_select_bars(pdev
, IORESOURCE_MEM
));
5313 free_netdev(netdev
);
5316 pci_disable_pcie_error_reporting(pdev
);
5318 pci_disable_device(pdev
);
5321 /* PCI Error Recovery (ERS) */
5322 static struct pci_error_handlers e1000_err_handler
= {
5323 .error_detected
= e1000_io_error_detected
,
5324 .slot_reset
= e1000_io_slot_reset
,
5325 .resume
= e1000_io_resume
,
5328 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
5329 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
5330 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
5331 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
5332 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
5333 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
5334 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
5335 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
5336 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
5337 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
5339 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
5340 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
5341 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
5342 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
5344 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
5345 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
5346 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
5348 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
5349 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
5350 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
5352 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
5353 board_80003es2lan
},
5354 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
5355 board_80003es2lan
},
5356 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
5357 board_80003es2lan
},
5358 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
5359 board_80003es2lan
},
5361 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
5362 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
5363 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
5364 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
5365 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
5366 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
5367 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
5368 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
5370 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
5371 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
5372 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
5373 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
5374 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
5375 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
5376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
5377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
5378 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
5380 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
5381 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
5382 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
5384 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
5385 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
5387 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
5388 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
5389 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
5390 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
5392 { } /* terminate list */
5394 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
5396 /* PCI Device API Driver */
5397 static struct pci_driver e1000_driver
= {
5398 .name
= e1000e_driver_name
,
5399 .id_table
= e1000_pci_tbl
,
5400 .probe
= e1000_probe
,
5401 .remove
= __devexit_p(e1000_remove
),
5403 /* Power Management Hooks */
5404 .suspend
= e1000_suspend
,
5405 .resume
= e1000_resume
,
5407 .shutdown
= e1000_shutdown
,
5408 .err_handler
= &e1000_err_handler
5412 * e1000_init_module - Driver Registration Routine
5414 * e1000_init_module is the first routine called when the driver is
5415 * loaded. All it does is register with the PCI subsystem.
5417 static int __init
e1000_init_module(void)
5420 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
5421 e1000e_driver_name
, e1000e_driver_version
);
5422 printk(KERN_INFO
"%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5423 e1000e_driver_name
);
5424 ret
= pci_register_driver(&e1000_driver
);
5428 module_init(e1000_init_module
);
5431 * e1000_exit_module - Driver Exit Cleanup Routine
5433 * e1000_exit_module is called just before the driver is removed
5436 static void __exit
e1000_exit_module(void)
5438 pci_unregister_driver(&e1000_driver
);
5440 module_exit(e1000_exit_module
);
5443 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5444 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5445 MODULE_LICENSE("GPL");
5446 MODULE_VERSION(DRV_VERSION
);