Merge /spare/repo/linux-2.6/
[firewire-audio.git] / drivers / scsi / libata-core.c
blob73b1f72b7e430989b261f1dd0c825d9ec02ad18e
1 /*
2 libata-core.c - helper library for ATA
4 Copyright 2003-2004 Red Hat, Inc. All rights reserved.
5 Copyright 2003-2004 Jeff Garzik
7 The contents of this file are subject to the Open
8 Software License version 1.1 that can be found at
9 http://www.opensource.org/licenses/osl-1.1.txt and is included herein
10 by reference.
12 Alternatively, the contents of this file may be used under the terms
13 of the GNU General Public License version 2 (the "GPL") as distributed
14 in the kernel source COPYING file, in which case the provisions of
15 the GPL are applicable instead of the above. If you wish to allow
16 the use of your version of this file only under the terms of the
17 GPL and not to allow others to use your version of this file under
18 the OSL, indicate your decision by deleting the provisions above and
19 replace them with the notice and other provisions required by the GPL.
20 If you do not delete the provisions above, a recipient may use your
21 version of this file under either the OSL or the GPL.
25 #include <linux/config.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/highmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/blkdev.h>
35 #include <linux/delay.h>
36 #include <linux/timer.h>
37 #include <linux/interrupt.h>
38 #include <linux/completion.h>
39 #include <linux/suspend.h>
40 #include <linux/workqueue.h>
41 #include <scsi/scsi.h>
42 #include "scsi.h"
43 #include "scsi_priv.h"
44 #include <scsi/scsi_host.h>
45 #include <linux/libata.h>
46 #include <asm/io.h>
47 #include <asm/semaphore.h>
48 #include <asm/byteorder.h>
50 #include "libata.h"
52 static unsigned int ata_busy_sleep (struct ata_port *ap,
53 unsigned long tmout_pat,
54 unsigned long tmout);
55 static void ata_set_mode(struct ata_port *ap);
56 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
57 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
58 static int fgb(u32 bitmap);
59 static int ata_choose_xfer_mode(struct ata_port *ap,
60 u8 *xfer_mode_out,
61 unsigned int *xfer_shift_out);
62 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat);
63 static void __ata_qc_complete(struct ata_queued_cmd *qc);
65 static unsigned int ata_unique_id = 1;
66 static struct workqueue_struct *ata_wq;
68 MODULE_AUTHOR("Jeff Garzik");
69 MODULE_DESCRIPTION("Library module for ATA devices");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_VERSION);
73 /**
74 * ata_tf_load - send taskfile registers to host controller
75 * @ap: Port to which output is sent
76 * @tf: ATA taskfile register set
78 * Outputs ATA taskfile to standard ATA host controller.
80 * LOCKING:
81 * Inherited from caller.
84 static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
86 struct ata_ioports *ioaddr = &ap->ioaddr;
87 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
89 if (tf->ctl != ap->last_ctl) {
90 outb(tf->ctl, ioaddr->ctl_addr);
91 ap->last_ctl = tf->ctl;
92 ata_wait_idle(ap);
95 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
96 outb(tf->hob_feature, ioaddr->feature_addr);
97 outb(tf->hob_nsect, ioaddr->nsect_addr);
98 outb(tf->hob_lbal, ioaddr->lbal_addr);
99 outb(tf->hob_lbam, ioaddr->lbam_addr);
100 outb(tf->hob_lbah, ioaddr->lbah_addr);
101 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
102 tf->hob_feature,
103 tf->hob_nsect,
104 tf->hob_lbal,
105 tf->hob_lbam,
106 tf->hob_lbah);
109 if (is_addr) {
110 outb(tf->feature, ioaddr->feature_addr);
111 outb(tf->nsect, ioaddr->nsect_addr);
112 outb(tf->lbal, ioaddr->lbal_addr);
113 outb(tf->lbam, ioaddr->lbam_addr);
114 outb(tf->lbah, ioaddr->lbah_addr);
115 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
116 tf->feature,
117 tf->nsect,
118 tf->lbal,
119 tf->lbam,
120 tf->lbah);
123 if (tf->flags & ATA_TFLAG_DEVICE) {
124 outb(tf->device, ioaddr->device_addr);
125 VPRINTK("device 0x%X\n", tf->device);
128 ata_wait_idle(ap);
132 * ata_tf_load_mmio - send taskfile registers to host controller
133 * @ap: Port to which output is sent
134 * @tf: ATA taskfile register set
136 * Outputs ATA taskfile to standard ATA host controller using MMIO.
138 * LOCKING:
139 * Inherited from caller.
142 static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
144 struct ata_ioports *ioaddr = &ap->ioaddr;
145 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
147 if (tf->ctl != ap->last_ctl) {
148 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
149 ap->last_ctl = tf->ctl;
150 ata_wait_idle(ap);
153 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
154 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
155 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
156 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
157 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
158 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
159 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
160 tf->hob_feature,
161 tf->hob_nsect,
162 tf->hob_lbal,
163 tf->hob_lbam,
164 tf->hob_lbah);
167 if (is_addr) {
168 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
169 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
170 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
171 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
172 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
173 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
174 tf->feature,
175 tf->nsect,
176 tf->lbal,
177 tf->lbam,
178 tf->lbah);
181 if (tf->flags & ATA_TFLAG_DEVICE) {
182 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
183 VPRINTK("device 0x%X\n", tf->device);
186 ata_wait_idle(ap);
191 * ata_tf_load - send taskfile registers to host controller
192 * @ap: Port to which output is sent
193 * @tf: ATA taskfile register set
195 * Outputs ATA taskfile to standard ATA host controller using MMIO
196 * or PIO as indicated by the ATA_FLAG_MMIO flag.
197 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
198 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
199 * hob_lbal, hob_lbam, and hob_lbah.
201 * This function waits for idle (!BUSY and !DRQ) after writing
202 * registers. If the control register has a new value, this
203 * function also waits for idle after writing control and before
204 * writing the remaining registers.
206 * May be used as the tf_load() entry in ata_port_operations.
208 * LOCKING:
209 * Inherited from caller.
211 void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
213 if (ap->flags & ATA_FLAG_MMIO)
214 ata_tf_load_mmio(ap, tf);
215 else
216 ata_tf_load_pio(ap, tf);
220 * ata_exec_command_pio - issue ATA command to host controller
221 * @ap: port to which command is being issued
222 * @tf: ATA taskfile register set
224 * Issues PIO write to ATA command register, with proper
225 * synchronization with interrupt handler / other threads.
227 * LOCKING:
228 * spin_lock_irqsave(host_set lock)
231 static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
233 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
235 outb(tf->command, ap->ioaddr.command_addr);
236 ata_pause(ap);
241 * ata_exec_command_mmio - issue ATA command to host controller
242 * @ap: port to which command is being issued
243 * @tf: ATA taskfile register set
245 * Issues MMIO write to ATA command register, with proper
246 * synchronization with interrupt handler / other threads.
248 * LOCKING:
249 * spin_lock_irqsave(host_set lock)
252 static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
254 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
256 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
257 ata_pause(ap);
262 * ata_exec_command - issue ATA command to host controller
263 * @ap: port to which command is being issued
264 * @tf: ATA taskfile register set
266 * Issues PIO/MMIO write to ATA command register, with proper
267 * synchronization with interrupt handler / other threads.
269 * LOCKING:
270 * spin_lock_irqsave(host_set lock)
272 void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
274 if (ap->flags & ATA_FLAG_MMIO)
275 ata_exec_command_mmio(ap, tf);
276 else
277 ata_exec_command_pio(ap, tf);
281 * ata_exec - issue ATA command to host controller
282 * @ap: port to which command is being issued
283 * @tf: ATA taskfile register set
285 * Issues PIO/MMIO write to ATA command register, with proper
286 * synchronization with interrupt handler / other threads.
288 * LOCKING:
289 * Obtains host_set lock.
292 static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
294 unsigned long flags;
296 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
297 spin_lock_irqsave(&ap->host_set->lock, flags);
298 ap->ops->exec_command(ap, tf);
299 spin_unlock_irqrestore(&ap->host_set->lock, flags);
303 * ata_tf_to_host - issue ATA taskfile to host controller
304 * @ap: port to which command is being issued
305 * @tf: ATA taskfile register set
307 * Issues ATA taskfile register set to ATA host controller,
308 * with proper synchronization with interrupt handler and
309 * other threads.
311 * LOCKING:
312 * Obtains host_set lock.
315 static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
317 ap->ops->tf_load(ap, tf);
319 ata_exec(ap, tf);
323 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
324 * @ap: port to which command is being issued
325 * @tf: ATA taskfile register set
327 * Issues ATA taskfile register set to ATA host controller,
328 * with proper synchronization with interrupt handler and
329 * other threads.
331 * LOCKING:
332 * spin_lock_irqsave(host_set lock)
335 void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
337 ap->ops->tf_load(ap, tf);
338 ap->ops->exec_command(ap, tf);
342 * ata_tf_read_pio - input device's ATA taskfile shadow registers
343 * @ap: Port from which input is read
344 * @tf: ATA taskfile register set for storing input
346 * Reads ATA taskfile registers for currently-selected device
347 * into @tf.
349 * LOCKING:
350 * Inherited from caller.
353 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
355 struct ata_ioports *ioaddr = &ap->ioaddr;
357 tf->nsect = inb(ioaddr->nsect_addr);
358 tf->lbal = inb(ioaddr->lbal_addr);
359 tf->lbam = inb(ioaddr->lbam_addr);
360 tf->lbah = inb(ioaddr->lbah_addr);
361 tf->device = inb(ioaddr->device_addr);
363 if (tf->flags & ATA_TFLAG_LBA48) {
364 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
365 tf->hob_feature = inb(ioaddr->error_addr);
366 tf->hob_nsect = inb(ioaddr->nsect_addr);
367 tf->hob_lbal = inb(ioaddr->lbal_addr);
368 tf->hob_lbam = inb(ioaddr->lbam_addr);
369 tf->hob_lbah = inb(ioaddr->lbah_addr);
374 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
375 * @ap: Port from which input is read
376 * @tf: ATA taskfile register set for storing input
378 * Reads ATA taskfile registers for currently-selected device
379 * into @tf via MMIO.
381 * LOCKING:
382 * Inherited from caller.
385 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
387 struct ata_ioports *ioaddr = &ap->ioaddr;
389 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
390 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
391 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
392 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
393 tf->device = readb((void __iomem *)ioaddr->device_addr);
395 if (tf->flags & ATA_TFLAG_LBA48) {
396 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
397 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
398 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
399 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
400 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
401 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
407 * ata_tf_read - input device's ATA taskfile shadow registers
408 * @ap: Port from which input is read
409 * @tf: ATA taskfile register set for storing input
411 * Reads ATA taskfile registers for currently-selected device
412 * into @tf.
414 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
415 * is set, also reads the hob registers.
417 * May be used as the tf_read() entry in ata_port_operations.
419 * LOCKING:
420 * Inherited from caller.
422 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
424 if (ap->flags & ATA_FLAG_MMIO)
425 ata_tf_read_mmio(ap, tf);
426 else
427 ata_tf_read_pio(ap, tf);
431 * ata_check_status_pio - Read device status reg & clear interrupt
432 * @ap: port where the device is
434 * Reads ATA taskfile status register for currently-selected device
435 * and return its value. This also clears pending interrupts
436 * from this device
438 * LOCKING:
439 * Inherited from caller.
441 static u8 ata_check_status_pio(struct ata_port *ap)
443 return inb(ap->ioaddr.status_addr);
447 * ata_check_status_mmio - Read device status reg & clear interrupt
448 * @ap: port where the device is
450 * Reads ATA taskfile status register for currently-selected device
451 * via MMIO and return its value. This also clears pending interrupts
452 * from this device
454 * LOCKING:
455 * Inherited from caller.
457 static u8 ata_check_status_mmio(struct ata_port *ap)
459 return readb((void __iomem *) ap->ioaddr.status_addr);
464 * ata_check_status - Read device status reg & clear interrupt
465 * @ap: port where the device is
467 * Reads ATA taskfile status register for currently-selected device
468 * and return its value. This also clears pending interrupts
469 * from this device
471 * May be used as the check_status() entry in ata_port_operations.
473 * LOCKING:
474 * Inherited from caller.
476 u8 ata_check_status(struct ata_port *ap)
478 if (ap->flags & ATA_FLAG_MMIO)
479 return ata_check_status_mmio(ap);
480 return ata_check_status_pio(ap);
485 * ata_altstatus - Read device alternate status reg
486 * @ap: port where the device is
488 * Reads ATA taskfile alternate status register for
489 * currently-selected device and return its value.
491 * Note: may NOT be used as the check_altstatus() entry in
492 * ata_port_operations.
494 * LOCKING:
495 * Inherited from caller.
497 u8 ata_altstatus(struct ata_port *ap)
499 if (ap->ops->check_altstatus)
500 return ap->ops->check_altstatus(ap);
502 if (ap->flags & ATA_FLAG_MMIO)
503 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
504 return inb(ap->ioaddr.altstatus_addr);
509 * ata_chk_err - Read device error reg
510 * @ap: port where the device is
512 * Reads ATA taskfile error register for
513 * currently-selected device and return its value.
515 * Note: may NOT be used as the check_err() entry in
516 * ata_port_operations.
518 * LOCKING:
519 * Inherited from caller.
521 u8 ata_chk_err(struct ata_port *ap)
523 if (ap->ops->check_err)
524 return ap->ops->check_err(ap);
526 if (ap->flags & ATA_FLAG_MMIO) {
527 return readb((void __iomem *) ap->ioaddr.error_addr);
529 return inb(ap->ioaddr.error_addr);
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @fis: Buffer into which data will output
536 * @pmp: Port multiplier port
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
541 * LOCKING:
542 * Inherited from caller.
545 void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
549 bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a standard ATA taskfile to a Serial ATA
580 * FIS structure (Register - Host to Device).
582 * LOCKING:
583 * Inherited from caller.
586 void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
605 * ata_prot_to_cmd - determine which read/write opcodes to use
606 * @protocol: ATA_PROT_xxx taskfile protocol
607 * @lba48: true is lba48 is present
609 * Given necessary input, determine which read/write commands
610 * to use to transfer data.
612 * LOCKING:
613 * None.
615 static int ata_prot_to_cmd(int protocol, int lba48)
617 int rcmd = 0, wcmd = 0;
619 switch (protocol) {
620 case ATA_PROT_PIO:
621 if (lba48) {
622 rcmd = ATA_CMD_PIO_READ_EXT;
623 wcmd = ATA_CMD_PIO_WRITE_EXT;
624 } else {
625 rcmd = ATA_CMD_PIO_READ;
626 wcmd = ATA_CMD_PIO_WRITE;
628 break;
630 case ATA_PROT_DMA:
631 if (lba48) {
632 rcmd = ATA_CMD_READ_EXT;
633 wcmd = ATA_CMD_WRITE_EXT;
634 } else {
635 rcmd = ATA_CMD_READ;
636 wcmd = ATA_CMD_WRITE;
638 break;
640 default:
641 return -1;
644 return rcmd | (wcmd << 8);
648 * ata_dev_set_protocol - set taskfile protocol and r/w commands
649 * @dev: device to examine and configure
651 * Examine the device configuration, after we have
652 * read the identify-device page and configured the
653 * data transfer mode. Set internal state related to
654 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
655 * and calculate the proper read/write commands to use.
657 * LOCKING:
658 * caller.
660 static void ata_dev_set_protocol(struct ata_device *dev)
662 int pio = (dev->flags & ATA_DFLAG_PIO);
663 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
664 int proto, cmd;
666 if (pio)
667 proto = dev->xfer_protocol = ATA_PROT_PIO;
668 else
669 proto = dev->xfer_protocol = ATA_PROT_DMA;
671 cmd = ata_prot_to_cmd(proto, lba48);
672 if (cmd < 0)
673 BUG();
675 dev->read_cmd = cmd & 0xff;
676 dev->write_cmd = (cmd >> 8) & 0xff;
679 static const char * xfer_mode_str[] = {
680 "UDMA/16",
681 "UDMA/25",
682 "UDMA/33",
683 "UDMA/44",
684 "UDMA/66",
685 "UDMA/100",
686 "UDMA/133",
687 "UDMA7",
688 "MWDMA0",
689 "MWDMA1",
690 "MWDMA2",
691 "PIO0",
692 "PIO1",
693 "PIO2",
694 "PIO3",
695 "PIO4",
699 * ata_udma_string - convert UDMA bit offset to string
700 * @mask: mask of bits supported; only highest bit counts.
702 * Determine string which represents the highest speed
703 * (highest bit in @udma_mask).
705 * LOCKING:
706 * None.
708 * RETURNS:
709 * Constant C string representing highest speed listed in
710 * @udma_mask, or the constant C string "<n/a>".
713 static const char *ata_mode_string(unsigned int mask)
715 int i;
717 for (i = 7; i >= 0; i--)
718 if (mask & (1 << i))
719 goto out;
720 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
721 if (mask & (1 << i))
722 goto out;
723 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
724 if (mask & (1 << i))
725 goto out;
727 return "<n/a>";
729 out:
730 return xfer_mode_str[i];
734 * ata_pio_devchk - PATA device presence detection
735 * @ap: ATA channel to examine
736 * @device: Device to examine (starting at zero)
738 * This technique was originally described in
739 * Hale Landis's ATADRVR (www.ata-atapi.com), and
740 * later found its way into the ATA/ATAPI spec.
742 * Write a pattern to the ATA shadow registers,
743 * and if a device is present, it will respond by
744 * correctly storing and echoing back the
745 * ATA shadow register contents.
747 * LOCKING:
748 * caller.
751 static unsigned int ata_pio_devchk(struct ata_port *ap,
752 unsigned int device)
754 struct ata_ioports *ioaddr = &ap->ioaddr;
755 u8 nsect, lbal;
757 ap->ops->dev_select(ap, device);
759 outb(0x55, ioaddr->nsect_addr);
760 outb(0xaa, ioaddr->lbal_addr);
762 outb(0xaa, ioaddr->nsect_addr);
763 outb(0x55, ioaddr->lbal_addr);
765 outb(0x55, ioaddr->nsect_addr);
766 outb(0xaa, ioaddr->lbal_addr);
768 nsect = inb(ioaddr->nsect_addr);
769 lbal = inb(ioaddr->lbal_addr);
771 if ((nsect == 0x55) && (lbal == 0xaa))
772 return 1; /* we found a device */
774 return 0; /* nothing found */
778 * ata_mmio_devchk - PATA device presence detection
779 * @ap: ATA channel to examine
780 * @device: Device to examine (starting at zero)
782 * This technique was originally described in
783 * Hale Landis's ATADRVR (www.ata-atapi.com), and
784 * later found its way into the ATA/ATAPI spec.
786 * Write a pattern to the ATA shadow registers,
787 * and if a device is present, it will respond by
788 * correctly storing and echoing back the
789 * ATA shadow register contents.
791 * LOCKING:
792 * caller.
795 static unsigned int ata_mmio_devchk(struct ata_port *ap,
796 unsigned int device)
798 struct ata_ioports *ioaddr = &ap->ioaddr;
799 u8 nsect, lbal;
801 ap->ops->dev_select(ap, device);
803 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
804 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
806 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
807 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
809 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
810 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
812 nsect = readb((void __iomem *) ioaddr->nsect_addr);
813 lbal = readb((void __iomem *) ioaddr->lbal_addr);
815 if ((nsect == 0x55) && (lbal == 0xaa))
816 return 1; /* we found a device */
818 return 0; /* nothing found */
822 * ata_devchk - PATA device presence detection
823 * @ap: ATA channel to examine
824 * @device: Device to examine (starting at zero)
826 * Dispatch ATA device presence detection, depending
827 * on whether we are using PIO or MMIO to talk to the
828 * ATA shadow registers.
830 * LOCKING:
831 * caller.
834 static unsigned int ata_devchk(struct ata_port *ap,
835 unsigned int device)
837 if (ap->flags & ATA_FLAG_MMIO)
838 return ata_mmio_devchk(ap, device);
839 return ata_pio_devchk(ap, device);
843 * ata_dev_classify - determine device type based on ATA-spec signature
844 * @tf: ATA taskfile register set for device to be identified
846 * Determine from taskfile register contents whether a device is
847 * ATA or ATAPI, as per "Signature and persistence" section
848 * of ATA/PI spec (volume 1, sect 5.14).
850 * LOCKING:
851 * None.
853 * RETURNS:
854 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
855 * the event of failure.
858 unsigned int ata_dev_classify(struct ata_taskfile *tf)
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
865 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
866 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
867 DPRINTK("found ATA device by sig\n");
868 return ATA_DEV_ATA;
871 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
872 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
873 DPRINTK("found ATAPI device by sig\n");
874 return ATA_DEV_ATAPI;
877 DPRINTK("unknown device\n");
878 return ATA_DEV_UNKNOWN;
882 * ata_dev_try_classify - Parse returned ATA device signature
883 * @ap: ATA channel to examine
884 * @device: Device to examine (starting at zero)
886 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
887 * an ATA/ATAPI-defined set of values is placed in the ATA
888 * shadow registers, indicating the results of device detection
889 * and diagnostics.
891 * Select the ATA device, and read the values from the ATA shadow
892 * registers. Then parse according to the Error register value,
893 * and the spec-defined values examined by ata_dev_classify().
895 * LOCKING:
896 * caller.
899 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
901 struct ata_device *dev = &ap->device[device];
902 struct ata_taskfile tf;
903 unsigned int class;
904 u8 err;
906 ap->ops->dev_select(ap, device);
908 memset(&tf, 0, sizeof(tf));
910 err = ata_chk_err(ap);
911 ap->ops->tf_read(ap, &tf);
913 dev->class = ATA_DEV_NONE;
915 /* see if device passed diags */
916 if (err == 1)
917 /* do nothing */ ;
918 else if ((device == 0) && (err == 0x81))
919 /* do nothing */ ;
920 else
921 return err;
923 /* determine if device if ATA or ATAPI */
924 class = ata_dev_classify(&tf);
925 if (class == ATA_DEV_UNKNOWN)
926 return err;
927 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
928 return err;
930 dev->class = class;
932 return err;
936 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
937 * @id: IDENTIFY DEVICE results we will examine
938 * @s: string into which data is output
939 * @ofs: offset into identify device page
940 * @len: length of string to return. must be an even number.
942 * The strings in the IDENTIFY DEVICE page are broken up into
943 * 16-bit chunks. Run through the string, and output each
944 * 8-bit chunk linearly, regardless of platform.
946 * LOCKING:
947 * caller.
950 void ata_dev_id_string(u16 *id, unsigned char *s,
951 unsigned int ofs, unsigned int len)
953 unsigned int c;
955 while (len > 0) {
956 c = id[ofs] >> 8;
957 *s = c;
958 s++;
960 c = id[ofs] & 0xff;
961 *s = c;
962 s++;
964 ofs++;
965 len -= 2;
971 * ata_noop_dev_select - Select device 0/1 on ATA bus
972 * @ap: ATA channel to manipulate
973 * @device: ATA device (numbered from zero) to select
975 * This function performs no actual function.
977 * May be used as the dev_select() entry in ata_port_operations.
979 * LOCKING:
980 * caller.
982 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
988 * ata_std_dev_select - Select device 0/1 on ATA bus
989 * @ap: ATA channel to manipulate
990 * @device: ATA device (numbered from zero) to select
992 * Use the method defined in the ATA specification to
993 * make either device 0, or device 1, active on the
994 * ATA channel. Works with both PIO and MMIO.
996 * May be used as the dev_select() entry in ata_port_operations.
998 * LOCKING:
999 * caller.
1002 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1004 u8 tmp;
1006 if (device == 0)
1007 tmp = ATA_DEVICE_OBS;
1008 else
1009 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1011 if (ap->flags & ATA_FLAG_MMIO) {
1012 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1013 } else {
1014 outb(tmp, ap->ioaddr.device_addr);
1016 ata_pause(ap); /* needed; also flushes, for mmio */
1020 * ata_dev_select - Select device 0/1 on ATA bus
1021 * @ap: ATA channel to manipulate
1022 * @device: ATA device (numbered from zero) to select
1023 * @wait: non-zero to wait for Status register BSY bit to clear
1024 * @can_sleep: non-zero if context allows sleeping
1026 * Use the method defined in the ATA specification to
1027 * make either device 0, or device 1, active on the
1028 * ATA channel.
1030 * This is a high-level version of ata_std_dev_select(),
1031 * which additionally provides the services of inserting
1032 * the proper pauses and status polling, where needed.
1034 * LOCKING:
1035 * caller.
1038 void ata_dev_select(struct ata_port *ap, unsigned int device,
1039 unsigned int wait, unsigned int can_sleep)
1041 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1042 ap->id, device, wait);
1044 if (wait)
1045 ata_wait_idle(ap);
1047 ap->ops->dev_select(ap, device);
1049 if (wait) {
1050 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1051 msleep(150);
1052 ata_wait_idle(ap);
1057 * ata_dump_id - IDENTIFY DEVICE info debugging output
1058 * @dev: Device whose IDENTIFY DEVICE page we will dump
1060 * Dump selected 16-bit words from a detected device's
1061 * IDENTIFY PAGE page.
1063 * LOCKING:
1064 * caller.
1067 static inline void ata_dump_id(struct ata_device *dev)
1069 DPRINTK("49==0x%04x "
1070 "53==0x%04x "
1071 "63==0x%04x "
1072 "64==0x%04x "
1073 "75==0x%04x \n",
1074 dev->id[49],
1075 dev->id[53],
1076 dev->id[63],
1077 dev->id[64],
1078 dev->id[75]);
1079 DPRINTK("80==0x%04x "
1080 "81==0x%04x "
1081 "82==0x%04x "
1082 "83==0x%04x "
1083 "84==0x%04x \n",
1084 dev->id[80],
1085 dev->id[81],
1086 dev->id[82],
1087 dev->id[83],
1088 dev->id[84]);
1089 DPRINTK("88==0x%04x "
1090 "93==0x%04x\n",
1091 dev->id[88],
1092 dev->id[93]);
1096 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1097 * @ap: port on which device we wish to probe resides
1098 * @device: device bus address, starting at zero
1100 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1101 * command, and read back the 512-byte device information page.
1102 * The device information page is fed to us via the standard
1103 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1104 * using standard PIO-IN paths)
1106 * After reading the device information page, we use several
1107 * bits of information from it to initialize data structures
1108 * that will be used during the lifetime of the ata_device.
1109 * Other data from the info page is used to disqualify certain
1110 * older ATA devices we do not wish to support.
1112 * LOCKING:
1113 * Inherited from caller. Some functions called by this function
1114 * obtain the host_set lock.
1117 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1119 struct ata_device *dev = &ap->device[device];
1120 unsigned int i;
1121 u16 tmp;
1122 unsigned long xfer_modes;
1123 u8 status;
1124 unsigned int using_edd;
1125 DECLARE_COMPLETION(wait);
1126 struct ata_queued_cmd *qc;
1127 unsigned long flags;
1128 int rc;
1130 if (!ata_dev_present(dev)) {
1131 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1132 ap->id, device);
1133 return;
1136 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1137 using_edd = 0;
1138 else
1139 using_edd = 1;
1141 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1143 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1144 dev->class == ATA_DEV_NONE);
1146 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1148 qc = ata_qc_new_init(ap, dev);
1149 BUG_ON(qc == NULL);
1151 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1152 qc->dma_dir = DMA_FROM_DEVICE;
1153 qc->tf.protocol = ATA_PROT_PIO;
1154 qc->nsect = 1;
1156 retry:
1157 if (dev->class == ATA_DEV_ATA) {
1158 qc->tf.command = ATA_CMD_ID_ATA;
1159 DPRINTK("do ATA identify\n");
1160 } else {
1161 qc->tf.command = ATA_CMD_ID_ATAPI;
1162 DPRINTK("do ATAPI identify\n");
1165 qc->waiting = &wait;
1166 qc->complete_fn = ata_qc_complete_noop;
1168 spin_lock_irqsave(&ap->host_set->lock, flags);
1169 rc = ata_qc_issue(qc);
1170 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1172 if (rc)
1173 goto err_out;
1174 else
1175 wait_for_completion(&wait);
1177 status = ata_chk_status(ap);
1178 if (status & ATA_ERR) {
1180 * arg! EDD works for all test cases, but seems to return
1181 * the ATA signature for some ATAPI devices. Until the
1182 * reason for this is found and fixed, we fix up the mess
1183 * here. If IDENTIFY DEVICE returns command aborted
1184 * (as ATAPI devices do), then we issue an
1185 * IDENTIFY PACKET DEVICE.
1187 * ATA software reset (SRST, the default) does not appear
1188 * to have this problem.
1190 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1191 u8 err = ata_chk_err(ap);
1192 if (err & ATA_ABORTED) {
1193 dev->class = ATA_DEV_ATAPI;
1194 qc->cursg = 0;
1195 qc->cursg_ofs = 0;
1196 qc->cursect = 0;
1197 qc->nsect = 1;
1198 goto retry;
1201 goto err_out;
1204 swap_buf_le16(dev->id, ATA_ID_WORDS);
1206 /* print device capabilities */
1207 printk(KERN_DEBUG "ata%u: dev %u cfg "
1208 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1209 ap->id, device, dev->id[49],
1210 dev->id[82], dev->id[83], dev->id[84],
1211 dev->id[85], dev->id[86], dev->id[87],
1212 dev->id[88]);
1215 * common ATA, ATAPI feature tests
1218 /* we require LBA and DMA support (bits 8 & 9 of word 49) */
1219 if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) {
1220 printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id);
1221 goto err_out_nosup;
1224 /* quick-n-dirty find max transfer mode; for printk only */
1225 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1226 if (!xfer_modes)
1227 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1228 if (!xfer_modes) {
1229 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1230 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1233 ata_dump_id(dev);
1235 /* ATA-specific feature tests */
1236 if (dev->class == ATA_DEV_ATA) {
1237 if (!ata_id_is_ata(dev->id)) /* sanity check */
1238 goto err_out_nosup;
1240 tmp = dev->id[ATA_ID_MAJOR_VER];
1241 for (i = 14; i >= 1; i--)
1242 if (tmp & (1 << i))
1243 break;
1245 /* we require at least ATA-3 */
1246 if (i < 3) {
1247 printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id);
1248 goto err_out_nosup;
1251 if (ata_id_has_lba48(dev->id)) {
1252 dev->flags |= ATA_DFLAG_LBA48;
1253 dev->n_sectors = ata_id_u64(dev->id, 100);
1254 } else {
1255 dev->n_sectors = ata_id_u32(dev->id, 60);
1258 ap->host->max_cmd_len = 16;
1260 /* print device info to dmesg */
1261 printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n",
1262 ap->id, device,
1263 ata_mode_string(xfer_modes),
1264 (unsigned long long)dev->n_sectors,
1265 dev->flags & ATA_DFLAG_LBA48 ? " lba48" : "");
1268 /* ATAPI-specific feature tests */
1269 else {
1270 if (ata_id_is_ata(dev->id)) /* sanity check */
1271 goto err_out_nosup;
1273 rc = atapi_cdb_len(dev->id);
1274 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1275 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1276 goto err_out_nosup;
1278 ap->cdb_len = (unsigned int) rc;
1279 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1281 /* print device info to dmesg */
1282 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1283 ap->id, device,
1284 ata_mode_string(xfer_modes));
1287 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1288 return;
1290 err_out_nosup:
1291 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1292 ap->id, device);
1293 err_out:
1294 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1295 DPRINTK("EXIT, err\n");
1299 static inline u8 ata_dev_knobble(struct ata_port *ap)
1301 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1305 * ata_dev_config - Run device specific handlers and check for
1306 * SATA->PATA bridges
1307 * @ap: Bus
1308 * @i: Device
1310 * LOCKING:
1313 void ata_dev_config(struct ata_port *ap, unsigned int i)
1315 /* limit bridge transfers to udma5, 200 sectors */
1316 if (ata_dev_knobble(ap)) {
1317 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1318 ap->id, ap->device->devno);
1319 ap->udma_mask &= ATA_UDMA5;
1320 ap->host->max_sectors = ATA_MAX_SECTORS;
1321 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1322 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1325 if (ap->ops->dev_config)
1326 ap->ops->dev_config(ap, &ap->device[i]);
1330 * ata_bus_probe - Reset and probe ATA bus
1331 * @ap: Bus to probe
1333 * Master ATA bus probing function. Initiates a hardware-dependent
1334 * bus reset, then attempts to identify any devices found on
1335 * the bus.
1337 * LOCKING:
1338 * PCI/etc. bus probe sem.
1340 * RETURNS:
1341 * Zero on success, non-zero on error.
1344 static int ata_bus_probe(struct ata_port *ap)
1346 unsigned int i, found = 0;
1348 ap->ops->phy_reset(ap);
1349 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1350 goto err_out;
1352 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1353 ata_dev_identify(ap, i);
1354 if (ata_dev_present(&ap->device[i])) {
1355 found = 1;
1356 ata_dev_config(ap,i);
1360 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1361 goto err_out_disable;
1363 ata_set_mode(ap);
1364 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1365 goto err_out_disable;
1367 return 0;
1369 err_out_disable:
1370 ap->ops->port_disable(ap);
1371 err_out:
1372 return -1;
1376 * ata_port_probe - Mark port as enabled
1377 * @ap: Port for which we indicate enablement
1379 * Modify @ap data structure such that the system
1380 * thinks that the entire port is enabled.
1382 * LOCKING: host_set lock, or some other form of
1383 * serialization.
1386 void ata_port_probe(struct ata_port *ap)
1388 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1392 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1393 * @ap: SATA port associated with target SATA PHY.
1395 * This function issues commands to standard SATA Sxxx
1396 * PHY registers, to wake up the phy (and device), and
1397 * clear any reset condition.
1399 * LOCKING:
1400 * PCI/etc. bus probe sem.
1403 void __sata_phy_reset(struct ata_port *ap)
1405 u32 sstatus;
1406 unsigned long timeout = jiffies + (HZ * 5);
1408 if (ap->flags & ATA_FLAG_SATA_RESET) {
1409 /* issue phy wake/reset */
1410 scr_write_flush(ap, SCR_CONTROL, 0x301);
1411 /* Couldn't find anything in SATA I/II specs, but
1412 * AHCI-1.1 10.4.2 says at least 1 ms. */
1413 mdelay(1);
1415 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1417 /* wait for phy to become ready, if necessary */
1418 do {
1419 msleep(200);
1420 sstatus = scr_read(ap, SCR_STATUS);
1421 if ((sstatus & 0xf) != 1)
1422 break;
1423 } while (time_before(jiffies, timeout));
1425 /* TODO: phy layer with polling, timeouts, etc. */
1426 if (sata_dev_present(ap))
1427 ata_port_probe(ap);
1428 else {
1429 sstatus = scr_read(ap, SCR_STATUS);
1430 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1431 ap->id, sstatus);
1432 ata_port_disable(ap);
1435 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1436 return;
1438 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1439 ata_port_disable(ap);
1440 return;
1443 ap->cbl = ATA_CBL_SATA;
1447 * sata_phy_reset - Reset SATA bus.
1448 * @ap: SATA port associated with target SATA PHY.
1450 * This function resets the SATA bus, and then probes
1451 * the bus for devices.
1453 * LOCKING:
1454 * PCI/etc. bus probe sem.
1457 void sata_phy_reset(struct ata_port *ap)
1459 __sata_phy_reset(ap);
1460 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1461 return;
1462 ata_bus_reset(ap);
1466 * ata_port_disable - Disable port.
1467 * @ap: Port to be disabled.
1469 * Modify @ap data structure such that the system
1470 * thinks that the entire port is disabled, and should
1471 * never attempt to probe or communicate with devices
1472 * on this port.
1474 * LOCKING: host_set lock, or some other form of
1475 * serialization.
1478 void ata_port_disable(struct ata_port *ap)
1480 ap->device[0].class = ATA_DEV_NONE;
1481 ap->device[1].class = ATA_DEV_NONE;
1482 ap->flags |= ATA_FLAG_PORT_DISABLED;
1485 static struct {
1486 unsigned int shift;
1487 u8 base;
1488 } xfer_mode_classes[] = {
1489 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1490 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1491 { ATA_SHIFT_PIO, XFER_PIO_0 },
1494 static inline u8 base_from_shift(unsigned int shift)
1496 int i;
1498 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1499 if (xfer_mode_classes[i].shift == shift)
1500 return xfer_mode_classes[i].base;
1502 return 0xff;
1505 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1507 int ofs, idx;
1508 u8 base;
1510 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1511 return;
1513 if (dev->xfer_shift == ATA_SHIFT_PIO)
1514 dev->flags |= ATA_DFLAG_PIO;
1516 ata_dev_set_xfermode(ap, dev);
1518 base = base_from_shift(dev->xfer_shift);
1519 ofs = dev->xfer_mode - base;
1520 idx = ofs + dev->xfer_shift;
1521 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1523 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1524 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1526 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1527 ap->id, dev->devno, xfer_mode_str[idx]);
1530 static int ata_host_set_pio(struct ata_port *ap)
1532 unsigned int mask;
1533 int x, i;
1534 u8 base, xfer_mode;
1536 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1537 x = fgb(mask);
1538 if (x < 0) {
1539 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1540 return -1;
1543 base = base_from_shift(ATA_SHIFT_PIO);
1544 xfer_mode = base + x;
1546 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1547 (int)base, (int)xfer_mode, mask, x);
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 struct ata_device *dev = &ap->device[i];
1551 if (ata_dev_present(dev)) {
1552 dev->pio_mode = xfer_mode;
1553 dev->xfer_mode = xfer_mode;
1554 dev->xfer_shift = ATA_SHIFT_PIO;
1555 if (ap->ops->set_piomode)
1556 ap->ops->set_piomode(ap, dev);
1560 return 0;
1563 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1564 unsigned int xfer_shift)
1566 int i;
1568 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1569 struct ata_device *dev = &ap->device[i];
1570 if (ata_dev_present(dev)) {
1571 dev->dma_mode = xfer_mode;
1572 dev->xfer_mode = xfer_mode;
1573 dev->xfer_shift = xfer_shift;
1574 if (ap->ops->set_dmamode)
1575 ap->ops->set_dmamode(ap, dev);
1581 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1582 * @ap: port on which timings will be programmed
1584 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1586 * LOCKING:
1587 * PCI/etc. bus probe sem.
1590 static void ata_set_mode(struct ata_port *ap)
1592 unsigned int i, xfer_shift;
1593 u8 xfer_mode;
1594 int rc;
1596 /* step 1: always set host PIO timings */
1597 rc = ata_host_set_pio(ap);
1598 if (rc)
1599 goto err_out;
1601 /* step 2: choose the best data xfer mode */
1602 xfer_mode = xfer_shift = 0;
1603 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1604 if (rc)
1605 goto err_out;
1607 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1608 if (xfer_shift != ATA_SHIFT_PIO)
1609 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1611 /* step 4: update devices' xfer mode */
1612 ata_dev_set_mode(ap, &ap->device[0]);
1613 ata_dev_set_mode(ap, &ap->device[1]);
1615 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1616 return;
1618 if (ap->ops->post_set_mode)
1619 ap->ops->post_set_mode(ap);
1621 for (i = 0; i < 2; i++) {
1622 struct ata_device *dev = &ap->device[i];
1623 ata_dev_set_protocol(dev);
1626 return;
1628 err_out:
1629 ata_port_disable(ap);
1633 * ata_busy_sleep - sleep until BSY clears, or timeout
1634 * @ap: port containing status register to be polled
1635 * @tmout_pat: impatience timeout
1636 * @tmout: overall timeout
1638 * Sleep until ATA Status register bit BSY clears,
1639 * or a timeout occurs.
1641 * LOCKING: None.
1645 static unsigned int ata_busy_sleep (struct ata_port *ap,
1646 unsigned long tmout_pat,
1647 unsigned long tmout)
1649 unsigned long timer_start, timeout;
1650 u8 status;
1652 status = ata_busy_wait(ap, ATA_BUSY, 300);
1653 timer_start = jiffies;
1654 timeout = timer_start + tmout_pat;
1655 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1656 msleep(50);
1657 status = ata_busy_wait(ap, ATA_BUSY, 3);
1660 if (status & ATA_BUSY)
1661 printk(KERN_WARNING "ata%u is slow to respond, "
1662 "please be patient\n", ap->id);
1664 timeout = timer_start + tmout;
1665 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1666 msleep(50);
1667 status = ata_chk_status(ap);
1670 if (status & ATA_BUSY) {
1671 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1672 ap->id, tmout / HZ);
1673 return 1;
1676 return 0;
1679 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1681 struct ata_ioports *ioaddr = &ap->ioaddr;
1682 unsigned int dev0 = devmask & (1 << 0);
1683 unsigned int dev1 = devmask & (1 << 1);
1684 unsigned long timeout;
1686 /* if device 0 was found in ata_devchk, wait for its
1687 * BSY bit to clear
1689 if (dev0)
1690 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1692 /* if device 1 was found in ata_devchk, wait for
1693 * register access, then wait for BSY to clear
1695 timeout = jiffies + ATA_TMOUT_BOOT;
1696 while (dev1) {
1697 u8 nsect, lbal;
1699 ap->ops->dev_select(ap, 1);
1700 if (ap->flags & ATA_FLAG_MMIO) {
1701 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1702 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1703 } else {
1704 nsect = inb(ioaddr->nsect_addr);
1705 lbal = inb(ioaddr->lbal_addr);
1707 if ((nsect == 1) && (lbal == 1))
1708 break;
1709 if (time_after(jiffies, timeout)) {
1710 dev1 = 0;
1711 break;
1713 msleep(50); /* give drive a breather */
1715 if (dev1)
1716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1718 /* is all this really necessary? */
1719 ap->ops->dev_select(ap, 0);
1720 if (dev1)
1721 ap->ops->dev_select(ap, 1);
1722 if (dev0)
1723 ap->ops->dev_select(ap, 0);
1727 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1728 * @ap: Port to reset and probe
1730 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1731 * probe the bus. Not often used these days.
1733 * LOCKING:
1734 * PCI/etc. bus probe sem.
1738 static unsigned int ata_bus_edd(struct ata_port *ap)
1740 struct ata_taskfile tf;
1742 /* set up execute-device-diag (bus reset) taskfile */
1743 /* also, take interrupts to a known state (disabled) */
1744 DPRINTK("execute-device-diag\n");
1745 ata_tf_init(ap, &tf, 0);
1746 tf.ctl |= ATA_NIEN;
1747 tf.command = ATA_CMD_EDD;
1748 tf.protocol = ATA_PROT_NODATA;
1750 /* do bus reset */
1751 ata_tf_to_host(ap, &tf);
1753 /* spec says at least 2ms. but who knows with those
1754 * crazy ATAPI devices...
1756 msleep(150);
1758 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1761 static unsigned int ata_bus_softreset(struct ata_port *ap,
1762 unsigned int devmask)
1764 struct ata_ioports *ioaddr = &ap->ioaddr;
1766 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1768 /* software reset. causes dev0 to be selected */
1769 if (ap->flags & ATA_FLAG_MMIO) {
1770 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1771 udelay(20); /* FIXME: flush */
1772 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1773 udelay(20); /* FIXME: flush */
1774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1775 } else {
1776 outb(ap->ctl, ioaddr->ctl_addr);
1777 udelay(10);
1778 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1779 udelay(10);
1780 outb(ap->ctl, ioaddr->ctl_addr);
1783 /* spec mandates ">= 2ms" before checking status.
1784 * We wait 150ms, because that was the magic delay used for
1785 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1786 * between when the ATA command register is written, and then
1787 * status is checked. Because waiting for "a while" before
1788 * checking status is fine, post SRST, we perform this magic
1789 * delay here as well.
1791 msleep(150);
1793 ata_bus_post_reset(ap, devmask);
1795 return 0;
1799 * ata_bus_reset - reset host port and associated ATA channel
1800 * @ap: port to reset
1802 * This is typically the first time we actually start issuing
1803 * commands to the ATA channel. We wait for BSY to clear, then
1804 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1805 * result. Determine what devices, if any, are on the channel
1806 * by looking at the device 0/1 error register. Look at the signature
1807 * stored in each device's taskfile registers, to determine if
1808 * the device is ATA or ATAPI.
1810 * LOCKING:
1811 * PCI/etc. bus probe sem.
1812 * Obtains host_set lock.
1814 * SIDE EFFECTS:
1815 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1818 void ata_bus_reset(struct ata_port *ap)
1820 struct ata_ioports *ioaddr = &ap->ioaddr;
1821 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1822 u8 err;
1823 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1825 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1827 /* determine if device 0/1 are present */
1828 if (ap->flags & ATA_FLAG_SATA_RESET)
1829 dev0 = 1;
1830 else {
1831 dev0 = ata_devchk(ap, 0);
1832 if (slave_possible)
1833 dev1 = ata_devchk(ap, 1);
1836 if (dev0)
1837 devmask |= (1 << 0);
1838 if (dev1)
1839 devmask |= (1 << 1);
1841 /* select device 0 again */
1842 ap->ops->dev_select(ap, 0);
1844 /* issue bus reset */
1845 if (ap->flags & ATA_FLAG_SRST)
1846 rc = ata_bus_softreset(ap, devmask);
1847 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1848 /* set up device control */
1849 if (ap->flags & ATA_FLAG_MMIO)
1850 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1851 else
1852 outb(ap->ctl, ioaddr->ctl_addr);
1853 rc = ata_bus_edd(ap);
1856 if (rc)
1857 goto err_out;
1860 * determine by signature whether we have ATA or ATAPI devices
1862 err = ata_dev_try_classify(ap, 0);
1863 if ((slave_possible) && (err != 0x81))
1864 ata_dev_try_classify(ap, 1);
1866 /* re-enable interrupts */
1867 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1868 ata_irq_on(ap);
1870 /* is double-select really necessary? */
1871 if (ap->device[1].class != ATA_DEV_NONE)
1872 ap->ops->dev_select(ap, 1);
1873 if (ap->device[0].class != ATA_DEV_NONE)
1874 ap->ops->dev_select(ap, 0);
1876 /* if no devices were detected, disable this port */
1877 if ((ap->device[0].class == ATA_DEV_NONE) &&
1878 (ap->device[1].class == ATA_DEV_NONE))
1879 goto err_out;
1881 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1882 /* set up device control for ATA_FLAG_SATA_RESET */
1883 if (ap->flags & ATA_FLAG_MMIO)
1884 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1885 else
1886 outb(ap->ctl, ioaddr->ctl_addr);
1889 DPRINTK("EXIT\n");
1890 return;
1892 err_out:
1893 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1894 ap->ops->port_disable(ap);
1896 DPRINTK("EXIT\n");
1899 static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1901 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1902 ap->id, dev->devno);
1905 static const char * ata_dma_blacklist [] = {
1906 "WDC AC11000H",
1907 "WDC AC22100H",
1908 "WDC AC32500H",
1909 "WDC AC33100H",
1910 "WDC AC31600H",
1911 "WDC AC32100H",
1912 "WDC AC23200L",
1913 "Compaq CRD-8241B",
1914 "CRD-8400B",
1915 "CRD-8480B",
1916 "CRD-8482B",
1917 "CRD-84",
1918 "SanDisk SDP3B",
1919 "SanDisk SDP3B-64",
1920 "SANYO CD-ROM CRD",
1921 "HITACHI CDR-8",
1922 "HITACHI CDR-8335",
1923 "HITACHI CDR-8435",
1924 "Toshiba CD-ROM XM-6202B",
1925 "TOSHIBA CD-ROM XM-1702BC",
1926 "CD-532E-A",
1927 "E-IDE CD-ROM CR-840",
1928 "CD-ROM Drive/F5A",
1929 "WPI CDD-820",
1930 "SAMSUNG CD-ROM SC-148C",
1931 "SAMSUNG CD-ROM SC",
1932 "SanDisk SDP3B-64",
1933 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1934 "_NEC DV5800A",
1937 static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1939 unsigned char model_num[40];
1940 char *s;
1941 unsigned int len;
1942 int i;
1944 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
1945 sizeof(model_num));
1946 s = &model_num[0];
1947 len = strnlen(s, sizeof(model_num));
1949 /* ATAPI specifies that empty space is blank-filled; remove blanks */
1950 while ((len > 0) && (s[len - 1] == ' ')) {
1951 len--;
1952 s[len] = 0;
1955 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
1956 if (!strncmp(ata_dma_blacklist[i], s, len))
1957 return 1;
1959 return 0;
1962 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
1964 struct ata_device *master, *slave;
1965 unsigned int mask;
1967 master = &ap->device[0];
1968 slave = &ap->device[1];
1970 assert (ata_dev_present(master) || ata_dev_present(slave));
1972 if (shift == ATA_SHIFT_UDMA) {
1973 mask = ap->udma_mask;
1974 if (ata_dev_present(master)) {
1975 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
1976 if (ata_dma_blacklisted(ap, master)) {
1977 mask = 0;
1978 ata_pr_blacklisted(ap, master);
1981 if (ata_dev_present(slave)) {
1982 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
1983 if (ata_dma_blacklisted(ap, slave)) {
1984 mask = 0;
1985 ata_pr_blacklisted(ap, slave);
1989 else if (shift == ATA_SHIFT_MWDMA) {
1990 mask = ap->mwdma_mask;
1991 if (ata_dev_present(master)) {
1992 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
1993 if (ata_dma_blacklisted(ap, master)) {
1994 mask = 0;
1995 ata_pr_blacklisted(ap, master);
1998 if (ata_dev_present(slave)) {
1999 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2000 if (ata_dma_blacklisted(ap, slave)) {
2001 mask = 0;
2002 ata_pr_blacklisted(ap, slave);
2006 else if (shift == ATA_SHIFT_PIO) {
2007 mask = ap->pio_mask;
2008 if (ata_dev_present(master)) {
2009 /* spec doesn't return explicit support for
2010 * PIO0-2, so we fake it
2012 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2013 tmp_mode <<= 3;
2014 tmp_mode |= 0x7;
2015 mask &= tmp_mode;
2017 if (ata_dev_present(slave)) {
2018 /* spec doesn't return explicit support for
2019 * PIO0-2, so we fake it
2021 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2022 tmp_mode <<= 3;
2023 tmp_mode |= 0x7;
2024 mask &= tmp_mode;
2027 else {
2028 mask = 0xffffffff; /* shut up compiler warning */
2029 BUG();
2032 return mask;
2035 /* find greatest bit */
2036 static int fgb(u32 bitmap)
2038 unsigned int i;
2039 int x = -1;
2041 for (i = 0; i < 32; i++)
2042 if (bitmap & (1 << i))
2043 x = i;
2045 return x;
2049 * ata_choose_xfer_mode - attempt to find best transfer mode
2050 * @ap: Port for which an xfer mode will be selected
2051 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2052 * @xfer_shift_out: (output) bit shift that selects this mode
2054 * Based on host and device capabilities, determine the
2055 * maximum transfer mode that is amenable to all.
2057 * LOCKING:
2058 * PCI/etc. bus probe sem.
2060 * RETURNS:
2061 * Zero on success, negative on error.
2064 static int ata_choose_xfer_mode(struct ata_port *ap,
2065 u8 *xfer_mode_out,
2066 unsigned int *xfer_shift_out)
2068 unsigned int mask, shift;
2069 int x, i;
2071 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2072 shift = xfer_mode_classes[i].shift;
2073 mask = ata_get_mode_mask(ap, shift);
2075 x = fgb(mask);
2076 if (x >= 0) {
2077 *xfer_mode_out = xfer_mode_classes[i].base + x;
2078 *xfer_shift_out = shift;
2079 return 0;
2083 return -1;
2087 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2088 * @ap: Port associated with device @dev
2089 * @dev: Device to which command will be sent
2091 * Issue SET FEATURES - XFER MODE command to device @dev
2092 * on port @ap.
2094 * LOCKING:
2095 * PCI/etc. bus probe sem.
2098 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2100 DECLARE_COMPLETION(wait);
2101 struct ata_queued_cmd *qc;
2102 int rc;
2103 unsigned long flags;
2105 /* set up set-features taskfile */
2106 DPRINTK("set features - xfer mode\n");
2108 qc = ata_qc_new_init(ap, dev);
2109 BUG_ON(qc == NULL);
2111 qc->tf.command = ATA_CMD_SET_FEATURES;
2112 qc->tf.feature = SETFEATURES_XFER;
2113 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2114 qc->tf.protocol = ATA_PROT_NODATA;
2115 qc->tf.nsect = dev->xfer_mode;
2117 qc->waiting = &wait;
2118 qc->complete_fn = ata_qc_complete_noop;
2120 spin_lock_irqsave(&ap->host_set->lock, flags);
2121 rc = ata_qc_issue(qc);
2122 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2124 if (rc)
2125 ata_port_disable(ap);
2126 else
2127 wait_for_completion(&wait);
2129 DPRINTK("EXIT\n");
2133 * ata_sg_clean - Unmap DMA memory associated with command
2134 * @qc: Command containing DMA memory to be released
2136 * Unmap all mapped DMA memory associated with this command.
2138 * LOCKING:
2139 * spin_lock_irqsave(host_set lock)
2142 static void ata_sg_clean(struct ata_queued_cmd *qc)
2144 struct ata_port *ap = qc->ap;
2145 struct scatterlist *sg = qc->sg;
2146 int dir = qc->dma_dir;
2148 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2149 assert(sg != NULL);
2151 if (qc->flags & ATA_QCFLAG_SINGLE)
2152 assert(qc->n_elem == 1);
2154 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2156 if (qc->flags & ATA_QCFLAG_SG)
2157 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2158 else
2159 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2160 sg_dma_len(&sg[0]), dir);
2162 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2163 qc->sg = NULL;
2167 * ata_fill_sg - Fill PCI IDE PRD table
2168 * @qc: Metadata associated with taskfile to be transferred
2170 * Fill PCI IDE PRD (scatter-gather) table with segments
2171 * associated with the current disk command.
2173 * LOCKING:
2174 * spin_lock_irqsave(host_set lock)
2177 static void ata_fill_sg(struct ata_queued_cmd *qc)
2179 struct scatterlist *sg = qc->sg;
2180 struct ata_port *ap = qc->ap;
2181 unsigned int idx, nelem;
2183 assert(sg != NULL);
2184 assert(qc->n_elem > 0);
2186 idx = 0;
2187 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2188 u32 addr, offset;
2189 u32 sg_len, len;
2191 /* determine if physical DMA addr spans 64K boundary.
2192 * Note h/w doesn't support 64-bit, so we unconditionally
2193 * truncate dma_addr_t to u32.
2195 addr = (u32) sg_dma_address(sg);
2196 sg_len = sg_dma_len(sg);
2198 while (sg_len) {
2199 offset = addr & 0xffff;
2200 len = sg_len;
2201 if ((offset + sg_len) > 0x10000)
2202 len = 0x10000 - offset;
2204 ap->prd[idx].addr = cpu_to_le32(addr);
2205 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2206 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2208 idx++;
2209 sg_len -= len;
2210 addr += len;
2214 if (idx)
2215 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2218 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2219 * @qc: Metadata associated with taskfile to check
2221 * Allow low-level driver to filter ATA PACKET commands, returning
2222 * a status indicating whether or not it is OK to use DMA for the
2223 * supplied PACKET command.
2225 * LOCKING:
2226 * spin_lock_irqsave(host_set lock)
2228 * RETURNS: 0 when ATAPI DMA can be used
2229 * nonzero otherwise
2231 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2233 struct ata_port *ap = qc->ap;
2234 int rc = 0; /* Assume ATAPI DMA is OK by default */
2236 if (ap->ops->check_atapi_dma)
2237 rc = ap->ops->check_atapi_dma(qc);
2239 return rc;
2242 * ata_qc_prep - Prepare taskfile for submission
2243 * @qc: Metadata associated with taskfile to be prepared
2245 * Prepare ATA taskfile for submission.
2247 * LOCKING:
2248 * spin_lock_irqsave(host_set lock)
2250 void ata_qc_prep(struct ata_queued_cmd *qc)
2252 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2253 return;
2255 ata_fill_sg(qc);
2259 * ata_sg_init_one - Associate command with memory buffer
2260 * @qc: Command to be associated
2261 * @buf: Memory buffer
2262 * @buflen: Length of memory buffer, in bytes.
2264 * Initialize the data-related elements of queued_cmd @qc
2265 * to point to a single memory buffer, @buf of byte length @buflen.
2267 * LOCKING:
2268 * spin_lock_irqsave(host_set lock)
2274 * ata_sg_init_one - Prepare a one-entry scatter-gather list.
2275 * @qc: Queued command
2276 * @buf: transfer buffer
2277 * @buflen: length of buf
2279 * Builds a single-entry scatter-gather list to initiate a
2280 * transfer utilizing the specified buffer.
2282 * LOCKING:
2284 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2286 struct scatterlist *sg;
2288 qc->flags |= ATA_QCFLAG_SINGLE;
2290 memset(&qc->sgent, 0, sizeof(qc->sgent));
2291 qc->sg = &qc->sgent;
2292 qc->n_elem = 1;
2293 qc->buf_virt = buf;
2295 sg = qc->sg;
2296 sg->page = virt_to_page(buf);
2297 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2298 sg->length = buflen;
2302 * ata_sg_init - Associate command with scatter-gather table.
2303 * @qc: Command to be associated
2304 * @sg: Scatter-gather table.
2305 * @n_elem: Number of elements in s/g table.
2307 * Initialize the data-related elements of queued_cmd @qc
2308 * to point to a scatter-gather table @sg, containing @n_elem
2309 * elements.
2311 * LOCKING:
2312 * spin_lock_irqsave(host_set lock)
2317 * ata_sg_init - Assign a scatter gather list to a queued command
2318 * @qc: Queued command
2319 * @sg: Scatter-gather list
2320 * @n_elem: length of sg list
2322 * Attaches a scatter-gather list to a queued command.
2324 * LOCKING:
2327 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2328 unsigned int n_elem)
2330 qc->flags |= ATA_QCFLAG_SG;
2331 qc->sg = sg;
2332 qc->n_elem = n_elem;
2336 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2337 * @qc: Command with memory buffer to be mapped.
2339 * DMA-map the memory buffer associated with queued_cmd @qc.
2341 * LOCKING:
2342 * spin_lock_irqsave(host_set lock)
2344 * RETURNS:
2345 * Zero on success, negative on error.
2348 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2350 struct ata_port *ap = qc->ap;
2351 int dir = qc->dma_dir;
2352 struct scatterlist *sg = qc->sg;
2353 dma_addr_t dma_address;
2355 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2356 sg->length, dir);
2357 if (dma_mapping_error(dma_address))
2358 return -1;
2360 sg_dma_address(sg) = dma_address;
2361 sg_dma_len(sg) = sg->length;
2363 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2364 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2366 return 0;
2370 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2371 * @qc: Command with scatter-gather table to be mapped.
2373 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2375 * LOCKING:
2376 * spin_lock_irqsave(host_set lock)
2378 * RETURNS:
2379 * Zero on success, negative on error.
2383 static int ata_sg_setup(struct ata_queued_cmd *qc)
2385 struct ata_port *ap = qc->ap;
2386 struct scatterlist *sg = qc->sg;
2387 int n_elem, dir;
2389 VPRINTK("ENTER, ata%u\n", ap->id);
2390 assert(qc->flags & ATA_QCFLAG_SG);
2392 dir = qc->dma_dir;
2393 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2394 if (n_elem < 1)
2395 return -1;
2397 DPRINTK("%d sg elements mapped\n", n_elem);
2399 qc->n_elem = n_elem;
2401 return 0;
2405 * ata_pio_poll -
2406 * @ap:
2408 * LOCKING:
2409 * None. (executing in kernel thread context)
2411 * RETURNS:
2415 static unsigned long ata_pio_poll(struct ata_port *ap)
2417 u8 status;
2418 unsigned int poll_state = PIO_ST_UNKNOWN;
2419 unsigned int reg_state = PIO_ST_UNKNOWN;
2420 const unsigned int tmout_state = PIO_ST_TMOUT;
2422 switch (ap->pio_task_state) {
2423 case PIO_ST:
2424 case PIO_ST_POLL:
2425 poll_state = PIO_ST_POLL;
2426 reg_state = PIO_ST;
2427 break;
2428 case PIO_ST_LAST:
2429 case PIO_ST_LAST_POLL:
2430 poll_state = PIO_ST_LAST_POLL;
2431 reg_state = PIO_ST_LAST;
2432 break;
2433 default:
2434 BUG();
2435 break;
2438 status = ata_chk_status(ap);
2439 if (status & ATA_BUSY) {
2440 if (time_after(jiffies, ap->pio_task_timeout)) {
2441 ap->pio_task_state = tmout_state;
2442 return 0;
2444 ap->pio_task_state = poll_state;
2445 return ATA_SHORT_PAUSE;
2448 ap->pio_task_state = reg_state;
2449 return 0;
2453 * ata_pio_complete -
2454 * @ap:
2456 * LOCKING:
2457 * None. (executing in kernel thread context)
2460 static void ata_pio_complete (struct ata_port *ap)
2462 struct ata_queued_cmd *qc;
2463 u8 drv_stat;
2466 * This is purely hueristic. This is a fast path.
2467 * Sometimes when we enter, BSY will be cleared in
2468 * a chk-status or two. If not, the drive is probably seeking
2469 * or something. Snooze for a couple msecs, then
2470 * chk-status again. If still busy, fall back to
2471 * PIO_ST_POLL state.
2473 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2474 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2475 msleep(2);
2476 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2477 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2478 ap->pio_task_state = PIO_ST_LAST_POLL;
2479 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2480 return;
2484 drv_stat = ata_wait_idle(ap);
2485 if (!ata_ok(drv_stat)) {
2486 ap->pio_task_state = PIO_ST_ERR;
2487 return;
2490 qc = ata_qc_from_tag(ap, ap->active_tag);
2491 assert(qc != NULL);
2493 ap->pio_task_state = PIO_ST_IDLE;
2495 ata_irq_on(ap);
2497 ata_qc_complete(qc, drv_stat);
2502 * swap_buf_le16 -
2503 * @buf: Buffer to swap
2504 * @buf_words: Number of 16-bit words in buffer.
2506 * Swap halves of 16-bit words if needed to convert from
2507 * little-endian byte order to native cpu byte order, or
2508 * vice-versa.
2510 * LOCKING:
2512 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2514 #ifdef __BIG_ENDIAN
2515 unsigned int i;
2517 for (i = 0; i < buf_words; i++)
2518 buf[i] = le16_to_cpu(buf[i]);
2519 #endif /* __BIG_ENDIAN */
2522 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2523 unsigned int buflen, int write_data)
2525 unsigned int i;
2526 unsigned int words = buflen >> 1;
2527 u16 *buf16 = (u16 *) buf;
2528 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2530 if (write_data) {
2531 for (i = 0; i < words; i++)
2532 writew(le16_to_cpu(buf16[i]), mmio);
2533 } else {
2534 for (i = 0; i < words; i++)
2535 buf16[i] = cpu_to_le16(readw(mmio));
2539 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2540 unsigned int buflen, int write_data)
2542 unsigned int dwords = buflen >> 1;
2544 if (write_data)
2545 outsw(ap->ioaddr.data_addr, buf, dwords);
2546 else
2547 insw(ap->ioaddr.data_addr, buf, dwords);
2550 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2551 unsigned int buflen, int do_write)
2553 if (ap->flags & ATA_FLAG_MMIO)
2554 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2555 else
2556 ata_pio_data_xfer(ap, buf, buflen, do_write);
2559 static void ata_pio_sector(struct ata_queued_cmd *qc)
2561 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2562 struct scatterlist *sg = qc->sg;
2563 struct ata_port *ap = qc->ap;
2564 struct page *page;
2565 unsigned int offset;
2566 unsigned char *buf;
2568 if (qc->cursect == (qc->nsect - 1))
2569 ap->pio_task_state = PIO_ST_LAST;
2571 page = sg[qc->cursg].page;
2572 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2574 /* get the current page and offset */
2575 page = nth_page(page, (offset >> PAGE_SHIFT));
2576 offset %= PAGE_SIZE;
2578 buf = kmap(page) + offset;
2580 qc->cursect++;
2581 qc->cursg_ofs++;
2583 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2584 qc->cursg++;
2585 qc->cursg_ofs = 0;
2588 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2590 /* do the actual data transfer */
2591 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2592 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2594 kunmap(page);
2597 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2599 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2600 struct scatterlist *sg = qc->sg;
2601 struct ata_port *ap = qc->ap;
2602 struct page *page;
2603 unsigned char *buf;
2604 unsigned int offset, count;
2606 if (qc->curbytes == qc->nbytes - bytes)
2607 ap->pio_task_state = PIO_ST_LAST;
2609 next_sg:
2610 sg = &qc->sg[qc->cursg];
2612 page = sg->page;
2613 offset = sg->offset + qc->cursg_ofs;
2615 /* get the current page and offset */
2616 page = nth_page(page, (offset >> PAGE_SHIFT));
2617 offset %= PAGE_SIZE;
2619 /* don't overrun current sg */
2620 count = min(sg->length - qc->cursg_ofs, bytes);
2622 /* don't cross page boundaries */
2623 count = min(count, (unsigned int)PAGE_SIZE - offset);
2625 buf = kmap(page) + offset;
2627 bytes -= count;
2628 qc->curbytes += count;
2629 qc->cursg_ofs += count;
2631 if (qc->cursg_ofs == sg->length) {
2632 qc->cursg++;
2633 qc->cursg_ofs = 0;
2636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2638 /* do the actual data transfer */
2639 ata_data_xfer(ap, buf, count, do_write);
2641 kunmap(page);
2643 if (bytes) {
2644 goto next_sg;
2648 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2650 struct ata_port *ap = qc->ap;
2651 struct ata_device *dev = qc->dev;
2652 unsigned int ireason, bc_lo, bc_hi, bytes;
2653 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2655 ap->ops->tf_read(ap, &qc->tf);
2656 ireason = qc->tf.nsect;
2657 bc_lo = qc->tf.lbam;
2658 bc_hi = qc->tf.lbah;
2659 bytes = (bc_hi << 8) | bc_lo;
2661 /* shall be cleared to zero, indicating xfer of data */
2662 if (ireason & (1 << 0))
2663 goto err_out;
2665 /* make sure transfer direction matches expected */
2666 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
2667 if (do_write != i_write)
2668 goto err_out;
2670 __atapi_pio_bytes(qc, bytes);
2672 return;
2674 err_out:
2675 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
2676 ap->id, dev->devno);
2677 ap->pio_task_state = PIO_ST_ERR;
2681 * ata_pio_sector -
2682 * @ap:
2684 * LOCKING:
2685 * None. (executing in kernel thread context)
2688 static void ata_pio_block(struct ata_port *ap)
2690 struct ata_queued_cmd *qc;
2691 u8 status;
2694 * This is purely hueristic. This is a fast path.
2695 * Sometimes when we enter, BSY will be cleared in
2696 * a chk-status or two. If not, the drive is probably seeking
2697 * or something. Snooze for a couple msecs, then
2698 * chk-status again. If still busy, fall back to
2699 * PIO_ST_POLL state.
2701 status = ata_busy_wait(ap, ATA_BUSY, 5);
2702 if (status & ATA_BUSY) {
2703 msleep(2);
2704 status = ata_busy_wait(ap, ATA_BUSY, 10);
2705 if (status & ATA_BUSY) {
2706 ap->pio_task_state = PIO_ST_POLL;
2707 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2708 return;
2712 qc = ata_qc_from_tag(ap, ap->active_tag);
2713 assert(qc != NULL);
2715 if (is_atapi_taskfile(&qc->tf)) {
2716 /* no more data to transfer or unsupported ATAPI command */
2717 if ((status & ATA_DRQ) == 0) {
2718 ap->pio_task_state = PIO_ST_IDLE;
2720 ata_irq_on(ap);
2722 ata_qc_complete(qc, status);
2723 return;
2726 atapi_pio_bytes(qc);
2727 } else {
2728 /* handle BSY=0, DRQ=0 as error */
2729 if ((status & ATA_DRQ) == 0) {
2730 ap->pio_task_state = PIO_ST_ERR;
2731 return;
2734 ata_pio_sector(qc);
2738 static void ata_pio_error(struct ata_port *ap)
2740 struct ata_queued_cmd *qc;
2741 u8 drv_stat;
2743 qc = ata_qc_from_tag(ap, ap->active_tag);
2744 assert(qc != NULL);
2746 drv_stat = ata_chk_status(ap);
2747 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
2748 ap->id, drv_stat);
2750 ap->pio_task_state = PIO_ST_IDLE;
2752 ata_irq_on(ap);
2754 ata_qc_complete(qc, drv_stat | ATA_ERR);
2757 static void ata_pio_task(void *_data)
2759 struct ata_port *ap = _data;
2760 unsigned long timeout = 0;
2762 switch (ap->pio_task_state) {
2763 case PIO_ST_IDLE:
2764 return;
2766 case PIO_ST:
2767 ata_pio_block(ap);
2768 break;
2770 case PIO_ST_LAST:
2771 ata_pio_complete(ap);
2772 break;
2774 case PIO_ST_POLL:
2775 case PIO_ST_LAST_POLL:
2776 timeout = ata_pio_poll(ap);
2777 break;
2779 case PIO_ST_TMOUT:
2780 case PIO_ST_ERR:
2781 ata_pio_error(ap);
2782 return;
2785 if (timeout)
2786 queue_delayed_work(ata_wq, &ap->pio_task,
2787 timeout);
2788 else
2789 queue_work(ata_wq, &ap->pio_task);
2792 static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev,
2793 struct scsi_cmnd *cmd)
2795 DECLARE_COMPLETION(wait);
2796 struct ata_queued_cmd *qc;
2797 unsigned long flags;
2798 int rc;
2800 DPRINTK("ATAPI request sense\n");
2802 qc = ata_qc_new_init(ap, dev);
2803 BUG_ON(qc == NULL);
2805 /* FIXME: is this needed? */
2806 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
2808 ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
2809 qc->dma_dir = DMA_FROM_DEVICE;
2811 memset(&qc->cdb, 0, ap->cdb_len);
2812 qc->cdb[0] = REQUEST_SENSE;
2813 qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
2815 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2816 qc->tf.command = ATA_CMD_PACKET;
2818 qc->tf.protocol = ATA_PROT_ATAPI;
2819 qc->tf.lbam = (8 * 1024) & 0xff;
2820 qc->tf.lbah = (8 * 1024) >> 8;
2821 qc->nbytes = SCSI_SENSE_BUFFERSIZE;
2823 qc->waiting = &wait;
2824 qc->complete_fn = ata_qc_complete_noop;
2826 spin_lock_irqsave(&ap->host_set->lock, flags);
2827 rc = ata_qc_issue(qc);
2828 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2830 if (rc)
2831 ata_port_disable(ap);
2832 else
2833 wait_for_completion(&wait);
2835 DPRINTK("EXIT\n");
2839 * ata_qc_timeout - Handle timeout of queued command
2840 * @qc: Command that timed out
2842 * Some part of the kernel (currently, only the SCSI layer)
2843 * has noticed that the active command on port @ap has not
2844 * completed after a specified length of time. Handle this
2845 * condition by disabling DMA (if necessary) and completing
2846 * transactions, with error if necessary.
2848 * This also handles the case of the "lost interrupt", where
2849 * for some reason (possibly hardware bug, possibly driver bug)
2850 * an interrupt was not delivered to the driver, even though the
2851 * transaction completed successfully.
2853 * LOCKING:
2854 * Inherited from SCSI layer (none, can sleep)
2857 static void ata_qc_timeout(struct ata_queued_cmd *qc)
2859 struct ata_port *ap = qc->ap;
2860 struct ata_device *dev = qc->dev;
2861 u8 host_stat = 0, drv_stat;
2863 DPRINTK("ENTER\n");
2865 /* FIXME: doesn't this conflict with timeout handling? */
2866 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
2867 struct scsi_cmnd *cmd = qc->scsicmd;
2869 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
2871 /* finish completing original command */
2872 __ata_qc_complete(qc);
2874 atapi_request_sense(ap, dev, cmd);
2876 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
2877 scsi_finish_command(cmd);
2879 goto out;
2883 /* hack alert! We cannot use the supplied completion
2884 * function from inside the ->eh_strategy_handler() thread.
2885 * libata is the only user of ->eh_strategy_handler() in
2886 * any kernel, so the default scsi_done() assumes it is
2887 * not being called from the SCSI EH.
2889 qc->scsidone = scsi_finish_command;
2891 switch (qc->tf.protocol) {
2893 case ATA_PROT_DMA:
2894 case ATA_PROT_ATAPI_DMA:
2895 host_stat = ap->ops->bmdma_status(ap);
2897 /* before we do anything else, clear DMA-Start bit */
2898 ap->ops->bmdma_stop(ap);
2900 /* fall through */
2902 default:
2903 ata_altstatus(ap);
2904 drv_stat = ata_chk_status(ap);
2906 /* ack bmdma irq events */
2907 ap->ops->irq_clear(ap);
2909 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
2910 ap->id, qc->tf.command, drv_stat, host_stat);
2912 /* complete taskfile transaction */
2913 ata_qc_complete(qc, drv_stat);
2914 break;
2916 out:
2917 DPRINTK("EXIT\n");
2921 * ata_eng_timeout - Handle timeout of queued command
2922 * @ap: Port on which timed-out command is active
2924 * Some part of the kernel (currently, only the SCSI layer)
2925 * has noticed that the active command on port @ap has not
2926 * completed after a specified length of time. Handle this
2927 * condition by disabling DMA (if necessary) and completing
2928 * transactions, with error if necessary.
2930 * This also handles the case of the "lost interrupt", where
2931 * for some reason (possibly hardware bug, possibly driver bug)
2932 * an interrupt was not delivered to the driver, even though the
2933 * transaction completed successfully.
2935 * LOCKING:
2936 * Inherited from SCSI layer (none, can sleep)
2939 void ata_eng_timeout(struct ata_port *ap)
2941 struct ata_queued_cmd *qc;
2943 DPRINTK("ENTER\n");
2945 qc = ata_qc_from_tag(ap, ap->active_tag);
2946 if (!qc) {
2947 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
2948 ap->id);
2949 goto out;
2952 ata_qc_timeout(qc);
2954 out:
2955 DPRINTK("EXIT\n");
2959 * ata_qc_new - Request an available ATA command, for queueing
2960 * @ap: Port associated with device @dev
2961 * @dev: Device from whom we request an available command structure
2963 * LOCKING:
2964 * None.
2967 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
2969 struct ata_queued_cmd *qc = NULL;
2970 unsigned int i;
2972 for (i = 0; i < ATA_MAX_QUEUE; i++)
2973 if (!test_and_set_bit(i, &ap->qactive)) {
2974 qc = ata_qc_from_tag(ap, i);
2975 break;
2978 if (qc)
2979 qc->tag = i;
2981 return qc;
2985 * ata_qc_new_init - Request an available ATA command, and initialize it
2986 * @ap: Port associated with device @dev
2987 * @dev: Device from whom we request an available command structure
2989 * LOCKING:
2990 * None.
2993 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
2994 struct ata_device *dev)
2996 struct ata_queued_cmd *qc;
2998 qc = ata_qc_new(ap);
2999 if (qc) {
3000 qc->sg = NULL;
3001 qc->flags = 0;
3002 qc->scsicmd = NULL;
3003 qc->ap = ap;
3004 qc->dev = dev;
3005 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3006 qc->nsect = 0;
3007 qc->nbytes = qc->curbytes = 0;
3009 ata_tf_init(ap, &qc->tf, dev->devno);
3011 if (dev->flags & ATA_DFLAG_LBA48)
3012 qc->tf.flags |= ATA_TFLAG_LBA48;
3015 return qc;
3018 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3020 return 0;
3023 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3025 struct ata_port *ap = qc->ap;
3026 unsigned int tag, do_clear = 0;
3028 qc->flags = 0;
3029 tag = qc->tag;
3030 if (likely(ata_tag_valid(tag))) {
3031 if (tag == ap->active_tag)
3032 ap->active_tag = ATA_TAG_POISON;
3033 qc->tag = ATA_TAG_POISON;
3034 do_clear = 1;
3037 if (qc->waiting) {
3038 struct completion *waiting = qc->waiting;
3039 qc->waiting = NULL;
3040 complete(waiting);
3043 if (likely(do_clear))
3044 clear_bit(tag, &ap->qactive);
3048 * ata_qc_free - free unused ata_queued_cmd
3049 * @qc: Command to complete
3051 * Designed to free unused ata_queued_cmd object
3052 * in case something prevents using it.
3054 * LOCKING:
3055 * spin_lock_irqsave(host_set lock)
3058 void ata_qc_free(struct ata_queued_cmd *qc)
3060 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3061 assert(qc->waiting == NULL); /* nothing should be waiting */
3063 __ata_qc_complete(qc);
3067 * ata_qc_complete - Complete an active ATA command
3068 * @qc: Command to complete
3069 * @drv_stat: ATA Status register contents
3071 * Indicate to the mid and upper layers that an ATA
3072 * command has completed, with either an ok or not-ok status.
3074 * LOCKING:
3075 * spin_lock_irqsave(host_set lock)
3079 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3081 int rc;
3083 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3084 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3086 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3087 ata_sg_clean(qc);
3089 /* call completion callback */
3090 rc = qc->complete_fn(qc, drv_stat);
3091 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3093 /* if callback indicates not to complete command (non-zero),
3094 * return immediately
3096 if (rc != 0)
3097 return;
3099 __ata_qc_complete(qc);
3101 VPRINTK("EXIT\n");
3104 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3106 struct ata_port *ap = qc->ap;
3108 switch (qc->tf.protocol) {
3109 case ATA_PROT_DMA:
3110 case ATA_PROT_ATAPI_DMA:
3111 return 1;
3113 case ATA_PROT_ATAPI:
3114 case ATA_PROT_PIO:
3115 case ATA_PROT_PIO_MULT:
3116 if (ap->flags & ATA_FLAG_PIO_DMA)
3117 return 1;
3119 /* fall through */
3121 default:
3122 return 0;
3125 /* never reached */
3129 * ata_qc_issue - issue taskfile to device
3130 * @qc: command to issue to device
3132 * Prepare an ATA command to submission to device.
3133 * This includes mapping the data into a DMA-able
3134 * area, filling in the S/G table, and finally
3135 * writing the taskfile to hardware, starting the command.
3137 * LOCKING:
3138 * spin_lock_irqsave(host_set lock)
3140 * RETURNS:
3141 * Zero on success, negative on error.
3144 int ata_qc_issue(struct ata_queued_cmd *qc)
3146 struct ata_port *ap = qc->ap;
3148 if (ata_should_dma_map(qc)) {
3149 if (qc->flags & ATA_QCFLAG_SG) {
3150 if (ata_sg_setup(qc))
3151 goto err_out;
3152 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3153 if (ata_sg_setup_one(qc))
3154 goto err_out;
3156 } else {
3157 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3160 ap->ops->qc_prep(qc);
3162 qc->ap->active_tag = qc->tag;
3163 qc->flags |= ATA_QCFLAG_ACTIVE;
3165 return ap->ops->qc_issue(qc);
3167 err_out:
3168 return -1;
3173 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3174 * @qc: command to issue to device
3176 * Using various libata functions and hooks, this function
3177 * starts an ATA command. ATA commands are grouped into
3178 * classes called "protocols", and issuing each type of protocol
3179 * is slightly different.
3181 * May be used as the qc_issue() entry in ata_port_operations.
3183 * LOCKING:
3184 * spin_lock_irqsave(host_set lock)
3186 * RETURNS:
3187 * Zero on success, negative on error.
3190 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3192 struct ata_port *ap = qc->ap;
3194 ata_dev_select(ap, qc->dev->devno, 1, 0);
3196 switch (qc->tf.protocol) {
3197 case ATA_PROT_NODATA:
3198 ata_tf_to_host_nolock(ap, &qc->tf);
3199 break;
3201 case ATA_PROT_DMA:
3202 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3203 ap->ops->bmdma_setup(qc); /* set up bmdma */
3204 ap->ops->bmdma_start(qc); /* initiate bmdma */
3205 break;
3207 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3208 ata_qc_set_polling(qc);
3209 ata_tf_to_host_nolock(ap, &qc->tf);
3210 ap->pio_task_state = PIO_ST;
3211 queue_work(ata_wq, &ap->pio_task);
3212 break;
3214 case ATA_PROT_ATAPI:
3215 ata_qc_set_polling(qc);
3216 ata_tf_to_host_nolock(ap, &qc->tf);
3217 queue_work(ata_wq, &ap->packet_task);
3218 break;
3220 case ATA_PROT_ATAPI_NODATA:
3221 ata_tf_to_host_nolock(ap, &qc->tf);
3222 queue_work(ata_wq, &ap->packet_task);
3223 break;
3225 case ATA_PROT_ATAPI_DMA:
3226 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3227 ap->ops->bmdma_setup(qc); /* set up bmdma */
3228 queue_work(ata_wq, &ap->packet_task);
3229 break;
3231 default:
3232 WARN_ON(1);
3233 return -1;
3236 return 0;
3240 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3241 * @qc: Info associated with this ATA transaction.
3243 * LOCKING:
3244 * spin_lock_irqsave(host_set lock)
3247 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3249 struct ata_port *ap = qc->ap;
3250 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3251 u8 dmactl;
3252 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3254 /* load PRD table addr. */
3255 mb(); /* make sure PRD table writes are visible to controller */
3256 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3258 /* specify data direction, triple-check start bit is clear */
3259 dmactl = readb(mmio + ATA_DMA_CMD);
3260 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3261 if (!rw)
3262 dmactl |= ATA_DMA_WR;
3263 writeb(dmactl, mmio + ATA_DMA_CMD);
3265 /* issue r/w command */
3266 ap->ops->exec_command(ap, &qc->tf);
3270 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3271 * @qc: Info associated with this ATA transaction.
3273 * LOCKING:
3274 * spin_lock_irqsave(host_set lock)
3277 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3279 struct ata_port *ap = qc->ap;
3280 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3281 u8 dmactl;
3283 /* start host DMA transaction */
3284 dmactl = readb(mmio + ATA_DMA_CMD);
3285 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3287 /* Strictly, one may wish to issue a readb() here, to
3288 * flush the mmio write. However, control also passes
3289 * to the hardware at this point, and it will interrupt
3290 * us when we are to resume control. So, in effect,
3291 * we don't care when the mmio write flushes.
3292 * Further, a read of the DMA status register _immediately_
3293 * following the write may not be what certain flaky hardware
3294 * is expected, so I think it is best to not add a readb()
3295 * without first all the MMIO ATA cards/mobos.
3296 * Or maybe I'm just being paranoid.
3301 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3302 * @qc: Info associated with this ATA transaction.
3304 * LOCKING:
3305 * spin_lock_irqsave(host_set lock)
3308 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3310 struct ata_port *ap = qc->ap;
3311 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3312 u8 dmactl;
3314 /* load PRD table addr. */
3315 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3317 /* specify data direction, triple-check start bit is clear */
3318 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3319 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3320 if (!rw)
3321 dmactl |= ATA_DMA_WR;
3322 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3324 /* issue r/w command */
3325 ap->ops->exec_command(ap, &qc->tf);
3329 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3330 * @qc: Info associated with this ATA transaction.
3332 * LOCKING:
3333 * spin_lock_irqsave(host_set lock)
3336 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3338 struct ata_port *ap = qc->ap;
3339 u8 dmactl;
3341 /* start host DMA transaction */
3342 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3343 outb(dmactl | ATA_DMA_START,
3344 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3349 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3350 * @qc: Info associated with this ATA transaction.
3352 * Writes the ATA_DMA_START flag to the DMA command register.
3354 * May be used as the bmdma_start() entry in ata_port_operations.
3356 * LOCKING:
3357 * spin_lock_irqsave(host_set lock)
3359 void ata_bmdma_start(struct ata_queued_cmd *qc)
3361 if (qc->ap->flags & ATA_FLAG_MMIO)
3362 ata_bmdma_start_mmio(qc);
3363 else
3364 ata_bmdma_start_pio(qc);
3369 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3370 * @qc: Info associated with this ATA transaction.
3372 * Writes address of PRD table to device's PRD Table Address
3373 * register, sets the DMA control register, and calls
3374 * ops->exec_command() to start the transfer.
3376 * May be used as the bmdma_setup() entry in ata_port_operations.
3378 * LOCKING:
3379 * spin_lock_irqsave(host_set lock)
3381 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3383 if (qc->ap->flags & ATA_FLAG_MMIO)
3384 ata_bmdma_setup_mmio(qc);
3385 else
3386 ata_bmdma_setup_pio(qc);
3391 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3392 * @ap: Port associated with this ATA transaction.
3394 * Clear interrupt and error flags in DMA status register.
3396 * May be used as the irq_clear() entry in ata_port_operations.
3398 * LOCKING:
3399 * spin_lock_irqsave(host_set lock)
3402 void ata_bmdma_irq_clear(struct ata_port *ap)
3404 if (ap->flags & ATA_FLAG_MMIO) {
3405 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3406 writeb(readb(mmio), mmio);
3407 } else {
3408 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3409 outb(inb(addr), addr);
3416 * ata_bmdma_status - Read PCI IDE BMDMA status
3417 * @ap: Port associated with this ATA transaction.
3419 * Read and return BMDMA status register.
3421 * May be used as the bmdma_status() entry in ata_port_operations.
3423 * LOCKING:
3424 * spin_lock_irqsave(host_set lock)
3427 u8 ata_bmdma_status(struct ata_port *ap)
3429 u8 host_stat;
3430 if (ap->flags & ATA_FLAG_MMIO) {
3431 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3432 host_stat = readb(mmio + ATA_DMA_STATUS);
3433 } else
3434 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3435 return host_stat;
3440 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3441 * @ap: Port associated with this ATA transaction.
3443 * Clears the ATA_DMA_START flag in the dma control register
3445 * May be used as the bmdma_stop() entry in ata_port_operations.
3447 * LOCKING:
3448 * spin_lock_irqsave(host_set lock)
3451 void ata_bmdma_stop(struct ata_port *ap)
3453 if (ap->flags & ATA_FLAG_MMIO) {
3454 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3456 /* clear start/stop bit */
3457 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3458 mmio + ATA_DMA_CMD);
3459 } else {
3460 /* clear start/stop bit */
3461 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3462 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3465 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3466 ata_altstatus(ap); /* dummy read */
3470 * ata_host_intr - Handle host interrupt for given (port, task)
3471 * @ap: Port on which interrupt arrived (possibly...)
3472 * @qc: Taskfile currently active in engine
3474 * Handle host interrupt for given queued command. Currently,
3475 * only DMA interrupts are handled. All other commands are
3476 * handled via polling with interrupts disabled (nIEN bit).
3478 * LOCKING:
3479 * spin_lock_irqsave(host_set lock)
3481 * RETURNS:
3482 * One if interrupt was handled, zero if not (shared irq).
3485 inline unsigned int ata_host_intr (struct ata_port *ap,
3486 struct ata_queued_cmd *qc)
3488 u8 status, host_stat;
3490 switch (qc->tf.protocol) {
3492 case ATA_PROT_DMA:
3493 case ATA_PROT_ATAPI_DMA:
3494 case ATA_PROT_ATAPI:
3495 /* check status of DMA engine */
3496 host_stat = ap->ops->bmdma_status(ap);
3497 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3499 /* if it's not our irq... */
3500 if (!(host_stat & ATA_DMA_INTR))
3501 goto idle_irq;
3503 /* before we do anything else, clear DMA-Start bit */
3504 ap->ops->bmdma_stop(ap);
3506 /* fall through */
3508 case ATA_PROT_ATAPI_NODATA:
3509 case ATA_PROT_NODATA:
3510 /* check altstatus */
3511 status = ata_altstatus(ap);
3512 if (status & ATA_BUSY)
3513 goto idle_irq;
3515 /* check main status, clearing INTRQ */
3516 status = ata_chk_status(ap);
3517 if (unlikely(status & ATA_BUSY))
3518 goto idle_irq;
3519 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3520 ap->id, qc->tf.protocol, status);
3522 /* ack bmdma irq events */
3523 ap->ops->irq_clear(ap);
3525 /* complete taskfile transaction */
3526 ata_qc_complete(qc, status);
3527 break;
3529 default:
3530 goto idle_irq;
3533 return 1; /* irq handled */
3535 idle_irq:
3536 ap->stats.idle_irq++;
3538 #ifdef ATA_IRQ_TRAP
3539 if ((ap->stats.idle_irq % 1000) == 0) {
3540 handled = 1;
3541 ata_irq_ack(ap, 0); /* debug trap */
3542 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3544 #endif
3545 return 0; /* irq not handled */
3549 * ata_interrupt - Default ATA host interrupt handler
3550 * @irq: irq line (unused)
3551 * @dev_instance: pointer to our ata_host_set information structure
3552 * @regs: unused
3554 * Default interrupt handler for PCI IDE devices. Calls
3555 * ata_host_intr() for each port that is not disabled.
3557 * LOCKING:
3558 * Obtains host_set lock during operation.
3560 * RETURNS:
3561 * IRQ_NONE or IRQ_HANDLED.
3565 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3567 struct ata_host_set *host_set = dev_instance;
3568 unsigned int i;
3569 unsigned int handled = 0;
3570 unsigned long flags;
3572 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3573 spin_lock_irqsave(&host_set->lock, flags);
3575 for (i = 0; i < host_set->n_ports; i++) {
3576 struct ata_port *ap;
3578 ap = host_set->ports[i];
3579 if (ap && (!(ap->flags & ATA_FLAG_PORT_DISABLED))) {
3580 struct ata_queued_cmd *qc;
3582 qc = ata_qc_from_tag(ap, ap->active_tag);
3583 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3584 (qc->flags & ATA_QCFLAG_ACTIVE))
3585 handled |= ata_host_intr(ap, qc);
3589 spin_unlock_irqrestore(&host_set->lock, flags);
3591 return IRQ_RETVAL(handled);
3595 * atapi_packet_task - Write CDB bytes to hardware
3596 * @_data: Port to which ATAPI device is attached.
3598 * When device has indicated its readiness to accept
3599 * a CDB, this function is called. Send the CDB.
3600 * If DMA is to be performed, exit immediately.
3601 * Otherwise, we are in polling mode, so poll
3602 * status under operation succeeds or fails.
3604 * LOCKING:
3605 * Kernel thread context (may sleep)
3608 static void atapi_packet_task(void *_data)
3610 struct ata_port *ap = _data;
3611 struct ata_queued_cmd *qc;
3612 u8 status;
3614 qc = ata_qc_from_tag(ap, ap->active_tag);
3615 assert(qc != NULL);
3616 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3618 /* sleep-wait for BSY to clear */
3619 DPRINTK("busy wait\n");
3620 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
3621 goto err_out;
3623 /* make sure DRQ is set */
3624 status = ata_chk_status(ap);
3625 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
3626 goto err_out;
3628 /* send SCSI cdb */
3629 DPRINTK("send cdb\n");
3630 assert(ap->cdb_len >= 12);
3631 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3633 /* if we are DMA'ing, irq handler takes over from here */
3634 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3635 ap->ops->bmdma_start(qc); /* initiate bmdma */
3637 /* non-data commands are also handled via irq */
3638 else if (qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3639 /* do nothing */
3642 /* PIO commands are handled by polling */
3643 else {
3644 ap->pio_task_state = PIO_ST;
3645 queue_work(ata_wq, &ap->pio_task);
3648 return;
3650 err_out:
3651 ata_qc_complete(qc, ATA_ERR);
3656 * ata_port_start - Set port up for dma.
3657 * @ap: Port to initialize
3659 * Called just after data structures for each port are
3660 * initialized. Allocates space for PRD table.
3662 * May be used as the port_start() entry in ata_port_operations.
3664 * LOCKING:
3667 int ata_port_start (struct ata_port *ap)
3669 struct device *dev = ap->host_set->dev;
3671 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
3672 if (!ap->prd)
3673 return -ENOMEM;
3675 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
3677 return 0;
3682 * ata_port_stop - Undo ata_port_start()
3683 * @ap: Port to shut down
3685 * Frees the PRD table.
3687 * May be used as the port_stop() entry in ata_port_operations.
3689 * LOCKING:
3692 void ata_port_stop (struct ata_port *ap)
3694 struct device *dev = ap->host_set->dev;
3696 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
3699 void ata_host_stop (struct ata_host_set *host_set)
3701 if (host_set->mmio_base)
3702 iounmap(host_set->mmio_base);
3707 * ata_host_remove - Unregister SCSI host structure with upper layers
3708 * @ap: Port to unregister
3709 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
3711 * LOCKING:
3714 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
3716 struct Scsi_Host *sh = ap->host;
3718 DPRINTK("ENTER\n");
3720 if (do_unregister)
3721 scsi_remove_host(sh);
3723 ap->ops->port_stop(ap);
3727 * ata_host_init - Initialize an ata_port structure
3728 * @ap: Structure to initialize
3729 * @host: associated SCSI mid-layer structure
3730 * @host_set: Collection of hosts to which @ap belongs
3731 * @ent: Probe information provided by low-level driver
3732 * @port_no: Port number associated with this ata_port
3734 * Initialize a new ata_port structure, and its associated
3735 * scsi_host.
3737 * LOCKING:
3738 * Inherited from caller.
3742 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
3743 struct ata_host_set *host_set,
3744 struct ata_probe_ent *ent, unsigned int port_no)
3746 unsigned int i;
3748 host->max_id = 16;
3749 host->max_lun = 1;
3750 host->max_channel = 1;
3751 host->unique_id = ata_unique_id++;
3752 host->max_cmd_len = 12;
3754 scsi_assign_lock(host, &host_set->lock);
3756 ap->flags = ATA_FLAG_PORT_DISABLED;
3757 ap->id = host->unique_id;
3758 ap->host = host;
3759 ap->ctl = ATA_DEVCTL_OBS;
3760 ap->host_set = host_set;
3761 ap->port_no = port_no;
3762 ap->hard_port_no =
3763 ent->legacy_mode ? ent->hard_port_no : port_no;
3764 ap->pio_mask = ent->pio_mask;
3765 ap->mwdma_mask = ent->mwdma_mask;
3766 ap->udma_mask = ent->udma_mask;
3767 ap->flags |= ent->host_flags;
3768 ap->ops = ent->port_ops;
3769 ap->cbl = ATA_CBL_NONE;
3770 ap->active_tag = ATA_TAG_POISON;
3771 ap->last_ctl = 0xFF;
3773 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
3774 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
3776 for (i = 0; i < ATA_MAX_DEVICES; i++)
3777 ap->device[i].devno = i;
3779 #ifdef ATA_IRQ_TRAP
3780 ap->stats.unhandled_irq = 1;
3781 ap->stats.idle_irq = 1;
3782 #endif
3784 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
3788 * ata_host_add - Attach low-level ATA driver to system
3789 * @ent: Information provided by low-level driver
3790 * @host_set: Collections of ports to which we add
3791 * @port_no: Port number associated with this host
3793 * Attach low-level ATA driver to system.
3795 * LOCKING:
3796 * PCI/etc. bus probe sem.
3798 * RETURNS:
3799 * New ata_port on success, for NULL on error.
3803 static struct ata_port * ata_host_add(struct ata_probe_ent *ent,
3804 struct ata_host_set *host_set,
3805 unsigned int port_no)
3807 struct Scsi_Host *host;
3808 struct ata_port *ap;
3809 int rc;
3811 DPRINTK("ENTER\n");
3812 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
3813 if (!host)
3814 return NULL;
3816 ap = (struct ata_port *) &host->hostdata[0];
3818 ata_host_init(ap, host, host_set, ent, port_no);
3820 rc = ap->ops->port_start(ap);
3821 if (rc)
3822 goto err_out;
3824 return ap;
3826 err_out:
3827 scsi_host_put(host);
3828 return NULL;
3832 * ata_device_add - Register hardware device with ATA and SCSI layers
3833 * @ent: Probe information describing hardware device to be registered
3835 * This function processes the information provided in the probe
3836 * information struct @ent, allocates the necessary ATA and SCSI
3837 * host information structures, initializes them, and registers
3838 * everything with requisite kernel subsystems.
3840 * This function requests irqs, probes the ATA bus, and probes
3841 * the SCSI bus.
3843 * LOCKING:
3844 * PCI/etc. bus probe sem.
3846 * RETURNS:
3847 * Number of ports registered. Zero on error (no ports registered).
3851 int ata_device_add(struct ata_probe_ent *ent)
3853 unsigned int count = 0, i;
3854 struct device *dev = ent->dev;
3855 struct ata_host_set *host_set;
3857 DPRINTK("ENTER\n");
3858 /* alloc a container for our list of ATA ports (buses) */
3859 host_set = kmalloc(sizeof(struct ata_host_set) +
3860 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
3861 if (!host_set)
3862 return 0;
3863 memset(host_set, 0, sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)));
3864 spin_lock_init(&host_set->lock);
3866 host_set->dev = dev;
3867 host_set->n_ports = ent->n_ports;
3868 host_set->irq = ent->irq;
3869 host_set->mmio_base = ent->mmio_base;
3870 host_set->private_data = ent->private_data;
3871 host_set->ops = ent->port_ops;
3873 /* register each port bound to this device */
3874 for (i = 0; i < ent->n_ports; i++) {
3875 struct ata_port *ap;
3876 unsigned long xfer_mode_mask;
3878 ap = ata_host_add(ent, host_set, i);
3879 if (!ap)
3880 goto err_out;
3882 host_set->ports[i] = ap;
3883 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
3884 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
3885 (ap->pio_mask << ATA_SHIFT_PIO);
3887 /* print per-port info to dmesg */
3888 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
3889 "bmdma 0x%lX irq %lu\n",
3890 ap->id,
3891 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
3892 ata_mode_string(xfer_mode_mask),
3893 ap->ioaddr.cmd_addr,
3894 ap->ioaddr.ctl_addr,
3895 ap->ioaddr.bmdma_addr,
3896 ent->irq);
3898 ata_chk_status(ap);
3899 host_set->ops->irq_clear(ap);
3900 count++;
3903 if (!count) {
3904 kfree(host_set);
3905 return 0;
3908 /* obtain irq, that is shared between channels */
3909 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
3910 DRV_NAME, host_set))
3911 goto err_out;
3913 /* perform each probe synchronously */
3914 DPRINTK("probe begin\n");
3915 for (i = 0; i < count; i++) {
3916 struct ata_port *ap;
3917 int rc;
3919 ap = host_set->ports[i];
3921 DPRINTK("ata%u: probe begin\n", ap->id);
3922 rc = ata_bus_probe(ap);
3923 DPRINTK("ata%u: probe end\n", ap->id);
3925 if (rc) {
3926 /* FIXME: do something useful here?
3927 * Current libata behavior will
3928 * tear down everything when
3929 * the module is removed
3930 * or the h/w is unplugged.
3934 rc = scsi_add_host(ap->host, dev);
3935 if (rc) {
3936 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
3937 ap->id);
3938 /* FIXME: do something useful here */
3939 /* FIXME: handle unconditional calls to
3940 * scsi_scan_host and ata_host_remove, below,
3941 * at the very least
3946 /* probes are done, now scan each port's disk(s) */
3947 DPRINTK("probe begin\n");
3948 for (i = 0; i < count; i++) {
3949 struct ata_port *ap = host_set->ports[i];
3951 scsi_scan_host(ap->host);
3954 dev_set_drvdata(dev, host_set);
3956 VPRINTK("EXIT, returning %u\n", ent->n_ports);
3957 return ent->n_ports; /* success */
3959 err_out:
3960 for (i = 0; i < count; i++) {
3961 ata_host_remove(host_set->ports[i], 1);
3962 scsi_host_put(host_set->ports[i]->host);
3964 kfree(host_set);
3965 VPRINTK("EXIT, returning 0\n");
3966 return 0;
3970 * ata_scsi_release - SCSI layer callback hook for host unload
3971 * @host: libata host to be unloaded
3973 * Performs all duties necessary to shut down a libata port...
3974 * Kill port kthread, disable port, and release resources.
3976 * LOCKING:
3977 * Inherited from SCSI layer.
3979 * RETURNS:
3980 * One.
3983 int ata_scsi_release(struct Scsi_Host *host)
3985 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
3987 DPRINTK("ENTER\n");
3989 ap->ops->port_disable(ap);
3990 ata_host_remove(ap, 0);
3992 DPRINTK("EXIT\n");
3993 return 1;
3997 * ata_std_ports - initialize ioaddr with standard port offsets.
3998 * @ioaddr: IO address structure to be initialized
4000 * Utility function which initializes data_addr, error_addr,
4001 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4002 * device_addr, status_addr, and command_addr to standard offsets
4003 * relative to cmd_addr.
4005 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4008 void ata_std_ports(struct ata_ioports *ioaddr)
4010 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4011 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4012 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4013 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4014 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4015 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4016 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4017 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4018 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4019 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4022 static struct ata_probe_ent *
4023 ata_probe_ent_alloc(struct device *dev, struct ata_port_info *port)
4025 struct ata_probe_ent *probe_ent;
4027 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
4028 if (!probe_ent) {
4029 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4030 kobject_name(&(dev->kobj)));
4031 return NULL;
4034 memset(probe_ent, 0, sizeof(*probe_ent));
4036 INIT_LIST_HEAD(&probe_ent->node);
4037 probe_ent->dev = dev;
4039 probe_ent->sht = port->sht;
4040 probe_ent->host_flags = port->host_flags;
4041 probe_ent->pio_mask = port->pio_mask;
4042 probe_ent->mwdma_mask = port->mwdma_mask;
4043 probe_ent->udma_mask = port->udma_mask;
4044 probe_ent->port_ops = port->port_ops;
4046 return probe_ent;
4052 * ata_pci_init_native_mode - Initialize native-mode driver
4053 * @pdev: pci device to be initialized
4054 * @port: array[2] of pointers to port info structures.
4056 * Utility function which allocates and initializes an
4057 * ata_probe_ent structure for a standard dual-port
4058 * PIO-based IDE controller. The returned ata_probe_ent
4059 * structure can be passed to ata_device_add(). The returned
4060 * ata_probe_ent structure should then be freed with kfree().
4063 #ifdef CONFIG_PCI
4064 struct ata_probe_ent *
4065 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port)
4067 struct ata_probe_ent *probe_ent =
4068 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4069 if (!probe_ent)
4070 return NULL;
4072 probe_ent->n_ports = 2;
4073 probe_ent->irq = pdev->irq;
4074 probe_ent->irq_flags = SA_SHIRQ;
4076 probe_ent->port[0].cmd_addr = pci_resource_start(pdev, 0);
4077 probe_ent->port[0].altstatus_addr =
4078 probe_ent->port[0].ctl_addr =
4079 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4080 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4082 probe_ent->port[1].cmd_addr = pci_resource_start(pdev, 2);
4083 probe_ent->port[1].altstatus_addr =
4084 probe_ent->port[1].ctl_addr =
4085 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4086 probe_ent->port[1].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4088 ata_std_ports(&probe_ent->port[0]);
4089 ata_std_ports(&probe_ent->port[1]);
4091 return probe_ent;
4094 static struct ata_probe_ent *
4095 ata_pci_init_legacy_mode(struct pci_dev *pdev, struct ata_port_info **port,
4096 struct ata_probe_ent **ppe2)
4098 struct ata_probe_ent *probe_ent, *probe_ent2;
4100 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4101 if (!probe_ent)
4102 return NULL;
4103 probe_ent2 = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[1]);
4104 if (!probe_ent2) {
4105 kfree(probe_ent);
4106 return NULL;
4109 probe_ent->n_ports = 1;
4110 probe_ent->irq = 14;
4112 probe_ent->hard_port_no = 0;
4113 probe_ent->legacy_mode = 1;
4115 probe_ent2->n_ports = 1;
4116 probe_ent2->irq = 15;
4118 probe_ent2->hard_port_no = 1;
4119 probe_ent2->legacy_mode = 1;
4121 probe_ent->port[0].cmd_addr = 0x1f0;
4122 probe_ent->port[0].altstatus_addr =
4123 probe_ent->port[0].ctl_addr = 0x3f6;
4124 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4126 probe_ent2->port[0].cmd_addr = 0x170;
4127 probe_ent2->port[0].altstatus_addr =
4128 probe_ent2->port[0].ctl_addr = 0x376;
4129 probe_ent2->port[0].bmdma_addr = pci_resource_start(pdev, 4)+8;
4131 ata_std_ports(&probe_ent->port[0]);
4132 ata_std_ports(&probe_ent2->port[0]);
4134 *ppe2 = probe_ent2;
4135 return probe_ent;
4139 * ata_pci_init_one - Initialize/register PCI IDE host controller
4140 * @pdev: Controller to be initialized
4141 * @port_info: Information from low-level host driver
4142 * @n_ports: Number of ports attached to host controller
4144 * This is a helper function which can be called from a driver's
4145 * xxx_init_one() probe function if the hardware uses traditional
4146 * IDE taskfile registers.
4148 * This function calls pci_enable_device(), reserves its register
4149 * regions, sets the dma mask, enables bus master mode, and calls
4150 * ata_device_add()
4152 * LOCKING:
4153 * Inherited from PCI layer (may sleep).
4155 * RETURNS:
4156 * Zero on success, negative on errno-based value on error.
4160 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4161 unsigned int n_ports)
4163 struct ata_probe_ent *probe_ent, *probe_ent2 = NULL;
4164 struct ata_port_info *port[2];
4165 u8 tmp8, mask;
4166 unsigned int legacy_mode = 0;
4167 int disable_dev_on_err = 1;
4168 int rc;
4170 DPRINTK("ENTER\n");
4172 port[0] = port_info[0];
4173 if (n_ports > 1)
4174 port[1] = port_info[1];
4175 else
4176 port[1] = port[0];
4178 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4179 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4180 /* TODO: support transitioning to native mode? */
4181 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4182 mask = (1 << 2) | (1 << 0);
4183 if ((tmp8 & mask) != mask)
4184 legacy_mode = (1 << 3);
4187 /* FIXME... */
4188 if ((!legacy_mode) && (n_ports > 1)) {
4189 printk(KERN_ERR "ata: BUG: native mode, n_ports > 1\n");
4190 return -EINVAL;
4193 rc = pci_enable_device(pdev);
4194 if (rc)
4195 return rc;
4197 rc = pci_request_regions(pdev, DRV_NAME);
4198 if (rc) {
4199 disable_dev_on_err = 0;
4200 goto err_out;
4203 if (legacy_mode) {
4204 if (!request_region(0x1f0, 8, "libata")) {
4205 struct resource *conflict, res;
4206 res.start = 0x1f0;
4207 res.end = 0x1f0 + 8 - 1;
4208 conflict = ____request_resource(&ioport_resource, &res);
4209 if (!strcmp(conflict->name, "libata"))
4210 legacy_mode |= (1 << 0);
4211 else {
4212 disable_dev_on_err = 0;
4213 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4215 } else
4216 legacy_mode |= (1 << 0);
4218 if (!request_region(0x170, 8, "libata")) {
4219 struct resource *conflict, res;
4220 res.start = 0x170;
4221 res.end = 0x170 + 8 - 1;
4222 conflict = ____request_resource(&ioport_resource, &res);
4223 if (!strcmp(conflict->name, "libata"))
4224 legacy_mode |= (1 << 1);
4225 else {
4226 disable_dev_on_err = 0;
4227 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4229 } else
4230 legacy_mode |= (1 << 1);
4233 /* we have legacy mode, but all ports are unavailable */
4234 if (legacy_mode == (1 << 3)) {
4235 rc = -EBUSY;
4236 goto err_out_regions;
4239 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4240 if (rc)
4241 goto err_out_regions;
4242 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4243 if (rc)
4244 goto err_out_regions;
4246 if (legacy_mode) {
4247 probe_ent = ata_pci_init_legacy_mode(pdev, port, &probe_ent2);
4248 } else
4249 probe_ent = ata_pci_init_native_mode(pdev, port);
4250 if (!probe_ent) {
4251 rc = -ENOMEM;
4252 goto err_out_regions;
4255 pci_set_master(pdev);
4257 /* FIXME: check ata_device_add return */
4258 if (legacy_mode) {
4259 if (legacy_mode & (1 << 0))
4260 ata_device_add(probe_ent);
4261 if (legacy_mode & (1 << 1))
4262 ata_device_add(probe_ent2);
4263 } else
4264 ata_device_add(probe_ent);
4266 kfree(probe_ent);
4267 kfree(probe_ent2);
4269 return 0;
4271 err_out_regions:
4272 if (legacy_mode & (1 << 0))
4273 release_region(0x1f0, 8);
4274 if (legacy_mode & (1 << 1))
4275 release_region(0x170, 8);
4276 pci_release_regions(pdev);
4277 err_out:
4278 if (disable_dev_on_err)
4279 pci_disable_device(pdev);
4280 return rc;
4284 * ata_pci_remove_one - PCI layer callback for device removal
4285 * @pdev: PCI device that was removed
4287 * PCI layer indicates to libata via this hook that
4288 * hot-unplug or module unload event has occured.
4289 * Handle this by unregistering all objects associated
4290 * with this PCI device. Free those objects. Then finally
4291 * release PCI resources and disable device.
4293 * LOCKING:
4294 * Inherited from PCI layer (may sleep).
4297 void ata_pci_remove_one (struct pci_dev *pdev)
4299 struct device *dev = pci_dev_to_dev(pdev);
4300 struct ata_host_set *host_set = dev_get_drvdata(dev);
4301 struct ata_port *ap;
4302 unsigned int i;
4304 for (i = 0; i < host_set->n_ports; i++) {
4305 ap = host_set->ports[i];
4307 scsi_remove_host(ap->host);
4310 free_irq(host_set->irq, host_set);
4312 for (i = 0; i < host_set->n_ports; i++) {
4313 ap = host_set->ports[i];
4315 ata_scsi_release(ap->host);
4317 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4318 struct ata_ioports *ioaddr = &ap->ioaddr;
4320 if (ioaddr->cmd_addr == 0x1f0)
4321 release_region(0x1f0, 8);
4322 else if (ioaddr->cmd_addr == 0x170)
4323 release_region(0x170, 8);
4326 scsi_host_put(ap->host);
4329 if (host_set->ops->host_stop)
4330 host_set->ops->host_stop(host_set);
4332 kfree(host_set);
4334 pci_release_regions(pdev);
4335 pci_disable_device(pdev);
4336 dev_set_drvdata(dev, NULL);
4339 /* move to PCI subsystem */
4340 int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits)
4342 unsigned long tmp = 0;
4344 switch (bits->width) {
4345 case 1: {
4346 u8 tmp8 = 0;
4347 pci_read_config_byte(pdev, bits->reg, &tmp8);
4348 tmp = tmp8;
4349 break;
4351 case 2: {
4352 u16 tmp16 = 0;
4353 pci_read_config_word(pdev, bits->reg, &tmp16);
4354 tmp = tmp16;
4355 break;
4357 case 4: {
4358 u32 tmp32 = 0;
4359 pci_read_config_dword(pdev, bits->reg, &tmp32);
4360 tmp = tmp32;
4361 break;
4364 default:
4365 return -EINVAL;
4368 tmp &= bits->mask;
4370 return (tmp == bits->val) ? 1 : 0;
4372 #endif /* CONFIG_PCI */
4375 static int __init ata_init(void)
4377 ata_wq = create_workqueue("ata");
4378 if (!ata_wq)
4379 return -ENOMEM;
4381 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4382 return 0;
4385 static void __exit ata_exit(void)
4387 destroy_workqueue(ata_wq);
4390 module_init(ata_init);
4391 module_exit(ata_exit);
4394 * libata is essentially a library of internal helper functions for
4395 * low-level ATA host controller drivers. As such, the API/ABI is
4396 * likely to change as new drivers are added and updated.
4397 * Do not depend on ABI/API stability.
4400 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4401 EXPORT_SYMBOL_GPL(ata_std_ports);
4402 EXPORT_SYMBOL_GPL(ata_device_add);
4403 EXPORT_SYMBOL_GPL(ata_sg_init);
4404 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4405 EXPORT_SYMBOL_GPL(ata_qc_complete);
4406 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4407 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4408 EXPORT_SYMBOL_GPL(ata_tf_load);
4409 EXPORT_SYMBOL_GPL(ata_tf_read);
4410 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4411 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4412 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4413 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4414 EXPORT_SYMBOL_GPL(ata_check_status);
4415 EXPORT_SYMBOL_GPL(ata_altstatus);
4416 EXPORT_SYMBOL_GPL(ata_chk_err);
4417 EXPORT_SYMBOL_GPL(ata_exec_command);
4418 EXPORT_SYMBOL_GPL(ata_port_start);
4419 EXPORT_SYMBOL_GPL(ata_port_stop);
4420 EXPORT_SYMBOL_GPL(ata_host_stop);
4421 EXPORT_SYMBOL_GPL(ata_interrupt);
4422 EXPORT_SYMBOL_GPL(ata_qc_prep);
4423 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4424 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4425 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4426 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4427 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4428 EXPORT_SYMBOL_GPL(ata_port_probe);
4429 EXPORT_SYMBOL_GPL(sata_phy_reset);
4430 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4431 EXPORT_SYMBOL_GPL(ata_bus_reset);
4432 EXPORT_SYMBOL_GPL(ata_port_disable);
4433 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4434 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4435 EXPORT_SYMBOL_GPL(ata_scsi_error);
4436 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4437 EXPORT_SYMBOL_GPL(ata_scsi_release);
4438 EXPORT_SYMBOL_GPL(ata_host_intr);
4439 EXPORT_SYMBOL_GPL(ata_dev_classify);
4440 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4441 EXPORT_SYMBOL_GPL(ata_dev_config);
4442 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4444 #ifdef CONFIG_PCI
4445 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4446 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4447 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4448 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4449 #endif /* CONFIG_PCI */