Merge branch 'firewire-kernel-streaming' of git://git.alsa-project.org/alsa-kprivate
[firewire-audio.git] / arch / alpha / kernel / time.c
blobc1f3e7cb82a4945e6345c1e4be80cad88be36c53
1 /*
2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 #include <asm/rtc.h>
52 #include <linux/mc146818rtc.h>
53 #include <linux/time.h>
54 #include <linux/timex.h>
55 #include <linux/clocksource.h>
57 #include "proto.h"
58 #include "irq_impl.h"
60 static int set_rtc_mmss(unsigned long);
62 DEFINE_SPINLOCK(rtc_lock);
63 EXPORT_SYMBOL(rtc_lock);
65 #define TICK_SIZE (tick_nsec / 1000)
68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70 * for large CPU clock rates.
72 #define FIX_SHIFT 48
74 /* lump static variables together for more efficient access: */
75 static struct {
76 /* cycle counter last time it got invoked */
77 __u32 last_time;
78 /* ticks/cycle * 2^48 */
79 unsigned long scaled_ticks_per_cycle;
80 /* partial unused tick */
81 unsigned long partial_tick;
82 } state;
84 unsigned long est_cycle_freq;
86 #ifdef CONFIG_IRQ_WORK
88 DEFINE_PER_CPU(u8, irq_work_pending);
90 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
91 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
92 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
94 void set_irq_work_pending(void)
96 set_irq_work_pending_flag();
99 #else /* CONFIG_IRQ_WORK */
101 #define test_irq_work_pending() 0
102 #define clear_irq_work_pending()
104 #endif /* CONFIG_IRQ_WORK */
107 static inline __u32 rpcc(void)
109 __u32 result;
110 asm volatile ("rpcc %0" : "=r"(result));
111 return result;
114 int update_persistent_clock(struct timespec now)
116 return set_rtc_mmss(now.tv_sec);
119 void read_persistent_clock(struct timespec *ts)
121 unsigned int year, mon, day, hour, min, sec, epoch;
123 sec = CMOS_READ(RTC_SECONDS);
124 min = CMOS_READ(RTC_MINUTES);
125 hour = CMOS_READ(RTC_HOURS);
126 day = CMOS_READ(RTC_DAY_OF_MONTH);
127 mon = CMOS_READ(RTC_MONTH);
128 year = CMOS_READ(RTC_YEAR);
130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 sec = bcd2bin(sec);
132 min = bcd2bin(min);
133 hour = bcd2bin(hour);
134 day = bcd2bin(day);
135 mon = bcd2bin(mon);
136 year = bcd2bin(year);
139 /* PC-like is standard; used for year >= 70 */
140 epoch = 1900;
141 if (year < 20)
142 epoch = 2000;
143 else if (year >= 20 && year < 48)
144 /* NT epoch */
145 epoch = 1980;
146 else if (year >= 48 && year < 70)
147 /* Digital UNIX epoch */
148 epoch = 1952;
150 printk(KERN_INFO "Using epoch = %d\n", epoch);
152 if ((year += epoch) < 1970)
153 year += 100;
155 ts->tv_sec = mktime(year, mon, day, hour, min, sec);
161 * timer_interrupt() needs to keep up the real-time clock,
162 * as well as call the "do_timer()" routine every clocktick
164 irqreturn_t timer_interrupt(int irq, void *dev)
166 unsigned long delta;
167 __u32 now;
168 long nticks;
170 #ifndef CONFIG_SMP
171 /* Not SMP, do kernel PC profiling here. */
172 profile_tick(CPU_PROFILING);
173 #endif
175 write_seqlock(&xtime_lock);
178 * Calculate how many ticks have passed since the last update,
179 * including any previous partial leftover. Save any resulting
180 * fraction for the next pass.
182 now = rpcc();
183 delta = now - state.last_time;
184 state.last_time = now;
185 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
186 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
187 nticks = delta >> FIX_SHIFT;
189 if (nticks)
190 do_timer(nticks);
192 write_sequnlock(&xtime_lock);
194 if (test_irq_work_pending()) {
195 clear_irq_work_pending();
196 irq_work_run();
199 #ifndef CONFIG_SMP
200 while (nticks--)
201 update_process_times(user_mode(get_irq_regs()));
202 #endif
204 return IRQ_HANDLED;
207 void __init
208 common_init_rtc(void)
210 unsigned char x;
212 /* Reset periodic interrupt frequency. */
213 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
214 /* Test includes known working values on various platforms
215 where 0x26 is wrong; we refuse to change those. */
216 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
217 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
218 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
221 /* Turn on periodic interrupts. */
222 x = CMOS_READ(RTC_CONTROL);
223 if (!(x & RTC_PIE)) {
224 printk("Turning on RTC interrupts.\n");
225 x |= RTC_PIE;
226 x &= ~(RTC_AIE | RTC_UIE);
227 CMOS_WRITE(x, RTC_CONTROL);
229 (void) CMOS_READ(RTC_INTR_FLAGS);
231 outb(0x36, 0x43); /* pit counter 0: system timer */
232 outb(0x00, 0x40);
233 outb(0x00, 0x40);
235 outb(0xb6, 0x43); /* pit counter 2: speaker */
236 outb(0x31, 0x42);
237 outb(0x13, 0x42);
239 init_rtc_irq();
242 unsigned int common_get_rtc_time(struct rtc_time *time)
244 return __get_rtc_time(time);
247 int common_set_rtc_time(struct rtc_time *time)
249 return __set_rtc_time(time);
252 /* Validate a computed cycle counter result against the known bounds for
253 the given processor core. There's too much brokenness in the way of
254 timing hardware for any one method to work everywhere. :-(
256 Return 0 if the result cannot be trusted, otherwise return the argument. */
258 static unsigned long __init
259 validate_cc_value(unsigned long cc)
261 static struct bounds {
262 unsigned int min, max;
263 } cpu_hz[] __initdata = {
264 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
265 [EV4_CPU] = { 100000000, 300000000 },
266 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
267 [EV45_CPU] = { 200000000, 300000000 },
268 [EV5_CPU] = { 250000000, 433000000 },
269 [EV56_CPU] = { 333000000, 667000000 },
270 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
271 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
272 [EV6_CPU] = { 466000000, 600000000 },
273 [EV67_CPU] = { 600000000, 750000000 },
274 [EV68AL_CPU] = { 750000000, 940000000 },
275 [EV68CB_CPU] = { 1000000000, 1333333333 },
276 /* None of the following are shipping as of 2001-11-01. */
277 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
278 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
279 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
280 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
283 /* Allow for some drift in the crystal. 10MHz is more than enough. */
284 const unsigned int deviation = 10000000;
286 struct percpu_struct *cpu;
287 unsigned int index;
289 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
290 index = cpu->type & 0xffffffff;
292 /* If index out of bounds, no way to validate. */
293 if (index >= ARRAY_SIZE(cpu_hz))
294 return cc;
296 /* If index contains no data, no way to validate. */
297 if (cpu_hz[index].max == 0)
298 return cc;
300 if (cc < cpu_hz[index].min - deviation
301 || cc > cpu_hz[index].max + deviation)
302 return 0;
304 return cc;
309 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
310 * arch/i386/time.c.
313 #define CALIBRATE_LATCH 0xffff
314 #define TIMEOUT_COUNT 0x100000
316 static unsigned long __init
317 calibrate_cc_with_pit(void)
319 int cc, count = 0;
321 /* Set the Gate high, disable speaker */
322 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
325 * Now let's take care of CTC channel 2
327 * Set the Gate high, program CTC channel 2 for mode 0,
328 * (interrupt on terminal count mode), binary count,
329 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
331 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
332 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
333 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
335 cc = rpcc();
336 do {
337 count++;
338 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
339 cc = rpcc() - cc;
341 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
342 if (count <= 1 || count == TIMEOUT_COUNT)
343 return 0;
345 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
348 /* The Linux interpretation of the CMOS clock register contents:
349 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
350 RTC registers show the second which has precisely just started.
351 Let's hope other operating systems interpret the RTC the same way. */
353 static unsigned long __init
354 rpcc_after_update_in_progress(void)
356 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
357 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
359 return rpcc();
362 #ifndef CONFIG_SMP
363 /* Until and unless we figure out how to get cpu cycle counters
364 in sync and keep them there, we can't use the rpcc. */
365 static cycle_t read_rpcc(struct clocksource *cs)
367 cycle_t ret = (cycle_t)rpcc();
368 return ret;
371 static struct clocksource clocksource_rpcc = {
372 .name = "rpcc",
373 .rating = 300,
374 .read = read_rpcc,
375 .mask = CLOCKSOURCE_MASK(32),
376 .flags = CLOCK_SOURCE_IS_CONTINUOUS
379 static inline void register_rpcc_clocksource(long cycle_freq)
381 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
382 clocksource_register(&clocksource_rpcc);
384 #else /* !CONFIG_SMP */
385 static inline void register_rpcc_clocksource(long cycle_freq)
388 #endif /* !CONFIG_SMP */
390 void __init
391 time_init(void)
393 unsigned int cc1, cc2;
394 unsigned long cycle_freq, tolerance;
395 long diff;
397 /* Calibrate CPU clock -- attempt #1. */
398 if (!est_cycle_freq)
399 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
401 cc1 = rpcc();
403 /* Calibrate CPU clock -- attempt #2. */
404 if (!est_cycle_freq) {
405 cc1 = rpcc_after_update_in_progress();
406 cc2 = rpcc_after_update_in_progress();
407 est_cycle_freq = validate_cc_value(cc2 - cc1);
408 cc1 = cc2;
411 cycle_freq = hwrpb->cycle_freq;
412 if (est_cycle_freq) {
413 /* If the given value is within 250 PPM of what we calculated,
414 accept it. Otherwise, use what we found. */
415 tolerance = cycle_freq / 4000;
416 diff = cycle_freq - est_cycle_freq;
417 if (diff < 0)
418 diff = -diff;
419 if ((unsigned long)diff > tolerance) {
420 cycle_freq = est_cycle_freq;
421 printk("HWRPB cycle frequency bogus. "
422 "Estimated %lu Hz\n", cycle_freq);
423 } else {
424 est_cycle_freq = 0;
426 } else if (! validate_cc_value (cycle_freq)) {
427 printk("HWRPB cycle frequency bogus, "
428 "and unable to estimate a proper value!\n");
431 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
432 to settle, as the Update-In-Progress bit going low isn't good
433 enough on some hardware. 2ms is our guess; we haven't found
434 bogomips yet, but this is close on a 500Mhz box. */
435 __delay(1000000);
438 if (HZ > (1<<16)) {
439 extern void __you_loose (void);
440 __you_loose();
443 register_rpcc_clocksource(cycle_freq);
445 state.last_time = cc1;
446 state.scaled_ticks_per_cycle
447 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
448 state.partial_tick = 0L;
450 /* Startup the timer source. */
451 alpha_mv.init_rtc();
455 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
456 * called 500 ms after the second nowtime has started, because when
457 * nowtime is written into the registers of the CMOS clock, it will
458 * jump to the next second precisely 500 ms later. Check the Motorola
459 * MC146818A or Dallas DS12887 data sheet for details.
461 * BUG: This routine does not handle hour overflow properly; it just
462 * sets the minutes. Usually you won't notice until after reboot!
466 static int
467 set_rtc_mmss(unsigned long nowtime)
469 int retval = 0;
470 int real_seconds, real_minutes, cmos_minutes;
471 unsigned char save_control, save_freq_select;
473 /* irq are locally disabled here */
474 spin_lock(&rtc_lock);
475 /* Tell the clock it's being set */
476 save_control = CMOS_READ(RTC_CONTROL);
477 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
479 /* Stop and reset prescaler */
480 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
481 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
483 cmos_minutes = CMOS_READ(RTC_MINUTES);
484 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
485 cmos_minutes = bcd2bin(cmos_minutes);
488 * since we're only adjusting minutes and seconds,
489 * don't interfere with hour overflow. This avoids
490 * messing with unknown time zones but requires your
491 * RTC not to be off by more than 15 minutes
493 real_seconds = nowtime % 60;
494 real_minutes = nowtime / 60;
495 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
496 /* correct for half hour time zone */
497 real_minutes += 30;
499 real_minutes %= 60;
501 if (abs(real_minutes - cmos_minutes) < 30) {
502 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
503 real_seconds = bin2bcd(real_seconds);
504 real_minutes = bin2bcd(real_minutes);
506 CMOS_WRITE(real_seconds,RTC_SECONDS);
507 CMOS_WRITE(real_minutes,RTC_MINUTES);
508 } else {
509 printk_once(KERN_NOTICE
510 "set_rtc_mmss: can't update from %d to %d\n",
511 cmos_minutes, real_minutes);
512 retval = -1;
515 /* The following flags have to be released exactly in this order,
516 * otherwise the DS12887 (popular MC146818A clone with integrated
517 * battery and quartz) will not reset the oscillator and will not
518 * update precisely 500 ms later. You won't find this mentioned in
519 * the Dallas Semiconductor data sheets, but who believes data
520 * sheets anyway ... -- Markus Kuhn
522 CMOS_WRITE(save_control, RTC_CONTROL);
523 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
524 spin_unlock(&rtc_lock);
526 return retval;