atmel_serial: fix break handling
[firewire-audio.git] / fs / namespace.c
blobc811a94e4c88066c929d6924633e6099efde3114
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include "pnode.h"
32 /* spinlock for vfsmount related operations, inplace of dcache_lock */
33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
35 static int event;
37 static struct list_head *mount_hashtable __read_mostly;
38 static int hash_mask __read_mostly, hash_bits __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
42 /* /sys/fs */
43 decl_subsys(fs, NULL, NULL);
44 EXPORT_SYMBOL_GPL(fs_subsys);
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
49 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
50 tmp = tmp + (tmp >> hash_bits);
51 return tmp & hash_mask;
54 struct vfsmount *alloc_vfsmnt(const char *name)
56 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
57 if (mnt) {
58 atomic_set(&mnt->mnt_count, 1);
59 INIT_LIST_HEAD(&mnt->mnt_hash);
60 INIT_LIST_HEAD(&mnt->mnt_child);
61 INIT_LIST_HEAD(&mnt->mnt_mounts);
62 INIT_LIST_HEAD(&mnt->mnt_list);
63 INIT_LIST_HEAD(&mnt->mnt_expire);
64 INIT_LIST_HEAD(&mnt->mnt_share);
65 INIT_LIST_HEAD(&mnt->mnt_slave_list);
66 INIT_LIST_HEAD(&mnt->mnt_slave);
67 if (name) {
68 int size = strlen(name) + 1;
69 char *newname = kmalloc(size, GFP_KERNEL);
70 if (newname) {
71 memcpy(newname, name, size);
72 mnt->mnt_devname = newname;
76 return mnt;
79 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
81 mnt->mnt_sb = sb;
82 mnt->mnt_root = dget(sb->s_root);
83 return 0;
86 EXPORT_SYMBOL(simple_set_mnt);
88 void free_vfsmnt(struct vfsmount *mnt)
90 kfree(mnt->mnt_devname);
91 kmem_cache_free(mnt_cache, mnt);
95 * find the first or last mount at @dentry on vfsmount @mnt depending on
96 * @dir. If @dir is set return the first mount else return the last mount.
98 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
99 int dir)
101 struct list_head *head = mount_hashtable + hash(mnt, dentry);
102 struct list_head *tmp = head;
103 struct vfsmount *p, *found = NULL;
105 for (;;) {
106 tmp = dir ? tmp->next : tmp->prev;
107 p = NULL;
108 if (tmp == head)
109 break;
110 p = list_entry(tmp, struct vfsmount, mnt_hash);
111 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
112 found = p;
113 break;
116 return found;
120 * lookup_mnt increments the ref count before returning
121 * the vfsmount struct.
123 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 struct vfsmount *child_mnt;
126 spin_lock(&vfsmount_lock);
127 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
128 mntget(child_mnt);
129 spin_unlock(&vfsmount_lock);
130 return child_mnt;
133 static inline int check_mnt(struct vfsmount *mnt)
135 return mnt->mnt_ns == current->nsproxy->mnt_ns;
138 static void touch_mnt_namespace(struct mnt_namespace *ns)
140 if (ns) {
141 ns->event = ++event;
142 wake_up_interruptible(&ns->poll);
146 static void __touch_mnt_namespace(struct mnt_namespace *ns)
148 if (ns && ns->event != event) {
149 ns->event = event;
150 wake_up_interruptible(&ns->poll);
154 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 old_nd->dentry = mnt->mnt_mountpoint;
157 old_nd->mnt = mnt->mnt_parent;
158 mnt->mnt_parent = mnt;
159 mnt->mnt_mountpoint = mnt->mnt_root;
160 list_del_init(&mnt->mnt_child);
161 list_del_init(&mnt->mnt_hash);
162 old_nd->dentry->d_mounted--;
165 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
166 struct vfsmount *child_mnt)
168 child_mnt->mnt_parent = mntget(mnt);
169 child_mnt->mnt_mountpoint = dget(dentry);
170 dentry->d_mounted++;
173 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
176 list_add_tail(&mnt->mnt_hash, mount_hashtable +
177 hash(nd->mnt, nd->dentry));
178 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
182 * the caller must hold vfsmount_lock
184 static void commit_tree(struct vfsmount *mnt)
186 struct vfsmount *parent = mnt->mnt_parent;
187 struct vfsmount *m;
188 LIST_HEAD(head);
189 struct mnt_namespace *n = parent->mnt_ns;
191 BUG_ON(parent == mnt);
193 list_add_tail(&head, &mnt->mnt_list);
194 list_for_each_entry(m, &head, mnt_list)
195 m->mnt_ns = n;
196 list_splice(&head, n->list.prev);
198 list_add_tail(&mnt->mnt_hash, mount_hashtable +
199 hash(parent, mnt->mnt_mountpoint));
200 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
201 touch_mnt_namespace(n);
204 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 struct list_head *next = p->mnt_mounts.next;
207 if (next == &p->mnt_mounts) {
208 while (1) {
209 if (p == root)
210 return NULL;
211 next = p->mnt_child.next;
212 if (next != &p->mnt_parent->mnt_mounts)
213 break;
214 p = p->mnt_parent;
217 return list_entry(next, struct vfsmount, mnt_child);
220 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 struct list_head *prev = p->mnt_mounts.prev;
223 while (prev != &p->mnt_mounts) {
224 p = list_entry(prev, struct vfsmount, mnt_child);
225 prev = p->mnt_mounts.prev;
227 return p;
230 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
231 int flag)
233 struct super_block *sb = old->mnt_sb;
234 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 if (mnt) {
237 mnt->mnt_flags = old->mnt_flags;
238 atomic_inc(&sb->s_active);
239 mnt->mnt_sb = sb;
240 mnt->mnt_root = dget(root);
241 mnt->mnt_mountpoint = mnt->mnt_root;
242 mnt->mnt_parent = mnt;
244 if (flag & CL_SLAVE) {
245 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
246 mnt->mnt_master = old;
247 CLEAR_MNT_SHARED(mnt);
248 } else {
249 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
250 list_add(&mnt->mnt_share, &old->mnt_share);
251 if (IS_MNT_SLAVE(old))
252 list_add(&mnt->mnt_slave, &old->mnt_slave);
253 mnt->mnt_master = old->mnt_master;
255 if (flag & CL_MAKE_SHARED)
256 set_mnt_shared(mnt);
258 /* stick the duplicate mount on the same expiry list
259 * as the original if that was on one */
260 if (flag & CL_EXPIRE) {
261 spin_lock(&vfsmount_lock);
262 if (!list_empty(&old->mnt_expire))
263 list_add(&mnt->mnt_expire, &old->mnt_expire);
264 spin_unlock(&vfsmount_lock);
267 return mnt;
270 static inline void __mntput(struct vfsmount *mnt)
272 struct super_block *sb = mnt->mnt_sb;
273 dput(mnt->mnt_root);
274 free_vfsmnt(mnt);
275 deactivate_super(sb);
278 void mntput_no_expire(struct vfsmount *mnt)
280 repeat:
281 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
282 if (likely(!mnt->mnt_pinned)) {
283 spin_unlock(&vfsmount_lock);
284 __mntput(mnt);
285 return;
287 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
288 mnt->mnt_pinned = 0;
289 spin_unlock(&vfsmount_lock);
290 acct_auto_close_mnt(mnt);
291 security_sb_umount_close(mnt);
292 goto repeat;
296 EXPORT_SYMBOL(mntput_no_expire);
298 void mnt_pin(struct vfsmount *mnt)
300 spin_lock(&vfsmount_lock);
301 mnt->mnt_pinned++;
302 spin_unlock(&vfsmount_lock);
305 EXPORT_SYMBOL(mnt_pin);
307 void mnt_unpin(struct vfsmount *mnt)
309 spin_lock(&vfsmount_lock);
310 if (mnt->mnt_pinned) {
311 atomic_inc(&mnt->mnt_count);
312 mnt->mnt_pinned--;
314 spin_unlock(&vfsmount_lock);
317 EXPORT_SYMBOL(mnt_unpin);
319 /* iterator */
320 static void *m_start(struct seq_file *m, loff_t *pos)
322 struct mnt_namespace *n = m->private;
324 down_read(&namespace_sem);
325 return seq_list_start(&n->list, *pos);
328 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
330 struct mnt_namespace *n = m->private;
332 return seq_list_next(v, &n->list, pos);
335 static void m_stop(struct seq_file *m, void *v)
337 up_read(&namespace_sem);
340 static inline void mangle(struct seq_file *m, const char *s)
342 seq_escape(m, s, " \t\n\\");
345 static int show_vfsmnt(struct seq_file *m, void *v)
347 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
348 int err = 0;
349 static struct proc_fs_info {
350 int flag;
351 char *str;
352 } fs_info[] = {
353 { MS_SYNCHRONOUS, ",sync" },
354 { MS_DIRSYNC, ",dirsync" },
355 { MS_MANDLOCK, ",mand" },
356 { 0, NULL }
358 static struct proc_fs_info mnt_info[] = {
359 { MNT_NOSUID, ",nosuid" },
360 { MNT_NODEV, ",nodev" },
361 { MNT_NOEXEC, ",noexec" },
362 { MNT_NOATIME, ",noatime" },
363 { MNT_NODIRATIME, ",nodiratime" },
364 { MNT_RELATIME, ",relatime" },
365 { 0, NULL }
367 struct proc_fs_info *fs_infop;
369 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
370 seq_putc(m, ' ');
371 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
372 seq_putc(m, ' ');
373 mangle(m, mnt->mnt_sb->s_type->name);
374 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
375 seq_putc(m, '.');
376 mangle(m, mnt->mnt_sb->s_subtype);
378 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
379 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
380 if (mnt->mnt_sb->s_flags & fs_infop->flag)
381 seq_puts(m, fs_infop->str);
383 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
384 if (mnt->mnt_flags & fs_infop->flag)
385 seq_puts(m, fs_infop->str);
387 if (mnt->mnt_sb->s_op->show_options)
388 err = mnt->mnt_sb->s_op->show_options(m, mnt);
389 seq_puts(m, " 0 0\n");
390 return err;
393 struct seq_operations mounts_op = {
394 .start = m_start,
395 .next = m_next,
396 .stop = m_stop,
397 .show = show_vfsmnt
400 static int show_vfsstat(struct seq_file *m, void *v)
402 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
403 int err = 0;
405 /* device */
406 if (mnt->mnt_devname) {
407 seq_puts(m, "device ");
408 mangle(m, mnt->mnt_devname);
409 } else
410 seq_puts(m, "no device");
412 /* mount point */
413 seq_puts(m, " mounted on ");
414 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
415 seq_putc(m, ' ');
417 /* file system type */
418 seq_puts(m, "with fstype ");
419 mangle(m, mnt->mnt_sb->s_type->name);
421 /* optional statistics */
422 if (mnt->mnt_sb->s_op->show_stats) {
423 seq_putc(m, ' ');
424 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
427 seq_putc(m, '\n');
428 return err;
431 struct seq_operations mountstats_op = {
432 .start = m_start,
433 .next = m_next,
434 .stop = m_stop,
435 .show = show_vfsstat,
439 * may_umount_tree - check if a mount tree is busy
440 * @mnt: root of mount tree
442 * This is called to check if a tree of mounts has any
443 * open files, pwds, chroots or sub mounts that are
444 * busy.
446 int may_umount_tree(struct vfsmount *mnt)
448 int actual_refs = 0;
449 int minimum_refs = 0;
450 struct vfsmount *p;
452 spin_lock(&vfsmount_lock);
453 for (p = mnt; p; p = next_mnt(p, mnt)) {
454 actual_refs += atomic_read(&p->mnt_count);
455 minimum_refs += 2;
457 spin_unlock(&vfsmount_lock);
459 if (actual_refs > minimum_refs)
460 return 0;
462 return 1;
465 EXPORT_SYMBOL(may_umount_tree);
468 * may_umount - check if a mount point is busy
469 * @mnt: root of mount
471 * This is called to check if a mount point has any
472 * open files, pwds, chroots or sub mounts. If the
473 * mount has sub mounts this will return busy
474 * regardless of whether the sub mounts are busy.
476 * Doesn't take quota and stuff into account. IOW, in some cases it will
477 * give false negatives. The main reason why it's here is that we need
478 * a non-destructive way to look for easily umountable filesystems.
480 int may_umount(struct vfsmount *mnt)
482 int ret = 1;
483 spin_lock(&vfsmount_lock);
484 if (propagate_mount_busy(mnt, 2))
485 ret = 0;
486 spin_unlock(&vfsmount_lock);
487 return ret;
490 EXPORT_SYMBOL(may_umount);
492 void release_mounts(struct list_head *head)
494 struct vfsmount *mnt;
495 while (!list_empty(head)) {
496 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
497 list_del_init(&mnt->mnt_hash);
498 if (mnt->mnt_parent != mnt) {
499 struct dentry *dentry;
500 struct vfsmount *m;
501 spin_lock(&vfsmount_lock);
502 dentry = mnt->mnt_mountpoint;
503 m = mnt->mnt_parent;
504 mnt->mnt_mountpoint = mnt->mnt_root;
505 mnt->mnt_parent = mnt;
506 spin_unlock(&vfsmount_lock);
507 dput(dentry);
508 mntput(m);
510 mntput(mnt);
514 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
516 struct vfsmount *p;
518 for (p = mnt; p; p = next_mnt(p, mnt))
519 list_move(&p->mnt_hash, kill);
521 if (propagate)
522 propagate_umount(kill);
524 list_for_each_entry(p, kill, mnt_hash) {
525 list_del_init(&p->mnt_expire);
526 list_del_init(&p->mnt_list);
527 __touch_mnt_namespace(p->mnt_ns);
528 p->mnt_ns = NULL;
529 list_del_init(&p->mnt_child);
530 if (p->mnt_parent != p)
531 p->mnt_mountpoint->d_mounted--;
532 change_mnt_propagation(p, MS_PRIVATE);
536 static int do_umount(struct vfsmount *mnt, int flags)
538 struct super_block *sb = mnt->mnt_sb;
539 int retval;
540 LIST_HEAD(umount_list);
542 retval = security_sb_umount(mnt, flags);
543 if (retval)
544 return retval;
547 * Allow userspace to request a mountpoint be expired rather than
548 * unmounting unconditionally. Unmount only happens if:
549 * (1) the mark is already set (the mark is cleared by mntput())
550 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
552 if (flags & MNT_EXPIRE) {
553 if (mnt == current->fs->rootmnt ||
554 flags & (MNT_FORCE | MNT_DETACH))
555 return -EINVAL;
557 if (atomic_read(&mnt->mnt_count) != 2)
558 return -EBUSY;
560 if (!xchg(&mnt->mnt_expiry_mark, 1))
561 return -EAGAIN;
565 * If we may have to abort operations to get out of this
566 * mount, and they will themselves hold resources we must
567 * allow the fs to do things. In the Unix tradition of
568 * 'Gee thats tricky lets do it in userspace' the umount_begin
569 * might fail to complete on the first run through as other tasks
570 * must return, and the like. Thats for the mount program to worry
571 * about for the moment.
574 lock_kernel();
575 if (sb->s_op->umount_begin)
576 sb->s_op->umount_begin(mnt, flags);
577 unlock_kernel();
580 * No sense to grab the lock for this test, but test itself looks
581 * somewhat bogus. Suggestions for better replacement?
582 * Ho-hum... In principle, we might treat that as umount + switch
583 * to rootfs. GC would eventually take care of the old vfsmount.
584 * Actually it makes sense, especially if rootfs would contain a
585 * /reboot - static binary that would close all descriptors and
586 * call reboot(9). Then init(8) could umount root and exec /reboot.
588 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
590 * Special case for "unmounting" root ...
591 * we just try to remount it readonly.
593 down_write(&sb->s_umount);
594 if (!(sb->s_flags & MS_RDONLY)) {
595 lock_kernel();
596 DQUOT_OFF(sb);
597 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
598 unlock_kernel();
600 up_write(&sb->s_umount);
601 return retval;
604 down_write(&namespace_sem);
605 spin_lock(&vfsmount_lock);
606 event++;
608 retval = -EBUSY;
609 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
610 if (!list_empty(&mnt->mnt_list))
611 umount_tree(mnt, 1, &umount_list);
612 retval = 0;
614 spin_unlock(&vfsmount_lock);
615 if (retval)
616 security_sb_umount_busy(mnt);
617 up_write(&namespace_sem);
618 release_mounts(&umount_list);
619 return retval;
623 * Now umount can handle mount points as well as block devices.
624 * This is important for filesystems which use unnamed block devices.
626 * We now support a flag for forced unmount like the other 'big iron'
627 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
630 asmlinkage long sys_umount(char __user * name, int flags)
632 struct nameidata nd;
633 int retval;
635 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
636 if (retval)
637 goto out;
638 retval = -EINVAL;
639 if (nd.dentry != nd.mnt->mnt_root)
640 goto dput_and_out;
641 if (!check_mnt(nd.mnt))
642 goto dput_and_out;
644 retval = -EPERM;
645 if (!capable(CAP_SYS_ADMIN))
646 goto dput_and_out;
648 retval = do_umount(nd.mnt, flags);
649 dput_and_out:
650 path_release_on_umount(&nd);
651 out:
652 return retval;
655 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
658 * The 2.0 compatible umount. No flags.
660 asmlinkage long sys_oldumount(char __user * name)
662 return sys_umount(name, 0);
665 #endif
667 static int mount_is_safe(struct nameidata *nd)
669 if (capable(CAP_SYS_ADMIN))
670 return 0;
671 return -EPERM;
672 #ifdef notyet
673 if (S_ISLNK(nd->dentry->d_inode->i_mode))
674 return -EPERM;
675 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
676 if (current->uid != nd->dentry->d_inode->i_uid)
677 return -EPERM;
679 if (vfs_permission(nd, MAY_WRITE))
680 return -EPERM;
681 return 0;
682 #endif
685 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
687 while (1) {
688 if (d == dentry)
689 return 1;
690 if (d == NULL || d == d->d_parent)
691 return 0;
692 d = d->d_parent;
696 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
697 int flag)
699 struct vfsmount *res, *p, *q, *r, *s;
700 struct nameidata nd;
702 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
703 return NULL;
705 res = q = clone_mnt(mnt, dentry, flag);
706 if (!q)
707 goto Enomem;
708 q->mnt_mountpoint = mnt->mnt_mountpoint;
710 p = mnt;
711 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
712 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
713 continue;
715 for (s = r; s; s = next_mnt(s, r)) {
716 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
717 s = skip_mnt_tree(s);
718 continue;
720 while (p != s->mnt_parent) {
721 p = p->mnt_parent;
722 q = q->mnt_parent;
724 p = s;
725 nd.mnt = q;
726 nd.dentry = p->mnt_mountpoint;
727 q = clone_mnt(p, p->mnt_root, flag);
728 if (!q)
729 goto Enomem;
730 spin_lock(&vfsmount_lock);
731 list_add_tail(&q->mnt_list, &res->mnt_list);
732 attach_mnt(q, &nd);
733 spin_unlock(&vfsmount_lock);
736 return res;
737 Enomem:
738 if (res) {
739 LIST_HEAD(umount_list);
740 spin_lock(&vfsmount_lock);
741 umount_tree(res, 0, &umount_list);
742 spin_unlock(&vfsmount_lock);
743 release_mounts(&umount_list);
745 return NULL;
749 * @source_mnt : mount tree to be attached
750 * @nd : place the mount tree @source_mnt is attached
751 * @parent_nd : if non-null, detach the source_mnt from its parent and
752 * store the parent mount and mountpoint dentry.
753 * (done when source_mnt is moved)
755 * NOTE: in the table below explains the semantics when a source mount
756 * of a given type is attached to a destination mount of a given type.
757 * ---------------------------------------------------------------------------
758 * | BIND MOUNT OPERATION |
759 * |**************************************************************************
760 * | source-->| shared | private | slave | unbindable |
761 * | dest | | | | |
762 * | | | | | | |
763 * | v | | | | |
764 * |**************************************************************************
765 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
766 * | | | | | |
767 * |non-shared| shared (+) | private | slave (*) | invalid |
768 * ***************************************************************************
769 * A bind operation clones the source mount and mounts the clone on the
770 * destination mount.
772 * (++) the cloned mount is propagated to all the mounts in the propagation
773 * tree of the destination mount and the cloned mount is added to
774 * the peer group of the source mount.
775 * (+) the cloned mount is created under the destination mount and is marked
776 * as shared. The cloned mount is added to the peer group of the source
777 * mount.
778 * (+++) the mount is propagated to all the mounts in the propagation tree
779 * of the destination mount and the cloned mount is made slave
780 * of the same master as that of the source mount. The cloned mount
781 * is marked as 'shared and slave'.
782 * (*) the cloned mount is made a slave of the same master as that of the
783 * source mount.
785 * ---------------------------------------------------------------------------
786 * | MOVE MOUNT OPERATION |
787 * |**************************************************************************
788 * | source-->| shared | private | slave | unbindable |
789 * | dest | | | | |
790 * | | | | | | |
791 * | v | | | | |
792 * |**************************************************************************
793 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
794 * | | | | | |
795 * |non-shared| shared (+*) | private | slave (*) | unbindable |
796 * ***************************************************************************
798 * (+) the mount is moved to the destination. And is then propagated to
799 * all the mounts in the propagation tree of the destination mount.
800 * (+*) the mount is moved to the destination.
801 * (+++) the mount is moved to the destination and is then propagated to
802 * all the mounts belonging to the destination mount's propagation tree.
803 * the mount is marked as 'shared and slave'.
804 * (*) the mount continues to be a slave at the new location.
806 * if the source mount is a tree, the operations explained above is
807 * applied to each mount in the tree.
808 * Must be called without spinlocks held, since this function can sleep
809 * in allocations.
811 static int attach_recursive_mnt(struct vfsmount *source_mnt,
812 struct nameidata *nd, struct nameidata *parent_nd)
814 LIST_HEAD(tree_list);
815 struct vfsmount *dest_mnt = nd->mnt;
816 struct dentry *dest_dentry = nd->dentry;
817 struct vfsmount *child, *p;
819 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
820 return -EINVAL;
822 if (IS_MNT_SHARED(dest_mnt)) {
823 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
824 set_mnt_shared(p);
827 spin_lock(&vfsmount_lock);
828 if (parent_nd) {
829 detach_mnt(source_mnt, parent_nd);
830 attach_mnt(source_mnt, nd);
831 touch_mnt_namespace(current->nsproxy->mnt_ns);
832 } else {
833 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
834 commit_tree(source_mnt);
837 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
838 list_del_init(&child->mnt_hash);
839 commit_tree(child);
841 spin_unlock(&vfsmount_lock);
842 return 0;
845 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
847 int err;
848 if (mnt->mnt_sb->s_flags & MS_NOUSER)
849 return -EINVAL;
851 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
852 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
853 return -ENOTDIR;
855 err = -ENOENT;
856 mutex_lock(&nd->dentry->d_inode->i_mutex);
857 if (IS_DEADDIR(nd->dentry->d_inode))
858 goto out_unlock;
860 err = security_sb_check_sb(mnt, nd);
861 if (err)
862 goto out_unlock;
864 err = -ENOENT;
865 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
866 err = attach_recursive_mnt(mnt, nd, NULL);
867 out_unlock:
868 mutex_unlock(&nd->dentry->d_inode->i_mutex);
869 if (!err)
870 security_sb_post_addmount(mnt, nd);
871 return err;
875 * recursively change the type of the mountpoint.
877 static int do_change_type(struct nameidata *nd, int flag)
879 struct vfsmount *m, *mnt = nd->mnt;
880 int recurse = flag & MS_REC;
881 int type = flag & ~MS_REC;
883 if (!capable(CAP_SYS_ADMIN))
884 return -EPERM;
886 if (nd->dentry != nd->mnt->mnt_root)
887 return -EINVAL;
889 down_write(&namespace_sem);
890 spin_lock(&vfsmount_lock);
891 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
892 change_mnt_propagation(m, type);
893 spin_unlock(&vfsmount_lock);
894 up_write(&namespace_sem);
895 return 0;
899 * do loopback mount.
901 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
903 struct nameidata old_nd;
904 struct vfsmount *mnt = NULL;
905 int err = mount_is_safe(nd);
906 if (err)
907 return err;
908 if (!old_name || !*old_name)
909 return -EINVAL;
910 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
911 if (err)
912 return err;
914 down_write(&namespace_sem);
915 err = -EINVAL;
916 if (IS_MNT_UNBINDABLE(old_nd.mnt))
917 goto out;
919 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
920 goto out;
922 err = -ENOMEM;
923 if (recurse)
924 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
925 else
926 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
928 if (!mnt)
929 goto out;
931 err = graft_tree(mnt, nd);
932 if (err) {
933 LIST_HEAD(umount_list);
934 spin_lock(&vfsmount_lock);
935 umount_tree(mnt, 0, &umount_list);
936 spin_unlock(&vfsmount_lock);
937 release_mounts(&umount_list);
940 out:
941 up_write(&namespace_sem);
942 path_release(&old_nd);
943 return err;
947 * change filesystem flags. dir should be a physical root of filesystem.
948 * If you've mounted a non-root directory somewhere and want to do remount
949 * on it - tough luck.
951 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
952 void *data)
954 int err;
955 struct super_block *sb = nd->mnt->mnt_sb;
957 if (!capable(CAP_SYS_ADMIN))
958 return -EPERM;
960 if (!check_mnt(nd->mnt))
961 return -EINVAL;
963 if (nd->dentry != nd->mnt->mnt_root)
964 return -EINVAL;
966 down_write(&sb->s_umount);
967 err = do_remount_sb(sb, flags, data, 0);
968 if (!err)
969 nd->mnt->mnt_flags = mnt_flags;
970 up_write(&sb->s_umount);
971 if (!err)
972 security_sb_post_remount(nd->mnt, flags, data);
973 return err;
976 static inline int tree_contains_unbindable(struct vfsmount *mnt)
978 struct vfsmount *p;
979 for (p = mnt; p; p = next_mnt(p, mnt)) {
980 if (IS_MNT_UNBINDABLE(p))
981 return 1;
983 return 0;
986 static int do_move_mount(struct nameidata *nd, char *old_name)
988 struct nameidata old_nd, parent_nd;
989 struct vfsmount *p;
990 int err = 0;
991 if (!capable(CAP_SYS_ADMIN))
992 return -EPERM;
993 if (!old_name || !*old_name)
994 return -EINVAL;
995 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
996 if (err)
997 return err;
999 down_write(&namespace_sem);
1000 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1002 err = -EINVAL;
1003 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1004 goto out;
1006 err = -ENOENT;
1007 mutex_lock(&nd->dentry->d_inode->i_mutex);
1008 if (IS_DEADDIR(nd->dentry->d_inode))
1009 goto out1;
1011 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1012 goto out1;
1014 err = -EINVAL;
1015 if (old_nd.dentry != old_nd.mnt->mnt_root)
1016 goto out1;
1018 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1019 goto out1;
1021 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1022 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1023 goto out1;
1025 * Don't move a mount residing in a shared parent.
1027 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1028 goto out1;
1030 * Don't move a mount tree containing unbindable mounts to a destination
1031 * mount which is shared.
1033 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1034 goto out1;
1035 err = -ELOOP;
1036 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1037 if (p == old_nd.mnt)
1038 goto out1;
1040 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1041 goto out1;
1043 spin_lock(&vfsmount_lock);
1044 /* if the mount is moved, it should no longer be expire
1045 * automatically */
1046 list_del_init(&old_nd.mnt->mnt_expire);
1047 spin_unlock(&vfsmount_lock);
1048 out1:
1049 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1050 out:
1051 up_write(&namespace_sem);
1052 if (!err)
1053 path_release(&parent_nd);
1054 path_release(&old_nd);
1055 return err;
1059 * create a new mount for userspace and request it to be added into the
1060 * namespace's tree
1062 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1063 int mnt_flags, char *name, void *data)
1065 struct vfsmount *mnt;
1067 if (!type || !memchr(type, 0, PAGE_SIZE))
1068 return -EINVAL;
1070 /* we need capabilities... */
1071 if (!capable(CAP_SYS_ADMIN))
1072 return -EPERM;
1074 mnt = do_kern_mount(type, flags, name, data);
1075 if (IS_ERR(mnt))
1076 return PTR_ERR(mnt);
1078 return do_add_mount(mnt, nd, mnt_flags, NULL);
1082 * add a mount into a namespace's mount tree
1083 * - provide the option of adding the new mount to an expiration list
1085 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1086 int mnt_flags, struct list_head *fslist)
1088 int err;
1090 down_write(&namespace_sem);
1091 /* Something was mounted here while we slept */
1092 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1094 err = -EINVAL;
1095 if (!check_mnt(nd->mnt))
1096 goto unlock;
1098 /* Refuse the same filesystem on the same mount point */
1099 err = -EBUSY;
1100 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1101 nd->mnt->mnt_root == nd->dentry)
1102 goto unlock;
1104 err = -EINVAL;
1105 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1106 goto unlock;
1108 newmnt->mnt_flags = mnt_flags;
1109 if ((err = graft_tree(newmnt, nd)))
1110 goto unlock;
1112 if (fslist) {
1113 /* add to the specified expiration list */
1114 spin_lock(&vfsmount_lock);
1115 list_add_tail(&newmnt->mnt_expire, fslist);
1116 spin_unlock(&vfsmount_lock);
1118 up_write(&namespace_sem);
1119 return 0;
1121 unlock:
1122 up_write(&namespace_sem);
1123 mntput(newmnt);
1124 return err;
1127 EXPORT_SYMBOL_GPL(do_add_mount);
1129 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1130 struct list_head *umounts)
1132 spin_lock(&vfsmount_lock);
1135 * Check if mount is still attached, if not, let whoever holds it deal
1136 * with the sucker
1138 if (mnt->mnt_parent == mnt) {
1139 spin_unlock(&vfsmount_lock);
1140 return;
1144 * Check that it is still dead: the count should now be 2 - as
1145 * contributed by the vfsmount parent and the mntget above
1147 if (!propagate_mount_busy(mnt, 2)) {
1148 /* delete from the namespace */
1149 touch_mnt_namespace(mnt->mnt_ns);
1150 list_del_init(&mnt->mnt_list);
1151 mnt->mnt_ns = NULL;
1152 umount_tree(mnt, 1, umounts);
1153 spin_unlock(&vfsmount_lock);
1154 } else {
1156 * Someone brought it back to life whilst we didn't have any
1157 * locks held so return it to the expiration list
1159 list_add_tail(&mnt->mnt_expire, mounts);
1160 spin_unlock(&vfsmount_lock);
1165 * go through the vfsmounts we've just consigned to the graveyard to
1166 * - check that they're still dead
1167 * - delete the vfsmount from the appropriate namespace under lock
1168 * - dispose of the corpse
1170 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1172 struct mnt_namespace *ns;
1173 struct vfsmount *mnt;
1175 while (!list_empty(graveyard)) {
1176 LIST_HEAD(umounts);
1177 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1178 list_del_init(&mnt->mnt_expire);
1180 /* don't do anything if the namespace is dead - all the
1181 * vfsmounts from it are going away anyway */
1182 ns = mnt->mnt_ns;
1183 if (!ns || !ns->root)
1184 continue;
1185 get_mnt_ns(ns);
1187 spin_unlock(&vfsmount_lock);
1188 down_write(&namespace_sem);
1189 expire_mount(mnt, mounts, &umounts);
1190 up_write(&namespace_sem);
1191 release_mounts(&umounts);
1192 mntput(mnt);
1193 put_mnt_ns(ns);
1194 spin_lock(&vfsmount_lock);
1199 * process a list of expirable mountpoints with the intent of discarding any
1200 * mountpoints that aren't in use and haven't been touched since last we came
1201 * here
1203 void mark_mounts_for_expiry(struct list_head *mounts)
1205 struct vfsmount *mnt, *next;
1206 LIST_HEAD(graveyard);
1208 if (list_empty(mounts))
1209 return;
1211 spin_lock(&vfsmount_lock);
1213 /* extract from the expiration list every vfsmount that matches the
1214 * following criteria:
1215 * - only referenced by its parent vfsmount
1216 * - still marked for expiry (marked on the last call here; marks are
1217 * cleared by mntput())
1219 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1220 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1221 atomic_read(&mnt->mnt_count) != 1)
1222 continue;
1224 mntget(mnt);
1225 list_move(&mnt->mnt_expire, &graveyard);
1228 expire_mount_list(&graveyard, mounts);
1230 spin_unlock(&vfsmount_lock);
1233 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1236 * Ripoff of 'select_parent()'
1238 * search the list of submounts for a given mountpoint, and move any
1239 * shrinkable submounts to the 'graveyard' list.
1241 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1243 struct vfsmount *this_parent = parent;
1244 struct list_head *next;
1245 int found = 0;
1247 repeat:
1248 next = this_parent->mnt_mounts.next;
1249 resume:
1250 while (next != &this_parent->mnt_mounts) {
1251 struct list_head *tmp = next;
1252 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1254 next = tmp->next;
1255 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1256 continue;
1258 * Descend a level if the d_mounts list is non-empty.
1260 if (!list_empty(&mnt->mnt_mounts)) {
1261 this_parent = mnt;
1262 goto repeat;
1265 if (!propagate_mount_busy(mnt, 1)) {
1266 mntget(mnt);
1267 list_move_tail(&mnt->mnt_expire, graveyard);
1268 found++;
1272 * All done at this level ... ascend and resume the search
1274 if (this_parent != parent) {
1275 next = this_parent->mnt_child.next;
1276 this_parent = this_parent->mnt_parent;
1277 goto resume;
1279 return found;
1283 * process a list of expirable mountpoints with the intent of discarding any
1284 * submounts of a specific parent mountpoint
1286 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1288 LIST_HEAD(graveyard);
1289 int found;
1291 spin_lock(&vfsmount_lock);
1293 /* extract submounts of 'mountpoint' from the expiration list */
1294 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1295 expire_mount_list(&graveyard, mounts);
1297 spin_unlock(&vfsmount_lock);
1300 EXPORT_SYMBOL_GPL(shrink_submounts);
1303 * Some copy_from_user() implementations do not return the exact number of
1304 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1305 * Note that this function differs from copy_from_user() in that it will oops
1306 * on bad values of `to', rather than returning a short copy.
1308 static long exact_copy_from_user(void *to, const void __user * from,
1309 unsigned long n)
1311 char *t = to;
1312 const char __user *f = from;
1313 char c;
1315 if (!access_ok(VERIFY_READ, from, n))
1316 return n;
1318 while (n) {
1319 if (__get_user(c, f)) {
1320 memset(t, 0, n);
1321 break;
1323 *t++ = c;
1324 f++;
1325 n--;
1327 return n;
1330 int copy_mount_options(const void __user * data, unsigned long *where)
1332 int i;
1333 unsigned long page;
1334 unsigned long size;
1336 *where = 0;
1337 if (!data)
1338 return 0;
1340 if (!(page = __get_free_page(GFP_KERNEL)))
1341 return -ENOMEM;
1343 /* We only care that *some* data at the address the user
1344 * gave us is valid. Just in case, we'll zero
1345 * the remainder of the page.
1347 /* copy_from_user cannot cross TASK_SIZE ! */
1348 size = TASK_SIZE - (unsigned long)data;
1349 if (size > PAGE_SIZE)
1350 size = PAGE_SIZE;
1352 i = size - exact_copy_from_user((void *)page, data, size);
1353 if (!i) {
1354 free_page(page);
1355 return -EFAULT;
1357 if (i != PAGE_SIZE)
1358 memset((char *)page + i, 0, PAGE_SIZE - i);
1359 *where = page;
1360 return 0;
1364 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1365 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1367 * data is a (void *) that can point to any structure up to
1368 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1369 * information (or be NULL).
1371 * Pre-0.97 versions of mount() didn't have a flags word.
1372 * When the flags word was introduced its top half was required
1373 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1374 * Therefore, if this magic number is present, it carries no information
1375 * and must be discarded.
1377 long do_mount(char *dev_name, char *dir_name, char *type_page,
1378 unsigned long flags, void *data_page)
1380 struct nameidata nd;
1381 int retval = 0;
1382 int mnt_flags = 0;
1384 /* Discard magic */
1385 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1386 flags &= ~MS_MGC_MSK;
1388 /* Basic sanity checks */
1390 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1391 return -EINVAL;
1392 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1393 return -EINVAL;
1395 if (data_page)
1396 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1398 /* Separate the per-mountpoint flags */
1399 if (flags & MS_NOSUID)
1400 mnt_flags |= MNT_NOSUID;
1401 if (flags & MS_NODEV)
1402 mnt_flags |= MNT_NODEV;
1403 if (flags & MS_NOEXEC)
1404 mnt_flags |= MNT_NOEXEC;
1405 if (flags & MS_NOATIME)
1406 mnt_flags |= MNT_NOATIME;
1407 if (flags & MS_NODIRATIME)
1408 mnt_flags |= MNT_NODIRATIME;
1409 if (flags & MS_RELATIME)
1410 mnt_flags |= MNT_RELATIME;
1412 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1413 MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1415 /* ... and get the mountpoint */
1416 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1417 if (retval)
1418 return retval;
1420 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1421 if (retval)
1422 goto dput_out;
1424 if (flags & MS_REMOUNT)
1425 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1426 data_page);
1427 else if (flags & MS_BIND)
1428 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1429 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1430 retval = do_change_type(&nd, flags);
1431 else if (flags & MS_MOVE)
1432 retval = do_move_mount(&nd, dev_name);
1433 else
1434 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1435 dev_name, data_page);
1436 dput_out:
1437 path_release(&nd);
1438 return retval;
1442 * Allocate a new namespace structure and populate it with contents
1443 * copied from the namespace of the passed in task structure.
1445 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1446 struct fs_struct *fs)
1448 struct mnt_namespace *new_ns;
1449 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1450 struct vfsmount *p, *q;
1452 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1453 if (!new_ns)
1454 return NULL;
1456 atomic_set(&new_ns->count, 1);
1457 INIT_LIST_HEAD(&new_ns->list);
1458 init_waitqueue_head(&new_ns->poll);
1459 new_ns->event = 0;
1461 down_write(&namespace_sem);
1462 /* First pass: copy the tree topology */
1463 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1464 CL_COPY_ALL | CL_EXPIRE);
1465 if (!new_ns->root) {
1466 up_write(&namespace_sem);
1467 kfree(new_ns);
1468 return NULL;
1470 spin_lock(&vfsmount_lock);
1471 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1472 spin_unlock(&vfsmount_lock);
1475 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1476 * as belonging to new namespace. We have already acquired a private
1477 * fs_struct, so tsk->fs->lock is not needed.
1479 p = mnt_ns->root;
1480 q = new_ns->root;
1481 while (p) {
1482 q->mnt_ns = new_ns;
1483 if (fs) {
1484 if (p == fs->rootmnt) {
1485 rootmnt = p;
1486 fs->rootmnt = mntget(q);
1488 if (p == fs->pwdmnt) {
1489 pwdmnt = p;
1490 fs->pwdmnt = mntget(q);
1492 if (p == fs->altrootmnt) {
1493 altrootmnt = p;
1494 fs->altrootmnt = mntget(q);
1497 p = next_mnt(p, mnt_ns->root);
1498 q = next_mnt(q, new_ns->root);
1500 up_write(&namespace_sem);
1502 if (rootmnt)
1503 mntput(rootmnt);
1504 if (pwdmnt)
1505 mntput(pwdmnt);
1506 if (altrootmnt)
1507 mntput(altrootmnt);
1509 return new_ns;
1512 struct mnt_namespace *copy_mnt_ns(int flags, struct mnt_namespace *ns,
1513 struct fs_struct *new_fs)
1515 struct mnt_namespace *new_ns;
1517 BUG_ON(!ns);
1518 get_mnt_ns(ns);
1520 if (!(flags & CLONE_NEWNS))
1521 return ns;
1523 new_ns = dup_mnt_ns(ns, new_fs);
1525 put_mnt_ns(ns);
1526 return new_ns;
1529 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1530 char __user * type, unsigned long flags,
1531 void __user * data)
1533 int retval;
1534 unsigned long data_page;
1535 unsigned long type_page;
1536 unsigned long dev_page;
1537 char *dir_page;
1539 retval = copy_mount_options(type, &type_page);
1540 if (retval < 0)
1541 return retval;
1543 dir_page = getname(dir_name);
1544 retval = PTR_ERR(dir_page);
1545 if (IS_ERR(dir_page))
1546 goto out1;
1548 retval = copy_mount_options(dev_name, &dev_page);
1549 if (retval < 0)
1550 goto out2;
1552 retval = copy_mount_options(data, &data_page);
1553 if (retval < 0)
1554 goto out3;
1556 lock_kernel();
1557 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1558 flags, (void *)data_page);
1559 unlock_kernel();
1560 free_page(data_page);
1562 out3:
1563 free_page(dev_page);
1564 out2:
1565 putname(dir_page);
1566 out1:
1567 free_page(type_page);
1568 return retval;
1572 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1573 * It can block. Requires the big lock held.
1575 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1576 struct dentry *dentry)
1578 struct dentry *old_root;
1579 struct vfsmount *old_rootmnt;
1580 write_lock(&fs->lock);
1581 old_root = fs->root;
1582 old_rootmnt = fs->rootmnt;
1583 fs->rootmnt = mntget(mnt);
1584 fs->root = dget(dentry);
1585 write_unlock(&fs->lock);
1586 if (old_root) {
1587 dput(old_root);
1588 mntput(old_rootmnt);
1593 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1594 * It can block. Requires the big lock held.
1596 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1597 struct dentry *dentry)
1599 struct dentry *old_pwd;
1600 struct vfsmount *old_pwdmnt;
1602 write_lock(&fs->lock);
1603 old_pwd = fs->pwd;
1604 old_pwdmnt = fs->pwdmnt;
1605 fs->pwdmnt = mntget(mnt);
1606 fs->pwd = dget(dentry);
1607 write_unlock(&fs->lock);
1609 if (old_pwd) {
1610 dput(old_pwd);
1611 mntput(old_pwdmnt);
1615 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1617 struct task_struct *g, *p;
1618 struct fs_struct *fs;
1620 read_lock(&tasklist_lock);
1621 do_each_thread(g, p) {
1622 task_lock(p);
1623 fs = p->fs;
1624 if (fs) {
1625 atomic_inc(&fs->count);
1626 task_unlock(p);
1627 if (fs->root == old_nd->dentry
1628 && fs->rootmnt == old_nd->mnt)
1629 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1630 if (fs->pwd == old_nd->dentry
1631 && fs->pwdmnt == old_nd->mnt)
1632 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1633 put_fs_struct(fs);
1634 } else
1635 task_unlock(p);
1636 } while_each_thread(g, p);
1637 read_unlock(&tasklist_lock);
1641 * pivot_root Semantics:
1642 * Moves the root file system of the current process to the directory put_old,
1643 * makes new_root as the new root file system of the current process, and sets
1644 * root/cwd of all processes which had them on the current root to new_root.
1646 * Restrictions:
1647 * The new_root and put_old must be directories, and must not be on the
1648 * same file system as the current process root. The put_old must be
1649 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1650 * pointed to by put_old must yield the same directory as new_root. No other
1651 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1653 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1654 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1655 * in this situation.
1657 * Notes:
1658 * - we don't move root/cwd if they are not at the root (reason: if something
1659 * cared enough to change them, it's probably wrong to force them elsewhere)
1660 * - it's okay to pick a root that isn't the root of a file system, e.g.
1661 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1662 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1663 * first.
1665 asmlinkage long sys_pivot_root(const char __user * new_root,
1666 const char __user * put_old)
1668 struct vfsmount *tmp;
1669 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1670 int error;
1672 if (!capable(CAP_SYS_ADMIN))
1673 return -EPERM;
1675 lock_kernel();
1677 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1678 &new_nd);
1679 if (error)
1680 goto out0;
1681 error = -EINVAL;
1682 if (!check_mnt(new_nd.mnt))
1683 goto out1;
1685 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1686 if (error)
1687 goto out1;
1689 error = security_sb_pivotroot(&old_nd, &new_nd);
1690 if (error) {
1691 path_release(&old_nd);
1692 goto out1;
1695 read_lock(&current->fs->lock);
1696 user_nd.mnt = mntget(current->fs->rootmnt);
1697 user_nd.dentry = dget(current->fs->root);
1698 read_unlock(&current->fs->lock);
1699 down_write(&namespace_sem);
1700 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1701 error = -EINVAL;
1702 if (IS_MNT_SHARED(old_nd.mnt) ||
1703 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1704 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1705 goto out2;
1706 if (!check_mnt(user_nd.mnt))
1707 goto out2;
1708 error = -ENOENT;
1709 if (IS_DEADDIR(new_nd.dentry->d_inode))
1710 goto out2;
1711 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1712 goto out2;
1713 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1714 goto out2;
1715 error = -EBUSY;
1716 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1717 goto out2; /* loop, on the same file system */
1718 error = -EINVAL;
1719 if (user_nd.mnt->mnt_root != user_nd.dentry)
1720 goto out2; /* not a mountpoint */
1721 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1722 goto out2; /* not attached */
1723 if (new_nd.mnt->mnt_root != new_nd.dentry)
1724 goto out2; /* not a mountpoint */
1725 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1726 goto out2; /* not attached */
1727 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1728 spin_lock(&vfsmount_lock);
1729 if (tmp != new_nd.mnt) {
1730 for (;;) {
1731 if (tmp->mnt_parent == tmp)
1732 goto out3; /* already mounted on put_old */
1733 if (tmp->mnt_parent == new_nd.mnt)
1734 break;
1735 tmp = tmp->mnt_parent;
1737 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1738 goto out3;
1739 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1740 goto out3;
1741 detach_mnt(new_nd.mnt, &parent_nd);
1742 detach_mnt(user_nd.mnt, &root_parent);
1743 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1744 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1745 touch_mnt_namespace(current->nsproxy->mnt_ns);
1746 spin_unlock(&vfsmount_lock);
1747 chroot_fs_refs(&user_nd, &new_nd);
1748 security_sb_post_pivotroot(&user_nd, &new_nd);
1749 error = 0;
1750 path_release(&root_parent);
1751 path_release(&parent_nd);
1752 out2:
1753 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1754 up_write(&namespace_sem);
1755 path_release(&user_nd);
1756 path_release(&old_nd);
1757 out1:
1758 path_release(&new_nd);
1759 out0:
1760 unlock_kernel();
1761 return error;
1762 out3:
1763 spin_unlock(&vfsmount_lock);
1764 goto out2;
1767 static void __init init_mount_tree(void)
1769 struct vfsmount *mnt;
1770 struct mnt_namespace *ns;
1772 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1773 if (IS_ERR(mnt))
1774 panic("Can't create rootfs");
1775 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1776 if (!ns)
1777 panic("Can't allocate initial namespace");
1778 atomic_set(&ns->count, 1);
1779 INIT_LIST_HEAD(&ns->list);
1780 init_waitqueue_head(&ns->poll);
1781 ns->event = 0;
1782 list_add(&mnt->mnt_list, &ns->list);
1783 ns->root = mnt;
1784 mnt->mnt_ns = ns;
1786 init_task.nsproxy->mnt_ns = ns;
1787 get_mnt_ns(ns);
1789 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1790 set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1793 void __init mnt_init(unsigned long mempages)
1795 struct list_head *d;
1796 unsigned int nr_hash;
1797 int i;
1798 int err;
1800 init_rwsem(&namespace_sem);
1802 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1803 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1805 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1807 if (!mount_hashtable)
1808 panic("Failed to allocate mount hash table\n");
1811 * Find the power-of-two list-heads that can fit into the allocation..
1812 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1813 * a power-of-two.
1815 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1816 hash_bits = 0;
1817 do {
1818 hash_bits++;
1819 } while ((nr_hash >> hash_bits) != 0);
1820 hash_bits--;
1823 * Re-calculate the actual number of entries and the mask
1824 * from the number of bits we can fit.
1826 nr_hash = 1UL << hash_bits;
1827 hash_mask = nr_hash - 1;
1829 printk("Mount-cache hash table entries: %d\n", nr_hash);
1831 /* And initialize the newly allocated array */
1832 d = mount_hashtable;
1833 i = nr_hash;
1834 do {
1835 INIT_LIST_HEAD(d);
1836 d++;
1837 i--;
1838 } while (i);
1839 err = sysfs_init();
1840 if (err)
1841 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1842 __FUNCTION__, err);
1843 err = subsystem_register(&fs_subsys);
1844 if (err)
1845 printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1846 __FUNCTION__, err);
1847 init_rootfs();
1848 init_mount_tree();
1851 void __put_mnt_ns(struct mnt_namespace *ns)
1853 struct vfsmount *root = ns->root;
1854 LIST_HEAD(umount_list);
1855 ns->root = NULL;
1856 spin_unlock(&vfsmount_lock);
1857 down_write(&namespace_sem);
1858 spin_lock(&vfsmount_lock);
1859 umount_tree(root, 0, &umount_list);
1860 spin_unlock(&vfsmount_lock);
1861 up_write(&namespace_sem);
1862 release_mounts(&umount_list);
1863 kfree(ns);