firewire: add CSR CYCLE_TIME write support
[firewire-audio.git] / drivers / firewire / ohci.c
blob777811a736b2cd146fe4626d0f8f8c931bd4da04
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
49 #include "core.h"
50 #include "ohci.h"
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
95 struct context;
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
123 struct list_head buffer_list;
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
129 struct descriptor_buffer *buffer_tail;
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
135 struct descriptor *last;
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
141 struct descriptor *prev;
143 descriptor_callback_t callback;
145 struct tasklet_struct tasklet;
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
163 #define CONFIG_ROM_SIZE 1024
165 struct fw_ohci {
166 struct fw_card card;
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
175 * Spinlock for accessing fw_ohci data. Never call out of
176 * this driver with this lock held.
178 spinlock_t lock;
180 struct ar_context ar_request_ctx;
181 struct ar_context ar_response_ctx;
182 struct context at_request_ctx;
183 struct context at_response_ctx;
185 u32 it_context_mask;
186 struct iso_context *it_context_list;
187 u64 ir_context_channels;
188 u32 ir_context_mask;
189 struct iso_context *ir_context_list;
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 __be32 next_header;
197 __le32 *self_id_cpu;
198 dma_addr_t self_id_bus;
199 struct tasklet_struct bus_reset_tasklet;
201 u32 self_id_buffer[512];
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
206 return container_of(card, struct fw_ohci, card);
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
225 #define OHCI1394_REGISTER_SIZE 0x800
226 #define OHCI_LOOP_COUNT 500
227 #define OHCI1394_PCI_HCI_Control 0x40
228 #define SELF_ID_BUF_SIZE 0x800
229 #define OHCI_TCODE_PHY_PACKET 0x0e
230 #define OHCI_VERSION_1_1 0x010010
232 static char ohci_driver_name[] = KBUILD_MODNAME;
234 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
235 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
237 #define QUIRK_CYCLE_TIMER 1
238 #define QUIRK_RESET_PACKET 2
239 #define QUIRK_BE_HEADERS 4
240 #define QUIRK_NO_1394A 8
241 #define QUIRK_NO_MSI 16
243 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
244 static const struct {
245 unsigned short vendor, device, flags;
246 } ohci_quirks[] = {
247 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
248 QUIRK_RESET_PACKET |
249 QUIRK_NO_1394A},
250 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
251 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
252 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
253 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
254 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
255 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
258 /* This overrides anything that was found in ohci_quirks[]. */
259 static int param_quirks;
260 module_param_named(quirks, param_quirks, int, 0644);
261 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
262 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
263 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
264 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
265 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
266 ", disable MSI = " __stringify(QUIRK_NO_MSI)
267 ")");
269 #define OHCI_PARAM_DEBUG_AT_AR 1
270 #define OHCI_PARAM_DEBUG_SELFIDS 2
271 #define OHCI_PARAM_DEBUG_IRQS 4
272 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
274 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
276 static int param_debug;
277 module_param_named(debug, param_debug, int, 0644);
278 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
279 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
280 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
281 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
282 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
283 ", or a combination, or all = -1)");
285 static void log_irqs(u32 evt)
287 if (likely(!(param_debug &
288 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
289 return;
291 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
292 !(evt & OHCI1394_busReset))
293 return;
295 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
296 evt & OHCI1394_selfIDComplete ? " selfID" : "",
297 evt & OHCI1394_RQPkt ? " AR_req" : "",
298 evt & OHCI1394_RSPkt ? " AR_resp" : "",
299 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
300 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
301 evt & OHCI1394_isochRx ? " IR" : "",
302 evt & OHCI1394_isochTx ? " IT" : "",
303 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
304 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
305 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
306 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
307 evt & OHCI1394_busReset ? " busReset" : "",
308 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
309 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
310 OHCI1394_respTxComplete | OHCI1394_isochRx |
311 OHCI1394_isochTx | OHCI1394_postedWriteErr |
312 OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
313 OHCI1394_regAccessFail | OHCI1394_busReset)
314 ? " ?" : "");
317 static const char *speed[] = {
318 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
320 static const char *power[] = {
321 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
322 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
324 static const char port[] = { '.', '-', 'p', 'c', };
326 static char _p(u32 *s, int shift)
328 return port[*s >> shift & 3];
331 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
333 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
334 return;
336 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
337 self_id_count, generation, node_id);
339 for (; self_id_count--; ++s)
340 if ((*s & 1 << 23) == 0)
341 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
342 "%s gc=%d %s %s%s%s\n",
343 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
344 speed[*s >> 14 & 3], *s >> 16 & 63,
345 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
346 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
347 else
348 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
349 *s, *s >> 24 & 63,
350 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
351 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
354 static const char *evts[] = {
355 [0x00] = "evt_no_status", [0x01] = "-reserved-",
356 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
357 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
358 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
359 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
360 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
361 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
362 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
363 [0x10] = "-reserved-", [0x11] = "ack_complete",
364 [0x12] = "ack_pending ", [0x13] = "-reserved-",
365 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
366 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
367 [0x18] = "-reserved-", [0x19] = "-reserved-",
368 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
369 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
370 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
371 [0x20] = "pending/cancelled",
373 static const char *tcodes[] = {
374 [0x0] = "QW req", [0x1] = "BW req",
375 [0x2] = "W resp", [0x3] = "-reserved-",
376 [0x4] = "QR req", [0x5] = "BR req",
377 [0x6] = "QR resp", [0x7] = "BR resp",
378 [0x8] = "cycle start", [0x9] = "Lk req",
379 [0xa] = "async stream packet", [0xb] = "Lk resp",
380 [0xc] = "-reserved-", [0xd] = "-reserved-",
381 [0xe] = "link internal", [0xf] = "-reserved-",
383 static const char *phys[] = {
384 [0x0] = "phy config packet", [0x1] = "link-on packet",
385 [0x2] = "self-id packet", [0x3] = "-reserved-",
388 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
390 int tcode = header[0] >> 4 & 0xf;
391 char specific[12];
393 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
394 return;
396 if (unlikely(evt >= ARRAY_SIZE(evts)))
397 evt = 0x1f;
399 if (evt == OHCI1394_evt_bus_reset) {
400 fw_notify("A%c evt_bus_reset, generation %d\n",
401 dir, (header[2] >> 16) & 0xff);
402 return;
405 if (header[0] == ~header[1]) {
406 fw_notify("A%c %s, %s, %08x\n",
407 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
408 return;
411 switch (tcode) {
412 case 0x0: case 0x6: case 0x8:
413 snprintf(specific, sizeof(specific), " = %08x",
414 be32_to_cpu((__force __be32)header[3]));
415 break;
416 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
417 snprintf(specific, sizeof(specific), " %x,%x",
418 header[3] >> 16, header[3] & 0xffff);
419 break;
420 default:
421 specific[0] = '\0';
424 switch (tcode) {
425 case 0xe: case 0xa:
426 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
427 break;
428 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
429 fw_notify("A%c spd %x tl %02x, "
430 "%04x -> %04x, %s, "
431 "%s, %04x%08x%s\n",
432 dir, speed, header[0] >> 10 & 0x3f,
433 header[1] >> 16, header[0] >> 16, evts[evt],
434 tcodes[tcode], header[1] & 0xffff, header[2], specific);
435 break;
436 default:
437 fw_notify("A%c spd %x tl %02x, "
438 "%04x -> %04x, %s, "
439 "%s%s\n",
440 dir, speed, header[0] >> 10 & 0x3f,
441 header[1] >> 16, header[0] >> 16, evts[evt],
442 tcodes[tcode], specific);
446 #else
448 #define param_debug 0
449 static inline void log_irqs(u32 evt) {}
450 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
451 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
453 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
455 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
457 writel(data, ohci->registers + offset);
460 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
462 return readl(ohci->registers + offset);
465 static inline void flush_writes(const struct fw_ohci *ohci)
467 /* Do a dummy read to flush writes. */
468 reg_read(ohci, OHCI1394_Version);
471 static int read_phy_reg(struct fw_ohci *ohci, int addr)
473 u32 val;
474 int i;
476 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
477 for (i = 0; i < 3 + 100; i++) {
478 val = reg_read(ohci, OHCI1394_PhyControl);
479 if (val & OHCI1394_PhyControl_ReadDone)
480 return OHCI1394_PhyControl_ReadData(val);
483 * Try a few times without waiting. Sleeping is necessary
484 * only when the link/PHY interface is busy.
486 if (i >= 3)
487 msleep(1);
489 fw_error("failed to read phy reg\n");
491 return -EBUSY;
494 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
496 int i;
498 reg_write(ohci, OHCI1394_PhyControl,
499 OHCI1394_PhyControl_Write(addr, val));
500 for (i = 0; i < 3 + 100; i++) {
501 val = reg_read(ohci, OHCI1394_PhyControl);
502 if (!(val & OHCI1394_PhyControl_WritePending))
503 return 0;
505 if (i >= 3)
506 msleep(1);
508 fw_error("failed to write phy reg\n");
510 return -EBUSY;
513 static int ohci_update_phy_reg(struct fw_card *card, int addr,
514 int clear_bits, int set_bits)
516 struct fw_ohci *ohci = fw_ohci(card);
517 int ret;
519 ret = read_phy_reg(ohci, addr);
520 if (ret < 0)
521 return ret;
524 * The interrupt status bits are cleared by writing a one bit.
525 * Avoid clearing them unless explicitly requested in set_bits.
527 if (addr == 5)
528 clear_bits |= PHY_INT_STATUS_BITS;
530 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
533 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
535 int ret;
537 ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
538 if (ret < 0)
539 return ret;
541 return read_phy_reg(ohci, addr);
544 static int ar_context_add_page(struct ar_context *ctx)
546 struct device *dev = ctx->ohci->card.device;
547 struct ar_buffer *ab;
548 dma_addr_t uninitialized_var(ab_bus);
549 size_t offset;
551 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
552 if (ab == NULL)
553 return -ENOMEM;
555 ab->next = NULL;
556 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
557 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
558 DESCRIPTOR_STATUS |
559 DESCRIPTOR_BRANCH_ALWAYS);
560 offset = offsetof(struct ar_buffer, data);
561 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
562 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
563 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
564 ab->descriptor.branch_address = 0;
566 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
567 ctx->last_buffer->next = ab;
568 ctx->last_buffer = ab;
570 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
571 flush_writes(ctx->ohci);
573 return 0;
576 static void ar_context_release(struct ar_context *ctx)
578 struct ar_buffer *ab, *ab_next;
579 size_t offset;
580 dma_addr_t ab_bus;
582 for (ab = ctx->current_buffer; ab; ab = ab_next) {
583 ab_next = ab->next;
584 offset = offsetof(struct ar_buffer, data);
585 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
586 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
587 ab, ab_bus);
591 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
592 #define cond_le32_to_cpu(v) \
593 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
594 #else
595 #define cond_le32_to_cpu(v) le32_to_cpu(v)
596 #endif
598 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
600 struct fw_ohci *ohci = ctx->ohci;
601 struct fw_packet p;
602 u32 status, length, tcode;
603 int evt;
605 p.header[0] = cond_le32_to_cpu(buffer[0]);
606 p.header[1] = cond_le32_to_cpu(buffer[1]);
607 p.header[2] = cond_le32_to_cpu(buffer[2]);
609 tcode = (p.header[0] >> 4) & 0x0f;
610 switch (tcode) {
611 case TCODE_WRITE_QUADLET_REQUEST:
612 case TCODE_READ_QUADLET_RESPONSE:
613 p.header[3] = (__force __u32) buffer[3];
614 p.header_length = 16;
615 p.payload_length = 0;
616 break;
618 case TCODE_READ_BLOCK_REQUEST :
619 p.header[3] = cond_le32_to_cpu(buffer[3]);
620 p.header_length = 16;
621 p.payload_length = 0;
622 break;
624 case TCODE_WRITE_BLOCK_REQUEST:
625 case TCODE_READ_BLOCK_RESPONSE:
626 case TCODE_LOCK_REQUEST:
627 case TCODE_LOCK_RESPONSE:
628 p.header[3] = cond_le32_to_cpu(buffer[3]);
629 p.header_length = 16;
630 p.payload_length = p.header[3] >> 16;
631 break;
633 case TCODE_WRITE_RESPONSE:
634 case TCODE_READ_QUADLET_REQUEST:
635 case OHCI_TCODE_PHY_PACKET:
636 p.header_length = 12;
637 p.payload_length = 0;
638 break;
640 default:
641 /* FIXME: Stop context, discard everything, and restart? */
642 p.header_length = 0;
643 p.payload_length = 0;
646 p.payload = (void *) buffer + p.header_length;
648 /* FIXME: What to do about evt_* errors? */
649 length = (p.header_length + p.payload_length + 3) / 4;
650 status = cond_le32_to_cpu(buffer[length]);
651 evt = (status >> 16) & 0x1f;
653 p.ack = evt - 16;
654 p.speed = (status >> 21) & 0x7;
655 p.timestamp = status & 0xffff;
656 p.generation = ohci->request_generation;
658 log_ar_at_event('R', p.speed, p.header, evt);
661 * The OHCI bus reset handler synthesizes a phy packet with
662 * the new generation number when a bus reset happens (see
663 * section 8.4.2.3). This helps us determine when a request
664 * was received and make sure we send the response in the same
665 * generation. We only need this for requests; for responses
666 * we use the unique tlabel for finding the matching
667 * request.
669 * Alas some chips sometimes emit bus reset packets with a
670 * wrong generation. We set the correct generation for these
671 * at a slightly incorrect time (in bus_reset_tasklet).
673 if (evt == OHCI1394_evt_bus_reset) {
674 if (!(ohci->quirks & QUIRK_RESET_PACKET))
675 ohci->request_generation = (p.header[2] >> 16) & 0xff;
676 } else if (ctx == &ohci->ar_request_ctx) {
677 fw_core_handle_request(&ohci->card, &p);
678 } else {
679 fw_core_handle_response(&ohci->card, &p);
682 return buffer + length + 1;
685 static void ar_context_tasklet(unsigned long data)
687 struct ar_context *ctx = (struct ar_context *)data;
688 struct fw_ohci *ohci = ctx->ohci;
689 struct ar_buffer *ab;
690 struct descriptor *d;
691 void *buffer, *end;
693 ab = ctx->current_buffer;
694 d = &ab->descriptor;
696 if (d->res_count == 0) {
697 size_t size, rest, offset;
698 dma_addr_t start_bus;
699 void *start;
702 * This descriptor is finished and we may have a
703 * packet split across this and the next buffer. We
704 * reuse the page for reassembling the split packet.
707 offset = offsetof(struct ar_buffer, data);
708 start = buffer = ab;
709 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
711 ab = ab->next;
712 d = &ab->descriptor;
713 size = buffer + PAGE_SIZE - ctx->pointer;
714 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
715 memmove(buffer, ctx->pointer, size);
716 memcpy(buffer + size, ab->data, rest);
717 ctx->current_buffer = ab;
718 ctx->pointer = (void *) ab->data + rest;
719 end = buffer + size + rest;
721 while (buffer < end)
722 buffer = handle_ar_packet(ctx, buffer);
724 dma_free_coherent(ohci->card.device, PAGE_SIZE,
725 start, start_bus);
726 ar_context_add_page(ctx);
727 } else {
728 buffer = ctx->pointer;
729 ctx->pointer = end =
730 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
732 while (buffer < end)
733 buffer = handle_ar_packet(ctx, buffer);
737 static int ar_context_init(struct ar_context *ctx,
738 struct fw_ohci *ohci, u32 regs)
740 struct ar_buffer ab;
742 ctx->regs = regs;
743 ctx->ohci = ohci;
744 ctx->last_buffer = &ab;
745 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
747 ar_context_add_page(ctx);
748 ar_context_add_page(ctx);
749 ctx->current_buffer = ab.next;
750 ctx->pointer = ctx->current_buffer->data;
752 return 0;
755 static void ar_context_run(struct ar_context *ctx)
757 struct ar_buffer *ab = ctx->current_buffer;
758 dma_addr_t ab_bus;
759 size_t offset;
761 offset = offsetof(struct ar_buffer, data);
762 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
764 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
765 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
766 flush_writes(ctx->ohci);
769 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
771 int b, key;
773 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
774 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
776 /* figure out which descriptor the branch address goes in */
777 if (z == 2 && (b == 3 || key == 2))
778 return d;
779 else
780 return d + z - 1;
783 static void context_tasklet(unsigned long data)
785 struct context *ctx = (struct context *) data;
786 struct descriptor *d, *last;
787 u32 address;
788 int z;
789 struct descriptor_buffer *desc;
791 desc = list_entry(ctx->buffer_list.next,
792 struct descriptor_buffer, list);
793 last = ctx->last;
794 while (last->branch_address != 0) {
795 struct descriptor_buffer *old_desc = desc;
796 address = le32_to_cpu(last->branch_address);
797 z = address & 0xf;
798 address &= ~0xf;
800 /* If the branch address points to a buffer outside of the
801 * current buffer, advance to the next buffer. */
802 if (address < desc->buffer_bus ||
803 address >= desc->buffer_bus + desc->used)
804 desc = list_entry(desc->list.next,
805 struct descriptor_buffer, list);
806 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
807 last = find_branch_descriptor(d, z);
809 if (!ctx->callback(ctx, d, last))
810 break;
812 if (old_desc != desc) {
813 /* If we've advanced to the next buffer, move the
814 * previous buffer to the free list. */
815 unsigned long flags;
816 old_desc->used = 0;
817 spin_lock_irqsave(&ctx->ohci->lock, flags);
818 list_move_tail(&old_desc->list, &ctx->buffer_list);
819 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
821 ctx->last = last;
826 * Allocate a new buffer and add it to the list of free buffers for this
827 * context. Must be called with ohci->lock held.
829 static int context_add_buffer(struct context *ctx)
831 struct descriptor_buffer *desc;
832 dma_addr_t uninitialized_var(bus_addr);
833 int offset;
836 * 16MB of descriptors should be far more than enough for any DMA
837 * program. This will catch run-away userspace or DoS attacks.
839 if (ctx->total_allocation >= 16*1024*1024)
840 return -ENOMEM;
842 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
843 &bus_addr, GFP_ATOMIC);
844 if (!desc)
845 return -ENOMEM;
847 offset = (void *)&desc->buffer - (void *)desc;
848 desc->buffer_size = PAGE_SIZE - offset;
849 desc->buffer_bus = bus_addr + offset;
850 desc->used = 0;
852 list_add_tail(&desc->list, &ctx->buffer_list);
853 ctx->total_allocation += PAGE_SIZE;
855 return 0;
858 static int context_init(struct context *ctx, struct fw_ohci *ohci,
859 u32 regs, descriptor_callback_t callback)
861 ctx->ohci = ohci;
862 ctx->regs = regs;
863 ctx->total_allocation = 0;
865 INIT_LIST_HEAD(&ctx->buffer_list);
866 if (context_add_buffer(ctx) < 0)
867 return -ENOMEM;
869 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
870 struct descriptor_buffer, list);
872 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
873 ctx->callback = callback;
876 * We put a dummy descriptor in the buffer that has a NULL
877 * branch address and looks like it's been sent. That way we
878 * have a descriptor to append DMA programs to.
880 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
881 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
882 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
883 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
884 ctx->last = ctx->buffer_tail->buffer;
885 ctx->prev = ctx->buffer_tail->buffer;
887 return 0;
890 static void context_release(struct context *ctx)
892 struct fw_card *card = &ctx->ohci->card;
893 struct descriptor_buffer *desc, *tmp;
895 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
896 dma_free_coherent(card->device, PAGE_SIZE, desc,
897 desc->buffer_bus -
898 ((void *)&desc->buffer - (void *)desc));
901 /* Must be called with ohci->lock held */
902 static struct descriptor *context_get_descriptors(struct context *ctx,
903 int z, dma_addr_t *d_bus)
905 struct descriptor *d = NULL;
906 struct descriptor_buffer *desc = ctx->buffer_tail;
908 if (z * sizeof(*d) > desc->buffer_size)
909 return NULL;
911 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
912 /* No room for the descriptor in this buffer, so advance to the
913 * next one. */
915 if (desc->list.next == &ctx->buffer_list) {
916 /* If there is no free buffer next in the list,
917 * allocate one. */
918 if (context_add_buffer(ctx) < 0)
919 return NULL;
921 desc = list_entry(desc->list.next,
922 struct descriptor_buffer, list);
923 ctx->buffer_tail = desc;
926 d = desc->buffer + desc->used / sizeof(*d);
927 memset(d, 0, z * sizeof(*d));
928 *d_bus = desc->buffer_bus + desc->used;
930 return d;
933 static void context_run(struct context *ctx, u32 extra)
935 struct fw_ohci *ohci = ctx->ohci;
937 reg_write(ohci, COMMAND_PTR(ctx->regs),
938 le32_to_cpu(ctx->last->branch_address));
939 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
940 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
941 flush_writes(ohci);
944 static void context_append(struct context *ctx,
945 struct descriptor *d, int z, int extra)
947 dma_addr_t d_bus;
948 struct descriptor_buffer *desc = ctx->buffer_tail;
950 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
952 desc->used += (z + extra) * sizeof(*d);
953 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
954 ctx->prev = find_branch_descriptor(d, z);
956 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
957 flush_writes(ctx->ohci);
960 static void context_stop(struct context *ctx)
962 u32 reg;
963 int i;
965 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
966 flush_writes(ctx->ohci);
968 for (i = 0; i < 10; i++) {
969 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
970 if ((reg & CONTEXT_ACTIVE) == 0)
971 return;
973 mdelay(1);
975 fw_error("Error: DMA context still active (0x%08x)\n", reg);
978 struct driver_data {
979 struct fw_packet *packet;
983 * This function apppends a packet to the DMA queue for transmission.
984 * Must always be called with the ochi->lock held to ensure proper
985 * generation handling and locking around packet queue manipulation.
987 static int at_context_queue_packet(struct context *ctx,
988 struct fw_packet *packet)
990 struct fw_ohci *ohci = ctx->ohci;
991 dma_addr_t d_bus, uninitialized_var(payload_bus);
992 struct driver_data *driver_data;
993 struct descriptor *d, *last;
994 __le32 *header;
995 int z, tcode;
996 u32 reg;
998 d = context_get_descriptors(ctx, 4, &d_bus);
999 if (d == NULL) {
1000 packet->ack = RCODE_SEND_ERROR;
1001 return -1;
1004 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1005 d[0].res_count = cpu_to_le16(packet->timestamp);
1008 * The DMA format for asyncronous link packets is different
1009 * from the IEEE1394 layout, so shift the fields around
1010 * accordingly. If header_length is 8, it's a PHY packet, to
1011 * which we need to prepend an extra quadlet.
1014 header = (__le32 *) &d[1];
1015 switch (packet->header_length) {
1016 case 16:
1017 case 12:
1018 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1019 (packet->speed << 16));
1020 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1021 (packet->header[0] & 0xffff0000));
1022 header[2] = cpu_to_le32(packet->header[2]);
1024 tcode = (packet->header[0] >> 4) & 0x0f;
1025 if (TCODE_IS_BLOCK_PACKET(tcode))
1026 header[3] = cpu_to_le32(packet->header[3]);
1027 else
1028 header[3] = (__force __le32) packet->header[3];
1030 d[0].req_count = cpu_to_le16(packet->header_length);
1031 break;
1033 case 8:
1034 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1035 (packet->speed << 16));
1036 header[1] = cpu_to_le32(packet->header[0]);
1037 header[2] = cpu_to_le32(packet->header[1]);
1038 d[0].req_count = cpu_to_le16(12);
1039 break;
1041 case 4:
1042 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1043 (packet->speed << 16));
1044 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1045 d[0].req_count = cpu_to_le16(8);
1046 break;
1048 default:
1049 /* BUG(); */
1050 packet->ack = RCODE_SEND_ERROR;
1051 return -1;
1054 driver_data = (struct driver_data *) &d[3];
1055 driver_data->packet = packet;
1056 packet->driver_data = driver_data;
1058 if (packet->payload_length > 0) {
1059 payload_bus =
1060 dma_map_single(ohci->card.device, packet->payload,
1061 packet->payload_length, DMA_TO_DEVICE);
1062 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1063 packet->ack = RCODE_SEND_ERROR;
1064 return -1;
1066 packet->payload_bus = payload_bus;
1067 packet->payload_mapped = true;
1069 d[2].req_count = cpu_to_le16(packet->payload_length);
1070 d[2].data_address = cpu_to_le32(payload_bus);
1071 last = &d[2];
1072 z = 3;
1073 } else {
1074 last = &d[0];
1075 z = 2;
1078 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1079 DESCRIPTOR_IRQ_ALWAYS |
1080 DESCRIPTOR_BRANCH_ALWAYS);
1083 * If the controller and packet generations don't match, we need to
1084 * bail out and try again. If IntEvent.busReset is set, the AT context
1085 * is halted, so appending to the context and trying to run it is
1086 * futile. Most controllers do the right thing and just flush the AT
1087 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1088 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1089 * up stalling out. So we just bail out in software and try again
1090 * later, and everyone is happy.
1091 * FIXME: Document how the locking works.
1093 if (ohci->generation != packet->generation ||
1094 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1095 if (packet->payload_mapped)
1096 dma_unmap_single(ohci->card.device, payload_bus,
1097 packet->payload_length, DMA_TO_DEVICE);
1098 packet->ack = RCODE_GENERATION;
1099 return -1;
1102 context_append(ctx, d, z, 4 - z);
1104 /* If the context isn't already running, start it up. */
1105 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1106 if ((reg & CONTEXT_RUN) == 0)
1107 context_run(ctx, 0);
1109 return 0;
1112 static int handle_at_packet(struct context *context,
1113 struct descriptor *d,
1114 struct descriptor *last)
1116 struct driver_data *driver_data;
1117 struct fw_packet *packet;
1118 struct fw_ohci *ohci = context->ohci;
1119 int evt;
1121 if (last->transfer_status == 0)
1122 /* This descriptor isn't done yet, stop iteration. */
1123 return 0;
1125 driver_data = (struct driver_data *) &d[3];
1126 packet = driver_data->packet;
1127 if (packet == NULL)
1128 /* This packet was cancelled, just continue. */
1129 return 1;
1131 if (packet->payload_mapped)
1132 dma_unmap_single(ohci->card.device, packet->payload_bus,
1133 packet->payload_length, DMA_TO_DEVICE);
1135 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1136 packet->timestamp = le16_to_cpu(last->res_count);
1138 log_ar_at_event('T', packet->speed, packet->header, evt);
1140 switch (evt) {
1141 case OHCI1394_evt_timeout:
1142 /* Async response transmit timed out. */
1143 packet->ack = RCODE_CANCELLED;
1144 break;
1146 case OHCI1394_evt_flushed:
1148 * The packet was flushed should give same error as
1149 * when we try to use a stale generation count.
1151 packet->ack = RCODE_GENERATION;
1152 break;
1154 case OHCI1394_evt_missing_ack:
1156 * Using a valid (current) generation count, but the
1157 * node is not on the bus or not sending acks.
1159 packet->ack = RCODE_NO_ACK;
1160 break;
1162 case ACK_COMPLETE + 0x10:
1163 case ACK_PENDING + 0x10:
1164 case ACK_BUSY_X + 0x10:
1165 case ACK_BUSY_A + 0x10:
1166 case ACK_BUSY_B + 0x10:
1167 case ACK_DATA_ERROR + 0x10:
1168 case ACK_TYPE_ERROR + 0x10:
1169 packet->ack = evt - 0x10;
1170 break;
1172 default:
1173 packet->ack = RCODE_SEND_ERROR;
1174 break;
1177 packet->callback(packet, &ohci->card, packet->ack);
1179 return 1;
1182 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1183 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1184 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1185 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1186 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1188 static void handle_local_rom(struct fw_ohci *ohci,
1189 struct fw_packet *packet, u32 csr)
1191 struct fw_packet response;
1192 int tcode, length, i;
1194 tcode = HEADER_GET_TCODE(packet->header[0]);
1195 if (TCODE_IS_BLOCK_PACKET(tcode))
1196 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1197 else
1198 length = 4;
1200 i = csr - CSR_CONFIG_ROM;
1201 if (i + length > CONFIG_ROM_SIZE) {
1202 fw_fill_response(&response, packet->header,
1203 RCODE_ADDRESS_ERROR, NULL, 0);
1204 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1205 fw_fill_response(&response, packet->header,
1206 RCODE_TYPE_ERROR, NULL, 0);
1207 } else {
1208 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1209 (void *) ohci->config_rom + i, length);
1212 fw_core_handle_response(&ohci->card, &response);
1215 static void handle_local_lock(struct fw_ohci *ohci,
1216 struct fw_packet *packet, u32 csr)
1218 struct fw_packet response;
1219 int tcode, length, ext_tcode, sel;
1220 __be32 *payload, lock_old;
1221 u32 lock_arg, lock_data;
1223 tcode = HEADER_GET_TCODE(packet->header[0]);
1224 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1225 payload = packet->payload;
1226 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1228 if (tcode == TCODE_LOCK_REQUEST &&
1229 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1230 lock_arg = be32_to_cpu(payload[0]);
1231 lock_data = be32_to_cpu(payload[1]);
1232 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1233 lock_arg = 0;
1234 lock_data = 0;
1235 } else {
1236 fw_fill_response(&response, packet->header,
1237 RCODE_TYPE_ERROR, NULL, 0);
1238 goto out;
1241 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1242 reg_write(ohci, OHCI1394_CSRData, lock_data);
1243 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1244 reg_write(ohci, OHCI1394_CSRControl, sel);
1246 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1247 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1248 else
1249 fw_notify("swap not done yet\n");
1251 fw_fill_response(&response, packet->header,
1252 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1253 out:
1254 fw_core_handle_response(&ohci->card, &response);
1257 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1259 u64 offset;
1260 u32 csr;
1262 if (ctx == &ctx->ohci->at_request_ctx) {
1263 packet->ack = ACK_PENDING;
1264 packet->callback(packet, &ctx->ohci->card, packet->ack);
1267 offset =
1268 ((unsigned long long)
1269 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1270 packet->header[2];
1271 csr = offset - CSR_REGISTER_BASE;
1273 /* Handle config rom reads. */
1274 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1275 handle_local_rom(ctx->ohci, packet, csr);
1276 else switch (csr) {
1277 case CSR_BUS_MANAGER_ID:
1278 case CSR_BANDWIDTH_AVAILABLE:
1279 case CSR_CHANNELS_AVAILABLE_HI:
1280 case CSR_CHANNELS_AVAILABLE_LO:
1281 handle_local_lock(ctx->ohci, packet, csr);
1282 break;
1283 default:
1284 if (ctx == &ctx->ohci->at_request_ctx)
1285 fw_core_handle_request(&ctx->ohci->card, packet);
1286 else
1287 fw_core_handle_response(&ctx->ohci->card, packet);
1288 break;
1291 if (ctx == &ctx->ohci->at_response_ctx) {
1292 packet->ack = ACK_COMPLETE;
1293 packet->callback(packet, &ctx->ohci->card, packet->ack);
1297 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1299 unsigned long flags;
1300 int ret;
1302 spin_lock_irqsave(&ctx->ohci->lock, flags);
1304 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1305 ctx->ohci->generation == packet->generation) {
1306 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1307 handle_local_request(ctx, packet);
1308 return;
1311 ret = at_context_queue_packet(ctx, packet);
1312 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1314 if (ret < 0)
1315 packet->callback(packet, &ctx->ohci->card, packet->ack);
1319 static void bus_reset_tasklet(unsigned long data)
1321 struct fw_ohci *ohci = (struct fw_ohci *)data;
1322 int self_id_count, i, j, reg;
1323 int generation, new_generation;
1324 unsigned long flags;
1325 void *free_rom = NULL;
1326 dma_addr_t free_rom_bus = 0;
1328 reg = reg_read(ohci, OHCI1394_NodeID);
1329 if (!(reg & OHCI1394_NodeID_idValid)) {
1330 fw_notify("node ID not valid, new bus reset in progress\n");
1331 return;
1333 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1334 fw_notify("malconfigured bus\n");
1335 return;
1337 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1338 OHCI1394_NodeID_nodeNumber);
1340 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1341 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1342 fw_notify("inconsistent self IDs\n");
1343 return;
1346 * The count in the SelfIDCount register is the number of
1347 * bytes in the self ID receive buffer. Since we also receive
1348 * the inverted quadlets and a header quadlet, we shift one
1349 * bit extra to get the actual number of self IDs.
1351 self_id_count = (reg >> 3) & 0xff;
1352 if (self_id_count == 0 || self_id_count > 252) {
1353 fw_notify("inconsistent self IDs\n");
1354 return;
1356 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1357 rmb();
1359 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1360 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1361 fw_notify("inconsistent self IDs\n");
1362 return;
1364 ohci->self_id_buffer[j] =
1365 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1367 rmb();
1370 * Check the consistency of the self IDs we just read. The
1371 * problem we face is that a new bus reset can start while we
1372 * read out the self IDs from the DMA buffer. If this happens,
1373 * the DMA buffer will be overwritten with new self IDs and we
1374 * will read out inconsistent data. The OHCI specification
1375 * (section 11.2) recommends a technique similar to
1376 * linux/seqlock.h, where we remember the generation of the
1377 * self IDs in the buffer before reading them out and compare
1378 * it to the current generation after reading them out. If
1379 * the two generations match we know we have a consistent set
1380 * of self IDs.
1383 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1384 if (new_generation != generation) {
1385 fw_notify("recursive bus reset detected, "
1386 "discarding self ids\n");
1387 return;
1390 /* FIXME: Document how the locking works. */
1391 spin_lock_irqsave(&ohci->lock, flags);
1393 ohci->generation = generation;
1394 context_stop(&ohci->at_request_ctx);
1395 context_stop(&ohci->at_response_ctx);
1396 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1398 if (ohci->quirks & QUIRK_RESET_PACKET)
1399 ohci->request_generation = generation;
1402 * This next bit is unrelated to the AT context stuff but we
1403 * have to do it under the spinlock also. If a new config rom
1404 * was set up before this reset, the old one is now no longer
1405 * in use and we can free it. Update the config rom pointers
1406 * to point to the current config rom and clear the
1407 * next_config_rom pointer so a new udpate can take place.
1410 if (ohci->next_config_rom != NULL) {
1411 if (ohci->next_config_rom != ohci->config_rom) {
1412 free_rom = ohci->config_rom;
1413 free_rom_bus = ohci->config_rom_bus;
1415 ohci->config_rom = ohci->next_config_rom;
1416 ohci->config_rom_bus = ohci->next_config_rom_bus;
1417 ohci->next_config_rom = NULL;
1420 * Restore config_rom image and manually update
1421 * config_rom registers. Writing the header quadlet
1422 * will indicate that the config rom is ready, so we
1423 * do that last.
1425 reg_write(ohci, OHCI1394_BusOptions,
1426 be32_to_cpu(ohci->config_rom[2]));
1427 ohci->config_rom[0] = ohci->next_header;
1428 reg_write(ohci, OHCI1394_ConfigROMhdr,
1429 be32_to_cpu(ohci->next_header));
1432 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1433 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1434 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1435 #endif
1437 spin_unlock_irqrestore(&ohci->lock, flags);
1439 if (free_rom)
1440 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1441 free_rom, free_rom_bus);
1443 log_selfids(ohci->node_id, generation,
1444 self_id_count, ohci->self_id_buffer);
1446 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1447 self_id_count, ohci->self_id_buffer);
1450 static irqreturn_t irq_handler(int irq, void *data)
1452 struct fw_ohci *ohci = data;
1453 u32 event, iso_event;
1454 int i;
1456 event = reg_read(ohci, OHCI1394_IntEventClear);
1458 if (!event || !~event)
1459 return IRQ_NONE;
1461 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1462 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1463 log_irqs(event);
1465 if (event & OHCI1394_selfIDComplete)
1466 tasklet_schedule(&ohci->bus_reset_tasklet);
1468 if (event & OHCI1394_RQPkt)
1469 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1471 if (event & OHCI1394_RSPkt)
1472 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1474 if (event & OHCI1394_reqTxComplete)
1475 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1477 if (event & OHCI1394_respTxComplete)
1478 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1480 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1481 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1483 while (iso_event) {
1484 i = ffs(iso_event) - 1;
1485 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1486 iso_event &= ~(1 << i);
1489 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1490 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1492 while (iso_event) {
1493 i = ffs(iso_event) - 1;
1494 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1495 iso_event &= ~(1 << i);
1498 if (unlikely(event & OHCI1394_regAccessFail))
1499 fw_error("Register access failure - "
1500 "please notify linux1394-devel@lists.sf.net\n");
1502 if (unlikely(event & OHCI1394_postedWriteErr))
1503 fw_error("PCI posted write error\n");
1505 if (unlikely(event & OHCI1394_cycleTooLong)) {
1506 if (printk_ratelimit())
1507 fw_notify("isochronous cycle too long\n");
1508 reg_write(ohci, OHCI1394_LinkControlSet,
1509 OHCI1394_LinkControl_cycleMaster);
1512 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1514 * We need to clear this event bit in order to make
1515 * cycleMatch isochronous I/O work. In theory we should
1516 * stop active cycleMatch iso contexts now and restart
1517 * them at least two cycles later. (FIXME?)
1519 if (printk_ratelimit())
1520 fw_notify("isochronous cycle inconsistent\n");
1523 return IRQ_HANDLED;
1526 static int software_reset(struct fw_ohci *ohci)
1528 int i;
1530 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1532 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1533 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1534 OHCI1394_HCControl_softReset) == 0)
1535 return 0;
1536 msleep(1);
1539 return -EBUSY;
1542 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1544 size_t size = length * 4;
1546 memcpy(dest, src, size);
1547 if (size < CONFIG_ROM_SIZE)
1548 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1551 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1553 bool enable_1394a;
1554 int ret, clear, set, offset;
1556 /* Check if the driver should configure link and PHY. */
1557 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1558 OHCI1394_HCControl_programPhyEnable))
1559 return 0;
1561 /* Paranoia: check whether the PHY supports 1394a, too. */
1562 enable_1394a = false;
1563 ret = read_phy_reg(ohci, 2);
1564 if (ret < 0)
1565 return ret;
1566 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1567 ret = read_paged_phy_reg(ohci, 1, 8);
1568 if (ret < 0)
1569 return ret;
1570 if (ret >= 1)
1571 enable_1394a = true;
1574 if (ohci->quirks & QUIRK_NO_1394A)
1575 enable_1394a = false;
1577 /* Configure PHY and link consistently. */
1578 if (enable_1394a) {
1579 clear = 0;
1580 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1581 } else {
1582 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1583 set = 0;
1585 ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1586 if (ret < 0)
1587 return ret;
1589 if (enable_1394a)
1590 offset = OHCI1394_HCControlSet;
1591 else
1592 offset = OHCI1394_HCControlClear;
1593 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1595 /* Clean up: configuration has been taken care of. */
1596 reg_write(ohci, OHCI1394_HCControlClear,
1597 OHCI1394_HCControl_programPhyEnable);
1599 return 0;
1602 static int ohci_enable(struct fw_card *card,
1603 const __be32 *config_rom, size_t length)
1605 struct fw_ohci *ohci = fw_ohci(card);
1606 struct pci_dev *dev = to_pci_dev(card->device);
1607 u32 lps, irqs;
1608 int i, ret;
1610 if (software_reset(ohci)) {
1611 fw_error("Failed to reset ohci card.\n");
1612 return -EBUSY;
1616 * Now enable LPS, which we need in order to start accessing
1617 * most of the registers. In fact, on some cards (ALI M5251),
1618 * accessing registers in the SClk domain without LPS enabled
1619 * will lock up the machine. Wait 50msec to make sure we have
1620 * full link enabled. However, with some cards (well, at least
1621 * a JMicron PCIe card), we have to try again sometimes.
1623 reg_write(ohci, OHCI1394_HCControlSet,
1624 OHCI1394_HCControl_LPS |
1625 OHCI1394_HCControl_postedWriteEnable);
1626 flush_writes(ohci);
1628 for (lps = 0, i = 0; !lps && i < 3; i++) {
1629 msleep(50);
1630 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1631 OHCI1394_HCControl_LPS;
1634 if (!lps) {
1635 fw_error("Failed to set Link Power Status\n");
1636 return -EIO;
1639 reg_write(ohci, OHCI1394_HCControlClear,
1640 OHCI1394_HCControl_noByteSwapData);
1642 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1643 reg_write(ohci, OHCI1394_LinkControlClear,
1644 OHCI1394_LinkControl_rcvPhyPkt);
1645 reg_write(ohci, OHCI1394_LinkControlSet,
1646 OHCI1394_LinkControl_rcvSelfID |
1647 OHCI1394_LinkControl_cycleTimerEnable |
1648 OHCI1394_LinkControl_cycleMaster);
1650 reg_write(ohci, OHCI1394_ATRetries,
1651 OHCI1394_MAX_AT_REQ_RETRIES |
1652 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1653 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1655 ar_context_run(&ohci->ar_request_ctx);
1656 ar_context_run(&ohci->ar_response_ctx);
1658 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1659 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1660 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1662 ret = configure_1394a_enhancements(ohci);
1663 if (ret < 0)
1664 return ret;
1666 /* Activate link_on bit and contender bit in our self ID packets.*/
1667 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1668 if (ret < 0)
1669 return ret;
1672 * When the link is not yet enabled, the atomic config rom
1673 * update mechanism described below in ohci_set_config_rom()
1674 * is not active. We have to update ConfigRomHeader and
1675 * BusOptions manually, and the write to ConfigROMmap takes
1676 * effect immediately. We tie this to the enabling of the
1677 * link, so we have a valid config rom before enabling - the
1678 * OHCI requires that ConfigROMhdr and BusOptions have valid
1679 * values before enabling.
1681 * However, when the ConfigROMmap is written, some controllers
1682 * always read back quadlets 0 and 2 from the config rom to
1683 * the ConfigRomHeader and BusOptions registers on bus reset.
1684 * They shouldn't do that in this initial case where the link
1685 * isn't enabled. This means we have to use the same
1686 * workaround here, setting the bus header to 0 and then write
1687 * the right values in the bus reset tasklet.
1690 if (config_rom) {
1691 ohci->next_config_rom =
1692 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1693 &ohci->next_config_rom_bus,
1694 GFP_KERNEL);
1695 if (ohci->next_config_rom == NULL)
1696 return -ENOMEM;
1698 copy_config_rom(ohci->next_config_rom, config_rom, length);
1699 } else {
1701 * In the suspend case, config_rom is NULL, which
1702 * means that we just reuse the old config rom.
1704 ohci->next_config_rom = ohci->config_rom;
1705 ohci->next_config_rom_bus = ohci->config_rom_bus;
1708 ohci->next_header = ohci->next_config_rom[0];
1709 ohci->next_config_rom[0] = 0;
1710 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1711 reg_write(ohci, OHCI1394_BusOptions,
1712 be32_to_cpu(ohci->next_config_rom[2]));
1713 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1715 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1717 if (!(ohci->quirks & QUIRK_NO_MSI))
1718 pci_enable_msi(dev);
1719 if (request_irq(dev->irq, irq_handler,
1720 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1721 ohci_driver_name, ohci)) {
1722 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1723 pci_disable_msi(dev);
1724 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1725 ohci->config_rom, ohci->config_rom_bus);
1726 return -EIO;
1729 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1730 OHCI1394_RQPkt | OHCI1394_RSPkt |
1731 OHCI1394_isochTx | OHCI1394_isochRx |
1732 OHCI1394_postedWriteErr |
1733 OHCI1394_selfIDComplete |
1734 OHCI1394_regAccessFail |
1735 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1736 OHCI1394_masterIntEnable;
1737 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1738 irqs |= OHCI1394_busReset;
1739 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1741 reg_write(ohci, OHCI1394_HCControlSet,
1742 OHCI1394_HCControl_linkEnable |
1743 OHCI1394_HCControl_BIBimageValid);
1744 flush_writes(ohci);
1747 * We are ready to go, initiate bus reset to finish the
1748 * initialization.
1751 fw_core_initiate_bus_reset(&ohci->card, 1);
1753 return 0;
1756 static int ohci_set_config_rom(struct fw_card *card,
1757 const __be32 *config_rom, size_t length)
1759 struct fw_ohci *ohci;
1760 unsigned long flags;
1761 int ret = -EBUSY;
1762 __be32 *next_config_rom;
1763 dma_addr_t uninitialized_var(next_config_rom_bus);
1765 ohci = fw_ohci(card);
1768 * When the OHCI controller is enabled, the config rom update
1769 * mechanism is a bit tricky, but easy enough to use. See
1770 * section 5.5.6 in the OHCI specification.
1772 * The OHCI controller caches the new config rom address in a
1773 * shadow register (ConfigROMmapNext) and needs a bus reset
1774 * for the changes to take place. When the bus reset is
1775 * detected, the controller loads the new values for the
1776 * ConfigRomHeader and BusOptions registers from the specified
1777 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1778 * shadow register. All automatically and atomically.
1780 * Now, there's a twist to this story. The automatic load of
1781 * ConfigRomHeader and BusOptions doesn't honor the
1782 * noByteSwapData bit, so with a be32 config rom, the
1783 * controller will load be32 values in to these registers
1784 * during the atomic update, even on litte endian
1785 * architectures. The workaround we use is to put a 0 in the
1786 * header quadlet; 0 is endian agnostic and means that the
1787 * config rom isn't ready yet. In the bus reset tasklet we
1788 * then set up the real values for the two registers.
1790 * We use ohci->lock to avoid racing with the code that sets
1791 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1794 next_config_rom =
1795 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1796 &next_config_rom_bus, GFP_KERNEL);
1797 if (next_config_rom == NULL)
1798 return -ENOMEM;
1800 spin_lock_irqsave(&ohci->lock, flags);
1802 if (ohci->next_config_rom == NULL) {
1803 ohci->next_config_rom = next_config_rom;
1804 ohci->next_config_rom_bus = next_config_rom_bus;
1806 copy_config_rom(ohci->next_config_rom, config_rom, length);
1808 ohci->next_header = config_rom[0];
1809 ohci->next_config_rom[0] = 0;
1811 reg_write(ohci, OHCI1394_ConfigROMmap,
1812 ohci->next_config_rom_bus);
1813 ret = 0;
1816 spin_unlock_irqrestore(&ohci->lock, flags);
1819 * Now initiate a bus reset to have the changes take
1820 * effect. We clean up the old config rom memory and DMA
1821 * mappings in the bus reset tasklet, since the OHCI
1822 * controller could need to access it before the bus reset
1823 * takes effect.
1825 if (ret == 0)
1826 fw_core_initiate_bus_reset(&ohci->card, 1);
1827 else
1828 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1829 next_config_rom, next_config_rom_bus);
1831 return ret;
1834 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1836 struct fw_ohci *ohci = fw_ohci(card);
1838 at_context_transmit(&ohci->at_request_ctx, packet);
1841 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1843 struct fw_ohci *ohci = fw_ohci(card);
1845 at_context_transmit(&ohci->at_response_ctx, packet);
1848 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1850 struct fw_ohci *ohci = fw_ohci(card);
1851 struct context *ctx = &ohci->at_request_ctx;
1852 struct driver_data *driver_data = packet->driver_data;
1853 int ret = -ENOENT;
1855 tasklet_disable(&ctx->tasklet);
1857 if (packet->ack != 0)
1858 goto out;
1860 if (packet->payload_mapped)
1861 dma_unmap_single(ohci->card.device, packet->payload_bus,
1862 packet->payload_length, DMA_TO_DEVICE);
1864 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1865 driver_data->packet = NULL;
1866 packet->ack = RCODE_CANCELLED;
1867 packet->callback(packet, &ohci->card, packet->ack);
1868 ret = 0;
1869 out:
1870 tasklet_enable(&ctx->tasklet);
1872 return ret;
1875 static int ohci_enable_phys_dma(struct fw_card *card,
1876 int node_id, int generation)
1878 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1879 return 0;
1880 #else
1881 struct fw_ohci *ohci = fw_ohci(card);
1882 unsigned long flags;
1883 int n, ret = 0;
1886 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1887 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1890 spin_lock_irqsave(&ohci->lock, flags);
1892 if (ohci->generation != generation) {
1893 ret = -ESTALE;
1894 goto out;
1898 * Note, if the node ID contains a non-local bus ID, physical DMA is
1899 * enabled for _all_ nodes on remote buses.
1902 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1903 if (n < 32)
1904 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1905 else
1906 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1908 flush_writes(ohci);
1909 out:
1910 spin_unlock_irqrestore(&ohci->lock, flags);
1912 return ret;
1913 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1916 static u32 cycle_timer_ticks(u32 cycle_timer)
1918 u32 ticks;
1920 ticks = cycle_timer & 0xfff;
1921 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1922 ticks += (3072 * 8000) * (cycle_timer >> 25);
1924 return ticks;
1928 * Some controllers exhibit one or more of the following bugs when updating the
1929 * iso cycle timer register:
1930 * - When the lowest six bits are wrapping around to zero, a read that happens
1931 * at the same time will return garbage in the lowest ten bits.
1932 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1933 * not incremented for about 60 ns.
1934 * - Occasionally, the entire register reads zero.
1936 * To catch these, we read the register three times and ensure that the
1937 * difference between each two consecutive reads is approximately the same, i.e.
1938 * less than twice the other. Furthermore, any negative difference indicates an
1939 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1940 * execute, so we have enough precision to compute the ratio of the differences.)
1942 static u32 get_cycle_time(struct fw_ohci *ohci)
1944 u32 c0, c1, c2;
1945 u32 t0, t1, t2;
1946 s32 diff01, diff12;
1947 int i;
1949 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1951 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1952 i = 0;
1953 c1 = c2;
1954 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1955 do {
1956 c0 = c1;
1957 c1 = c2;
1958 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1959 t0 = cycle_timer_ticks(c0);
1960 t1 = cycle_timer_ticks(c1);
1961 t2 = cycle_timer_ticks(c2);
1962 diff01 = t1 - t0;
1963 diff12 = t2 - t1;
1964 } while ((diff01 <= 0 || diff12 <= 0 ||
1965 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1966 && i++ < 20);
1969 return c2;
1972 static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
1974 struct fw_ohci *ohci = fw_ohci(card);
1976 switch (csr_offset) {
1977 case CSR_NODE_IDS:
1978 return reg_read(ohci, OHCI1394_NodeID) << 16;
1980 case CSR_CYCLE_TIME:
1981 return get_cycle_time(ohci);
1983 default:
1984 WARN_ON(1);
1985 return 0;
1989 static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
1991 struct fw_ohci *ohci = fw_ohci(card);
1993 switch (csr_offset) {
1994 case CSR_NODE_IDS:
1995 reg_write(ohci, OHCI1394_NodeID, value >> 16);
1996 flush_writes(ohci);
1997 break;
1999 case CSR_CYCLE_TIME:
2000 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2001 reg_write(ohci, OHCI1394_IntEventSet,
2002 OHCI1394_cycleInconsistent);
2003 flush_writes(ohci);
2004 break;
2006 default:
2007 WARN_ON(1);
2008 break;
2012 static void copy_iso_headers(struct iso_context *ctx, void *p)
2014 int i = ctx->header_length;
2016 if (i + ctx->base.header_size > PAGE_SIZE)
2017 return;
2020 * The iso header is byteswapped to little endian by
2021 * the controller, but the remaining header quadlets
2022 * are big endian. We want to present all the headers
2023 * as big endian, so we have to swap the first quadlet.
2025 if (ctx->base.header_size > 0)
2026 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2027 if (ctx->base.header_size > 4)
2028 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2029 if (ctx->base.header_size > 8)
2030 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2031 ctx->header_length += ctx->base.header_size;
2034 static int handle_ir_packet_per_buffer(struct context *context,
2035 struct descriptor *d,
2036 struct descriptor *last)
2038 struct iso_context *ctx =
2039 container_of(context, struct iso_context, context);
2040 struct descriptor *pd;
2041 __le32 *ir_header;
2042 void *p;
2044 for (pd = d; pd <= last; pd++) {
2045 if (pd->transfer_status)
2046 break;
2048 if (pd > last)
2049 /* Descriptor(s) not done yet, stop iteration */
2050 return 0;
2052 p = last + 1;
2053 copy_iso_headers(ctx, p);
2055 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2056 ir_header = (__le32 *) p;
2057 ctx->base.callback(&ctx->base,
2058 le32_to_cpu(ir_header[0]) & 0xffff,
2059 ctx->header_length, ctx->header,
2060 ctx->base.callback_data);
2061 ctx->header_length = 0;
2064 return 1;
2067 static int handle_it_packet(struct context *context,
2068 struct descriptor *d,
2069 struct descriptor *last)
2071 struct iso_context *ctx =
2072 container_of(context, struct iso_context, context);
2073 int i;
2074 struct descriptor *pd;
2076 for (pd = d; pd <= last; pd++)
2077 if (pd->transfer_status)
2078 break;
2079 if (pd > last)
2080 /* Descriptor(s) not done yet, stop iteration */
2081 return 0;
2083 i = ctx->header_length;
2084 if (i + 4 < PAGE_SIZE) {
2085 /* Present this value as big-endian to match the receive code */
2086 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2087 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2088 le16_to_cpu(pd->res_count));
2089 ctx->header_length += 4;
2091 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2092 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2093 ctx->header_length, ctx->header,
2094 ctx->base.callback_data);
2095 ctx->header_length = 0;
2097 return 1;
2100 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2101 int type, int channel, size_t header_size)
2103 struct fw_ohci *ohci = fw_ohci(card);
2104 struct iso_context *ctx, *list;
2105 descriptor_callback_t callback;
2106 u64 *channels, dont_care = ~0ULL;
2107 u32 *mask, regs;
2108 unsigned long flags;
2109 int index, ret = -ENOMEM;
2111 if (type == FW_ISO_CONTEXT_TRANSMIT) {
2112 channels = &dont_care;
2113 mask = &ohci->it_context_mask;
2114 list = ohci->it_context_list;
2115 callback = handle_it_packet;
2116 } else {
2117 channels = &ohci->ir_context_channels;
2118 mask = &ohci->ir_context_mask;
2119 list = ohci->ir_context_list;
2120 callback = handle_ir_packet_per_buffer;
2123 spin_lock_irqsave(&ohci->lock, flags);
2124 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2125 if (index >= 0) {
2126 *channels &= ~(1ULL << channel);
2127 *mask &= ~(1 << index);
2129 spin_unlock_irqrestore(&ohci->lock, flags);
2131 if (index < 0)
2132 return ERR_PTR(-EBUSY);
2134 if (type == FW_ISO_CONTEXT_TRANSMIT)
2135 regs = OHCI1394_IsoXmitContextBase(index);
2136 else
2137 regs = OHCI1394_IsoRcvContextBase(index);
2139 ctx = &list[index];
2140 memset(ctx, 0, sizeof(*ctx));
2141 ctx->header_length = 0;
2142 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2143 if (ctx->header == NULL)
2144 goto out;
2146 ret = context_init(&ctx->context, ohci, regs, callback);
2147 if (ret < 0)
2148 goto out_with_header;
2150 return &ctx->base;
2152 out_with_header:
2153 free_page((unsigned long)ctx->header);
2154 out:
2155 spin_lock_irqsave(&ohci->lock, flags);
2156 *mask |= 1 << index;
2157 spin_unlock_irqrestore(&ohci->lock, flags);
2159 return ERR_PTR(ret);
2162 static int ohci_start_iso(struct fw_iso_context *base,
2163 s32 cycle, u32 sync, u32 tags)
2165 struct iso_context *ctx = container_of(base, struct iso_context, base);
2166 struct fw_ohci *ohci = ctx->context.ohci;
2167 u32 control, match;
2168 int index;
2170 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2171 index = ctx - ohci->it_context_list;
2172 match = 0;
2173 if (cycle >= 0)
2174 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2175 (cycle & 0x7fff) << 16;
2177 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2178 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2179 context_run(&ctx->context, match);
2180 } else {
2181 index = ctx - ohci->ir_context_list;
2182 control = IR_CONTEXT_ISOCH_HEADER;
2183 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2184 if (cycle >= 0) {
2185 match |= (cycle & 0x07fff) << 12;
2186 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2189 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2190 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2191 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2192 context_run(&ctx->context, control);
2195 return 0;
2198 static int ohci_stop_iso(struct fw_iso_context *base)
2200 struct fw_ohci *ohci = fw_ohci(base->card);
2201 struct iso_context *ctx = container_of(base, struct iso_context, base);
2202 int index;
2204 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2205 index = ctx - ohci->it_context_list;
2206 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2207 } else {
2208 index = ctx - ohci->ir_context_list;
2209 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2211 flush_writes(ohci);
2212 context_stop(&ctx->context);
2214 return 0;
2217 static void ohci_free_iso_context(struct fw_iso_context *base)
2219 struct fw_ohci *ohci = fw_ohci(base->card);
2220 struct iso_context *ctx = container_of(base, struct iso_context, base);
2221 unsigned long flags;
2222 int index;
2224 ohci_stop_iso(base);
2225 context_release(&ctx->context);
2226 free_page((unsigned long)ctx->header);
2228 spin_lock_irqsave(&ohci->lock, flags);
2230 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2231 index = ctx - ohci->it_context_list;
2232 ohci->it_context_mask |= 1 << index;
2233 } else {
2234 index = ctx - ohci->ir_context_list;
2235 ohci->ir_context_mask |= 1 << index;
2236 ohci->ir_context_channels |= 1ULL << base->channel;
2239 spin_unlock_irqrestore(&ohci->lock, flags);
2242 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2243 struct fw_iso_packet *packet,
2244 struct fw_iso_buffer *buffer,
2245 unsigned long payload)
2247 struct iso_context *ctx = container_of(base, struct iso_context, base);
2248 struct descriptor *d, *last, *pd;
2249 struct fw_iso_packet *p;
2250 __le32 *header;
2251 dma_addr_t d_bus, page_bus;
2252 u32 z, header_z, payload_z, irq;
2253 u32 payload_index, payload_end_index, next_page_index;
2254 int page, end_page, i, length, offset;
2256 p = packet;
2257 payload_index = payload;
2259 if (p->skip)
2260 z = 1;
2261 else
2262 z = 2;
2263 if (p->header_length > 0)
2264 z++;
2266 /* Determine the first page the payload isn't contained in. */
2267 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2268 if (p->payload_length > 0)
2269 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2270 else
2271 payload_z = 0;
2273 z += payload_z;
2275 /* Get header size in number of descriptors. */
2276 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2278 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2279 if (d == NULL)
2280 return -ENOMEM;
2282 if (!p->skip) {
2283 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2284 d[0].req_count = cpu_to_le16(8);
2286 * Link the skip address to this descriptor itself. This causes
2287 * a context to skip a cycle whenever lost cycles or FIFO
2288 * overruns occur, without dropping the data. The application
2289 * should then decide whether this is an error condition or not.
2290 * FIXME: Make the context's cycle-lost behaviour configurable?
2292 d[0].branch_address = cpu_to_le32(d_bus | z);
2294 header = (__le32 *) &d[1];
2295 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2296 IT_HEADER_TAG(p->tag) |
2297 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2298 IT_HEADER_CHANNEL(ctx->base.channel) |
2299 IT_HEADER_SPEED(ctx->base.speed));
2300 header[1] =
2301 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2302 p->payload_length));
2305 if (p->header_length > 0) {
2306 d[2].req_count = cpu_to_le16(p->header_length);
2307 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2308 memcpy(&d[z], p->header, p->header_length);
2311 pd = d + z - payload_z;
2312 payload_end_index = payload_index + p->payload_length;
2313 for (i = 0; i < payload_z; i++) {
2314 page = payload_index >> PAGE_SHIFT;
2315 offset = payload_index & ~PAGE_MASK;
2316 next_page_index = (page + 1) << PAGE_SHIFT;
2317 length =
2318 min(next_page_index, payload_end_index) - payload_index;
2319 pd[i].req_count = cpu_to_le16(length);
2321 page_bus = page_private(buffer->pages[page]);
2322 pd[i].data_address = cpu_to_le32(page_bus + offset);
2324 payload_index += length;
2327 if (p->interrupt)
2328 irq = DESCRIPTOR_IRQ_ALWAYS;
2329 else
2330 irq = DESCRIPTOR_NO_IRQ;
2332 last = z == 2 ? d : d + z - 1;
2333 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2334 DESCRIPTOR_STATUS |
2335 DESCRIPTOR_BRANCH_ALWAYS |
2336 irq);
2338 context_append(&ctx->context, d, z, header_z);
2340 return 0;
2343 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2344 struct fw_iso_packet *packet,
2345 struct fw_iso_buffer *buffer,
2346 unsigned long payload)
2348 struct iso_context *ctx = container_of(base, struct iso_context, base);
2349 struct descriptor *d, *pd;
2350 struct fw_iso_packet *p = packet;
2351 dma_addr_t d_bus, page_bus;
2352 u32 z, header_z, rest;
2353 int i, j, length;
2354 int page, offset, packet_count, header_size, payload_per_buffer;
2357 * The OHCI controller puts the isochronous header and trailer in the
2358 * buffer, so we need at least 8 bytes.
2360 packet_count = p->header_length / ctx->base.header_size;
2361 header_size = max(ctx->base.header_size, (size_t)8);
2363 /* Get header size in number of descriptors. */
2364 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2365 page = payload >> PAGE_SHIFT;
2366 offset = payload & ~PAGE_MASK;
2367 payload_per_buffer = p->payload_length / packet_count;
2369 for (i = 0; i < packet_count; i++) {
2370 /* d points to the header descriptor */
2371 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2372 d = context_get_descriptors(&ctx->context,
2373 z + header_z, &d_bus);
2374 if (d == NULL)
2375 return -ENOMEM;
2377 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2378 DESCRIPTOR_INPUT_MORE);
2379 if (p->skip && i == 0)
2380 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2381 d->req_count = cpu_to_le16(header_size);
2382 d->res_count = d->req_count;
2383 d->transfer_status = 0;
2384 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2386 rest = payload_per_buffer;
2387 pd = d;
2388 for (j = 1; j < z; j++) {
2389 pd++;
2390 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2391 DESCRIPTOR_INPUT_MORE);
2393 if (offset + rest < PAGE_SIZE)
2394 length = rest;
2395 else
2396 length = PAGE_SIZE - offset;
2397 pd->req_count = cpu_to_le16(length);
2398 pd->res_count = pd->req_count;
2399 pd->transfer_status = 0;
2401 page_bus = page_private(buffer->pages[page]);
2402 pd->data_address = cpu_to_le32(page_bus + offset);
2404 offset = (offset + length) & ~PAGE_MASK;
2405 rest -= length;
2406 if (offset == 0)
2407 page++;
2409 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2410 DESCRIPTOR_INPUT_LAST |
2411 DESCRIPTOR_BRANCH_ALWAYS);
2412 if (p->interrupt && i == packet_count - 1)
2413 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2415 context_append(&ctx->context, d, z, header_z);
2418 return 0;
2421 static int ohci_queue_iso(struct fw_iso_context *base,
2422 struct fw_iso_packet *packet,
2423 struct fw_iso_buffer *buffer,
2424 unsigned long payload)
2426 struct iso_context *ctx = container_of(base, struct iso_context, base);
2427 unsigned long flags;
2428 int ret;
2430 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2431 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2432 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2433 else
2434 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2435 buffer, payload);
2436 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2438 return ret;
2441 static const struct fw_card_driver ohci_driver = {
2442 .enable = ohci_enable,
2443 .update_phy_reg = ohci_update_phy_reg,
2444 .set_config_rom = ohci_set_config_rom,
2445 .send_request = ohci_send_request,
2446 .send_response = ohci_send_response,
2447 .cancel_packet = ohci_cancel_packet,
2448 .enable_phys_dma = ohci_enable_phys_dma,
2449 .read_csr_reg = ohci_read_csr_reg,
2450 .write_csr_reg = ohci_write_csr_reg,
2452 .allocate_iso_context = ohci_allocate_iso_context,
2453 .free_iso_context = ohci_free_iso_context,
2454 .queue_iso = ohci_queue_iso,
2455 .start_iso = ohci_start_iso,
2456 .stop_iso = ohci_stop_iso,
2459 #ifdef CONFIG_PPC_PMAC
2460 static void pmac_ohci_on(struct pci_dev *dev)
2462 if (machine_is(powermac)) {
2463 struct device_node *ofn = pci_device_to_OF_node(dev);
2465 if (ofn) {
2466 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2467 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2472 static void pmac_ohci_off(struct pci_dev *dev)
2474 if (machine_is(powermac)) {
2475 struct device_node *ofn = pci_device_to_OF_node(dev);
2477 if (ofn) {
2478 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2479 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2483 #else
2484 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2485 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2486 #endif /* CONFIG_PPC_PMAC */
2488 static int __devinit pci_probe(struct pci_dev *dev,
2489 const struct pci_device_id *ent)
2491 struct fw_ohci *ohci;
2492 u32 bus_options, max_receive, link_speed, version, link_enh;
2493 u64 guid;
2494 int i, err, n_ir, n_it;
2495 size_t size;
2497 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2498 if (ohci == NULL) {
2499 err = -ENOMEM;
2500 goto fail;
2503 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2505 pmac_ohci_on(dev);
2507 err = pci_enable_device(dev);
2508 if (err) {
2509 fw_error("Failed to enable OHCI hardware\n");
2510 goto fail_free;
2513 pci_set_master(dev);
2514 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2515 pci_set_drvdata(dev, ohci);
2517 spin_lock_init(&ohci->lock);
2519 tasklet_init(&ohci->bus_reset_tasklet,
2520 bus_reset_tasklet, (unsigned long)ohci);
2522 err = pci_request_region(dev, 0, ohci_driver_name);
2523 if (err) {
2524 fw_error("MMIO resource unavailable\n");
2525 goto fail_disable;
2528 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2529 if (ohci->registers == NULL) {
2530 fw_error("Failed to remap registers\n");
2531 err = -ENXIO;
2532 goto fail_iomem;
2535 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2536 if (ohci_quirks[i].vendor == dev->vendor &&
2537 (ohci_quirks[i].device == dev->device ||
2538 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2539 ohci->quirks = ohci_quirks[i].flags;
2540 break;
2542 if (param_quirks)
2543 ohci->quirks = param_quirks;
2545 /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2546 if (dev->vendor == PCI_VENDOR_ID_TI) {
2547 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2549 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2550 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2551 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2553 /* use priority arbitration for asynchronous responses */
2554 link_enh |= TI_LinkEnh_enab_unfair;
2556 /* required for aPhyEnhanceEnable to work */
2557 link_enh |= TI_LinkEnh_enab_accel;
2559 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2562 ar_context_init(&ohci->ar_request_ctx, ohci,
2563 OHCI1394_AsReqRcvContextControlSet);
2565 ar_context_init(&ohci->ar_response_ctx, ohci,
2566 OHCI1394_AsRspRcvContextControlSet);
2568 context_init(&ohci->at_request_ctx, ohci,
2569 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2571 context_init(&ohci->at_response_ctx, ohci,
2572 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2574 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2575 ohci->ir_context_channels = ~0ULL;
2576 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2577 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2578 n_ir = hweight32(ohci->ir_context_mask);
2579 size = sizeof(struct iso_context) * n_ir;
2580 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2582 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2583 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2584 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2585 n_it = hweight32(ohci->it_context_mask);
2586 size = sizeof(struct iso_context) * n_it;
2587 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2589 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2590 err = -ENOMEM;
2591 goto fail_contexts;
2594 /* self-id dma buffer allocation */
2595 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2596 SELF_ID_BUF_SIZE,
2597 &ohci->self_id_bus,
2598 GFP_KERNEL);
2599 if (ohci->self_id_cpu == NULL) {
2600 err = -ENOMEM;
2601 goto fail_contexts;
2604 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2605 max_receive = (bus_options >> 12) & 0xf;
2606 link_speed = bus_options & 0x7;
2607 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2608 reg_read(ohci, OHCI1394_GUIDLo);
2610 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2611 if (err)
2612 goto fail_self_id;
2614 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2615 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2616 "%d IR + %d IT contexts, quirks 0x%x\n",
2617 dev_name(&dev->dev), version >> 16, version & 0xff,
2618 n_ir, n_it, ohci->quirks);
2620 return 0;
2622 fail_self_id:
2623 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2624 ohci->self_id_cpu, ohci->self_id_bus);
2625 fail_contexts:
2626 kfree(ohci->ir_context_list);
2627 kfree(ohci->it_context_list);
2628 context_release(&ohci->at_response_ctx);
2629 context_release(&ohci->at_request_ctx);
2630 ar_context_release(&ohci->ar_response_ctx);
2631 ar_context_release(&ohci->ar_request_ctx);
2632 pci_iounmap(dev, ohci->registers);
2633 fail_iomem:
2634 pci_release_region(dev, 0);
2635 fail_disable:
2636 pci_disable_device(dev);
2637 fail_free:
2638 kfree(&ohci->card);
2639 pmac_ohci_off(dev);
2640 fail:
2641 if (err == -ENOMEM)
2642 fw_error("Out of memory\n");
2644 return err;
2647 static void pci_remove(struct pci_dev *dev)
2649 struct fw_ohci *ohci;
2651 ohci = pci_get_drvdata(dev);
2652 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2653 flush_writes(ohci);
2654 fw_core_remove_card(&ohci->card);
2657 * FIXME: Fail all pending packets here, now that the upper
2658 * layers can't queue any more.
2661 software_reset(ohci);
2662 free_irq(dev->irq, ohci);
2664 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2665 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2666 ohci->next_config_rom, ohci->next_config_rom_bus);
2667 if (ohci->config_rom)
2668 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2669 ohci->config_rom, ohci->config_rom_bus);
2670 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2671 ohci->self_id_cpu, ohci->self_id_bus);
2672 ar_context_release(&ohci->ar_request_ctx);
2673 ar_context_release(&ohci->ar_response_ctx);
2674 context_release(&ohci->at_request_ctx);
2675 context_release(&ohci->at_response_ctx);
2676 kfree(ohci->it_context_list);
2677 kfree(ohci->ir_context_list);
2678 pci_disable_msi(dev);
2679 pci_iounmap(dev, ohci->registers);
2680 pci_release_region(dev, 0);
2681 pci_disable_device(dev);
2682 kfree(&ohci->card);
2683 pmac_ohci_off(dev);
2685 fw_notify("Removed fw-ohci device.\n");
2688 #ifdef CONFIG_PM
2689 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2691 struct fw_ohci *ohci = pci_get_drvdata(dev);
2692 int err;
2694 software_reset(ohci);
2695 free_irq(dev->irq, ohci);
2696 pci_disable_msi(dev);
2697 err = pci_save_state(dev);
2698 if (err) {
2699 fw_error("pci_save_state failed\n");
2700 return err;
2702 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2703 if (err)
2704 fw_error("pci_set_power_state failed with %d\n", err);
2705 pmac_ohci_off(dev);
2707 return 0;
2710 static int pci_resume(struct pci_dev *dev)
2712 struct fw_ohci *ohci = pci_get_drvdata(dev);
2713 int err;
2715 pmac_ohci_on(dev);
2716 pci_set_power_state(dev, PCI_D0);
2717 pci_restore_state(dev);
2718 err = pci_enable_device(dev);
2719 if (err) {
2720 fw_error("pci_enable_device failed\n");
2721 return err;
2724 return ohci_enable(&ohci->card, NULL, 0);
2726 #endif
2728 static const struct pci_device_id pci_table[] = {
2729 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2733 MODULE_DEVICE_TABLE(pci, pci_table);
2735 static struct pci_driver fw_ohci_pci_driver = {
2736 .name = ohci_driver_name,
2737 .id_table = pci_table,
2738 .probe = pci_probe,
2739 .remove = pci_remove,
2740 #ifdef CONFIG_PM
2741 .resume = pci_resume,
2742 .suspend = pci_suspend,
2743 #endif
2746 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2747 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2748 MODULE_LICENSE("GPL");
2750 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2751 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2752 MODULE_ALIAS("ohci1394");
2753 #endif
2755 static int __init fw_ohci_init(void)
2757 return pci_register_driver(&fw_ohci_pci_driver);
2760 static void __exit fw_ohci_cleanup(void)
2762 pci_unregister_driver(&fw_ohci_pci_driver);
2765 module_init(fw_ohci_init);
2766 module_exit(fw_ohci_cleanup);