[PATCH] ieee1394: remove superfluous include in csr1212
[firewire-audio.git] / arch / ppc64 / kernel / iSeries_pci.c
blobfbc273c32bcc176556a5949b0fc2c7b78a331bfb
1 /*
2 * iSeries_pci.c
4 * Copyright (C) 2001 Allan Trautman, IBM Corporation
6 * iSeries specific routines for PCI.
7 *
8 * Based on code from pci.c and iSeries_pci.c 32bit
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/ide.h>
30 #include <linux/pci.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36 #include <asm/pci-bridge.h>
37 #include <asm/ppcdebug.h>
38 #include <asm/iommu.h>
40 #include <asm/iSeries/HvCallPci.h>
41 #include <asm/iSeries/HvCallXm.h>
42 #include <asm/iSeries/iSeries_irq.h>
43 #include <asm/iSeries/iSeries_pci.h>
44 #include <asm/iSeries/mf.h>
46 #include "pci.h"
48 extern unsigned long io_page_mask;
51 * Forward declares of prototypes.
53 static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn);
54 static void scan_PHB_slots(struct pci_controller *Phb);
55 static void scan_EADS_bridge(HvBusNumber Bus, HvSubBusNumber SubBus, int IdSel);
56 static int scan_bridge_slot(HvBusNumber Bus, struct HvCallPci_BridgeInfo *Info);
58 LIST_HEAD(iSeries_Global_Device_List);
60 static int DeviceCount;
62 /* Counters and control flags. */
63 static long Pci_Io_Read_Count;
64 static long Pci_Io_Write_Count;
65 #if 0
66 static long Pci_Cfg_Read_Count;
67 static long Pci_Cfg_Write_Count;
68 #endif
69 static long Pci_Error_Count;
71 static int Pci_Retry_Max = 3; /* Only retry 3 times */
72 static int Pci_Error_Flag = 1; /* Set Retry Error on. */
74 static struct pci_ops iSeries_pci_ops;
77 * Table defines
78 * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
80 #define IOMM_TABLE_MAX_ENTRIES 1024
81 #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
82 #define BASE_IO_MEMORY 0xE000000000000000UL
84 static unsigned long max_io_memory = 0xE000000000000000UL;
85 static long current_iomm_table_entry;
88 * Lookup Tables.
90 static struct iSeries_Device_Node **iomm_table;
91 static u8 *iobar_table;
94 * Static and Global variables
96 static char *pci_io_text = "iSeries PCI I/O";
97 static DEFINE_SPINLOCK(iomm_table_lock);
100 * iomm_table_initialize
102 * Allocates and initalizes the Address Translation Table and Bar
103 * Tables to get them ready for use. Must be called before any
104 * I/O space is handed out to the device BARs.
106 static void iomm_table_initialize(void)
108 spin_lock(&iomm_table_lock);
109 iomm_table = kmalloc(sizeof(*iomm_table) * IOMM_TABLE_MAX_ENTRIES,
110 GFP_KERNEL);
111 iobar_table = kmalloc(sizeof(*iobar_table) * IOMM_TABLE_MAX_ENTRIES,
112 GFP_KERNEL);
113 spin_unlock(&iomm_table_lock);
114 if ((iomm_table == NULL) || (iobar_table == NULL))
115 panic("PCI: I/O tables allocation failed.\n");
119 * iomm_table_allocate_entry
121 * Adds pci_dev entry in address translation table
123 * - Allocates the number of entries required in table base on BAR
124 * size.
125 * - Allocates starting at BASE_IO_MEMORY and increases.
126 * - The size is round up to be a multiple of entry size.
127 * - CurrentIndex is incremented to keep track of the last entry.
128 * - Builds the resource entry for allocated BARs.
130 static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
132 struct resource *bar_res = &dev->resource[bar_num];
133 long bar_size = pci_resource_len(dev, bar_num);
136 * No space to allocate, quick exit, skip Allocation.
138 if (bar_size == 0)
139 return;
141 * Set Resource values.
143 spin_lock(&iomm_table_lock);
144 bar_res->name = pci_io_text;
145 bar_res->start =
146 IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
147 bar_res->start += BASE_IO_MEMORY;
148 bar_res->end = bar_res->start + bar_size - 1;
150 * Allocate the number of table entries needed for BAR.
152 while (bar_size > 0 ) {
153 iomm_table[current_iomm_table_entry] = dev->sysdata;
154 iobar_table[current_iomm_table_entry] = bar_num;
155 bar_size -= IOMM_TABLE_ENTRY_SIZE;
156 ++current_iomm_table_entry;
158 max_io_memory = BASE_IO_MEMORY +
159 (IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry);
160 spin_unlock(&iomm_table_lock);
164 * allocate_device_bars
166 * - Allocates ALL pci_dev BAR's and updates the resources with the
167 * BAR value. BARS with zero length will have the resources
168 * The HvCallPci_getBarParms is used to get the size of the BAR
169 * space. It calls iomm_table_allocate_entry to allocate
170 * each entry.
171 * - Loops through The Bar resources(0 - 5) including the ROM
172 * is resource(6).
174 static void allocate_device_bars(struct pci_dev *dev)
176 struct resource *bar_res;
177 int bar_num;
179 for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num) {
180 bar_res = &dev->resource[bar_num];
181 iomm_table_allocate_entry(dev, bar_num);
186 * Log error information to system console.
187 * Filter out the device not there errors.
188 * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
189 * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
190 * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
192 static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
193 int AgentId, int HvRc)
195 if (HvRc == 0x0302)
196 return;
197 printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
198 Error_Text, Bus, SubBus, AgentId, HvRc);
202 * build_device_node(u16 Bus, int SubBus, u8 DevFn)
204 static struct iSeries_Device_Node *build_device_node(HvBusNumber Bus,
205 HvSubBusNumber SubBus, int AgentId, int Function)
207 struct iSeries_Device_Node *node;
209 PPCDBG(PPCDBG_BUSWALK,
210 "-build_device_node 0x%02X.%02X.%02X Function: %02X\n",
211 Bus, SubBus, AgentId, Function);
213 node = kmalloc(sizeof(struct iSeries_Device_Node), GFP_KERNEL);
214 if (node == NULL)
215 return NULL;
217 memset(node, 0, sizeof(struct iSeries_Device_Node));
218 list_add_tail(&node->Device_List, &iSeries_Global_Device_List);
219 #if 0
220 node->DsaAddr = ((u64)Bus << 48) + ((u64)SubBus << 40) + ((u64)0x10 << 32);
221 #endif
222 node->DsaAddr.DsaAddr = 0;
223 node->DsaAddr.Dsa.busNumber = Bus;
224 node->DsaAddr.Dsa.subBusNumber = SubBus;
225 node->DsaAddr.Dsa.deviceId = 0x10;
226 node->DevFn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(AgentId), Function);
227 return node;
231 * unsigned long __init find_and_init_phbs(void)
233 * Description:
234 * This function checks for all possible system PCI host bridges that connect
235 * PCI buses. The system hypervisor is queried as to the guest partition
236 * ownership status. A pci_controller is built for any bus which is partially
237 * owned or fully owned by this guest partition.
239 unsigned long __init find_and_init_phbs(void)
241 struct pci_controller *phb;
242 HvBusNumber bus;
244 PPCDBG(PPCDBG_BUSWALK, "find_and_init_phbs Entry\n");
246 /* Check all possible buses. */
247 for (bus = 0; bus < 256; bus++) {
248 int ret = HvCallXm_testBus(bus);
249 if (ret == 0) {
250 printk("bus %d appears to exist\n", bus);
252 phb = (struct pci_controller *)kmalloc(sizeof(struct pci_controller), GFP_KERNEL);
253 if (phb == NULL)
254 return -ENOMEM;
255 pci_setup_pci_controller(phb);
257 phb->pci_mem_offset = phb->local_number = bus;
258 phb->first_busno = bus;
259 phb->last_busno = bus;
260 phb->ops = &iSeries_pci_ops;
262 PPCDBG(PPCDBG_BUSWALK, "PCI:Create iSeries pci_controller(%p), Bus: %04X\n",
263 phb, bus);
265 /* Find and connect the devices. */
266 scan_PHB_slots(phb);
269 * Check for Unexpected Return code, a clue that something
270 * has gone wrong.
272 else if (ret != 0x0301)
273 printk(KERN_ERR "Unexpected Return on Probe(0x%04X): 0x%04X",
274 bus, ret);
276 return 0;
280 * iSeries_pcibios_init
282 * Chance to initialize and structures or variable before PCI Bus walk.
284 void iSeries_pcibios_init(void)
286 PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Entry.\n");
287 iomm_table_initialize();
288 find_and_init_phbs();
289 io_page_mask = -1;
290 PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Exit.\n");
294 * iSeries_pci_final_fixup(void)
296 void __init iSeries_pci_final_fixup(void)
298 struct pci_dev *pdev = NULL;
299 struct iSeries_Device_Node *node;
300 int DeviceCount = 0;
302 PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup Entry.\n");
304 /* Fix up at the device node and pci_dev relationship */
305 mf_display_src(0xC9000100);
307 printk("pcibios_final_fixup\n");
308 for_each_pci_dev(pdev) {
309 node = find_Device_Node(pdev->bus->number, pdev->devfn);
310 printk("pci dev %p (%x.%x), node %p\n", pdev,
311 pdev->bus->number, pdev->devfn, node);
313 if (node != NULL) {
314 ++DeviceCount;
315 pdev->sysdata = (void *)node;
316 node->PciDev = pdev;
317 PPCDBG(PPCDBG_BUSWALK,
318 "pdev 0x%p <==> DevNode 0x%p\n",
319 pdev, node);
320 allocate_device_bars(pdev);
321 iSeries_Device_Information(pdev, DeviceCount);
322 iommu_devnode_init_iSeries(node);
323 } else
324 printk("PCI: Device Tree not found for 0x%016lX\n",
325 (unsigned long)pdev);
326 pdev->irq = node->Irq;
328 iSeries_activate_IRQs();
329 mf_display_src(0xC9000200);
332 void pcibios_fixup_bus(struct pci_bus *PciBus)
334 PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup_bus(0x%04X) Entry.\n",
335 PciBus->number);
338 void pcibios_fixup_resources(struct pci_dev *pdev)
340 PPCDBG(PPCDBG_BUSWALK, "fixup_resources pdev %p\n", pdev);
344 * Loop through each node function to find usable EADs bridges.
346 static void scan_PHB_slots(struct pci_controller *Phb)
348 struct HvCallPci_DeviceInfo *DevInfo;
349 HvBusNumber bus = Phb->local_number; /* System Bus */
350 const HvSubBusNumber SubBus = 0; /* EADs is always 0. */
351 int HvRc = 0;
352 int IdSel;
353 const int MaxAgents = 8;
355 DevInfo = (struct HvCallPci_DeviceInfo*)
356 kmalloc(sizeof(struct HvCallPci_DeviceInfo), GFP_KERNEL);
357 if (DevInfo == NULL)
358 return;
361 * Probe for EADs Bridges
363 for (IdSel = 1; IdSel < MaxAgents; ++IdSel) {
364 HvRc = HvCallPci_getDeviceInfo(bus, SubBus, IdSel,
365 ISERIES_HV_ADDR(DevInfo),
366 sizeof(struct HvCallPci_DeviceInfo));
367 if (HvRc == 0) {
368 if (DevInfo->deviceType == HvCallPci_NodeDevice)
369 scan_EADS_bridge(bus, SubBus, IdSel);
370 else
371 printk("PCI: Invalid System Configuration(0x%02X)"
372 " for bus 0x%02x id 0x%02x.\n",
373 DevInfo->deviceType, bus, IdSel);
375 else
376 pci_Log_Error("getDeviceInfo", bus, SubBus, IdSel, HvRc);
378 kfree(DevInfo);
381 static void scan_EADS_bridge(HvBusNumber bus, HvSubBusNumber SubBus,
382 int IdSel)
384 struct HvCallPci_BridgeInfo *BridgeInfo;
385 HvAgentId AgentId;
386 int Function;
387 int HvRc;
389 BridgeInfo = (struct HvCallPci_BridgeInfo *)
390 kmalloc(sizeof(struct HvCallPci_BridgeInfo), GFP_KERNEL);
391 if (BridgeInfo == NULL)
392 return;
394 /* Note: hvSubBus and irq is always be 0 at this level! */
395 for (Function = 0; Function < 8; ++Function) {
396 AgentId = ISERIES_PCI_AGENTID(IdSel, Function);
397 HvRc = HvCallXm_connectBusUnit(bus, SubBus, AgentId, 0);
398 if (HvRc == 0) {
399 printk("found device at bus %d idsel %d func %d (AgentId %x)\n",
400 bus, IdSel, Function, AgentId);
401 /* Connect EADs: 0x18.00.12 = 0x00 */
402 PPCDBG(PPCDBG_BUSWALK,
403 "PCI:Connect EADs: 0x%02X.%02X.%02X\n",
404 bus, SubBus, AgentId);
405 HvRc = HvCallPci_getBusUnitInfo(bus, SubBus, AgentId,
406 ISERIES_HV_ADDR(BridgeInfo),
407 sizeof(struct HvCallPci_BridgeInfo));
408 if (HvRc == 0) {
409 printk("bridge info: type %x subbus %x maxAgents %x maxsubbus %x logslot %x\n",
410 BridgeInfo->busUnitInfo.deviceType,
411 BridgeInfo->subBusNumber,
412 BridgeInfo->maxAgents,
413 BridgeInfo->maxSubBusNumber,
414 BridgeInfo->logicalSlotNumber);
415 PPCDBG(PPCDBG_BUSWALK,
416 "PCI: BridgeInfo, Type:0x%02X, SubBus:0x%02X, MaxAgents:0x%02X, MaxSubBus: 0x%02X, LSlot: 0x%02X\n",
417 BridgeInfo->busUnitInfo.deviceType,
418 BridgeInfo->subBusNumber,
419 BridgeInfo->maxAgents,
420 BridgeInfo->maxSubBusNumber,
421 BridgeInfo->logicalSlotNumber);
423 if (BridgeInfo->busUnitInfo.deviceType ==
424 HvCallPci_BridgeDevice) {
425 /* Scan_Bridge_Slot...: 0x18.00.12 */
426 scan_bridge_slot(bus, BridgeInfo);
427 } else
428 printk("PCI: Invalid Bridge Configuration(0x%02X)",
429 BridgeInfo->busUnitInfo.deviceType);
431 } else if (HvRc != 0x000B)
432 pci_Log_Error("EADs Connect",
433 bus, SubBus, AgentId, HvRc);
435 kfree(BridgeInfo);
439 * This assumes that the node slot is always on the primary bus!
441 static int scan_bridge_slot(HvBusNumber Bus,
442 struct HvCallPci_BridgeInfo *BridgeInfo)
444 struct iSeries_Device_Node *node;
445 HvSubBusNumber SubBus = BridgeInfo->subBusNumber;
446 u16 VendorId = 0;
447 int HvRc = 0;
448 u8 Irq = 0;
449 int IdSel = ISERIES_GET_DEVICE_FROM_SUBBUS(SubBus);
450 int Function = ISERIES_GET_FUNCTION_FROM_SUBBUS(SubBus);
451 HvAgentId EADsIdSel = ISERIES_PCI_AGENTID(IdSel, Function);
453 /* iSeries_allocate_IRQ.: 0x18.00.12(0xA3) */
454 Irq = iSeries_allocate_IRQ(Bus, 0, EADsIdSel);
455 PPCDBG(PPCDBG_BUSWALK,
456 "PCI:- allocate and assign IRQ 0x%02X.%02X.%02X = 0x%02X\n",
457 Bus, 0, EADsIdSel, Irq);
460 * Connect all functions of any device found.
462 for (IdSel = 1; IdSel <= BridgeInfo->maxAgents; ++IdSel) {
463 for (Function = 0; Function < 8; ++Function) {
464 HvAgentId AgentId = ISERIES_PCI_AGENTID(IdSel, Function);
465 HvRc = HvCallXm_connectBusUnit(Bus, SubBus,
466 AgentId, Irq);
467 if (HvRc != 0) {
468 pci_Log_Error("Connect Bus Unit",
469 Bus, SubBus, AgentId, HvRc);
470 continue;
473 HvRc = HvCallPci_configLoad16(Bus, SubBus, AgentId,
474 PCI_VENDOR_ID, &VendorId);
475 if (HvRc != 0) {
476 pci_Log_Error("Read Vendor",
477 Bus, SubBus, AgentId, HvRc);
478 continue;
480 printk("read vendor ID: %x\n", VendorId);
482 /* FoundDevice: 0x18.28.10 = 0x12AE */
483 PPCDBG(PPCDBG_BUSWALK,
484 "PCI:- FoundDevice: 0x%02X.%02X.%02X = 0x%04X, irq %d\n",
485 Bus, SubBus, AgentId, VendorId, Irq);
486 HvRc = HvCallPci_configStore8(Bus, SubBus, AgentId,
487 PCI_INTERRUPT_LINE, Irq);
488 if (HvRc != 0)
489 pci_Log_Error("PciCfgStore Irq Failed!",
490 Bus, SubBus, AgentId, HvRc);
492 ++DeviceCount;
493 node = build_device_node(Bus, SubBus, EADsIdSel, Function);
494 node->Irq = Irq;
495 node->LogicalSlot = BridgeInfo->logicalSlotNumber;
497 } /* for (Function = 0; Function < 8; ++Function) */
498 } /* for (IdSel = 1; IdSel <= MaxAgents; ++IdSel) */
499 return HvRc;
503 * I/0 Memory copy MUST use mmio commands on iSeries
504 * To do; For performance, include the hv call directly
506 void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count)
508 u8 ByteValue = c;
509 long NumberOfBytes = Count;
511 while (NumberOfBytes > 0) {
512 iSeries_Write_Byte(ByteValue, dest++);
513 -- NumberOfBytes;
516 EXPORT_SYMBOL(iSeries_memset_io);
518 void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count)
520 char *src = source;
521 long NumberOfBytes = count;
523 while (NumberOfBytes > 0) {
524 iSeries_Write_Byte(*src++, dest++);
525 -- NumberOfBytes;
528 EXPORT_SYMBOL(iSeries_memcpy_toio);
530 void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count)
532 char *dst = dest;
533 long NumberOfBytes = count;
535 while (NumberOfBytes > 0) {
536 *dst++ = iSeries_Read_Byte(src++);
537 -- NumberOfBytes;
540 EXPORT_SYMBOL(iSeries_memcpy_fromio);
543 * Look down the chain to find the matching Device Device
545 static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn)
547 struct list_head *pos;
549 list_for_each(pos, &iSeries_Global_Device_List) {
550 struct iSeries_Device_Node *node =
551 list_entry(pos, struct iSeries_Device_Node, Device_List);
553 if ((bus == ISERIES_BUS(node)) && (devfn == node->DevFn))
554 return node;
556 return NULL;
559 #if 0
561 * Returns the device node for the passed pci_dev
562 * Sanity Check Node PciDev to passed pci_dev
563 * If none is found, returns a NULL which the client must handle.
565 static struct iSeries_Device_Node *get_Device_Node(struct pci_dev *pdev)
567 struct iSeries_Device_Node *node;
569 node = pdev->sysdata;
570 if (node == NULL || node->PciDev != pdev)
571 node = find_Device_Node(pdev->bus->number, pdev->devfn);
572 return node;
574 #endif
577 * Config space read and write functions.
578 * For now at least, we look for the device node for the bus and devfn
579 * that we are asked to access. It may be possible to translate the devfn
580 * to a subbus and deviceid more directly.
582 static u64 hv_cfg_read_func[4] = {
583 HvCallPciConfigLoad8, HvCallPciConfigLoad16,
584 HvCallPciConfigLoad32, HvCallPciConfigLoad32
587 static u64 hv_cfg_write_func[4] = {
588 HvCallPciConfigStore8, HvCallPciConfigStore16,
589 HvCallPciConfigStore32, HvCallPciConfigStore32
593 * Read PCI config space
595 static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
596 int offset, int size, u32 *val)
598 struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn);
599 u64 fn;
600 struct HvCallPci_LoadReturn ret;
602 if (node == NULL)
603 return PCIBIOS_DEVICE_NOT_FOUND;
604 if (offset > 255) {
605 *val = ~0;
606 return PCIBIOS_BAD_REGISTER_NUMBER;
609 fn = hv_cfg_read_func[(size - 1) & 3];
610 HvCall3Ret16(fn, &ret, node->DsaAddr.DsaAddr, offset, 0);
612 if (ret.rc != 0) {
613 *val = ~0;
614 return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
617 *val = ret.value;
618 return 0;
622 * Write PCI config space
625 static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
626 int offset, int size, u32 val)
628 struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn);
629 u64 fn;
630 u64 ret;
632 if (node == NULL)
633 return PCIBIOS_DEVICE_NOT_FOUND;
634 if (offset > 255)
635 return PCIBIOS_BAD_REGISTER_NUMBER;
637 fn = hv_cfg_write_func[(size - 1) & 3];
638 ret = HvCall4(fn, node->DsaAddr.DsaAddr, offset, val, 0);
640 if (ret != 0)
641 return PCIBIOS_DEVICE_NOT_FOUND;
643 return 0;
646 static struct pci_ops iSeries_pci_ops = {
647 .read = iSeries_pci_read_config,
648 .write = iSeries_pci_write_config
652 * Check Return Code
653 * -> On Failure, print and log information.
654 * Increment Retry Count, if exceeds max, panic partition.
656 * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
657 * PCI: Device 23.90 ReadL Retry( 1)
658 * PCI: Device 23.90 ReadL Retry Successful(1)
660 static int CheckReturnCode(char *TextHdr, struct iSeries_Device_Node *DevNode,
661 int *retry, u64 ret)
663 if (ret != 0) {
664 ++Pci_Error_Count;
665 (*retry)++;
666 printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
667 TextHdr, DevNode->DsaAddr.Dsa.busNumber, DevNode->DevFn,
668 *retry, (int)ret);
670 * Bump the retry and check for retry count exceeded.
671 * If, Exceeded, panic the system.
673 if (((*retry) > Pci_Retry_Max) &&
674 (Pci_Error_Flag > 0)) {
675 mf_display_src(0xB6000103);
676 panic_timeout = 0;
677 panic("PCI: Hardware I/O Error, SRC B6000103, "
678 "Automatic Reboot Disabled.\n");
680 return -1; /* Retry Try */
682 return 0;
686 * Translate the I/O Address into a device node, bar, and bar offset.
687 * Note: Make sure the passed variable end up on the stack to avoid
688 * the exposure of being device global.
690 static inline struct iSeries_Device_Node *xlate_iomm_address(
691 const volatile void __iomem *IoAddress,
692 u64 *dsaptr, u64 *BarOffsetPtr)
694 unsigned long OrigIoAddr;
695 unsigned long BaseIoAddr;
696 unsigned long TableIndex;
697 struct iSeries_Device_Node *DevNode;
699 OrigIoAddr = (unsigned long __force)IoAddress;
700 if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
701 return NULL;
702 BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
703 TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
704 DevNode = iomm_table[TableIndex];
706 if (DevNode != NULL) {
707 int barnum = iobar_table[TableIndex];
708 *dsaptr = DevNode->DsaAddr.DsaAddr | (barnum << 24);
709 *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
710 } else
711 panic("PCI: Invalid PCI IoAddress detected!\n");
712 return DevNode;
716 * Read MM I/O Instructions for the iSeries
717 * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
718 * else, data is returned in big Endian format.
720 * iSeries_Read_Byte = Read Byte ( 8 bit)
721 * iSeries_Read_Word = Read Word (16 bit)
722 * iSeries_Read_Long = Read Long (32 bit)
724 u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
726 u64 BarOffset;
727 u64 dsa;
728 int retry = 0;
729 struct HvCallPci_LoadReturn ret;
730 struct iSeries_Device_Node *DevNode =
731 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
733 if (DevNode == NULL) {
734 static unsigned long last_jiffies;
735 static int num_printed;
737 if ((jiffies - last_jiffies) > 60 * HZ) {
738 last_jiffies = jiffies;
739 num_printed = 0;
741 if (num_printed++ < 10)
742 printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
743 return 0xff;
745 do {
746 ++Pci_Io_Read_Count;
747 HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
748 } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
750 return (u8)ret.value;
752 EXPORT_SYMBOL(iSeries_Read_Byte);
754 u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
756 u64 BarOffset;
757 u64 dsa;
758 int retry = 0;
759 struct HvCallPci_LoadReturn ret;
760 struct iSeries_Device_Node *DevNode =
761 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
763 if (DevNode == NULL) {
764 static unsigned long last_jiffies;
765 static int num_printed;
767 if ((jiffies - last_jiffies) > 60 * HZ) {
768 last_jiffies = jiffies;
769 num_printed = 0;
771 if (num_printed++ < 10)
772 printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
773 return 0xffff;
775 do {
776 ++Pci_Io_Read_Count;
777 HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
778 BarOffset, 0);
779 } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
781 return swab16((u16)ret.value);
783 EXPORT_SYMBOL(iSeries_Read_Word);
785 u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
787 u64 BarOffset;
788 u64 dsa;
789 int retry = 0;
790 struct HvCallPci_LoadReturn ret;
791 struct iSeries_Device_Node *DevNode =
792 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
794 if (DevNode == NULL) {
795 static unsigned long last_jiffies;
796 static int num_printed;
798 if ((jiffies - last_jiffies) > 60 * HZ) {
799 last_jiffies = jiffies;
800 num_printed = 0;
802 if (num_printed++ < 10)
803 printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
804 return 0xffffffff;
806 do {
807 ++Pci_Io_Read_Count;
808 HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
809 BarOffset, 0);
810 } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
812 return swab32((u32)ret.value);
814 EXPORT_SYMBOL(iSeries_Read_Long);
817 * Write MM I/O Instructions for the iSeries
819 * iSeries_Write_Byte = Write Byte (8 bit)
820 * iSeries_Write_Word = Write Word(16 bit)
821 * iSeries_Write_Long = Write Long(32 bit)
823 void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
825 u64 BarOffset;
826 u64 dsa;
827 int retry = 0;
828 u64 rc;
829 struct iSeries_Device_Node *DevNode =
830 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
832 if (DevNode == NULL) {
833 static unsigned long last_jiffies;
834 static int num_printed;
836 if ((jiffies - last_jiffies) > 60 * HZ) {
837 last_jiffies = jiffies;
838 num_printed = 0;
840 if (num_printed++ < 10)
841 printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
842 return;
844 do {
845 ++Pci_Io_Write_Count;
846 rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
847 } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
849 EXPORT_SYMBOL(iSeries_Write_Byte);
851 void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
853 u64 BarOffset;
854 u64 dsa;
855 int retry = 0;
856 u64 rc;
857 struct iSeries_Device_Node *DevNode =
858 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
860 if (DevNode == NULL) {
861 static unsigned long last_jiffies;
862 static int num_printed;
864 if ((jiffies - last_jiffies) > 60 * HZ) {
865 last_jiffies = jiffies;
866 num_printed = 0;
868 if (num_printed++ < 10)
869 printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
870 return;
872 do {
873 ++Pci_Io_Write_Count;
874 rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
875 } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
877 EXPORT_SYMBOL(iSeries_Write_Word);
879 void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
881 u64 BarOffset;
882 u64 dsa;
883 int retry = 0;
884 u64 rc;
885 struct iSeries_Device_Node *DevNode =
886 xlate_iomm_address(IoAddress, &dsa, &BarOffset);
888 if (DevNode == NULL) {
889 static unsigned long last_jiffies;
890 static int num_printed;
892 if ((jiffies - last_jiffies) > 60 * HZ) {
893 last_jiffies = jiffies;
894 num_printed = 0;
896 if (num_printed++ < 10)
897 printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
898 return;
900 do {
901 ++Pci_Io_Write_Count;
902 rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
903 } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
905 EXPORT_SYMBOL(iSeries_Write_Long);