2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
38 * request_key returned an error instead of a valid key address;
39 * determine the type of error, make appropriate log entries, and
40 * return an error code.
42 static int process_request_key_err(long err_code
)
48 ecryptfs_printk(KERN_WARNING
, "No key\n");
52 ecryptfs_printk(KERN_WARNING
, "Key expired\n");
56 ecryptfs_printk(KERN_WARNING
, "Key revoked\n");
60 ecryptfs_printk(KERN_WARNING
, "Unknown error code: "
61 "[0x%.16x]\n", err_code
);
68 * ecryptfs_parse_packet_length
69 * @data: Pointer to memory containing length at offset
70 * @size: This function writes the decoded size to this memory
71 * address; zero on error
72 * @length_size: The number of bytes occupied by the encoded length
74 * Returns zero on success; non-zero on error
76 int ecryptfs_parse_packet_length(unsigned char *data
, size_t *size
,
85 (*size
) = (unsigned char)data
[0];
87 } else if (data
[0] < 224) {
89 (*size
) = (((unsigned char)(data
[0]) - 192) * 256);
90 (*size
) += ((unsigned char)(data
[1]) + 192);
92 } else if (data
[0] == 255) {
93 /* Five-byte length; we're not supposed to see this */
94 ecryptfs_printk(KERN_ERR
, "Five-byte packet length not "
99 ecryptfs_printk(KERN_ERR
, "Error parsing packet length\n");
108 * ecryptfs_write_packet_length
109 * @dest: The byte array target into which to write the length. Must
110 * have at least 5 bytes allocated.
111 * @size: The length to write.
112 * @packet_size_length: The number of bytes used to encode the packet
113 * length is written to this address.
115 * Returns zero on success; non-zero on error.
117 int ecryptfs_write_packet_length(char *dest
, size_t size
,
118 size_t *packet_size_length
)
124 (*packet_size_length
) = 1;
125 } else if (size
< 65536) {
126 dest
[0] = (((size
- 192) / 256) + 192);
127 dest
[1] = ((size
- 192) % 256);
128 (*packet_size_length
) = 2;
131 ecryptfs_printk(KERN_WARNING
,
132 "Unsupported packet size: [%d]\n", size
);
138 write_tag_64_packet(char *signature
, struct ecryptfs_session_key
*session_key
,
139 char **packet
, size_t *packet_len
)
143 size_t packet_size_len
;
148 * ***** TAG 64 Packet Format *****
149 * | Content Type | 1 byte |
150 * | Key Identifier Size | 1 or 2 bytes |
151 * | Key Identifier | arbitrary |
152 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 * | Encrypted File Encryption Key | arbitrary |
155 data_len
= (5 + ECRYPTFS_SIG_SIZE_HEX
156 + session_key
->encrypted_key_size
);
157 *packet
= kmalloc(data_len
, GFP_KERNEL
);
160 ecryptfs_printk(KERN_ERR
, "Unable to allocate memory\n");
164 message
[i
++] = ECRYPTFS_TAG_64_PACKET_TYPE
;
165 rc
= ecryptfs_write_packet_length(&message
[i
], ECRYPTFS_SIG_SIZE_HEX
,
168 ecryptfs_printk(KERN_ERR
, "Error generating tag 64 packet "
169 "header; cannot generate packet length\n");
172 i
+= packet_size_len
;
173 memcpy(&message
[i
], signature
, ECRYPTFS_SIG_SIZE_HEX
);
174 i
+= ECRYPTFS_SIG_SIZE_HEX
;
175 rc
= ecryptfs_write_packet_length(&message
[i
],
176 session_key
->encrypted_key_size
,
179 ecryptfs_printk(KERN_ERR
, "Error generating tag 64 packet "
180 "header; cannot generate packet length\n");
183 i
+= packet_size_len
;
184 memcpy(&message
[i
], session_key
->encrypted_key
,
185 session_key
->encrypted_key_size
);
186 i
+= session_key
->encrypted_key_size
;
193 parse_tag_65_packet(struct ecryptfs_session_key
*session_key
, u8
*cipher_code
,
194 struct ecryptfs_message
*msg
)
202 u16 expected_checksum
= 0;
206 * ***** TAG 65 Packet Format *****
207 * | Content Type | 1 byte |
208 * | Status Indicator | 1 byte |
209 * | File Encryption Key Size | 1 or 2 bytes |
210 * | File Encryption Key | arbitrary |
212 message_len
= msg
->data_len
;
214 if (message_len
< 4) {
218 if (data
[i
++] != ECRYPTFS_TAG_65_PACKET_TYPE
) {
219 ecryptfs_printk(KERN_ERR
, "Type should be ECRYPTFS_TAG_65\n");
224 ecryptfs_printk(KERN_ERR
, "Status indicator has non-zero value "
225 "[%d]\n", data
[i
-1]);
229 rc
= ecryptfs_parse_packet_length(&data
[i
], &m_size
, &data_len
);
231 ecryptfs_printk(KERN_WARNING
, "Error parsing packet length; "
236 if (message_len
< (i
+ m_size
)) {
237 ecryptfs_printk(KERN_ERR
, "The message received from ecryptfsd "
238 "is shorter than expected\n");
243 ecryptfs_printk(KERN_ERR
,
244 "The decrypted key is not long enough to "
245 "include a cipher code and checksum\n");
249 *cipher_code
= data
[i
++];
250 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 session_key
->decrypted_key_size
= m_size
- 3;
252 if (session_key
->decrypted_key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
253 ecryptfs_printk(KERN_ERR
, "key_size [%d] larger than "
254 "the maximum key size [%d]\n",
255 session_key
->decrypted_key_size
,
256 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES
);
260 memcpy(session_key
->decrypted_key
, &data
[i
],
261 session_key
->decrypted_key_size
);
262 i
+= session_key
->decrypted_key_size
;
263 expected_checksum
+= (unsigned char)(data
[i
++]) << 8;
264 expected_checksum
+= (unsigned char)(data
[i
++]);
265 for (i
= 0; i
< session_key
->decrypted_key_size
; i
++)
266 checksum
+= session_key
->decrypted_key
[i
];
267 if (expected_checksum
!= checksum
) {
268 ecryptfs_printk(KERN_ERR
, "Invalid checksum for file "
269 "encryption key; expected [%x]; calculated "
270 "[%x]\n", expected_checksum
, checksum
);
279 write_tag_66_packet(char *signature
, u8 cipher_code
,
280 struct ecryptfs_crypt_stat
*crypt_stat
, char **packet
,
287 size_t packet_size_len
;
292 * ***** TAG 66 Packet Format *****
293 * | Content Type | 1 byte |
294 * | Key Identifier Size | 1 or 2 bytes |
295 * | Key Identifier | arbitrary |
296 * | File Encryption Key Size | 1 or 2 bytes |
297 * | File Encryption Key | arbitrary |
299 data_len
= (5 + ECRYPTFS_SIG_SIZE_HEX
+ crypt_stat
->key_size
);
300 *packet
= kmalloc(data_len
, GFP_KERNEL
);
303 ecryptfs_printk(KERN_ERR
, "Unable to allocate memory\n");
307 message
[i
++] = ECRYPTFS_TAG_66_PACKET_TYPE
;
308 rc
= ecryptfs_write_packet_length(&message
[i
], ECRYPTFS_SIG_SIZE_HEX
,
311 ecryptfs_printk(KERN_ERR
, "Error generating tag 66 packet "
312 "header; cannot generate packet length\n");
315 i
+= packet_size_len
;
316 memcpy(&message
[i
], signature
, ECRYPTFS_SIG_SIZE_HEX
);
317 i
+= ECRYPTFS_SIG_SIZE_HEX
;
318 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 rc
= ecryptfs_write_packet_length(&message
[i
], crypt_stat
->key_size
+ 3,
322 ecryptfs_printk(KERN_ERR
, "Error generating tag 66 packet "
323 "header; cannot generate packet length\n");
326 i
+= packet_size_len
;
327 message
[i
++] = cipher_code
;
328 memcpy(&message
[i
], crypt_stat
->key
, crypt_stat
->key_size
);
329 i
+= crypt_stat
->key_size
;
330 for (j
= 0; j
< crypt_stat
->key_size
; j
++)
331 checksum
+= crypt_stat
->key
[j
];
332 message
[i
++] = (checksum
/ 256) % 256;
333 message
[i
++] = (checksum
% 256);
340 parse_tag_67_packet(struct ecryptfs_key_record
*key_rec
,
341 struct ecryptfs_message
*msg
)
350 * ***** TAG 65 Packet Format *****
351 * | Content Type | 1 byte |
352 * | Status Indicator | 1 byte |
353 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 * | Encrypted File Encryption Key | arbitrary |
356 message_len
= msg
->data_len
;
358 /* verify that everything through the encrypted FEK size is present */
359 if (message_len
< 4) {
361 printk(KERN_ERR
"%s: message_len is [%zd]; minimum acceptable "
362 "message length is [%d]\n", __func__
, message_len
, 4);
365 if (data
[i
++] != ECRYPTFS_TAG_67_PACKET_TYPE
) {
367 printk(KERN_ERR
"%s: Type should be ECRYPTFS_TAG_67\n",
373 printk(KERN_ERR
"%s: Status indicator has non zero "
374 "value [%d]\n", __func__
, data
[i
-1]);
378 rc
= ecryptfs_parse_packet_length(&data
[i
], &key_rec
->enc_key_size
,
381 ecryptfs_printk(KERN_WARNING
, "Error parsing packet length; "
386 if (message_len
< (i
+ key_rec
->enc_key_size
)) {
388 printk(KERN_ERR
"%s: message_len [%zd]; max len is [%zd]\n",
389 __func__
, message_len
, (i
+ key_rec
->enc_key_size
));
392 if (key_rec
->enc_key_size
> ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES
) {
394 printk(KERN_ERR
"%s: Encrypted key_size [%zd] larger than "
395 "the maximum key size [%d]\n", __func__
,
396 key_rec
->enc_key_size
,
397 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES
);
400 memcpy(key_rec
->enc_key
, &data
[i
], key_rec
->enc_key_size
);
406 ecryptfs_find_global_auth_tok_for_sig(
407 struct ecryptfs_global_auth_tok
**global_auth_tok
,
408 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
, char *sig
)
410 struct ecryptfs_global_auth_tok
*walker
;
413 (*global_auth_tok
) = NULL
;
414 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
415 list_for_each_entry(walker
,
416 &mount_crypt_stat
->global_auth_tok_list
,
417 mount_crypt_stat_list
) {
418 if (memcmp(walker
->sig
, sig
, ECRYPTFS_SIG_SIZE_HEX
) == 0) {
419 (*global_auth_tok
) = walker
;
425 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
430 * ecryptfs_find_auth_tok_for_sig
431 * @auth_tok: Set to the matching auth_tok; NULL if not found
432 * @crypt_stat: inode crypt_stat crypto context
433 * @sig: Sig of auth_tok to find
435 * For now, this function simply looks at the registered auth_tok's
436 * linked off the mount_crypt_stat, so all the auth_toks that can be
437 * used must be registered at mount time. This function could
438 * potentially try a lot harder to find auth_tok's (e.g., by calling
439 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440 * that static registration of auth_tok's will no longer be necessary.
442 * Returns zero on no error; non-zero on error
445 ecryptfs_find_auth_tok_for_sig(
446 struct ecryptfs_auth_tok
**auth_tok
,
447 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
450 struct ecryptfs_global_auth_tok
*global_auth_tok
;
454 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok
,
455 mount_crypt_stat
, sig
)) {
456 struct key
*auth_tok_key
;
458 rc
= ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key
, auth_tok
,
461 (*auth_tok
) = global_auth_tok
->global_auth_tok
;
466 * write_tag_70_packet can gobble a lot of stack space. We stuff most
467 * of the function's parameters in a kmalloc'd struct to help reduce
468 * eCryptfs' overall stack usage.
470 struct ecryptfs_write_tag_70_packet_silly_stack
{
472 size_t max_packet_size
;
473 size_t packet_size_len
;
474 size_t block_aligned_filename_size
;
478 size_t num_rand_bytes
;
479 struct mutex
*tfm_mutex
;
480 char *block_aligned_filename
;
481 struct ecryptfs_auth_tok
*auth_tok
;
482 struct scatterlist src_sg
;
483 struct scatterlist dst_sg
;
484 struct blkcipher_desc desc
;
485 char iv
[ECRYPTFS_MAX_IV_BYTES
];
486 char hash
[ECRYPTFS_TAG_70_DIGEST_SIZE
];
487 char tmp_hash
[ECRYPTFS_TAG_70_DIGEST_SIZE
];
488 struct hash_desc hash_desc
;
489 struct scatterlist hash_sg
;
493 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494 * @filename: NULL-terminated filename string
496 * This is the simplest mechanism for achieving filename encryption in
497 * eCryptfs. It encrypts the given filename with the mount-wide
498 * filename encryption key (FNEK) and stores it in a packet to @dest,
499 * which the callee will encode and write directly into the dentry
503 ecryptfs_write_tag_70_packet(char *dest
, size_t *remaining_bytes
,
505 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
506 char *filename
, size_t filename_size
)
508 struct ecryptfs_write_tag_70_packet_silly_stack
*s
;
511 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
513 printk(KERN_ERR
"%s: Out of memory whilst trying to kmalloc "
514 "[%zd] bytes of kernel memory\n", __func__
, sizeof(*s
));
517 s
->desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
519 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(
521 &s
->tfm_mutex
, mount_crypt_stat
->global_default_fn_cipher_name
);
523 printk(KERN_ERR
"Internal error whilst attempting to get "
524 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525 mount_crypt_stat
->global_default_fn_cipher_name
, rc
);
528 mutex_lock(s
->tfm_mutex
);
529 s
->block_size
= crypto_blkcipher_blocksize(s
->desc
.tfm
);
530 /* Plus one for the \0 separator between the random prefix
531 * and the plaintext filename */
532 s
->num_rand_bytes
= (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
+ 1);
533 s
->block_aligned_filename_size
= (s
->num_rand_bytes
+ filename_size
);
534 if ((s
->block_aligned_filename_size
% s
->block_size
) != 0) {
535 s
->num_rand_bytes
+= (s
->block_size
536 - (s
->block_aligned_filename_size
538 s
->block_aligned_filename_size
= (s
->num_rand_bytes
541 /* Octet 0: Tag 70 identifier
542 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543 * and block-aligned encrypted filename size)
544 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545 * Octet N2-N3: Cipher identifier (1 octet)
546 * Octets N3-N4: Block-aligned encrypted filename
547 * - Consists of a minimum number of random characters, a \0
548 * separator, and then the filename */
549 s
->max_packet_size
= (1 /* Tag 70 identifier */
550 + 3 /* Max Tag 70 packet size */
551 + ECRYPTFS_SIG_SIZE
/* FNEK sig */
552 + 1 /* Cipher identifier */
553 + s
->block_aligned_filename_size
);
555 (*packet_size
) = s
->max_packet_size
;
558 if (s
->max_packet_size
> (*remaining_bytes
)) {
559 printk(KERN_WARNING
"%s: Require [%zd] bytes to write; only "
560 "[%zd] available\n", __func__
, s
->max_packet_size
,
565 s
->block_aligned_filename
= kzalloc(s
->block_aligned_filename_size
,
567 if (!s
->block_aligned_filename
) {
568 printk(KERN_ERR
"%s: Out of kernel memory whilst attempting to "
569 "kzalloc [%zd] bytes\n", __func__
,
570 s
->block_aligned_filename_size
);
575 dest
[s
->i
++] = ECRYPTFS_TAG_70_PACKET_TYPE
;
576 rc
= ecryptfs_write_packet_length(&dest
[s
->i
],
578 + 1 /* Cipher code */
579 + s
->block_aligned_filename_size
),
580 &s
->packet_size_len
);
582 printk(KERN_ERR
"%s: Error generating tag 70 packet "
583 "header; cannot generate packet length; rc = [%d]\n",
585 goto out_free_unlock
;
587 s
->i
+= s
->packet_size_len
;
588 ecryptfs_from_hex(&dest
[s
->i
],
589 mount_crypt_stat
->global_default_fnek_sig
,
591 s
->i
+= ECRYPTFS_SIG_SIZE
;
592 s
->cipher_code
= ecryptfs_code_for_cipher_string(
593 mount_crypt_stat
->global_default_fn_cipher_name
,
594 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
595 if (s
->cipher_code
== 0) {
596 printk(KERN_WARNING
"%s: Unable to generate code for "
597 "cipher [%s] with key bytes [%zd]\n", __func__
,
598 mount_crypt_stat
->global_default_fn_cipher_name
,
599 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
601 goto out_free_unlock
;
603 dest
[s
->i
++] = s
->cipher_code
;
604 rc
= ecryptfs_find_auth_tok_for_sig(
605 &s
->auth_tok
, mount_crypt_stat
,
606 mount_crypt_stat
->global_default_fnek_sig
);
608 printk(KERN_ERR
"%s: Error attempting to find auth tok for "
609 "fnek sig [%s]; rc = [%d]\n", __func__
,
610 mount_crypt_stat
->global_default_fnek_sig
, rc
);
611 goto out_free_unlock
;
613 /* TODO: Support other key modules than passphrase for
614 * filename encryption */
615 BUG_ON(s
->auth_tok
->token_type
!= ECRYPTFS_PASSWORD
);
618 (u8
*)s
->auth_tok
->token
.password
.session_key_encryption_key
,
619 s
->auth_tok
->token
.password
.session_key_encryption_key_bytes
);
620 s
->hash_desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
621 s
->hash_desc
.tfm
= crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST
, 0,
623 if (IS_ERR(s
->hash_desc
.tfm
)) {
624 rc
= PTR_ERR(s
->hash_desc
.tfm
);
625 printk(KERN_ERR
"%s: Error attempting to "
626 "allocate hash crypto context; rc = [%d]\n",
628 goto out_free_unlock
;
630 rc
= crypto_hash_init(&s
->hash_desc
);
633 "%s: Error initializing crypto hash; rc = [%d]\n",
635 goto out_release_free_unlock
;
637 rc
= crypto_hash_update(
638 &s
->hash_desc
, &s
->hash_sg
,
639 s
->auth_tok
->token
.password
.session_key_encryption_key_bytes
);
642 "%s: Error updating crypto hash; rc = [%d]\n",
644 goto out_release_free_unlock
;
646 rc
= crypto_hash_final(&s
->hash_desc
, s
->hash
);
649 "%s: Error finalizing crypto hash; rc = [%d]\n",
651 goto out_release_free_unlock
;
653 for (s
->j
= 0; s
->j
< (s
->num_rand_bytes
- 1); s
->j
++) {
654 s
->block_aligned_filename
[s
->j
] =
655 s
->hash
[(s
->j
% ECRYPTFS_TAG_70_DIGEST_SIZE
)];
656 if ((s
->j
% ECRYPTFS_TAG_70_DIGEST_SIZE
)
657 == (ECRYPTFS_TAG_70_DIGEST_SIZE
- 1)) {
658 sg_init_one(&s
->hash_sg
, (u8
*)s
->hash
,
659 ECRYPTFS_TAG_70_DIGEST_SIZE
);
660 rc
= crypto_hash_init(&s
->hash_desc
);
663 "%s: Error initializing crypto hash; "
664 "rc = [%d]\n", __func__
, rc
);
665 goto out_release_free_unlock
;
667 rc
= crypto_hash_update(&s
->hash_desc
, &s
->hash_sg
,
668 ECRYPTFS_TAG_70_DIGEST_SIZE
);
671 "%s: Error updating crypto hash; "
672 "rc = [%d]\n", __func__
, rc
);
673 goto out_release_free_unlock
;
675 rc
= crypto_hash_final(&s
->hash_desc
, s
->tmp_hash
);
678 "%s: Error finalizing crypto hash; "
679 "rc = [%d]\n", __func__
, rc
);
680 goto out_release_free_unlock
;
682 memcpy(s
->hash
, s
->tmp_hash
,
683 ECRYPTFS_TAG_70_DIGEST_SIZE
);
685 if (s
->block_aligned_filename
[s
->j
] == '\0')
686 s
->block_aligned_filename
[s
->j
] = ECRYPTFS_NON_NULL
;
688 memcpy(&s
->block_aligned_filename
[s
->num_rand_bytes
], filename
,
690 rc
= virt_to_scatterlist(s
->block_aligned_filename
,
691 s
->block_aligned_filename_size
, &s
->src_sg
, 1);
693 printk(KERN_ERR
"%s: Internal error whilst attempting to "
694 "convert filename memory to scatterlist; "
695 "expected rc = 1; got rc = [%d]. "
696 "block_aligned_filename_size = [%zd]\n", __func__
, rc
,
697 s
->block_aligned_filename_size
);
698 goto out_release_free_unlock
;
700 rc
= virt_to_scatterlist(&dest
[s
->i
], s
->block_aligned_filename_size
,
703 printk(KERN_ERR
"%s: Internal error whilst attempting to "
704 "convert encrypted filename memory to scatterlist; "
705 "expected rc = 1; got rc = [%d]. "
706 "block_aligned_filename_size = [%zd]\n", __func__
, rc
,
707 s
->block_aligned_filename_size
);
708 goto out_release_free_unlock
;
710 /* The characters in the first block effectively do the job
711 * of the IV here, so we just use 0's for the IV. Note the
712 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
713 * >= ECRYPTFS_MAX_IV_BYTES. */
714 memset(s
->iv
, 0, ECRYPTFS_MAX_IV_BYTES
);
715 s
->desc
.info
= s
->iv
;
716 rc
= crypto_blkcipher_setkey(
718 s
->auth_tok
->token
.password
.session_key_encryption_key
,
719 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
721 printk(KERN_ERR
"%s: Error setting key for crypto context; "
722 "rc = [%d]. s->auth_tok->token.password.session_key_"
723 "encryption_key = [0x%p]; mount_crypt_stat->"
724 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__
,
726 s
->auth_tok
->token
.password
.session_key_encryption_key
,
727 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
728 goto out_release_free_unlock
;
730 rc
= crypto_blkcipher_encrypt_iv(&s
->desc
, &s
->dst_sg
, &s
->src_sg
,
731 s
->block_aligned_filename_size
);
733 printk(KERN_ERR
"%s: Error attempting to encrypt filename; "
734 "rc = [%d]\n", __func__
, rc
);
735 goto out_release_free_unlock
;
737 s
->i
+= s
->block_aligned_filename_size
;
738 (*packet_size
) = s
->i
;
739 (*remaining_bytes
) -= (*packet_size
);
740 out_release_free_unlock
:
741 crypto_free_hash(s
->hash_desc
.tfm
);
743 kzfree(s
->block_aligned_filename
);
745 mutex_unlock(s
->tfm_mutex
);
751 struct ecryptfs_parse_tag_70_packet_silly_stack
{
753 size_t max_packet_size
;
754 size_t packet_size_len
;
755 size_t parsed_tag_70_packet_size
;
756 size_t block_aligned_filename_size
;
759 struct mutex
*tfm_mutex
;
760 char *decrypted_filename
;
761 struct ecryptfs_auth_tok
*auth_tok
;
762 struct scatterlist src_sg
;
763 struct scatterlist dst_sg
;
764 struct blkcipher_desc desc
;
765 char fnek_sig_hex
[ECRYPTFS_SIG_SIZE_HEX
+ 1];
766 char iv
[ECRYPTFS_MAX_IV_BYTES
];
767 char cipher_string
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
];
771 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
772 * @filename: This function kmalloc's the memory for the filename
773 * @filename_size: This function sets this to the amount of memory
774 * kmalloc'd for the filename
775 * @packet_size: This function sets this to the the number of octets
776 * in the packet parsed
777 * @mount_crypt_stat: The mount-wide cryptographic context
778 * @data: The memory location containing the start of the tag 70
780 * @max_packet_size: The maximum legal size of the packet to be parsed
783 * Returns zero on success; non-zero otherwise
786 ecryptfs_parse_tag_70_packet(char **filename
, size_t *filename_size
,
788 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
789 char *data
, size_t max_packet_size
)
791 struct ecryptfs_parse_tag_70_packet_silly_stack
*s
;
795 (*filename_size
) = 0;
797 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
799 printk(KERN_ERR
"%s: Out of memory whilst trying to kmalloc "
800 "[%zd] bytes of kernel memory\n", __func__
, sizeof(*s
));
803 s
->desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
804 if (max_packet_size
< (1 + 1 + ECRYPTFS_SIG_SIZE
+ 1 + 1)) {
805 printk(KERN_WARNING
"%s: max_packet_size is [%zd]; it must be "
806 "at least [%d]\n", __func__
, max_packet_size
,
807 (1 + 1 + ECRYPTFS_SIG_SIZE
+ 1 + 1));
811 /* Octet 0: Tag 70 identifier
812 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
813 * and block-aligned encrypted filename size)
814 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
815 * Octet N2-N3: Cipher identifier (1 octet)
816 * Octets N3-N4: Block-aligned encrypted filename
817 * - Consists of a minimum number of random numbers, a \0
818 * separator, and then the filename */
819 if (data
[(*packet_size
)++] != ECRYPTFS_TAG_70_PACKET_TYPE
) {
820 printk(KERN_WARNING
"%s: Invalid packet tag [0x%.2x]; must be "
821 "tag [0x%.2x]\n", __func__
,
822 data
[((*packet_size
) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE
);
826 rc
= ecryptfs_parse_packet_length(&data
[(*packet_size
)],
827 &s
->parsed_tag_70_packet_size
,
828 &s
->packet_size_len
);
830 printk(KERN_WARNING
"%s: Error parsing packet length; "
831 "rc = [%d]\n", __func__
, rc
);
834 s
->block_aligned_filename_size
= (s
->parsed_tag_70_packet_size
835 - ECRYPTFS_SIG_SIZE
- 1);
836 if ((1 + s
->packet_size_len
+ s
->parsed_tag_70_packet_size
)
838 printk(KERN_WARNING
"%s: max_packet_size is [%zd]; real packet "
839 "size is [%zd]\n", __func__
, max_packet_size
,
840 (1 + s
->packet_size_len
+ 1
841 + s
->block_aligned_filename_size
));
845 (*packet_size
) += s
->packet_size_len
;
846 ecryptfs_to_hex(s
->fnek_sig_hex
, &data
[(*packet_size
)],
848 s
->fnek_sig_hex
[ECRYPTFS_SIG_SIZE_HEX
] = '\0';
849 (*packet_size
) += ECRYPTFS_SIG_SIZE
;
850 s
->cipher_code
= data
[(*packet_size
)++];
851 rc
= ecryptfs_cipher_code_to_string(s
->cipher_string
, s
->cipher_code
);
853 printk(KERN_WARNING
"%s: Cipher code [%d] is invalid\n",
854 __func__
, s
->cipher_code
);
857 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&s
->desc
.tfm
,
861 printk(KERN_ERR
"Internal error whilst attempting to get "
862 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
863 s
->cipher_string
, rc
);
866 mutex_lock(s
->tfm_mutex
);
867 rc
= virt_to_scatterlist(&data
[(*packet_size
)],
868 s
->block_aligned_filename_size
, &s
->src_sg
, 1);
870 printk(KERN_ERR
"%s: Internal error whilst attempting to "
871 "convert encrypted filename memory to scatterlist; "
872 "expected rc = 1; got rc = [%d]. "
873 "block_aligned_filename_size = [%zd]\n", __func__
, rc
,
874 s
->block_aligned_filename_size
);
877 (*packet_size
) += s
->block_aligned_filename_size
;
878 s
->decrypted_filename
= kmalloc(s
->block_aligned_filename_size
,
880 if (!s
->decrypted_filename
) {
881 printk(KERN_ERR
"%s: Out of memory whilst attempting to "
882 "kmalloc [%zd] bytes\n", __func__
,
883 s
->block_aligned_filename_size
);
887 rc
= virt_to_scatterlist(s
->decrypted_filename
,
888 s
->block_aligned_filename_size
, &s
->dst_sg
, 1);
890 printk(KERN_ERR
"%s: Internal error whilst attempting to "
891 "convert decrypted filename memory to scatterlist; "
892 "expected rc = 1; got rc = [%d]. "
893 "block_aligned_filename_size = [%zd]\n", __func__
, rc
,
894 s
->block_aligned_filename_size
);
895 goto out_free_unlock
;
897 /* The characters in the first block effectively do the job of
898 * the IV here, so we just use 0's for the IV. Note the
899 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
900 * >= ECRYPTFS_MAX_IV_BYTES. */
901 memset(s
->iv
, 0, ECRYPTFS_MAX_IV_BYTES
);
902 s
->desc
.info
= s
->iv
;
903 rc
= ecryptfs_find_auth_tok_for_sig(&s
->auth_tok
, mount_crypt_stat
,
906 printk(KERN_ERR
"%s: Error attempting to find auth tok for "
907 "fnek sig [%s]; rc = [%d]\n", __func__
, s
->fnek_sig_hex
,
909 goto out_free_unlock
;
911 /* TODO: Support other key modules than passphrase for
912 * filename encryption */
913 BUG_ON(s
->auth_tok
->token_type
!= ECRYPTFS_PASSWORD
);
914 rc
= crypto_blkcipher_setkey(
916 s
->auth_tok
->token
.password
.session_key_encryption_key
,
917 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
919 printk(KERN_ERR
"%s: Error setting key for crypto context; "
920 "rc = [%d]. s->auth_tok->token.password.session_key_"
921 "encryption_key = [0x%p]; mount_crypt_stat->"
922 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__
,
924 s
->auth_tok
->token
.password
.session_key_encryption_key
,
925 mount_crypt_stat
->global_default_fn_cipher_key_bytes
);
926 goto out_free_unlock
;
928 rc
= crypto_blkcipher_decrypt_iv(&s
->desc
, &s
->dst_sg
, &s
->src_sg
,
929 s
->block_aligned_filename_size
);
931 printk(KERN_ERR
"%s: Error attempting to decrypt filename; "
932 "rc = [%d]\n", __func__
, rc
);
933 goto out_free_unlock
;
936 while (s
->decrypted_filename
[s
->i
] != '\0'
937 && s
->i
< s
->block_aligned_filename_size
)
939 if (s
->i
== s
->block_aligned_filename_size
) {
940 printk(KERN_WARNING
"%s: Invalid tag 70 packet; could not "
941 "find valid separator between random characters and "
942 "the filename\n", __func__
);
944 goto out_free_unlock
;
947 (*filename_size
) = (s
->block_aligned_filename_size
- s
->i
);
948 if (!((*filename_size
) > 0 && (*filename_size
< PATH_MAX
))) {
949 printk(KERN_WARNING
"%s: Filename size is [%zd], which is "
950 "invalid\n", __func__
, (*filename_size
));
952 goto out_free_unlock
;
954 (*filename
) = kmalloc(((*filename_size
) + 1), GFP_KERNEL
);
956 printk(KERN_ERR
"%s: Out of memory whilst attempting to "
957 "kmalloc [%zd] bytes\n", __func__
,
958 ((*filename_size
) + 1));
960 goto out_free_unlock
;
962 memcpy((*filename
), &s
->decrypted_filename
[s
->i
], (*filename_size
));
963 (*filename
)[(*filename_size
)] = '\0';
965 kfree(s
->decrypted_filename
);
967 mutex_unlock(s
->tfm_mutex
);
971 (*filename_size
) = 0;
979 ecryptfs_get_auth_tok_sig(char **sig
, struct ecryptfs_auth_tok
*auth_tok
)
984 switch (auth_tok
->token_type
) {
985 case ECRYPTFS_PASSWORD
:
986 (*sig
) = auth_tok
->token
.password
.signature
;
988 case ECRYPTFS_PRIVATE_KEY
:
989 (*sig
) = auth_tok
->token
.private_key
.signature
;
992 printk(KERN_ERR
"Cannot get sig for auth_tok of type [%d]\n",
993 auth_tok
->token_type
);
1000 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1001 * @auth_tok: The key authentication token used to decrypt the session key
1002 * @crypt_stat: The cryptographic context
1004 * Returns zero on success; non-zero error otherwise.
1007 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok
*auth_tok
,
1008 struct ecryptfs_crypt_stat
*crypt_stat
)
1011 struct ecryptfs_msg_ctx
*msg_ctx
;
1012 struct ecryptfs_message
*msg
= NULL
;
1018 rc
= ecryptfs_get_auth_tok_sig(&auth_tok_sig
, auth_tok
);
1020 printk(KERN_ERR
"Unrecognized auth tok type: [%d]\n",
1021 auth_tok
->token_type
);
1024 rc
= write_tag_64_packet(auth_tok_sig
, &(auth_tok
->session_key
),
1025 &payload
, &payload_len
);
1027 ecryptfs_printk(KERN_ERR
, "Failed to write tag 64 packet\n");
1030 rc
= ecryptfs_send_message(payload
, payload_len
, &msg_ctx
);
1032 ecryptfs_printk(KERN_ERR
, "Error sending message to "
1036 rc
= ecryptfs_wait_for_response(msg_ctx
, &msg
);
1038 ecryptfs_printk(KERN_ERR
, "Failed to receive tag 65 packet "
1039 "from the user space daemon\n");
1043 rc
= parse_tag_65_packet(&(auth_tok
->session_key
),
1046 printk(KERN_ERR
"Failed to parse tag 65 packet; rc = [%d]\n",
1050 auth_tok
->session_key
.flags
|= ECRYPTFS_CONTAINS_DECRYPTED_KEY
;
1051 memcpy(crypt_stat
->key
, auth_tok
->session_key
.decrypted_key
,
1052 auth_tok
->session_key
.decrypted_key_size
);
1053 crypt_stat
->key_size
= auth_tok
->session_key
.decrypted_key_size
;
1054 rc
= ecryptfs_cipher_code_to_string(crypt_stat
->cipher
, cipher_code
);
1056 ecryptfs_printk(KERN_ERR
, "Cipher code [%d] is invalid\n",
1060 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
1061 if (ecryptfs_verbosity
> 0) {
1062 ecryptfs_printk(KERN_DEBUG
, "Decrypted session key:\n");
1063 ecryptfs_dump_hex(crypt_stat
->key
,
1064 crypt_stat
->key_size
);
1072 static void wipe_auth_tok_list(struct list_head
*auth_tok_list_head
)
1074 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item
;
1075 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item_tmp
;
1077 list_for_each_entry_safe(auth_tok_list_item
, auth_tok_list_item_tmp
,
1078 auth_tok_list_head
, list
) {
1079 list_del(&auth_tok_list_item
->list
);
1080 kmem_cache_free(ecryptfs_auth_tok_list_item_cache
,
1081 auth_tok_list_item
);
1085 struct kmem_cache
*ecryptfs_auth_tok_list_item_cache
;
1088 * parse_tag_1_packet
1089 * @crypt_stat: The cryptographic context to modify based on packet contents
1090 * @data: The raw bytes of the packet.
1091 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1092 * a new authentication token will be placed at the
1093 * end of this list for this packet.
1094 * @new_auth_tok: Pointer to a pointer to memory that this function
1095 * allocates; sets the memory address of the pointer to
1096 * NULL on error. This object is added to the
1098 * @packet_size: This function writes the size of the parsed packet
1099 * into this memory location; zero on error.
1100 * @max_packet_size: The maximum allowable packet size
1102 * Returns zero on success; non-zero on error.
1105 parse_tag_1_packet(struct ecryptfs_crypt_stat
*crypt_stat
,
1106 unsigned char *data
, struct list_head
*auth_tok_list
,
1107 struct ecryptfs_auth_tok
**new_auth_tok
,
1108 size_t *packet_size
, size_t max_packet_size
)
1111 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item
;
1116 (*new_auth_tok
) = NULL
;
1118 * This format is inspired by OpenPGP; see RFC 2440
1121 * Tag 1 identifier (1 byte)
1122 * Max Tag 1 packet size (max 3 bytes)
1124 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1125 * Cipher identifier (1 byte)
1126 * Encrypted key size (arbitrary)
1128 * 12 bytes minimum packet size
1130 if (unlikely(max_packet_size
< 12)) {
1131 printk(KERN_ERR
"Invalid max packet size; must be >=12\n");
1135 if (data
[(*packet_size
)++] != ECRYPTFS_TAG_1_PACKET_TYPE
) {
1136 printk(KERN_ERR
"Enter w/ first byte != 0x%.2x\n",
1137 ECRYPTFS_TAG_1_PACKET_TYPE
);
1141 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1142 * at end of function upon failure */
1143 auth_tok_list_item
=
1144 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache
,
1146 if (!auth_tok_list_item
) {
1147 printk(KERN_ERR
"Unable to allocate memory\n");
1151 (*new_auth_tok
) = &auth_tok_list_item
->auth_tok
;
1152 rc
= ecryptfs_parse_packet_length(&data
[(*packet_size
)], &body_size
,
1155 printk(KERN_WARNING
"Error parsing packet length; "
1159 if (unlikely(body_size
< (ECRYPTFS_SIG_SIZE
+ 2))) {
1160 printk(KERN_WARNING
"Invalid body size ([%td])\n", body_size
);
1164 (*packet_size
) += length_size
;
1165 if (unlikely((*packet_size
) + body_size
> max_packet_size
)) {
1166 printk(KERN_WARNING
"Packet size exceeds max\n");
1170 if (unlikely(data
[(*packet_size
)++] != 0x03)) {
1171 printk(KERN_WARNING
"Unknown version number [%d]\n",
1172 data
[(*packet_size
) - 1]);
1176 ecryptfs_to_hex((*new_auth_tok
)->token
.private_key
.signature
,
1177 &data
[(*packet_size
)], ECRYPTFS_SIG_SIZE
);
1178 *packet_size
+= ECRYPTFS_SIG_SIZE
;
1179 /* This byte is skipped because the kernel does not need to
1180 * know which public key encryption algorithm was used */
1182 (*new_auth_tok
)->session_key
.encrypted_key_size
=
1183 body_size
- (ECRYPTFS_SIG_SIZE
+ 2);
1184 if ((*new_auth_tok
)->session_key
.encrypted_key_size
1185 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES
) {
1186 printk(KERN_WARNING
"Tag 1 packet contains key larger "
1187 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1191 memcpy((*new_auth_tok
)->session_key
.encrypted_key
,
1192 &data
[(*packet_size
)], (body_size
- (ECRYPTFS_SIG_SIZE
+ 2)));
1193 (*packet_size
) += (*new_auth_tok
)->session_key
.encrypted_key_size
;
1194 (*new_auth_tok
)->session_key
.flags
&=
1195 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY
;
1196 (*new_auth_tok
)->session_key
.flags
|=
1197 ECRYPTFS_CONTAINS_ENCRYPTED_KEY
;
1198 (*new_auth_tok
)->token_type
= ECRYPTFS_PRIVATE_KEY
;
1199 (*new_auth_tok
)->flags
= 0;
1200 (*new_auth_tok
)->session_key
.flags
&=
1201 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT
);
1202 (*new_auth_tok
)->session_key
.flags
&=
1203 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT
);
1204 list_add(&auth_tok_list_item
->list
, auth_tok_list
);
1207 (*new_auth_tok
) = NULL
;
1208 memset(auth_tok_list_item
, 0,
1209 sizeof(struct ecryptfs_auth_tok_list_item
));
1210 kmem_cache_free(ecryptfs_auth_tok_list_item_cache
,
1211 auth_tok_list_item
);
1219 * parse_tag_3_packet
1220 * @crypt_stat: The cryptographic context to modify based on packet
1222 * @data: The raw bytes of the packet.
1223 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1224 * a new authentication token will be placed at the end
1225 * of this list for this packet.
1226 * @new_auth_tok: Pointer to a pointer to memory that this function
1227 * allocates; sets the memory address of the pointer to
1228 * NULL on error. This object is added to the
1230 * @packet_size: This function writes the size of the parsed packet
1231 * into this memory location; zero on error.
1232 * @max_packet_size: maximum number of bytes to parse
1234 * Returns zero on success; non-zero on error.
1237 parse_tag_3_packet(struct ecryptfs_crypt_stat
*crypt_stat
,
1238 unsigned char *data
, struct list_head
*auth_tok_list
,
1239 struct ecryptfs_auth_tok
**new_auth_tok
,
1240 size_t *packet_size
, size_t max_packet_size
)
1243 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item
;
1248 (*new_auth_tok
) = NULL
;
1250 *This format is inspired by OpenPGP; see RFC 2440
1253 * Tag 3 identifier (1 byte)
1254 * Max Tag 3 packet size (max 3 bytes)
1256 * Cipher code (1 byte)
1257 * S2K specifier (1 byte)
1258 * Hash identifier (1 byte)
1259 * Salt (ECRYPTFS_SALT_SIZE)
1260 * Hash iterations (1 byte)
1261 * Encrypted key (arbitrary)
1263 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1265 if (max_packet_size
< (ECRYPTFS_SALT_SIZE
+ 7)) {
1266 printk(KERN_ERR
"Max packet size too large\n");
1270 if (data
[(*packet_size
)++] != ECRYPTFS_TAG_3_PACKET_TYPE
) {
1271 printk(KERN_ERR
"First byte != 0x%.2x; invalid packet\n",
1272 ECRYPTFS_TAG_3_PACKET_TYPE
);
1276 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1277 * at end of function upon failure */
1278 auth_tok_list_item
=
1279 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache
, GFP_KERNEL
);
1280 if (!auth_tok_list_item
) {
1281 printk(KERN_ERR
"Unable to allocate memory\n");
1285 (*new_auth_tok
) = &auth_tok_list_item
->auth_tok
;
1286 rc
= ecryptfs_parse_packet_length(&data
[(*packet_size
)], &body_size
,
1289 printk(KERN_WARNING
"Error parsing packet length; rc = [%d]\n",
1293 if (unlikely(body_size
< (ECRYPTFS_SALT_SIZE
+ 5))) {
1294 printk(KERN_WARNING
"Invalid body size ([%td])\n", body_size
);
1298 (*packet_size
) += length_size
;
1299 if (unlikely((*packet_size
) + body_size
> max_packet_size
)) {
1300 printk(KERN_ERR
"Packet size exceeds max\n");
1304 (*new_auth_tok
)->session_key
.encrypted_key_size
=
1305 (body_size
- (ECRYPTFS_SALT_SIZE
+ 5));
1306 if ((*new_auth_tok
)->session_key
.encrypted_key_size
1307 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES
) {
1308 printk(KERN_WARNING
"Tag 3 packet contains key larger "
1309 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1313 if (unlikely(data
[(*packet_size
)++] != 0x04)) {
1314 printk(KERN_WARNING
"Unknown version number [%d]\n",
1315 data
[(*packet_size
) - 1]);
1319 ecryptfs_cipher_code_to_string(crypt_stat
->cipher
,
1320 (u16
)data
[(*packet_size
)]);
1321 /* A little extra work to differentiate among the AES key
1322 * sizes; see RFC2440 */
1323 switch(data
[(*packet_size
)++]) {
1324 case RFC2440_CIPHER_AES_192
:
1325 crypt_stat
->key_size
= 24;
1328 crypt_stat
->key_size
=
1329 (*new_auth_tok
)->session_key
.encrypted_key_size
;
1331 ecryptfs_init_crypt_ctx(crypt_stat
);
1332 if (unlikely(data
[(*packet_size
)++] != 0x03)) {
1333 printk(KERN_WARNING
"Only S2K ID 3 is currently supported\n");
1337 /* TODO: finish the hash mapping */
1338 switch (data
[(*packet_size
)++]) {
1339 case 0x01: /* See RFC2440 for these numbers and their mappings */
1341 memcpy((*new_auth_tok
)->token
.password
.salt
,
1342 &data
[(*packet_size
)], ECRYPTFS_SALT_SIZE
);
1343 (*packet_size
) += ECRYPTFS_SALT_SIZE
;
1344 /* This conversion was taken straight from RFC2440 */
1345 (*new_auth_tok
)->token
.password
.hash_iterations
=
1346 ((u32
) 16 + (data
[(*packet_size
)] & 15))
1347 << ((data
[(*packet_size
)] >> 4) + 6);
1349 /* Friendly reminder:
1350 * (*new_auth_tok)->session_key.encrypted_key_size =
1351 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1352 memcpy((*new_auth_tok
)->session_key
.encrypted_key
,
1353 &data
[(*packet_size
)],
1354 (*new_auth_tok
)->session_key
.encrypted_key_size
);
1356 (*new_auth_tok
)->session_key
.encrypted_key_size
;
1357 (*new_auth_tok
)->session_key
.flags
&=
1358 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY
;
1359 (*new_auth_tok
)->session_key
.flags
|=
1360 ECRYPTFS_CONTAINS_ENCRYPTED_KEY
;
1361 (*new_auth_tok
)->token
.password
.hash_algo
= 0x01; /* MD5 */
1364 ecryptfs_printk(KERN_ERR
, "Unsupported hash algorithm: "
1365 "[%d]\n", data
[(*packet_size
) - 1]);
1369 (*new_auth_tok
)->token_type
= ECRYPTFS_PASSWORD
;
1370 /* TODO: Parametarize; we might actually want userspace to
1371 * decrypt the session key. */
1372 (*new_auth_tok
)->session_key
.flags
&=
1373 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT
);
1374 (*new_auth_tok
)->session_key
.flags
&=
1375 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT
);
1376 list_add(&auth_tok_list_item
->list
, auth_tok_list
);
1379 (*new_auth_tok
) = NULL
;
1380 memset(auth_tok_list_item
, 0,
1381 sizeof(struct ecryptfs_auth_tok_list_item
));
1382 kmem_cache_free(ecryptfs_auth_tok_list_item_cache
,
1383 auth_tok_list_item
);
1391 * parse_tag_11_packet
1392 * @data: The raw bytes of the packet
1393 * @contents: This function writes the data contents of the literal
1394 * packet into this memory location
1395 * @max_contents_bytes: The maximum number of bytes that this function
1396 * is allowed to write into contents
1397 * @tag_11_contents_size: This function writes the size of the parsed
1398 * contents into this memory location; zero on
1400 * @packet_size: This function writes the size of the parsed packet
1401 * into this memory location; zero on error
1402 * @max_packet_size: maximum number of bytes to parse
1404 * Returns zero on success; non-zero on error.
1407 parse_tag_11_packet(unsigned char *data
, unsigned char *contents
,
1408 size_t max_contents_bytes
, size_t *tag_11_contents_size
,
1409 size_t *packet_size
, size_t max_packet_size
)
1416 (*tag_11_contents_size
) = 0;
1417 /* This format is inspired by OpenPGP; see RFC 2440
1420 * Tag 11 identifier (1 byte)
1421 * Max Tag 11 packet size (max 3 bytes)
1422 * Binary format specifier (1 byte)
1423 * Filename length (1 byte)
1424 * Filename ("_CONSOLE") (8 bytes)
1425 * Modification date (4 bytes)
1426 * Literal data (arbitrary)
1428 * We need at least 16 bytes of data for the packet to even be
1431 if (max_packet_size
< 16) {
1432 printk(KERN_ERR
"Maximum packet size too small\n");
1436 if (data
[(*packet_size
)++] != ECRYPTFS_TAG_11_PACKET_TYPE
) {
1437 printk(KERN_WARNING
"Invalid tag 11 packet format\n");
1441 rc
= ecryptfs_parse_packet_length(&data
[(*packet_size
)], &body_size
,
1444 printk(KERN_WARNING
"Invalid tag 11 packet format\n");
1447 if (body_size
< 14) {
1448 printk(KERN_WARNING
"Invalid body size ([%td])\n", body_size
);
1452 (*packet_size
) += length_size
;
1453 (*tag_11_contents_size
) = (body_size
- 14);
1454 if (unlikely((*packet_size
) + body_size
+ 1 > max_packet_size
)) {
1455 printk(KERN_ERR
"Packet size exceeds max\n");
1459 if (unlikely((*tag_11_contents_size
) > max_contents_bytes
)) {
1460 printk(KERN_ERR
"Literal data section in tag 11 packet exceeds "
1465 if (data
[(*packet_size
)++] != 0x62) {
1466 printk(KERN_WARNING
"Unrecognizable packet\n");
1470 if (data
[(*packet_size
)++] != 0x08) {
1471 printk(KERN_WARNING
"Unrecognizable packet\n");
1475 (*packet_size
) += 12; /* Ignore filename and modification date */
1476 memcpy(contents
, &data
[(*packet_size
)], (*tag_11_contents_size
));
1477 (*packet_size
) += (*tag_11_contents_size
);
1481 (*tag_11_contents_size
) = 0;
1487 * ecryptfs_verify_version
1488 * @version: The version number to confirm
1490 * Returns zero on good version; non-zero otherwise
1492 static int ecryptfs_verify_version(u16 version
)
1495 unsigned char major
;
1496 unsigned char minor
;
1498 major
= ((version
>> 8) & 0xFF);
1499 minor
= (version
& 0xFF);
1500 if (major
!= ECRYPTFS_VERSION_MAJOR
) {
1501 ecryptfs_printk(KERN_ERR
, "Major version number mismatch. "
1502 "Expected [%d]; got [%d]\n",
1503 ECRYPTFS_VERSION_MAJOR
, major
);
1507 if (minor
!= ECRYPTFS_VERSION_MINOR
) {
1508 ecryptfs_printk(KERN_ERR
, "Minor version number mismatch. "
1509 "Expected [%d]; got [%d]\n",
1510 ECRYPTFS_VERSION_MINOR
, minor
);
1518 int ecryptfs_keyring_auth_tok_for_sig(struct key
**auth_tok_key
,
1519 struct ecryptfs_auth_tok
**auth_tok
,
1524 (*auth_tok_key
) = request_key(&key_type_user
, sig
, NULL
);
1525 if (!(*auth_tok_key
) || IS_ERR(*auth_tok_key
)) {
1526 printk(KERN_ERR
"Could not find key with description: [%s]\n",
1528 rc
= process_request_key_err(PTR_ERR(*auth_tok_key
));
1531 (*auth_tok
) = ecryptfs_get_key_payload_data(*auth_tok_key
);
1532 if (ecryptfs_verify_version((*auth_tok
)->version
)) {
1534 "Data structure version mismatch. "
1535 "Userspace tools must match eCryptfs "
1536 "kernel module with major version [%d] "
1537 "and minor version [%d]\n",
1538 ECRYPTFS_VERSION_MAJOR
,
1539 ECRYPTFS_VERSION_MINOR
);
1543 if ((*auth_tok
)->token_type
!= ECRYPTFS_PASSWORD
1544 && (*auth_tok
)->token_type
!= ECRYPTFS_PRIVATE_KEY
) {
1545 printk(KERN_ERR
"Invalid auth_tok structure "
1546 "returned from key query\n");
1555 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1556 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1557 * @crypt_stat: The cryptographic context
1559 * Returns zero on success; non-zero error otherwise
1562 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok
*auth_tok
,
1563 struct ecryptfs_crypt_stat
*crypt_stat
)
1565 struct scatterlist dst_sg
[2];
1566 struct scatterlist src_sg
[2];
1567 struct mutex
*tfm_mutex
;
1568 struct blkcipher_desc desc
= {
1569 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
1573 if (unlikely(ecryptfs_verbosity
> 0)) {
1575 KERN_DEBUG
, "Session key encryption key (size [%d]):\n",
1576 auth_tok
->token
.password
.session_key_encryption_key_bytes
);
1578 auth_tok
->token
.password
.session_key_encryption_key
,
1579 auth_tok
->token
.password
.session_key_encryption_key_bytes
);
1581 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
1582 crypt_stat
->cipher
);
1584 printk(KERN_ERR
"Internal error whilst attempting to get "
1585 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1586 crypt_stat
->cipher
, rc
);
1589 rc
= virt_to_scatterlist(auth_tok
->session_key
.encrypted_key
,
1590 auth_tok
->session_key
.encrypted_key_size
,
1592 if (rc
< 1 || rc
> 2) {
1593 printk(KERN_ERR
"Internal error whilst attempting to convert "
1594 "auth_tok->session_key.encrypted_key to scatterlist; "
1595 "expected rc = 1; got rc = [%d]. "
1596 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc
,
1597 auth_tok
->session_key
.encrypted_key_size
);
1600 auth_tok
->session_key
.decrypted_key_size
=
1601 auth_tok
->session_key
.encrypted_key_size
;
1602 rc
= virt_to_scatterlist(auth_tok
->session_key
.decrypted_key
,
1603 auth_tok
->session_key
.decrypted_key_size
,
1605 if (rc
< 1 || rc
> 2) {
1606 printk(KERN_ERR
"Internal error whilst attempting to convert "
1607 "auth_tok->session_key.decrypted_key to scatterlist; "
1608 "expected rc = 1; got rc = [%d]\n", rc
);
1611 mutex_lock(tfm_mutex
);
1612 rc
= crypto_blkcipher_setkey(
1613 desc
.tfm
, auth_tok
->token
.password
.session_key_encryption_key
,
1614 crypt_stat
->key_size
);
1615 if (unlikely(rc
< 0)) {
1616 mutex_unlock(tfm_mutex
);
1617 printk(KERN_ERR
"Error setting key for crypto context\n");
1621 rc
= crypto_blkcipher_decrypt(&desc
, dst_sg
, src_sg
,
1622 auth_tok
->session_key
.encrypted_key_size
);
1623 mutex_unlock(tfm_mutex
);
1625 printk(KERN_ERR
"Error decrypting; rc = [%d]\n", rc
);
1628 auth_tok
->session_key
.flags
|= ECRYPTFS_CONTAINS_DECRYPTED_KEY
;
1629 memcpy(crypt_stat
->key
, auth_tok
->session_key
.decrypted_key
,
1630 auth_tok
->session_key
.decrypted_key_size
);
1631 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
1632 if (unlikely(ecryptfs_verbosity
> 0)) {
1633 ecryptfs_printk(KERN_DEBUG
, "FEK of size [%d]:\n",
1634 crypt_stat
->key_size
);
1635 ecryptfs_dump_hex(crypt_stat
->key
,
1636 crypt_stat
->key_size
);
1643 * ecryptfs_parse_packet_set
1644 * @crypt_stat: The cryptographic context
1645 * @src: Virtual address of region of memory containing the packets
1646 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1648 * Get crypt_stat to have the file's session key if the requisite key
1649 * is available to decrypt the session key.
1651 * Returns Zero if a valid authentication token was retrieved and
1652 * processed; negative value for file not encrypted or for error
1655 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat
*crypt_stat
,
1657 struct dentry
*ecryptfs_dentry
)
1660 size_t found_auth_tok
;
1661 size_t next_packet_is_auth_tok_packet
;
1662 struct list_head auth_tok_list
;
1663 struct ecryptfs_auth_tok
*matching_auth_tok
;
1664 struct ecryptfs_auth_tok
*candidate_auth_tok
;
1665 char *candidate_auth_tok_sig
;
1667 struct ecryptfs_auth_tok
*new_auth_tok
;
1668 unsigned char sig_tmp_space
[ECRYPTFS_SIG_SIZE
];
1669 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item
;
1670 size_t tag_11_contents_size
;
1671 size_t tag_11_packet_size
;
1674 INIT_LIST_HEAD(&auth_tok_list
);
1675 /* Parse the header to find as many packets as we can; these will be
1676 * added the our &auth_tok_list */
1677 next_packet_is_auth_tok_packet
= 1;
1678 while (next_packet_is_auth_tok_packet
) {
1679 size_t max_packet_size
= ((PAGE_CACHE_SIZE
- 8) - i
);
1682 case ECRYPTFS_TAG_3_PACKET_TYPE
:
1683 rc
= parse_tag_3_packet(crypt_stat
,
1684 (unsigned char *)&src
[i
],
1685 &auth_tok_list
, &new_auth_tok
,
1686 &packet_size
, max_packet_size
);
1688 ecryptfs_printk(KERN_ERR
, "Error parsing "
1694 rc
= parse_tag_11_packet((unsigned char *)&src
[i
],
1697 &tag_11_contents_size
,
1698 &tag_11_packet_size
,
1701 ecryptfs_printk(KERN_ERR
, "No valid "
1702 "(ecryptfs-specific) literal "
1703 "packet containing "
1704 "authentication token "
1705 "signature found after "
1710 i
+= tag_11_packet_size
;
1711 if (ECRYPTFS_SIG_SIZE
!= tag_11_contents_size
) {
1712 ecryptfs_printk(KERN_ERR
, "Expected "
1713 "signature of size [%d]; "
1716 tag_11_contents_size
);
1720 ecryptfs_to_hex(new_auth_tok
->token
.password
.signature
,
1721 sig_tmp_space
, tag_11_contents_size
);
1722 new_auth_tok
->token
.password
.signature
[
1723 ECRYPTFS_PASSWORD_SIG_SIZE
] = '\0';
1724 crypt_stat
->flags
|= ECRYPTFS_ENCRYPTED
;
1726 case ECRYPTFS_TAG_1_PACKET_TYPE
:
1727 rc
= parse_tag_1_packet(crypt_stat
,
1728 (unsigned char *)&src
[i
],
1729 &auth_tok_list
, &new_auth_tok
,
1730 &packet_size
, max_packet_size
);
1732 ecryptfs_printk(KERN_ERR
, "Error parsing "
1738 crypt_stat
->flags
|= ECRYPTFS_ENCRYPTED
;
1740 case ECRYPTFS_TAG_11_PACKET_TYPE
:
1741 ecryptfs_printk(KERN_WARNING
, "Invalid packet set "
1742 "(Tag 11 not allowed by itself)\n");
1747 ecryptfs_printk(KERN_DEBUG
, "No packet at offset "
1748 "[%d] of the file header; hex value of "
1749 "character is [0x%.2x]\n", i
, src
[i
]);
1750 next_packet_is_auth_tok_packet
= 0;
1753 if (list_empty(&auth_tok_list
)) {
1754 printk(KERN_ERR
"The lower file appears to be a non-encrypted "
1755 "eCryptfs file; this is not supported in this version "
1756 "of the eCryptfs kernel module\n");
1760 /* auth_tok_list contains the set of authentication tokens
1761 * parsed from the metadata. We need to find a matching
1762 * authentication token that has the secret component(s)
1763 * necessary to decrypt the EFEK in the auth_tok parsed from
1764 * the metadata. There may be several potential matches, but
1765 * just one will be sufficient to decrypt to get the FEK. */
1766 find_next_matching_auth_tok
:
1768 list_for_each_entry(auth_tok_list_item
, &auth_tok_list
, list
) {
1769 candidate_auth_tok
= &auth_tok_list_item
->auth_tok
;
1770 if (unlikely(ecryptfs_verbosity
> 0)) {
1771 ecryptfs_printk(KERN_DEBUG
,
1772 "Considering cadidate auth tok:\n");
1773 ecryptfs_dump_auth_tok(candidate_auth_tok
);
1775 rc
= ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig
,
1776 candidate_auth_tok
);
1779 "Unrecognized candidate auth tok type: [%d]\n",
1780 candidate_auth_tok
->token_type
);
1784 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok
,
1785 crypt_stat
->mount_crypt_stat
,
1786 candidate_auth_tok_sig
);
1787 if (matching_auth_tok
) {
1789 goto found_matching_auth_tok
;
1792 if (!found_auth_tok
) {
1793 ecryptfs_printk(KERN_ERR
, "Could not find a usable "
1794 "authentication token\n");
1798 found_matching_auth_tok
:
1799 if (candidate_auth_tok
->token_type
== ECRYPTFS_PRIVATE_KEY
) {
1800 memcpy(&(candidate_auth_tok
->token
.private_key
),
1801 &(matching_auth_tok
->token
.private_key
),
1802 sizeof(struct ecryptfs_private_key
));
1803 rc
= decrypt_pki_encrypted_session_key(candidate_auth_tok
,
1805 } else if (candidate_auth_tok
->token_type
== ECRYPTFS_PASSWORD
) {
1806 memcpy(&(candidate_auth_tok
->token
.password
),
1807 &(matching_auth_tok
->token
.password
),
1808 sizeof(struct ecryptfs_password
));
1809 rc
= decrypt_passphrase_encrypted_session_key(
1810 candidate_auth_tok
, crypt_stat
);
1813 struct ecryptfs_auth_tok_list_item
*auth_tok_list_item_tmp
;
1815 ecryptfs_printk(KERN_WARNING
, "Error decrypting the "
1816 "session key for authentication token with sig "
1817 "[%.*s]; rc = [%d]. Removing auth tok "
1818 "candidate from the list and searching for "
1819 "the next match.\n", candidate_auth_tok_sig
,
1820 ECRYPTFS_SIG_SIZE_HEX
, rc
);
1821 list_for_each_entry_safe(auth_tok_list_item
,
1822 auth_tok_list_item_tmp
,
1823 &auth_tok_list
, list
) {
1824 if (candidate_auth_tok
1825 == &auth_tok_list_item
->auth_tok
) {
1826 list_del(&auth_tok_list_item
->list
);
1828 ecryptfs_auth_tok_list_item_cache
,
1829 auth_tok_list_item
);
1830 goto find_next_matching_auth_tok
;
1835 rc
= ecryptfs_compute_root_iv(crypt_stat
);
1837 ecryptfs_printk(KERN_ERR
, "Error computing "
1841 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1843 ecryptfs_printk(KERN_ERR
, "Error initializing crypto "
1844 "context for cipher [%s]; rc = [%d]\n",
1845 crypt_stat
->cipher
, rc
);
1848 wipe_auth_tok_list(&auth_tok_list
);
1854 pki_encrypt_session_key(struct ecryptfs_auth_tok
*auth_tok
,
1855 struct ecryptfs_crypt_stat
*crypt_stat
,
1856 struct ecryptfs_key_record
*key_rec
)
1858 struct ecryptfs_msg_ctx
*msg_ctx
= NULL
;
1859 char *payload
= NULL
;
1861 struct ecryptfs_message
*msg
;
1864 rc
= write_tag_66_packet(auth_tok
->token
.private_key
.signature
,
1865 ecryptfs_code_for_cipher_string(
1867 crypt_stat
->key_size
),
1868 crypt_stat
, &payload
, &payload_len
);
1870 ecryptfs_printk(KERN_ERR
, "Error generating tag 66 packet\n");
1873 rc
= ecryptfs_send_message(payload
, payload_len
, &msg_ctx
);
1875 ecryptfs_printk(KERN_ERR
, "Error sending message to "
1879 rc
= ecryptfs_wait_for_response(msg_ctx
, &msg
);
1881 ecryptfs_printk(KERN_ERR
, "Failed to receive tag 67 packet "
1882 "from the user space daemon\n");
1886 rc
= parse_tag_67_packet(key_rec
, msg
);
1888 ecryptfs_printk(KERN_ERR
, "Error parsing tag 67 packet\n");
1895 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1896 * @dest: Buffer into which to write the packet
1897 * @remaining_bytes: Maximum number of bytes that can be writtn
1898 * @auth_tok: The authentication token used for generating the tag 1 packet
1899 * @crypt_stat: The cryptographic context
1900 * @key_rec: The key record struct for the tag 1 packet
1901 * @packet_size: This function will write the number of bytes that end
1902 * up constituting the packet; set to zero on error
1904 * Returns zero on success; non-zero on error.
1907 write_tag_1_packet(char *dest
, size_t *remaining_bytes
,
1908 struct ecryptfs_auth_tok
*auth_tok
,
1909 struct ecryptfs_crypt_stat
*crypt_stat
,
1910 struct ecryptfs_key_record
*key_rec
, size_t *packet_size
)
1913 size_t encrypted_session_key_valid
= 0;
1914 size_t packet_size_length
;
1915 size_t max_packet_size
;
1919 ecryptfs_from_hex(key_rec
->sig
, auth_tok
->token
.private_key
.signature
,
1921 encrypted_session_key_valid
= 0;
1922 for (i
= 0; i
< crypt_stat
->key_size
; i
++)
1923 encrypted_session_key_valid
|=
1924 auth_tok
->session_key
.encrypted_key
[i
];
1925 if (encrypted_session_key_valid
) {
1926 memcpy(key_rec
->enc_key
,
1927 auth_tok
->session_key
.encrypted_key
,
1928 auth_tok
->session_key
.encrypted_key_size
);
1929 goto encrypted_session_key_set
;
1931 if (auth_tok
->session_key
.encrypted_key_size
== 0)
1932 auth_tok
->session_key
.encrypted_key_size
=
1933 auth_tok
->token
.private_key
.key_size
;
1934 rc
= pki_encrypt_session_key(auth_tok
, crypt_stat
, key_rec
);
1936 printk(KERN_ERR
"Failed to encrypt session key via a key "
1937 "module; rc = [%d]\n", rc
);
1940 if (ecryptfs_verbosity
> 0) {
1941 ecryptfs_printk(KERN_DEBUG
, "Encrypted key:\n");
1942 ecryptfs_dump_hex(key_rec
->enc_key
, key_rec
->enc_key_size
);
1944 encrypted_session_key_set
:
1945 /* This format is inspired by OpenPGP; see RFC 2440
1947 max_packet_size
= (1 /* Tag 1 identifier */
1948 + 3 /* Max Tag 1 packet size */
1950 + ECRYPTFS_SIG_SIZE
/* Key identifier */
1951 + 1 /* Cipher identifier */
1952 + key_rec
->enc_key_size
); /* Encrypted key size */
1953 if (max_packet_size
> (*remaining_bytes
)) {
1954 printk(KERN_ERR
"Packet length larger than maximum allowable; "
1955 "need up to [%td] bytes, but there are only [%td] "
1956 "available\n", max_packet_size
, (*remaining_bytes
));
1960 dest
[(*packet_size
)++] = ECRYPTFS_TAG_1_PACKET_TYPE
;
1961 rc
= ecryptfs_write_packet_length(&dest
[(*packet_size
)],
1962 (max_packet_size
- 4),
1963 &packet_size_length
);
1965 ecryptfs_printk(KERN_ERR
, "Error generating tag 1 packet "
1966 "header; cannot generate packet length\n");
1969 (*packet_size
) += packet_size_length
;
1970 dest
[(*packet_size
)++] = 0x03; /* version 3 */
1971 memcpy(&dest
[(*packet_size
)], key_rec
->sig
, ECRYPTFS_SIG_SIZE
);
1972 (*packet_size
) += ECRYPTFS_SIG_SIZE
;
1973 dest
[(*packet_size
)++] = RFC2440_CIPHER_RSA
;
1974 memcpy(&dest
[(*packet_size
)], key_rec
->enc_key
,
1975 key_rec
->enc_key_size
);
1976 (*packet_size
) += key_rec
->enc_key_size
;
1981 (*remaining_bytes
) -= (*packet_size
);
1986 * write_tag_11_packet
1987 * @dest: Target into which Tag 11 packet is to be written
1988 * @remaining_bytes: Maximum packet length
1989 * @contents: Byte array of contents to copy in
1990 * @contents_length: Number of bytes in contents
1991 * @packet_length: Length of the Tag 11 packet written; zero on error
1993 * Returns zero on success; non-zero on error.
1996 write_tag_11_packet(char *dest
, size_t *remaining_bytes
, char *contents
,
1997 size_t contents_length
, size_t *packet_length
)
1999 size_t packet_size_length
;
2000 size_t max_packet_size
;
2003 (*packet_length
) = 0;
2004 /* This format is inspired by OpenPGP; see RFC 2440
2006 max_packet_size
= (1 /* Tag 11 identifier */
2007 + 3 /* Max Tag 11 packet size */
2008 + 1 /* Binary format specifier */
2009 + 1 /* Filename length */
2010 + 8 /* Filename ("_CONSOLE") */
2011 + 4 /* Modification date */
2012 + contents_length
); /* Literal data */
2013 if (max_packet_size
> (*remaining_bytes
)) {
2014 printk(KERN_ERR
"Packet length larger than maximum allowable; "
2015 "need up to [%td] bytes, but there are only [%td] "
2016 "available\n", max_packet_size
, (*remaining_bytes
));
2020 dest
[(*packet_length
)++] = ECRYPTFS_TAG_11_PACKET_TYPE
;
2021 rc
= ecryptfs_write_packet_length(&dest
[(*packet_length
)],
2022 (max_packet_size
- 4),
2023 &packet_size_length
);
2025 printk(KERN_ERR
"Error generating tag 11 packet header; cannot "
2026 "generate packet length. rc = [%d]\n", rc
);
2029 (*packet_length
) += packet_size_length
;
2030 dest
[(*packet_length
)++] = 0x62; /* binary data format specifier */
2031 dest
[(*packet_length
)++] = 8;
2032 memcpy(&dest
[(*packet_length
)], "_CONSOLE", 8);
2033 (*packet_length
) += 8;
2034 memset(&dest
[(*packet_length
)], 0x00, 4);
2035 (*packet_length
) += 4;
2036 memcpy(&dest
[(*packet_length
)], contents
, contents_length
);
2037 (*packet_length
) += contents_length
;
2040 (*packet_length
) = 0;
2042 (*remaining_bytes
) -= (*packet_length
);
2047 * write_tag_3_packet
2048 * @dest: Buffer into which to write the packet
2049 * @remaining_bytes: Maximum number of bytes that can be written
2050 * @auth_tok: Authentication token
2051 * @crypt_stat: The cryptographic context
2052 * @key_rec: encrypted key
2053 * @packet_size: This function will write the number of bytes that end
2054 * up constituting the packet; set to zero on error
2056 * Returns zero on success; non-zero on error.
2059 write_tag_3_packet(char *dest
, size_t *remaining_bytes
,
2060 struct ecryptfs_auth_tok
*auth_tok
,
2061 struct ecryptfs_crypt_stat
*crypt_stat
,
2062 struct ecryptfs_key_record
*key_rec
, size_t *packet_size
)
2065 size_t encrypted_session_key_valid
= 0;
2066 char session_key_encryption_key
[ECRYPTFS_MAX_KEY_BYTES
];
2067 struct scatterlist dst_sg
[2];
2068 struct scatterlist src_sg
[2];
2069 struct mutex
*tfm_mutex
= NULL
;
2071 size_t packet_size_length
;
2072 size_t max_packet_size
;
2073 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2074 crypt_stat
->mount_crypt_stat
;
2075 struct blkcipher_desc desc
= {
2077 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
2082 ecryptfs_from_hex(key_rec
->sig
, auth_tok
->token
.password
.signature
,
2084 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
2085 crypt_stat
->cipher
);
2087 printk(KERN_ERR
"Internal error whilst attempting to get "
2088 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2089 crypt_stat
->cipher
, rc
);
2092 if (mount_crypt_stat
->global_default_cipher_key_size
== 0) {
2093 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(desc
.tfm
);
2095 printk(KERN_WARNING
"No key size specified at mount; "
2096 "defaulting to [%d]\n", alg
->max_keysize
);
2097 mount_crypt_stat
->global_default_cipher_key_size
=
2100 if (crypt_stat
->key_size
== 0)
2101 crypt_stat
->key_size
=
2102 mount_crypt_stat
->global_default_cipher_key_size
;
2103 if (auth_tok
->session_key
.encrypted_key_size
== 0)
2104 auth_tok
->session_key
.encrypted_key_size
=
2105 crypt_stat
->key_size
;
2106 if (crypt_stat
->key_size
== 24
2107 && strcmp("aes", crypt_stat
->cipher
) == 0) {
2108 memset((crypt_stat
->key
+ 24), 0, 8);
2109 auth_tok
->session_key
.encrypted_key_size
= 32;
2111 auth_tok
->session_key
.encrypted_key_size
= crypt_stat
->key_size
;
2112 key_rec
->enc_key_size
=
2113 auth_tok
->session_key
.encrypted_key_size
;
2114 encrypted_session_key_valid
= 0;
2115 for (i
= 0; i
< auth_tok
->session_key
.encrypted_key_size
; i
++)
2116 encrypted_session_key_valid
|=
2117 auth_tok
->session_key
.encrypted_key
[i
];
2118 if (encrypted_session_key_valid
) {
2119 ecryptfs_printk(KERN_DEBUG
, "encrypted_session_key_valid != 0; "
2120 "using auth_tok->session_key.encrypted_key, "
2121 "where key_rec->enc_key_size = [%d]\n",
2122 key_rec
->enc_key_size
);
2123 memcpy(key_rec
->enc_key
,
2124 auth_tok
->session_key
.encrypted_key
,
2125 key_rec
->enc_key_size
);
2126 goto encrypted_session_key_set
;
2128 if (auth_tok
->token
.password
.flags
&
2129 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET
) {
2130 ecryptfs_printk(KERN_DEBUG
, "Using previously generated "
2131 "session key encryption key of size [%d]\n",
2132 auth_tok
->token
.password
.
2133 session_key_encryption_key_bytes
);
2134 memcpy(session_key_encryption_key
,
2135 auth_tok
->token
.password
.session_key_encryption_key
,
2136 crypt_stat
->key_size
);
2137 ecryptfs_printk(KERN_DEBUG
,
2138 "Cached session key " "encryption key: \n");
2139 if (ecryptfs_verbosity
> 0)
2140 ecryptfs_dump_hex(session_key_encryption_key
, 16);
2142 if (unlikely(ecryptfs_verbosity
> 0)) {
2143 ecryptfs_printk(KERN_DEBUG
, "Session key encryption key:\n");
2144 ecryptfs_dump_hex(session_key_encryption_key
, 16);
2146 rc
= virt_to_scatterlist(crypt_stat
->key
, key_rec
->enc_key_size
,
2148 if (rc
< 1 || rc
> 2) {
2149 ecryptfs_printk(KERN_ERR
, "Error generating scatterlist "
2150 "for crypt_stat session key; expected rc = 1; "
2151 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2152 rc
, key_rec
->enc_key_size
);
2156 rc
= virt_to_scatterlist(key_rec
->enc_key
, key_rec
->enc_key_size
,
2158 if (rc
< 1 || rc
> 2) {
2159 ecryptfs_printk(KERN_ERR
, "Error generating scatterlist "
2160 "for crypt_stat encrypted session key; "
2161 "expected rc = 1; got rc = [%d]. "
2162 "key_rec->enc_key_size = [%d]\n", rc
,
2163 key_rec
->enc_key_size
);
2167 mutex_lock(tfm_mutex
);
2168 rc
= crypto_blkcipher_setkey(desc
.tfm
, session_key_encryption_key
,
2169 crypt_stat
->key_size
);
2171 mutex_unlock(tfm_mutex
);
2172 ecryptfs_printk(KERN_ERR
, "Error setting key for crypto "
2173 "context; rc = [%d]\n", rc
);
2177 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes of the key\n",
2178 crypt_stat
->key_size
);
2179 rc
= crypto_blkcipher_encrypt(&desc
, dst_sg
, src_sg
,
2180 (*key_rec
).enc_key_size
);
2181 mutex_unlock(tfm_mutex
);
2183 printk(KERN_ERR
"Error encrypting; rc = [%d]\n", rc
);
2186 ecryptfs_printk(KERN_DEBUG
, "This should be the encrypted key:\n");
2187 if (ecryptfs_verbosity
> 0) {
2188 ecryptfs_printk(KERN_DEBUG
, "EFEK of size [%d]:\n",
2189 key_rec
->enc_key_size
);
2190 ecryptfs_dump_hex(key_rec
->enc_key
,
2191 key_rec
->enc_key_size
);
2193 encrypted_session_key_set
:
2194 /* This format is inspired by OpenPGP; see RFC 2440
2196 max_packet_size
= (1 /* Tag 3 identifier */
2197 + 3 /* Max Tag 3 packet size */
2199 + 1 /* Cipher code */
2200 + 1 /* S2K specifier */
2201 + 1 /* Hash identifier */
2202 + ECRYPTFS_SALT_SIZE
/* Salt */
2203 + 1 /* Hash iterations */
2204 + key_rec
->enc_key_size
); /* Encrypted key size */
2205 if (max_packet_size
> (*remaining_bytes
)) {
2206 printk(KERN_ERR
"Packet too large; need up to [%td] bytes, but "
2207 "there are only [%td] available\n", max_packet_size
,
2208 (*remaining_bytes
));
2212 dest
[(*packet_size
)++] = ECRYPTFS_TAG_3_PACKET_TYPE
;
2213 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2214 * to get the number of octets in the actual Tag 3 packet */
2215 rc
= ecryptfs_write_packet_length(&dest
[(*packet_size
)],
2216 (max_packet_size
- 4),
2217 &packet_size_length
);
2219 printk(KERN_ERR
"Error generating tag 3 packet header; cannot "
2220 "generate packet length. rc = [%d]\n", rc
);
2223 (*packet_size
) += packet_size_length
;
2224 dest
[(*packet_size
)++] = 0x04; /* version 4 */
2225 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2226 * specified with strings */
2227 cipher_code
= ecryptfs_code_for_cipher_string(crypt_stat
->cipher
,
2228 crypt_stat
->key_size
);
2229 if (cipher_code
== 0) {
2230 ecryptfs_printk(KERN_WARNING
, "Unable to generate code for "
2231 "cipher [%s]\n", crypt_stat
->cipher
);
2235 dest
[(*packet_size
)++] = cipher_code
;
2236 dest
[(*packet_size
)++] = 0x03; /* S2K */
2237 dest
[(*packet_size
)++] = 0x01; /* MD5 (TODO: parameterize) */
2238 memcpy(&dest
[(*packet_size
)], auth_tok
->token
.password
.salt
,
2239 ECRYPTFS_SALT_SIZE
);
2240 (*packet_size
) += ECRYPTFS_SALT_SIZE
; /* salt */
2241 dest
[(*packet_size
)++] = 0x60; /* hash iterations (65536) */
2242 memcpy(&dest
[(*packet_size
)], key_rec
->enc_key
,
2243 key_rec
->enc_key_size
);
2244 (*packet_size
) += key_rec
->enc_key_size
;
2249 (*remaining_bytes
) -= (*packet_size
);
2253 struct kmem_cache
*ecryptfs_key_record_cache
;
2256 * ecryptfs_generate_key_packet_set
2257 * @dest_base: Virtual address from which to write the key record set
2258 * @crypt_stat: The cryptographic context from which the
2259 * authentication tokens will be retrieved
2260 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2261 * for the global parameters
2262 * @len: The amount written
2263 * @max: The maximum amount of data allowed to be written
2265 * Generates a key packet set and writes it to the virtual address
2268 * Returns zero on success; non-zero on error.
2271 ecryptfs_generate_key_packet_set(char *dest_base
,
2272 struct ecryptfs_crypt_stat
*crypt_stat
,
2273 struct dentry
*ecryptfs_dentry
, size_t *len
,
2276 struct ecryptfs_auth_tok
*auth_tok
;
2277 struct ecryptfs_global_auth_tok
*global_auth_tok
;
2278 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2279 &ecryptfs_superblock_to_private(
2280 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
2282 struct ecryptfs_key_record
*key_rec
;
2283 struct ecryptfs_key_sig
*key_sig
;
2287 mutex_lock(&crypt_stat
->keysig_list_mutex
);
2288 key_rec
= kmem_cache_alloc(ecryptfs_key_record_cache
, GFP_KERNEL
);
2293 list_for_each_entry(key_sig
, &crypt_stat
->keysig_list
,
2295 memset(key_rec
, 0, sizeof(*key_rec
));
2296 rc
= ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok
,
2300 printk(KERN_ERR
"Error attempting to get the global "
2301 "auth_tok; rc = [%d]\n", rc
);
2304 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
) {
2306 "Skipping invalid auth tok with sig = [%s]\n",
2307 global_auth_tok
->sig
);
2310 auth_tok
= global_auth_tok
->global_auth_tok
;
2311 if (auth_tok
->token_type
== ECRYPTFS_PASSWORD
) {
2312 rc
= write_tag_3_packet((dest_base
+ (*len
)),
2314 crypt_stat
, key_rec
,
2317 ecryptfs_printk(KERN_WARNING
, "Error "
2318 "writing tag 3 packet\n");
2322 /* Write auth tok signature packet */
2323 rc
= write_tag_11_packet((dest_base
+ (*len
)), &max
,
2325 ECRYPTFS_SIG_SIZE
, &written
);
2327 ecryptfs_printk(KERN_ERR
, "Error writing "
2328 "auth tok signature packet\n");
2332 } else if (auth_tok
->token_type
== ECRYPTFS_PRIVATE_KEY
) {
2333 rc
= write_tag_1_packet(dest_base
+ (*len
),
2335 crypt_stat
, key_rec
, &written
);
2337 ecryptfs_printk(KERN_WARNING
, "Error "
2338 "writing tag 1 packet\n");
2343 ecryptfs_printk(KERN_WARNING
, "Unsupported "
2344 "authentication token type\n");
2349 if (likely(max
> 0)) {
2350 dest_base
[(*len
)] = 0x00;
2352 ecryptfs_printk(KERN_ERR
, "Error writing boundary byte\n");
2356 kmem_cache_free(ecryptfs_key_record_cache
, key_rec
);
2360 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
2364 struct kmem_cache
*ecryptfs_key_sig_cache
;
2366 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat
*crypt_stat
, char *sig
)
2368 struct ecryptfs_key_sig
*new_key_sig
;
2371 new_key_sig
= kmem_cache_alloc(ecryptfs_key_sig_cache
, GFP_KERNEL
);
2375 "Error allocating from ecryptfs_key_sig_cache\n");
2378 memcpy(new_key_sig
->keysig
, sig
, ECRYPTFS_SIG_SIZE_HEX
);
2379 mutex_lock(&crypt_stat
->keysig_list_mutex
);
2380 list_add(&new_key_sig
->crypt_stat_list
, &crypt_stat
->keysig_list
);
2381 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
2386 struct kmem_cache
*ecryptfs_global_auth_tok_cache
;
2389 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2390 char *sig
, u32 global_auth_tok_flags
)
2392 struct ecryptfs_global_auth_tok
*new_auth_tok
;
2395 new_auth_tok
= kmem_cache_zalloc(ecryptfs_global_auth_tok_cache
,
2397 if (!new_auth_tok
) {
2399 printk(KERN_ERR
"Error allocating from "
2400 "ecryptfs_global_auth_tok_cache\n");
2403 memcpy(new_auth_tok
->sig
, sig
, ECRYPTFS_SIG_SIZE_HEX
);
2404 new_auth_tok
->flags
= global_auth_tok_flags
;
2405 new_auth_tok
->sig
[ECRYPTFS_SIG_SIZE_HEX
] = '\0';
2406 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
2407 list_add(&new_auth_tok
->mount_crypt_stat_list
,
2408 &mount_crypt_stat
->global_auth_tok_list
);
2409 mount_crypt_stat
->num_global_auth_toks
++;
2410 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);