[PATCH] airo: should select crypto_aes
[firewire-audio.git] / include / asm-powerpc / pgtable.h
blob8dbf5ad8150f9d11cc56fa7ec65b3718bbcc789a
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
3 #ifdef __KERNEL__
5 #ifndef CONFIG_PPC64
6 #include <asm-ppc/pgtable.h>
7 #else
9 /*
10 * This file contains the functions and defines necessary to modify and use
11 * the ppc64 hashed page table.
14 #ifndef __ASSEMBLY__
15 #include <linux/stddef.h>
16 #include <asm/processor.h> /* For TASK_SIZE */
17 #include <asm/mmu.h>
18 #include <asm/page.h>
19 #include <asm/tlbflush.h>
20 struct mm_struct;
21 #endif /* __ASSEMBLY__ */
23 #ifdef CONFIG_PPC_64K_PAGES
24 #include <asm/pgtable-64k.h>
25 #else
26 #include <asm/pgtable-4k.h>
27 #endif
29 #define FIRST_USER_ADDRESS 0
32 * Size of EA range mapped by our pagetables.
34 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
35 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
36 #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
38 #if TASK_SIZE_USER64 > PGTABLE_RANGE
39 #error TASK_SIZE_USER64 exceeds pagetable range
40 #endif
42 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
43 #error TASK_SIZE_USER64 exceeds user VSID range
44 #endif
47 * Define the address range of the vmalloc VM area.
49 #define VMALLOC_START ASM_CONST(0xD000000000000000)
50 #define VMALLOC_SIZE ASM_CONST(0x80000000000)
51 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
54 * Define the address range of the imalloc VM area.
56 #define PHBS_IO_BASE VMALLOC_END
57 #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
58 #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
61 * Region IDs
63 #define REGION_SHIFT 60UL
64 #define REGION_MASK (0xfUL << REGION_SHIFT)
65 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
67 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
68 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
69 #define USER_REGION_ID (0UL)
72 * Common bits in a linux-style PTE. These match the bits in the
73 * (hardware-defined) PowerPC PTE as closely as possible. Additional
74 * bits may be defined in pgtable-*.h
76 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
77 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
78 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
79 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
80 #define _PAGE_GUARDED 0x0008
81 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
82 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
83 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
84 #define _PAGE_DIRTY 0x0080 /* C: page changed */
85 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
86 #define _PAGE_RW 0x0200 /* software: user write access allowed */
87 #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
88 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
90 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
92 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
94 /* __pgprot defined in asm-powerpc/page.h */
95 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
97 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
98 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
99 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
100 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
101 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
102 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
103 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
104 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
105 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
106 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
108 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
109 #define HAVE_PAGE_AGP
111 /* PTEIDX nibble */
112 #define _PTEIDX_SECONDARY 0x8
113 #define _PTEIDX_GROUP_IX 0x7
117 * POWER4 and newer have per page execute protection, older chips can only
118 * do this on a segment (256MB) basis.
120 * Also, write permissions imply read permissions.
121 * This is the closest we can get..
123 * Note due to the way vm flags are laid out, the bits are XWR
125 #define __P000 PAGE_NONE
126 #define __P001 PAGE_READONLY
127 #define __P010 PAGE_COPY
128 #define __P011 PAGE_COPY
129 #define __P100 PAGE_READONLY_X
130 #define __P101 PAGE_READONLY_X
131 #define __P110 PAGE_COPY_X
132 #define __P111 PAGE_COPY_X
134 #define __S000 PAGE_NONE
135 #define __S001 PAGE_READONLY
136 #define __S010 PAGE_SHARED
137 #define __S011 PAGE_SHARED
138 #define __S100 PAGE_READONLY_X
139 #define __S101 PAGE_READONLY_X
140 #define __S110 PAGE_SHARED_X
141 #define __S111 PAGE_SHARED_X
143 #ifndef __ASSEMBLY__
146 * ZERO_PAGE is a global shared page that is always zero: used
147 * for zero-mapped memory areas etc..
149 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
150 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
151 #endif /* __ASSEMBLY__ */
153 #ifdef CONFIG_HUGETLB_PAGE
155 #define HAVE_ARCH_UNMAPPED_AREA
156 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
158 #endif
160 #ifndef __ASSEMBLY__
163 * Conversion functions: convert a page and protection to a page entry,
164 * and a page entry and page directory to the page they refer to.
166 * mk_pte takes a (struct page *) as input
168 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
170 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
172 pte_t pte;
175 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
176 return pte;
179 #define pte_modify(_pte, newprot) \
180 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
182 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
183 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
185 /* pte_clear moved to later in this file */
187 #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
188 #define pte_page(x) pfn_to_page(pte_pfn(x))
190 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
191 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
193 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
194 #define pmd_none(pmd) (!pmd_val(pmd))
195 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
196 || (pmd_val(pmd) & PMD_BAD_BITS))
197 #define pmd_present(pmd) (pmd_val(pmd) != 0)
198 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
199 #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
200 #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
202 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
203 #define pud_none(pud) (!pud_val(pud))
204 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
205 || (pud_val(pud) & PUD_BAD_BITS))
206 #define pud_present(pud) (pud_val(pud) != 0)
207 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
208 #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
210 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
213 * Find an entry in a page-table-directory. We combine the address region
214 * (the high order N bits) and the pgd portion of the address.
216 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
217 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
219 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
221 #define pmd_offset(pudp,addr) \
222 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
224 #define pte_offset_kernel(dir,addr) \
225 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
227 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
228 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
229 #define pte_unmap(pte) do { } while(0)
230 #define pte_unmap_nested(pte) do { } while(0)
232 /* to find an entry in a kernel page-table-directory */
233 /* This now only contains the vmalloc pages */
234 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
237 * The following only work if pte_present() is true.
238 * Undefined behaviour if not..
240 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
241 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
242 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
243 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
244 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
245 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
247 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
248 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
250 static inline pte_t pte_rdprotect(pte_t pte) {
251 pte_val(pte) &= ~_PAGE_USER; return pte; }
252 static inline pte_t pte_exprotect(pte_t pte) {
253 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
254 static inline pte_t pte_wrprotect(pte_t pte) {
255 pte_val(pte) &= ~(_PAGE_RW); return pte; }
256 static inline pte_t pte_mkclean(pte_t pte) {
257 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
258 static inline pte_t pte_mkold(pte_t pte) {
259 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
260 static inline pte_t pte_mkread(pte_t pte) {
261 pte_val(pte) |= _PAGE_USER; return pte; }
262 static inline pte_t pte_mkexec(pte_t pte) {
263 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
264 static inline pte_t pte_mkwrite(pte_t pte) {
265 pte_val(pte) |= _PAGE_RW; return pte; }
266 static inline pte_t pte_mkdirty(pte_t pte) {
267 pte_val(pte) |= _PAGE_DIRTY; return pte; }
268 static inline pte_t pte_mkyoung(pte_t pte) {
269 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
270 static inline pte_t pte_mkhuge(pte_t pte) {
271 return pte; }
273 /* Atomic PTE updates */
274 static inline unsigned long pte_update(pte_t *p, unsigned long clr)
276 unsigned long old, tmp;
278 __asm__ __volatile__(
279 "1: ldarx %0,0,%3 # pte_update\n\
280 andi. %1,%0,%6\n\
281 bne- 1b \n\
282 andc %1,%0,%4 \n\
283 stdcx. %1,0,%3 \n\
284 bne- 1b"
285 : "=&r" (old), "=&r" (tmp), "=m" (*p)
286 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
287 : "cc" );
288 return old;
291 /* PTE updating functions, this function puts the PTE in the
292 * batch, doesn't actually triggers the hash flush immediately,
293 * you need to call flush_tlb_pending() to do that.
294 * Pass -1 for "normal" size (4K or 64K)
296 extern void hpte_update(struct mm_struct *mm, unsigned long addr,
297 pte_t *ptep, unsigned long pte, int huge);
299 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
300 unsigned long addr, pte_t *ptep)
302 unsigned long old;
304 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
305 return 0;
306 old = pte_update(ptep, _PAGE_ACCESSED);
307 if (old & _PAGE_HASHPTE) {
308 hpte_update(mm, addr, ptep, old, 0);
309 flush_tlb_pending();
311 return (old & _PAGE_ACCESSED) != 0;
313 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
314 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
315 ({ \
316 int __r; \
317 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
318 __r; \
322 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
323 * moment we always flush but we need to fix hpte_update and test if the
324 * optimisation is worth it.
326 static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
327 unsigned long addr, pte_t *ptep)
329 unsigned long old;
331 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
332 return 0;
333 old = pte_update(ptep, _PAGE_DIRTY);
334 if (old & _PAGE_HASHPTE)
335 hpte_update(mm, addr, ptep, old, 0);
336 return (old & _PAGE_DIRTY) != 0;
338 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
339 #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
340 ({ \
341 int __r; \
342 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
343 __r; \
346 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
347 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep)
350 unsigned long old;
352 if ((pte_val(*ptep) & _PAGE_RW) == 0)
353 return;
354 old = pte_update(ptep, _PAGE_RW);
355 if (old & _PAGE_HASHPTE)
356 hpte_update(mm, addr, ptep, old, 0);
360 * We currently remove entries from the hashtable regardless of whether
361 * the entry was young or dirty. The generic routines only flush if the
362 * entry was young or dirty which is not good enough.
364 * We should be more intelligent about this but for the moment we override
365 * these functions and force a tlb flush unconditionally
367 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
368 #define ptep_clear_flush_young(__vma, __address, __ptep) \
369 ({ \
370 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
371 __ptep); \
372 __young; \
375 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
376 #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
377 ({ \
378 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
379 __ptep); \
380 flush_tlb_page(__vma, __address); \
381 __dirty; \
384 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
385 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
386 unsigned long addr, pte_t *ptep)
388 unsigned long old = pte_update(ptep, ~0UL);
390 if (old & _PAGE_HASHPTE)
391 hpte_update(mm, addr, ptep, old, 0);
392 return __pte(old);
395 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
396 pte_t * ptep)
398 unsigned long old = pte_update(ptep, ~0UL);
400 if (old & _PAGE_HASHPTE)
401 hpte_update(mm, addr, ptep, old, 0);
405 * set_pte stores a linux PTE into the linux page table.
407 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
408 pte_t *ptep, pte_t pte)
410 if (pte_present(*ptep)) {
411 pte_clear(mm, addr, ptep);
412 flush_tlb_pending();
414 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
415 *ptep = pte;
418 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
419 * function doesn't need to flush the hash entry
421 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
422 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
424 unsigned long bits = pte_val(entry) &
425 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
426 unsigned long old, tmp;
428 __asm__ __volatile__(
429 "1: ldarx %0,0,%4\n\
430 andi. %1,%0,%6\n\
431 bne- 1b \n\
432 or %0,%3,%0\n\
433 stdcx. %0,0,%4\n\
434 bne- 1b"
435 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
436 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
437 :"cc");
439 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
440 do { \
441 __ptep_set_access_flags(__ptep, __entry, __dirty); \
442 flush_tlb_page_nohash(__vma, __address); \
443 } while(0)
446 * Macro to mark a page protection value as "uncacheable".
448 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
450 struct file;
451 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
452 unsigned long size, pgprot_t vma_prot);
453 #define __HAVE_PHYS_MEM_ACCESS_PROT
455 #define __HAVE_ARCH_PTE_SAME
456 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
458 #define pte_ERROR(e) \
459 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
460 #define pmd_ERROR(e) \
461 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
462 #define pgd_ERROR(e) \
463 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
465 extern pgd_t swapper_pg_dir[];
467 extern void paging_init(void);
470 * This gets called at the end of handling a page fault, when
471 * the kernel has put a new PTE into the page table for the process.
472 * We use it to put a corresponding HPTE into the hash table
473 * ahead of time, instead of waiting for the inevitable extra
474 * hash-table miss exception.
476 struct vm_area_struct;
477 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
479 /* Encode and de-code a swap entry */
480 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
481 #define __swp_offset(entry) ((entry).val >> 8)
482 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
483 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
484 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
485 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
486 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
487 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
490 * kern_addr_valid is intended to indicate whether an address is a valid
491 * kernel address. Most 32-bit archs define it as always true (like this)
492 * but most 64-bit archs actually perform a test. What should we do here?
493 * The only use is in fs/ncpfs/dir.c
495 #define kern_addr_valid(addr) (1)
497 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
498 remap_pfn_range(vma, vaddr, pfn, size, prot)
500 void pgtable_cache_init(void);
503 * find_linux_pte returns the address of a linux pte for a given
504 * effective address and directory. If not found, it returns zero.
505 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
507 pgd_t *pg;
508 pud_t *pu;
509 pmd_t *pm;
510 pte_t *pt = NULL;
512 pg = pgdir + pgd_index(ea);
513 if (!pgd_none(*pg)) {
514 pu = pud_offset(pg, ea);
515 if (!pud_none(*pu)) {
516 pm = pmd_offset(pu, ea);
517 if (pmd_present(*pm))
518 pt = pte_offset_kernel(pm, ea);
521 return pt;
524 #include <asm-generic/pgtable.h>
526 #endif /* __ASSEMBLY__ */
528 #endif /* CONFIG_PPC64 */
529 #endif /* __KERNEL__ */
530 #endif /* _ASM_POWERPC_PGTABLE_H */